历年高中数学竞赛加试题

合集下载

历年全国高中数学联赛试题及答案76套题

历年全国高中数学联赛试题及答案76套题

历年全国高中数学联赛试题及答案76套题(一)2019年全国高中数学联赛试题及答案1. 小川野升平想在一个边长为6米的正方形的地块上建造一个有一堵墙的房子,墙要用沙发垫、玻璃门中的一种建造,沙发垫墙每平方米需要50元,玻璃门墙每平方米需要80元。

为了满足小川野升平的预算,需要选择合适的方案,可以使花费尽可能少。

请求出该房子沙发垫墙和玻璃门墙各多少平方米,以及花费的最小值。

解:由题意得,房子在四周建墙,所以共4个墙面。

墙面中有一个为门,另外3个可以被沙发垫或玻璃门所替代。

因为墙长宽相等,所以选择沙发垫或玻璃门所用的面积是相等的,即我们只需要考虑使用沙发垫或玻璃门的墙面数量即可。

用$x$表示使用沙发垫的墙面数量,则使用玻璃门的墙面数量为$3-x$,进而可列出花费的表达式:$$f(x)=50x+80(3-x)=80x+240$$为获得花费的最小值,我们需要求出$f(x)$的最小值,即求出$f(x)$的极小值。

因为$f(x)$是$x$的一次函数,所以可求出其导函数$f'(x)=80-30x$。

当$f'(x)=0$时,即$x=\frac83$,此时$f(x)$有极小值$f(\frac83)=400$。

当$x<\frac83$时,$f'(x)>0$,$f(x)$单调递增;当$x>\frac83$时,$f'(x)<0$,$f(x)$单调递减。

所以我们选择使用3个沙发垫的构建方案,所需面积为$3\times6=18m^2$,花费为$50\times18=900$元。

因此,该房子沙发垫墙面积为18平方米,玻璃门墙面积为0平方米,花费最小值为900元。

2. 对于正整数$n$,记$S_n$为$\sqrt{n^2+1}$的小数部分,$T_n$表示$S_1,S_2,\cdots,S_n$的平均值,则$s_n=10T_n-5$。

求$\sum_{k=1}^{2019}s_k$的个位数。

高中奥赛试题汇编及答案

高中奥赛试题汇编及答案

高中奥赛试题汇编及答案一、数学奥赛试题1. 题目:证明对于任意正整数 \( n \),\( 1^2 + 1 + 2^2 + 2 + \ldots + n^2 + n = \frac{n(n + 1)(2n + 1)}{6} \)。

答案:我们可以使用数学归纳法来证明这个等式。

首先验证 \( n = 1 \) 时等式成立。

然后假设对于 \( n = k \) 时等式成立,即:\[ 1^2 + 1 + 2^2 + 2 + \ldots + k^2 + k = \frac{k(k + 1)(2k + 1)}{6} \]我们需要证明对于 \( n = k + 1 \) 时等式也成立:\[ 1^2 + 1 + 2^2 + 2 + \ldots + k^2 + k + (k + 1)^2 + (k + 1) \]\[ = \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 + (k + 1) \]\[ = \frac{k(k + 1)(2k + 1) + 6(k + 1)^2 + 6(k + 1)}{6} \]\[ = \frac{(k + 1)[(2k + 1)k + 6(k + 1) + 6]}{6} \]\[ = \frac{(k + 1)(2k^2 + 7k + 6)}{6} \]\[ = \frac{(k + 1)(k + 3)(2k + 3)}{6} \]这样我们就证明了对于 \( n = k + 1 \) 时等式也成立。

因此,根据数学归纳法,等式对所有正整数 \( n \) 成立。

二、物理奥赛试题1. 题目:一个质量为 \( m \) 的物体从静止开始自由下落,忽略空气阻力。

求物体下落 \( t \) 秒后的速度和位移。

答案:根据自由落体运动的公式,物体下落 \( t \) 秒后的速度\( v \) 为:\[ v = gt \]其中 \( g \) 是重力加速度,通常取 \( 9.8 \, \text{m/s}^2 \)。

2022全国高中数学联赛加试试题及答案(A卷)

2022全国高中数学联赛加试试题及答案(A卷)

2022全国高中数学联赛加试试题及答案(A卷)2022全国高中数学竞赛二试试题及答案2022年全国高中数学联合竞赛加试(A卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分, 10分为一个档次,不要增加其他中间档次.一、(本题满分40分)设a1,a2, ,an(n≥2)是实数,证明:可以选取ε1,ε2, ,εn∈{1, 1},使得n n n2∑ai + ∑εiai ≤(n+1) ∑ai .= i1= i1 = i1证法一:我们证明:n2 2 nnn2∑ai + ∑ai ∑aj ≤(n+1) ∑ai ,① = i1= i1 i1 n ==j +1222n n(这里,[x]即对i=1, , ,取εi=1;对=i +1, ,n,取εi= 1符合要求.2 2表示实数x的整数部分.) (10)分事实上,①的左边为州奥2 ∑ai i=1n 22n n 2 2 nnaaaa ++∑∑j j ∑i ∑i= n n i1= i1 jj 2 +1 2 +12林2n2a+∑jn = j +1 2nn 2n+1 n n n+1 2 a 2 ∑ai2 +2 (利用)n ∑j 2 i=1 2 = 2 2 n j +12nn 2 ≤n ∑ai2 +(n+1) ∑a2j (利用[x]≤x)n = i=1 j +1 2杭nn 2n n≤2 ∑ai2 +2 n ∑a2j (柯西不等式)…………30分 2 i=1 2 = n j +12教2育22022全国高中数学竞赛二试试题及答案n2≤(n+1) ∑ai ,i=1所以①得证,从而本题得证.…………………40分证法二:首先,由于问题中a1,a2, ,an的对称性,可设a1≥a2≥ ≥an.此外,若将a1,a2, ,an中的负数均改变符号,则问题中的不等式左边的∑ai 不i=1 减,而右边的∑ai2不变,并且这一手续不影响εi=1的选取,因此我们可进一i=1nn2步设a1≥a2≥ ≥an≥0.…………………10分引理:设a1≥a2≥ ≥an≥0,则0≤∑( 1)i 1ai≤a1.i=1n事实上,由于ai≥ai+1=(i1,2, ,n 1),故当n是偶数时,i=1n当n是奇数时,∑( 1)i=1杭引理得证.…………………30分回到原题,由柯西不等式及上面引理可知22n n n2 2i 1∑ai + ∑( 1)ai ≤n ∑ai +a1 == i1= i1 i1≤(n+1)∑ai2,i=1n这就证明了结论.…………………40分州奥i=1ni 1i 1 ai=a1 (a2 a3) (an 2 an 1) an≤a1.(1)∑ai=(a1 a2)+(a3 a4)+ +(an 2 an 1)+an≥0,∑( 1)i=1ni 1ai=a1 (a2 a3) (an 1 an)≤a1.林∑( 1)ni 1ai=(a1 a2)+(a3 a4)+ +(an 1 an)≥0,教育2022全国高中数学竞赛二试试题及答案二、(本题满分40分)设S={A1,A2, ,An},其中A1,A2, ,An 是n个互不相,满足对任意Ai,Aj∈S,均有Ai Aj∈S.若同的有限集合(n≥2)kmin|Ai|≥2.证明:存在x∈ Ai,使得x属于A1,A2, ,An 中的至少1≤i≤nni=1n个集k合(这里X表示有限集合X的元素个数).证明:不妨设|A1|=k.设在A1,A2, ,An中与A1不相交的集合有s个,重新记为B1,B2, ,Bs,设包含A1的集合有t 个,重新记为C1,C2, ,Ct.由已知条件,(Bi A1)∈S,即(Bi A1)∈{C1,C2, ,Ct},这样我们得到一个映射f:{B1,B2, ,Bs}→{C1,C2, ,Ct},f(Bi)=Bi A1.显然f是单映射,于是s≤t.…………………10分下的n s t个集合中,设包含ai的集合有xi个(1≤i≤k),由于剩下的n s t个集合中每个集合与A1的交非空,即包含某个ai,从而x1+x2+ +xk≥n s t.…………………20分州奥1≤i≤k不妨设x1=maxxi,则由上式知x1≥包含a1,因此包含a1的集合个数至少为n s tn s+(k 1)tn s+t(利用k≥2)+t≥kkkn≥(利用t≥s).……………40分k三、(本题满分50分)如图,ABC内接于圆O,P为上一点,点K在线段AP上,使得BK平分∠ABC.过BC K、P、C三点的圆与边AC交于点D,连接BD交圆于点E,连接PE并延长与边AB交于点F.证明:∠ABC=2∠FCB.杭包含a1的集合至少有n s t个.又由于A1 Ci(i=1, ,t),故C1,C2, ,Ct都k林设A1={a1,a2, ,ak}.在A1,A2, ,An中除去B1,B2, ,Bs,C1,C2, ,Ct后,在剩n s t,即在剩下的n s t个集合中,k教育2022全国高中数学竞赛二试试题及答案证法一:设CF与圆Ω交于点L(异于C),连接PB、PC、BL、KL.注意此时C、D、L、K、E、P六点均在圆Ω上,结合A、B、P、C四点共圆,可知∠FEB=∠DEP=180 ∠DCP=∠ABP=∠FBP,2因此FBE∽ FPB,故FB=FE FP.…………………10分又由圆幂定理知,FE FP=FL FC,所以2FB=FL FC,从而FBL∽ FCB.…………………20分因此即B、K、L三点共线.…………………30分再根据FBL∽ FCB得,证法二:设CF与圆交于点L(异于C).对圆内接广义六边形DCLKPE应用帕斯卡定理可知,DC与KP的交点A、CL与PE的交点F、LK与ED的交点B′共线,因此B′是AF与ED的交点,即B′=B.所以B、K、L共线.…………………30分。

高中数学竞赛试题汇总

高中数学竞赛试题汇总

高中数学竞赛试题汇总高中数学竞赛模拟试题一一试一、填空题(共8小题,8×7=56分)1、已知点(x,y)在直线x+2y=3上移动,当2x+4y取最小值时,点(x,y)与原点的距离是。

2、设f(n)为正整数n(十进制)的各数位上的数字的平方之和,比如记f1(n)=f(n),fk+1(n)=f(fk(n)),f(123)=12+22+32=14.k=1,2,3.则f2010(2010)=。

3、如图,正方体ABCD-A1B1C1D1的二面角度数是。

4、在1,2.2010中随机选取三个数,能构成递增等差数列的概率是。

5、若正数a,b,c满足abc=-(b+ca+ca+b),则ba+c的最大值是。

6、在平面直角坐标系xoy中,给定两点M(-1,2)和N(1,4),点P在X轴上移动,当∠MPN取最大值时,点P的横坐标是。

7、已知数列a,a1,a2.an。

满足关系式(3-an+1)(6+an)=18且a=3,则∑(i=1 to n)ai的值是。

8、函数f(x)=sinx+tanxcosx+tanxcosx+cotxsinx+cotx的最小值为。

二、解答题(共3题,14+15+15=44分)9、设数列{an}满足条件:a1=1,a2=2,且an+2=an+1+an (n=1,2,3.),求证:对于任何正整数n,都有:na(n+1)≥1+(n/2)(an)2,3.10、已知曲线M:x2-y2=m,x>0,m为正常数.直线l与曲线M的实轴不垂直,且依次交直线y=x、曲线M、直线y=-x于A、B、C、D4个点,O为坐标原点。

1)若|AB|=|BC|=|CD|,求证:△AOD的面积为定值;2)若△BOC的面积等于△AOD面积的1/3,求证:|AB|=|BC|=|CD|。

11、已知α、β是方程4x2-4tx-1=0(t∈R)的两个不等实根,函数f(x)=2x-t的定义域为[α,β]。

求证:2α+1<2β+1.Ⅰ)求函数g(t)=max{f(x)}-min{f(x)};Ⅱ)证明:对于u1,u2,u3∈(0,π),若sinu1+sinu2+sinu3=1/2,则1113+g(tanu1)g(tanu2)g(tanu3)<6.二试考试时间:150分钟总分:200分)一、(本题50分)如图,O1和O2与△ABC的三边所在的三条直线都相切,E,F,G,H为切点,并且EG、FH的延长线交于P点。

高中数学竞赛试题及参考答案

高中数学竞赛试题及参考答案

高中数学竞赛一、填空题(本题满分60分,前 4 小题每小题 7 分,后 4 小题每小题 8 分)B11.如图 , 正六边形A1B1C1D1E1F1的边长为 1,它的 6 条对角线又围成一个正六边形A2 B2 C2D2E2 F2,如此继续下去,A1A2F 1F2B2E2则所有这些六边形的面积和是.C12.已知正整数 a1 , a2 ,L, a10满足 :a j3, a,1 i j 102i则a10 的最小可能值是.C2D2D1E13.若tantan tan17,6cot cot cot 4 ,5cot cot cot cot cot cot17,则5tan.4.已知关于x的方程lg kx2lg x 1 仅有一个实数解,A DF则实数 k 的取值范围是.B E C 5.如图,AEF 是边长为 x 的正方形ABCD的内接三角形,已知AEF 90 ,AE a, EF b, a b ,则x.6.方程2m 3n3n 12m 13的非负整数解m,n.7.一个口袋里有 5 个大小一样的小球,其中两个是红色的,两个是白色的,一个是黑色的,依次从中摸出 5 个小球,相邻两个小球的颜色均不相同的概率是. (用数字作答)8.数列a n定义如下:a11,a2 2, a n2 n1an 1n.若2n2na n , n 1,2,L2a m20112,则正整数 m 的最小值为.2012二、解答题9.(本题满分 14分)如图,在平行四边形ABCD中,AB x , BC1,对角线 AC 与 BD 的夹角BOC 45 ,记直线 AB 与 CD 的距离为h(x).求 h(x) 的表达式,并写出x的取值范围.D C 10.(本题满分 14分)给定实数a 1,求函数OA B(a sin x)(4sin x)f ( x)的最小值.1 sin x11 .(本题满分16分)正实数x, y, z满足9xyz xy yz zx4 ,求证:4(1)xyyzzx3 ;(2)xyz2.12.( 本 题 满 分16 分 ) 给 定 整 数 n( 3) , 记f (n)为 集 合1,2,L,2 n1的满足如下两个条件的子集 A 的元素个数的最小值:(a)1 A, 2n1 A ;(b) A 中的元素(除 1 外)均为 A 中的另两个(可以相同)元素的和.( 1)求 f (3) 的值;(2)求证: f (100)108 .上海市高中数学竞赛答案1、9 32、9243、114、 ,0U4a 25、 6、3,0, 2,2 a 2 (a b)27 28 4025 59OB 2OC21(AB2BC 2)1( x2 1)2 22OBCBC2OB2OC 22OB OC cos BOC OB2OC22OB OC1OB OC x21522SABCD 4SOBC 41OB OC sin BOC22OB OC x21 2AB h( x)x21 2h(x)x2110 2xx210x1OB 2OC 22OB OC1( x21)2x21222x11x21h( x)x211x21142x10(a sin x)(4 sin x)3(a 1)f ( x)1 sin xa 21 sin x1 sin x1 a7 0 3(a1) 233(a 1)f ( x) 1 sin xa 2 2 3(a 1) a 21 sin xsin x3(a 1) 11,1f min ( x)23(a1)a267y3(a 1)a3(a1)2“ ”t3t0, 3(a1)f min ( x) f (1) 23(a 1) a 2 5(a 1)2 22 3(a 1) a2, 1 a7 ; f min (x)3145(a 1) ,a 7 .23xy yz zx111t333xyyz zx 2xyz3( xy)( yz)( zx)2434 9xyz xy yz zx 9t 33t2所以3t23t 23t20 ,而 3t 23t20,所以 3t20,即t2,3从而xyyz zx4( 10分)3.(2)又因为( x y z)23(xy yz zx) ,所以( x y z)2 4 ,故 x y z 2 .( 16分)12.解(1)设集合A1,2,L ,2 3 1 ,且A满足(a),( b).则1 A,7 A.由于1, m,7 m 2,3,L ,6 不满足 (b) ,故A 3 .又 1,2,3,7 , 1,2,4,7 , 1,2,5,7 , 1,2,6,7 , 1,3,4,7 , 1,3,5,7 , 1,3,6,7 ,1,4,5,7 , 1,4,6,7 , 1,5,6,7 都不满足(b),故A 4.而集合 1,2,4,6,7满足 (a),( b) ,所以f(3) 5 .( 6 分)(2)首先证明f (n 1) f (n)2,n3,4,L.①事实上,若A1,2,L,2 n 1,满足 (a),( b) ,且A的元素个数为 f (n) .令 B A U 2n 12, 2n 1 1 ,由于2n 122n1,Bf (n)22n 122(2n1), 2n 1 11(2 n 12)BL,2n 11B(a),( b)1,2,f (n1)B f (n)210f (2n) f (n)n1, n3,4,LA1,2,L,2 n1(a),( b)Af (n)B A U2(2n 1), 22 (2n1),L ,2 n (2n1),22 n12(2n1)22 (2 n1)L2n (2 n1)22 n1 B1,2,L,2 2n1B f (n)n 12k 1(2 n1)2k (2n1)2k (2n1), k0,1,L , n1 22n12n (2 n1)(2 n1)B(a),( b)f (2n)B f (n)n 114f (2 n1) f (n)n 3f (100) f (50)50 1 f (25)25151f (12)12377 f (6) 6192f (3) 3 1 99 10816。

高中数学联赛加试模拟试题解答

高中数学联赛加试模拟试题解答

高中数学联赛加试模拟试题解答1. 在锐角∆ABC 中,AD ,BE ,CF 为三条高线。

设∆DFB ,∆DEC 的内心分别为I 1,I 2,∆AI 1B ,∆AI 2C 的外心分别为O 1,O 2,证明:I 1I 2∥O 1O 2。

证明:我们先证明B ,I 1,I 2,C 四点共圆。

事实上,由于∠I 1DI 2=π2+12∠EDF =π−A 为钝角,故∠D I 1I 2+∠D I 2I 1=A 为锐角。

过I 1,I 2分别作BC 的垂线,垂足分别为H 1,H 2。

那么由ΔDCE~∆DFB 知sin ∠D I 2I 1sin ∠D I 1I 2=DI 1DI 2=DH 1DH 2=BD +DF −BF CD +DE −CE =BF CE =cos B cos C =sin(π2−B)sin(π2−C) 又∠D I 1I 2+∠D I 2I 1=A = π2−B + π2−C 为锐角,故∠D I 1I 2=π2−C ,那么结合∠D I 1B =π2+C 2可知∠BI 1I 2=π−C 2,故B ,I 1,I 2,C 四点共圆。

其次,用∡表示正向旋转的角,即有向角,则∡ I 1I 2,BC =∡ I 1I 2,BI +∡ BI,BC =C −B 2=∡IAD ,又AD ⊥BC ,故AI ⊥I 1I 2。

又由B ,I 1,I 2,C 四点共圆知IB ∙II 1=IC ∙II 2,故I 对圆O 1,圆O 2的幂相等,故AI 为圆O 1,圆O 2的根轴,因此AI ⊥O 1O 2。

又AI ⊥I 1I 2,故I 1I 2∥O 1O 2。

2. 求所有的正整数m ,使得对任意正整数n ,都有n|C n m −2n证明:m =1是成立的。

如果m ≥2那么我们证明m 的取值为一切素数。

事实上,如果m 是素数,改记为p 。

且只需考虑p 3≤n ≤p 2的情形。

由于C n p −2n =np −2n C n −1p −2n −1,且由p 为素数,0<n <p 知n,p −2n = n,p =1.故n 和p −2n 不可能约分。

全国高中数学联赛加试试题

全国高中数学联赛加试试题

试卷编号:22742018年全国高中数学联赛加试试题班级:_____学号:_____姓名:_____成绩:_____一、解答题共4小题。

解答应写出文字说明、演算步骤或证明过程。

1.设n 是正整数,a 1,a 2,···,a n ,b 1,b 2,···,b n ,A ,B 均为正实数,满足a i b i ,a i A ,i =1,2,···,n ,且b 1b 2···b n a 1a 2···a n B A .证明:(b 1+1)(b 2+1)···(b n +1)(a 1+1)(a 2+1)···(a n +1) B +1A +1.2.如图,△ABC 为锐角三角形,AB <AC ,M 为BC 边的中点,点D 和E 分别为△ABC 的外接圆 BAC和 BC 的中点,F 为△ABC 的内切圆在AB 边上的切点,G 为AE 与BC 的交点,N 在线段EF 上,满足NB ⊥AB .证明:若BN =EM ,则DF ⊥FG .3.设n ,k ,m 是正整数,满足k 2,且n m <2k −1kn .设A 是{1,2,···,m }的n 元子集.证明:区间(0,n k −1)中的每个整数均可表示为a −a ′,其中,a ,a ′∈A .4.数列{a n }定义如下:a 1是任意正整数,对整数n 1,a n +1是与n ∑i =1a i 互素,且不等于a 1,···,a n 的最小正整数.证明:每个正整数均在数列{a n }中出现.2018年全国高中数学联赛加试试题 第1页(共1页)。

【高中数学竞赛专题大全】 竞赛专题1 集合(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题1 集合(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】竞赛专题1 集合 (50题竞赛真题强化训练)一、单选题1.(2018·天津·高三竞赛)如果集合{}1,2,3,,10A =,{}1,2,3,4B =,C 是A 的子集,且C B ≠∅,则这样的子集C 有( )个.A .256B .959C .960D .961【答案】C 【解析】 【详解】满足C B ⋂=∅的子集C 有62个,所以满足C B ⋂≠∅的子集C 有10622960-=个. 故答案为C2.(2020·浙江温州·高一竞赛)已知集合{}{}2|2,230A x x B x x x =>=--<∣,则A B =( ).A .{23}xx <<∣ B .{12}xx -<<∣ C .{21xx -<<-∣或2}x > D .{2∣<-xx 或3}x > 【答案】A 【解析】 【详解】(,2)(2,)A =-∞-+∞,又223(3)(1)0(1,3)x x x x B --=-+<⇒=-, 所以(2,3)A B =. 故选:A.3.(2018·黑龙江·高三竞赛)已知集合(){}2,60A x y x a y =++=,集合()(){},2320B x y a x ay a =-++=.若AB =∅,则a 的值是( ).A .3或-1B .0C .-1D .0或-1【答案】D 【解析】 【详解】A B ⋂=∅,即直线21:60l x a y ++=与()2:2320l a x ay a -++=平行.令()2132a a a ⨯=-,解得0a =或-14.(2019·全国·高三竞赛)已知{}1,2,,216,S A S =⋅⋅⋅⊆.若集合A 中任两个元素的和都不能被6整除,则集合A 中元素的个数最多为( ). A .36 B .52 C .74 D .90【答案】C 【解析】 【详解】记{}()6,0,1,,5k S x S x n k n N k =∈=+∈=⋅⋅⋅,且50k k S S ==⋃.易知()36k card S =.则集合A 中既不能同时有1S 与5S 或2S 与4S 中元素,也不能有6S 中两个元素、3S 中两个元素.要使A 中元素最多,可选1S 与2S 中全部元素,0S 与3S 中各一个元素.故最多共有36361174+++=个元素. 故答案为C5.(2019·吉林·高三竞赛)集合A ={2,0,1,3},集合B ={x |-x ∈A ,2-x 2∉A },则集合B 中所有元素的和为 A .4- B .5- C .6- D .7-【答案】B 【解析】 【详解】由题意可得B ={-2,-3},则集合B 中所有元素的和为-5. 故选:B. 二、填空题6.(2018·四川·高三竞赛)设集合{}1,2,3,4,5,6,7,8I =,若I 的非空子集AB 、满足A B =∅,就称有序集合对(),A B 为I 的“隔离集合对”,则集合I 的“隔离集合对”的个数为______.(用具体数字作答) 【答案】6050 【解析】 【详解】设A 为I 的()17k k ≤≤元子集,则B 为I 的补集的非空子集.所以,“隔离集合对”的个数为()()()()7778880880808898888888111212122223216050k kk kk k k k CC C C C C C --===-=-=+-+---=-+=∑∑∑. 故答案为6050.7.(2018·湖南·高三竞赛)设集合2{|},{31021|}01A x x x B x m x m =-≤=+≤≤--,若A B B =,则实数m 的取值范围为__________. 【答案】3m ≤ 【解析】 【详解】由A B B ⋂=知,B A ⊆,而2{|3100}{|25}A x x x x x =--≤=-≤≤.当B =∅时,121m m +>-,即2m <,此时B A ⊆成立. 当B ≠∅时,121m m +≤-,即2m ≥,由B A ⊆,得21,21 5.m m -≤+⎧⎨-≤⎩ 解得33m -≤≤.又2m ≥,故得23m ≤≤. 综上,有3m ≤. 故答案为3m ≤8.(2021·全国·高三竞赛)已知,a b ∈R ,集合{}2{1,,},,M a b N a ab ==,若N M ⊆,则a b+的值为_________. 【答案】1- 【解析】 【分析】 【详解】依题意,1,0,1,a a b b a ≠≠≠≠.若21a =,则1,{1,1,},{1,}a M b N b =-=-=-,所以,0b b b -==. 若2a a =,则0a =或1,矛盾.若2a b =,则{}{}2231,,,,M a a N a a ==,于是31a =或a ,得0a =或±1,舍去.综上所述,1a b +=-. 故答案为:1-.9.(2018·山东·高三竞赛)集合A 、B 满足{}1,2,3,,10A B =,A B =∅,若A 中的元素个数不是A 中的元素,B 中的元素个数不是B 中的元素,则满足条件的所有不同的集合A 的个数为______. 【答案】186 【解析】 【详解】设A 中元素个数为()1,2,,9k k =,则B 中元素个数为10k -,依题意k A ∉,441122m k m ⎛⎫⎛⎫-<<+ ⎪ ⎪⎝⎭⎝⎭.10k B -∉,10k A -∈,此时满足题设要求的A 的个数为1102k C --.其中,当5k =时,不满足题意,故5k ≠.所以A 的个数为018484888882186C C C C C +++-=-=.10.(2018·福建·高三竞赛)将正偶数集合{}2,4,6,从小到大按第n 组有32n -个数进行分组:{}2,{}4,6,8,10,{}12,14,16,18,20,22,24,…,则2018位于第______组. 【答案】27 【解析】 【详解】设2018在第n 组,由2018为第1009个正偶数,根据题意得()()11132100932n ni i i i -==-<≤-∑∑,即()()223113100922n n n n ----<≤.解得正整数27n =.所以2018位于第27组.11.(2021·全国·高三竞赛)在{1,2,,12}的非空真子集中,满足最大元素与最小元素之和为13的集合个数为___________. 【答案】1364 【解析】 【详解】考虑1,12;2,11;3,10;4,9;5,8;6,7这5组数,每一组可作为集合的最大元素和最小元素,故所求集合的个数为()10864221222211364-+++++=,故答案为:136412.(2021·全国·高三竞赛)已知集合{1,2,3,,1995}M =,A 是M 的子集,当x A ∈时,19x A ∉,则集合A 元素个数的最大值为_______. 【答案】1895 【解析】 【详解】解析:先构造抽屉:{6,114},{7,133},,{105,1995},{1,2,3,4,5,106,107,,1994}.使前100个抽屉中恰均只有2个数,且只有1个数属于A ,可从集合M 中去掉前100个抽屉中的数,剩下199510021795-⨯=个数,作为第101个抽屉.现从第1至100个抽屉中取较大的数,和第101个抽屉中的数,组成集合A ,于是{1,2,3,4,5,106,107,,1995}A =,满足A 包含于M ,且当x A ∈时,19x A ∉. 所以card()A 的最大值为199********-=. 故答案为:1895.13.(2021·全国·高三竞赛)设111,,,23100X ⎧⎫=⎨⎬⎩⎭,子集G X ⊆之积数定义为G 中所有元素之乘积(空集的积数为零),求X 中所有偶数个元素之子集的积数的总和是_________. 【答案】4851200##5124200【解析】 【详解】解:设X 中所有偶数个元素之子集的积数的总和是A ,X 中所有奇数个元素之子集的积数之和是B ,则111991*********A B ⎛⎫⎛⎫⎛⎫+=+++-=⎪⎪⎪⎝⎭⎝⎭⎝⎭,11199111123100100A B ⎛⎫⎛⎫⎛⎫-=----=- ⎪⎪⎪⎝⎭⎝⎭⎝⎭. 解得4851200A =. 故答案为:485120014.(2020·江苏·高三竞赛)设*n N ∈,欧拉函数()n ϕ表示在正整数1,2,3,…,n 中与n 互质的数的个数,例如1,3都与4互质,2,4与4不互质,所以()42ϕ=,则()2020ϕ=__________.【答案】800 【解析】 【详解】解析:法一:因为2202025101=⨯⨯,故能被2整除的数有1010个,能被5整除的数有404个, 能被101整除的数有20个,既能被2整除又能被5整除的数有202个, 既能被2整除又能被101整除的数有10个, 既能被5整除又能被101整除的数有4个, 既能被2整除又能被5和101整除的数有2个.故与2020不互质的有10104042020210421220++---+=,则()2020800ϕ=. 故答案为:800.法二:()()()()2202025101=800ϕϕϕϕ=⨯⨯.故答案为:800.15.(2021·浙江·高二竞赛)给定实数集合A ,B ,定义运算{},,A B x x ab a b a A b B ⊗==++∈∈.设{}0,2,4,,18A =⋅⋅⋅,{}98,99,100B =,则A B ⊗中的所有元素之和为______. 【答案】29970 【解析】 【分析】【详解】由(1)(1)1x a b =++-, 则可知所有元素之和为(1319)30031029970+++⨯-⨯=.故答案为:29970.16.(2021·全国·高三竞赛)从自然数中删去所有的完全平方数与立方数,剩下的数从小到大排成一个数列{}n a ,则2020a =_________. 【答案】2074 【解析】 【分析】 【详解】注意到23366452025,121728,132197,3729,44096=====,我们考虑1到2025中n a 出现的次数.这里有45个平方数,12个立方数,3个6次方数, 所以n a 出现的次数为2025451231971--+=, 接下来直至2197前都没有平方数和立方数, 所以20202020197120252074a =-+=.17.(2021·全国·高三竞赛)设正整数m 、n ,集合{1,2,,}A n =,{1,2,,}B m =,{(,),}S u v u A v B ⊆∈∈,满足对任意的(,),(,)a b S x y S ∈∈,均有:()()0a x b y --≤,则max ||S =________.【答案】1n m +- 【解析】 【分析】 【详解】首先对S 中任意两个不同元素(,),(,)a b x y ,必有b a y x -≠-.事实上,若b a y x -=-,则b y ≠(否则a x =,这与(,)(,)a b x y ≠矛盾). 若b y <,则a x <,则()()0a x b y -->,这与题意矛盾, 同理,b y >亦与题意矛盾.这样S 中任意元素(,),a b b a -各不相同, 而{1,2,,0,1,,1}b a m m n -∈----共1n m +-种情形,则||1S n m ≤+-.再令{(,)S x y y m ==且1x n ≤≤,或x n =且1}y m ≤≤,此时||1S n m =+-. 故答案为:1n m +-.18.(2021·全国·高三竞赛)已知A 与B 是集合1,2,3,{},100的两个子集,满足:A 与B 的元素个数相同,且A B 为空集.若当n A ∈时总有22n B +∈,则集合A B 的元素个数最多为_______. 【答案】66 【解析】 【分析】 【详解】先证||66A B ≤,只须证33A ≤, 为此只须证若A 是{}1,2,,49的任一个34元子集,则必存在n A ∈,使得22n A +∈.证明如下: 将{}1,2,,49分成如下33个集合:{}{}{}{}1,4,3,8,5,12,,23,48共12个;{}{}{}{}2,6,10,22,14,30,18,38共4个;{}{}{}{}25,27,29,,49共13个;{}{}{}{}26,34,42,46共4个.由于A 是{}1,2,,49的34元子集,从而由抽屉原理可知上述33个集合中至少有一个2元集合中的数均属于A , 即存在n A ∈,使得22n A +∈. 如取{}1,3,5,,23,2,10,14,18,25,27,29,,49,26,34,42,46A =,22{|}B n n A =+∈,则A 、B 满足题设且||66A B =. 故答案为:66.19.(2021·全国·高三竞赛)设集合{1,2,3,,10},{(,,),,S A x y z x y z S ==∈∣,且()}3339x y z ++∣,则A 有_______个元素.【答案】243 【解析】 【分析】 【详解】将S 中元素按3x 模9余数分类得:123{1,4,7,10},{2,5,8},{3,6,9}S S S ===. 对每个(),,x y z A ∈,有,,x y z 分别属于123,,S S S ,或,,x y z 均属于3S .因此A 中共有()33!4333243⨯⨯⨯+=个元素.故答案为:243.20.(2021·全国·高三竞赛)设S 为集合{}0,1,2,,9的子集,若存在正整数N ,使得对任意整数n N >,总能找到正实数a b 、,满足a b n +=,且a b 、在十进制表示下的所有数字(不包括开头的0)都属于集合S ,则||S 的最小值为___(||S 表示集合S 的元素个数). 【答案】5 【解析】 【分析】 【详解】第一步,证明4S ≥,若4S =,则其中两数(可相同)相加共10个值(4个2i x 加上24C 6=个i j x x +),而n 的个位数由这10个值的个位数产生,因此,这10个值的个位数不能重复; 在0、1、2、…、9中有五个奇数,五个偶数, 若四个元中0或4个奇数,不能加出奇数; 若四个元中有1个奇数,只能产生3个奇数; 若四个元中有2个奇数,只能产生4个奇数; 若四个元中有3个奇数,只能产生3个奇数; 因此||4S >.第二步,构造一个五元组满足条件,稍加实验可得下表上表表明,0、1、2、…、9中的每个数字,都可以由{}0,1,2,3,6中的两个相加得到,则对任意正整数n ,从个位数开始依次向高位遍历,将每位数都按表格中表示分解为两个数,赋值给a b 、对应的位置,遍历完毕后自然得到a b 、. 综上min ||5S =. 故答案为:5.21.(2019·江西·高三竞赛)将集合{1,2,……,19}中每两个互异的数作乘积,所有这种乘积的和为_________ . 【答案】16815 【解析】 【详解】所求的和为()22221(1219)12192⎡⎤+++-+++⎣⎦1(361002470)2=-16815=.故答案为:16815.22.(2019·河南·高二竞赛)称{1,2,3,4,5,6,7,8,9}的某非空子集为奇子集:如果其中所有数之和为奇数,则奇子集的个数为____________ . 【答案】256 【解析】 【详解】全集{1,2,3,…,9}中含有5个奇数、4个偶数.根据奇子集的定义知,奇子集中只能含有1个奇数、3个奇数、5个奇数,而偶数的个数为0、1、2、3、4都有可能. 所以,奇子集共有:()()()101401450144444435454445C C C C C C C C C C C C +++++++++++()()135014555444C C C C C C =+++++()451012256=++⨯=个.故答案为:256.23.(2019·广西·高三竞赛)已知yz ≠0,且集合{2x ,3z ,xy }也可以表示为{y ,2x 2,3xz },则x =____________.【答案】1 【解析】 【详解】易知xyz ≠0,由两集合各元素之积得2366,1x yz x yz x ==. 经验证,x =1符合题意. 故答案为:1.24.(2019·山东·高三竞赛)已知(){}23|log 21,(,](,)A x x x B a b =-=-∞⋃+∞其中a <b ,如果A ∪B =R ,那么a -b 的最小值是_______ . 【答案】1- 【解析】 【详解】由已知得[1,0)(2,3]A =-⋃,故b -a ≤1,于是1a b --. 故答案为:1-.25.(2019·重庆·高三竞赛)设A 为三元集合(三个不同实数组成的集合),集合B ={x +y |x ,y ∈A ,x ≠y },若{}222log 6,log 10,log 15B =,则集合A =_______ . 【答案】{}221,log 3,log 5 【解析】 【详解】设{}222log ,log ,log A a b c =,其中0<a <b <c .则ab =6,ac =10,bc =15. 解得a =2,b =3,c =5,从而{}221,log 3,log 5A =. 故答案为:{}221,log 3,log 5.26.(2018·河北·高二竞赛)已知集合{},,A x xy x y =+,{}0,,B x y =且A=B ,那么20182018x y +=_______.【答案】2 【解析】 【详解】由B 中有三个元素知,0x ≠且0y ≠,故A 中0x y +=,即有x y =-,又{}{},,x xy x y =若x x xy y ⎧=⎨=⎩,则11x y =⎧⎨=-⎩.此时{}{}1,1,0,0,1,1A B =-=-. 若x t x xy =⎧⎨=⎩,则00x y =⎧⎨=⎩,或11x y =-⎧⎨=-⎩,或11x y =⎧⎨=⎩,不满足互异性,舍去.故1x =,1y =-,所以201820182x y +=. 27.(2019·全国·高三竞赛)集合{}1,2,,100S =,对于正整数m ,集合S 的任一m 元子集中必有一个数为另外m-1个数乘积的约数.则m 的最小可能值为__________. 【答案】26 【解析】 【详解】所有不大于100的素数共有25个,记其构成的组合为T={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97}.注意到,集合T 中每一个元素均不能被T 中其余24个元素之积整除. 故2526m T m >=⇒≥.另一方面,用反证法证明:对于集合S 的任一26元子集,其中必有一个数为另外25个数乘积的约数.为叙述方便,对于素数p 和正整数x ,记()p x α表示x 中缩含p 的幂指数.若存在集合S 的某个26元子集A ,对每个x A ∈,x 均不整除集合A 中其余25个数乘积,则对每个x A ∈,存在x 的素因子p ,使得(){}\p p x A x x z αα∈⎛⎫> ⎪ ⎪⎝⎭∏,称这样的素数p 为x 的特异素因子,这种特异素因子不是唯一的.由于26A =,且所有特异素因子均属于集合S ,而集合S 中只有25个素数,故必有集合A 的两个不同元素x 、y 具有同一个特异素因子p. 由特异性及{}\y A x ∈,知(){}{}\p p p z A x x z y ααα∈⎛⎫>≥ ⎪⎪⎝⎭∏.类似地,(){}()\p p p z A y y z x ααα∈⎛⎫>≥⎪ ⎪⎝⎭∏,矛盾. 综上,m 的最小可能值为26.28.(2018·全国·高三竞赛)若实数集合{}2,3A x y =与{}6,B xy =恰有一个公共元素,则A B 中的所有元素之积为__________. 【答案】0 【解析】 【详解】将集合A 、B 的唯一公共元素记为a . 若0a ≠,则集合A 、B 的另一个元素均为6xya,矛盾. 进而,A B ⋃中的所有元素之积为0.29.(2021·全国·高三竞赛)已知非空集合{1,2,,2019,2020}X M ⊆=,用()f X 表示集合X中最大数和最小数的和,则所有这样的()f X 的和为_____. 【答案】()2020202121⋅-【解析】 【分析】 【详解】将M 中的非空子集两两进行配对,对每个非空子集X M ⊆,令{2021}X xx X '=-∈∣, 对M 的任意两个子集1X 和2X ,若12X X ≠时,12X X ''≠.则所有非空集合X 可以分成X X '≠和X X '=两类. 当X X '=时,必有()2021f X =,当X X '≠时,必有()()202124042f X f X +'=⨯=.又M 的非空子集共有202021-个,故所有这样的()f X 的和为()2020202121⋅-.故答案为:()2020202121⋅-.30.(2019·浙江·高三竞赛)在复平面上,任取方程10010z -=的三个不同的根为顶点组成三角形,则不同的锐角三角形的数目为____________.【答案】39200 【解析】 【详解】易知10010z -=的根在单位圆上,且相邻两根之间弧长相等,都为2100π,即将单位圆均匀分成100段小弧.首先选取任意一点A 为三角形的顶点,共有100种取法.按顺时针方向依次取顶点B 和顶点C ,设AB 弧有x 段小弧,CB 弧有y 段小弧,AC 弧有z 段小弧,则△ABC 为锐角三角形的等价条件为:1001,,49x y z x y z ++=⎧⎨⎩970,,48x y z x y z ++=⎧⇒⎨⎩ ① 计算方程组①的整数解个数,记1{|97,49}P x x y z x =++=,2{|97,49}P y x y z y =++=,3{|97,49}P z x y z z =++=,{(,,)|97,,,0}S x y z x y z x y z =++=,则123123||P P P S P P P ⋂⋂=-⋃⋃2991231C |i j i j P P P P P P <⎛=-++-∑⋂+ ⎝)23|P P ⋂⋂229950C 3C 1176=-=. 由于重复计算3次,所以所求锐角三角形个数为1001176392003⨯=. 故答案为:39200.31.(2019·浙江·高三竞赛)已知集合A ={k +1,k +2,…,k +n },k 、n 为正整数,若集合A 中所有元素之和为2019,则当n 取最大值时,集合A =________. 【答案】{334,335,336,337,338,339} 【解析】 【详解】由已知2136732k n n ++⨯=⨯. 当n =2m 时,得到(221)36733,6,333k m m m n k ++=⨯⇒===; 当n =2m +1时,得到(1)(21)36731,3k m m m n +++=⨯⇒==. 所以n 的最大值为6,此时集合{334,335,336,337,338,339}A =. 故答案为:{334,335,336,337,338,339} .32.(2021·全国·高三竞赛)设集合{1,2,3,4,5,6,7,8,9,10}A =,满足下列性质的集合称为“翔集合”:集合至少含有两个元素,且集合内任意两个元素之差的绝对值大于2.则A 的子集中有___________个“翔集合”. 【答案】49 【解析】 【分析】 设出集合{1,2,3,,}n 中满足题设性质的子集个数为n a ,写出2340,1a a a ===,在4n >时,要分情况把n a 的递推公式写出来,进而得到10a ,即答案. 【详解】 设集合{1,2,3,,}n 中满足题设性质的子集个数为n a ,则2340,1a a a ===.当4n >时,可将满足题设性质的子集分为如下两类:一类是含有n 的子集,去掉n 后剩下小于2n -的单元子集或者是{1,2,3,,3}n -满足题设性质的子集,前者有3n -个,后者有3n a -个;另一类是不含有n 的子集,此时恰好是{1,2,3,,1}n -满足题设性质的子集,有1n a -个.于是,31(3)n n n a n a a --=-++.又2340,1a a a ===,所以56789103,6,11,19,31,49a a a a a a ======.故答案为:49 【点睛】本题的难点是用数列的思想来考虑,设集合{1,2,3,,}n 中满足题设性质的子集个数为n a ,写出n a 的递推公式,再代入求值即可. 三、解答题33.(2021·全国·高三竞赛)已知非空正实数有限集合A ,定义集合{},,,x B x y A C xy x y A y ⎧⎫=∈=∈⎨⎬⎩⎭,证明:2A B C ⋅≤.【答案】证明见解析 【解析】 【详解】以集合B 作为突破口,取b B ∈,并设有()n b 个数对(),(1,2,,())i i x y i n b =满足:,,ii i ix b x y A y =∈. 由条件知,()i i ax ay C a A ∈∈,考虑集合(){}(),,1,2,,()i i X b ax ay a A i n b =∈=⋅⋅⋅,有()()(),(),X b A X b X b b B b b ''=∅∈'≥≠.于是,2||C ≥U ()b BX b ∈=b B∈∑|()|X b ≥||||B A ⋅得证. 34.(2021·浙江·高二竞赛)设数集{}12,,,m P a a a =,它的平均数12mp a a a C m+++=.现将{1,2,,}S n =分成两个非空且不相交子集A ,B ,求A B C C -的最大值,并讨论取到最大值时不同的有序数对(),A B 的数目. 【答案】最大值2n,数目为22n -.【解析】 【分析】不妨设A B C C >,记{}12,,,p A a a a =,12p T a a a =+++,可以得到A B C C -=12n T n n p p ⎛⎫+- ⎪-⎝⎭,考虑T 最大的情况是取最大的p 个数,此时可以发现A B C C -的结果正好是与p 无关的定值,从而也就得到了A B C C -的最大值,然后考察p 的可能的值,得到A B C C >时(),A B 的组数,并利用对称性得到A B C C <时(),A B 具有与之相等的组数,从而得到所有可能的(),A B 的组数. 【详解】 不妨设A B C C >, 记{}12,,,p A a a a =,12p T a a a =+++,所以(1)2A B A Bn n TT C C C C p n p+--=-=-- 11(1)12()2n n n T n T p n p n p n p p ⎛⎫⎛⎫++=+-=- ⎪ ⎪---⎝⎭⎝⎭,又有(21)(1)(2)2p n p T n p n p n -+≤-++-+++=,所以211222A B n n p n nC C n p -++⎛⎫-≤-= ⎪-⎝⎭当且仅当(21)2p n p T -+=时,取到等号,所以A B C C -的最大值2n.此时{1,,}A n p n =-+,由,A B 非空,可知1p =,2,…,1n -,有1n -种情况, 利用对称性得到A B C C <时(),A B 具有与之相等的组数, 由于A B C C -的最大值2n不可能有A B C C =的情况,所以有序数对(),A B 的数目为22n -. 35.(2020·全国·高三竞赛)设集合{1,2,,19}A =.是否存在集合A 的非空子集12,S S ,满足(1)1212,S S S S A ⋂=∅⋃=; (2)12,S S 都至少有4个元素;(3)1S 的所有元素的和等于2S 的所有元素的乘积?证明你的结论. 【答案】证明见解析. 【解析】 【分析】不妨设21,2,,,219S x y x y =<<≤,由条件可得2187xy x y ++=,即(21)(21)3751525x y ++==⨯,根据219x y <<≤,,x y N ∈,可得出其一组解,可证明.【详解】解:答案是肯定的.不妨设21,2,,,219S x y x y =<<≤,,x y N ∈ 则1219122x y xy +++----=,所以2187xy x y ++=,故(21)(21)3751525x y ++==⨯, 所以7,12x y ==是一组解故取13,4,5,6,7,8,10,11,13,14,15,16,17,18,19S =,21,2,7,12S =,则这样的12,S S 满足条件 36.(2021·全国·高三竞赛)设n 是正整数,我们说集合{1,2,,2}n 的一个排列()122,,,n x x x 具有性质P ,是指在{1,2,,21}n -当中至少有一个i ,使得1i i x x n +-=.求证:对于任何n ,具有性质P 的排列比不具有性质P 的排列的个数多. 【答案】证明见解析 【解析】 【详解】设A 为不具有性质P 的排列的集合,B 为具有性质P 的排列的集合,显然||||(2)!A B n +=.为了证明||||A B <,只要得到1||(2)!2B n >就够了.设()122,,,n x x x 中,k 与k n +相邻的排列的集合为,1,2,,k A k n =.则22(21)!,2(22)!,1k k j A n A A n k j n =⋅-=⋅-≤<≤,由容斥原理得121||||2(21)!4(22)||!k k kj n n k j nB A A A n nC n =≤<≤≥-=⋅⋅--⋅⋅-∑∑(2)!2(1)(22)!n n n n =--⋅- 2(22)!n n n =⋅⋅-212(22)!2n n n ->⋅⋅- 1(2)!2n = 37.(2021·全国·高三竞赛)平面上有一个(3)n n ≥阶完全图,对其边进行三染色,且每种颜色至少染一条边.现假设在完全图中至多选出k 条边,且把这k 条边的颜色全部变为给定三色中的某种颜色后,此图同时也可以被该种颜色的边连通.若无论初始如何染色,都可以达到目的,求k 的最小值. 【答案】3n ⎡⎤⎢⎥⎣⎦【解析】 【详解】先证明:3n k ⎡⎤≥⎢⎥⎣⎦.(这里3n ⎡⎤⎢⎥⎣⎦表示不超过3n 的最大的整数).假设三种颜色为1、2、3,n 阶完全图的n 个点分成三个点集A 、B 、C , 且||||3n A B ⎡⎤==⎢⎥⎣⎦.做如下染色:集合A 中的点之间连的边染1,集合B 中的点之间连的边染2,集合C 中的点之间连的边染3,集合A 与B 间的点连的边染2,集合B 与C 间的点连的边染3,集合C 与A 间的点连的边染1.从而,若变色后最终得到染1的颜色的边形成的连通图,由于集合B 中的点出发的边均染的是2或3,于是,变色边数不小于||3n B ⎡⎤=⎢⎥⎣⎦.类似地,若变色后最终得到染2或3的颜色的边形成的连通图,则变色边数不小于||A (或C )3n ⎡⎤≥⎢⎥⎣⎦.故3n k ⎡⎤≥⎢⎥⎣⎦.再证明:3n k ⎡⎤≤⎢⎥⎣⎦.对n 用数学归纳法. 当3n =时,结论成立.假设1(4)n n -≥时,结论成立.则n 个点时: (1)若完全图中由某点出发的边有三种不同颜色,由归纳假设,可通过改变其中13n -⎡⎤⎢⎥⎣⎦条边的颜色得到同色连通图.(2)若完全图中由所有点出发的边均最多两种不同颜色, 记A 为所有出发的边均染1或2的点组成的集合, 记B 为所有出发的边均染2或3的点组成的集合, 记C 为所有出发的边均染3或1的点组成的集合. 如果某些点连出的边都染颜色1,则把它归入集合A ; 如果某些点连出的边都染颜色2,则把它归入集合B ; 如果某些点连出的边都染颜色3,则把它归入集合C .不失一般性,不妨设||||A B C≤≤∣.则||3n A ⎡⎤≤⎢⎥⎣⎦.若B ≠∅,则C ≠∅,集合B 中的点连向集合C 中的点的边均染3.故B C ⋃由颜色3可以连通. 此时,任选集合B 中一点,集合A 中每个点与该点的连线的边颜色均变成3, 由||3n A ⎡⎤≤⎢⎥⎣⎦知成立.若B =∅,则A =∅,于是,完全图的边均染的是1或3. 这与条件“每种颜色至少染一条边”不符. 所以由归纳法知原结论成立.38.(2022·全国·高三专题练习)班级里共有()3n n ≥名学生,其中有A ,B ,C .已知A ,B ,C 中任意两人均为朋友,且三人中每人均与班级里中超过一半的学生为朋友.若对于某三个人,他们当中任意两人均为朋友,则称他们组成一个“朋友圈”. (1)求班级里朋友圈个数的最大值()F n . (2)求班级里朋友圈个数的最小值()G n .【答案】(1)()()126n n n --;(2)()4,41,6,,21,2n nn n G n n n =⎧⎪⎪+≥=⎨⎪-⎪⎩为偶数为奇数 【解析】 【分析】(1)利用组合数可求()F n ; (2)利用容斥原理可求()G n . 【详解】(1)当班级中的任意3人中,任意两个人都是朋友时,班级里朋友圈个数的最大,此时()()()3126n n n n F n C --==.(2)当3n =时,()31G =,当4n =时,A ,B ,C 中的每个人都至少与班级的3个同学是好朋友,故4人彼此是好朋友,故()44G =,当5n ≥时,记a P 为班级中除去,,A B C 且与A 是朋友的同学的集合,b P 为班级中除去,,A B C 且与B 是朋友的同学的集合,Pc 为班级中除去,,A B C 且与C 是朋友的同学的集合,若2(3)n k k =≥,由题设可知,a P 、b P 、Pc 中的元素的个数不小于1k -,余下同学记为:452,,,k Y Y Y ,集合M 中元素的个数记为M ,因为余下人数为23k -,由容斥原理可得23a b c k P P P -≥a b c ab ac bc abc P P P P P P P P P P P P =++---+, 所以2333a b a c b c abc k k P P P P P P P P P -≥----+,即ab ac b c abc P P P P P P P P P k ++-≥,故此时()1G n k ≥+, 考虑一种特殊情况:{}{}4+2+22,,,,,a k c b k k P Y Y P P Y Y ===, 此时朋友圈个数为1111k k -++=+,故()112nG n k =+=+. 若21(2)n k k =+≥,由题设可知,a P 、b P 、Pc 中的元素的个数不小于1k -,余下同学记为:4521,,,k Y Y Y +,集合M 中元素的个数记为M ,因为余下人数为22k -,由容斥原理可得22a b c k P P P -≥a b c ab ac bc abc P P P P P P P P P P P P =++---+, 所以2233a b a c b c abc k k P P P P P P P P P -≥----+,即1ab ac b c abc P P P P P P P P P k ++-≥-,故此时()G n k ≥,考虑一种特殊情况:{}{}{}4+2+22+321,,,,,,,,a k b k k c k k P Y Y P Y Y P Y Y +===, 此时朋友圈个数为112k k ++-=,故()12n G n k -==. 综上,()4,41,6,,21,2n nn n G n n n =⎧⎪⎪+≥=⎨⎪-⎪⎩为偶数为奇数.39.(2021·浙江·高三竞赛)某班有10名同学计划在暑假举行若干次聚会,要求每名同学至多参加三次聚会,并且任意两名同学至少在一次聚会中相遇.求最大的正整数m ,使得无论如何安排符合上述要求的聚会,都一定存在某次聚会有至少m 名同学参加. 【答案】最大正整数m 是5 【解析】 【分析】 【详解】解:设有n 次聚会,聚会人数分别为1x ,2x ,…,n x (均为正整数).我们有: 1210330n x x x +++≤⨯=1210452222n x x x ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+≥= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭记11n S x x =+⋅⋅⋅+,2221n S x x =+⋅⋅⋅+,则2190S S -≥可知214S S ≥,即{}22111max ,,4nn nx x x x x x +⋅⋅⋅+⋅⋅⋅≥≥+⋅⋅⋅+若上式等号成立,则必须14n x x =⋅⋅⋅==,并且1130n S x x =+⋅⋅⋅+=,这样可得7.5n =导致矛盾.所以我们有{}1max ,,5n x x ⋅⋅⋅≥,即一定存在某次聚会有至少5名同学参加,即5m =满足题意.另一方面,我们给出10名同学参加聚会的一种安排方式:共A ,B ,C ,D ,E ,F 六次聚会,每次聚会恰好有5名同学参加,下面的10个三元子集分别表示10名同学各参加哪三次聚会:{}ABC ,{}CDE ,{}AEF ,{}BDF ,{}ABD ,{}ADE ,{}BCE ,{}BEF ,{}CDF ,{}ACF .易知在所有6203⎛⎫= ⎪⎝⎭个三元子集中,互补的两个三元子集在上式中恰好出现一个.这保证了上面的10个三元子集中每两个都相交,即任意两名同学至少在一次聚会中相遇.此外,A ,B ,C ,D ,E ,F 中的每一个在上式的10个三元子集中恰好出现五次,即每次聚会都恰好有5名同学参加,这意味着6m ≥不符合题意. 因此所求的最大正整数m 是5.另一种构造:{}ABC ,{}ABC ,{}BEF ,{}BEF ,{}CDF ,{}CDF ,{}ABD ,{}AEF ,{}ADE ,{}CDE .40.(2021·全国·高三竞赛)设2n ≥为正数,122,,,n A A A 为1,2,{},n 的所有子集的任一个排列.求2111nii ii i A A A A ++=⋅∑的最大值,其中121n A A +=.【答案】()2222n n n -+-【解析】 【分析】 【详解】 先证两个引理. 引理1 设122,,,n A A A 是集合1,2,{},n 的所有子集,则存在122,,,n A A A 的一个排列122,,,n B B B ,使得对任意的1,2,,2n i =均满足i B 、1i B +中的一个是另一个的子集,且元素个数差1,其中约定121n B B +=. 引理1的证明:对n 用归纳法.当2n =时,集合{1,2}的4个子集排列为∅、{1}、{1,2}、{2}便满足要求. 假设当n k =时存在排列122,,,k B B B 满足要求,则当1n k =+时,考虑下面的排列:12211222,,,,{1},{1},,{1},{1}k kk B B B B k B k B k B k -⋅⋅⋅++⋅⋅⋅++,这显然是集合{1,2,,1}k ⋅⋅⋅+的所有子集满足要求的一个排列.引理1证毕. 引理2 设A 、B 是任意两个不同的有限集,则2221A B A B A B ⋅≤+-,(1) 当A 、B 中一个为另一个的子集,且元素个数差1时等号成立. 引理2的证明:设\,\,A B x B A y A B z ===.因为A B ≠,故x 、y 不能同时为0,于是x 、y 中至少有一个大于等于1. (1)22222()()()11x y z z x z y z x y ⇔++≤+++-⇔+≥,(2) 显然成立.又当A 、B 中一个为另一个的子集且元素个数差1时,x 、y 中有一个为0,一个为1.(2)中取等号,从而(1)也取等号.引理2证毕.回到原题.由引理2可得()22222211111111122nnnn ii i i i i i i i i AA A A A AB -+++===≤+-=-∑∑∑ ()212211C 222n k n n n n k k n n ---==-=+-∑ ()2222n n n -=+-.又如果将{1,2,,}n ⋅⋅⋅的所有子集按照引理1中的排法便知上式等号成立.故所求的最大值为()2222n n n -+-.41.(2021·全国·高三竞赛)设{}()1,2,3,,2,m M n m n +=⋅∈N 是连续2m n ⋅个正整数组成的集合,求最小的正整数k ,使得M 的任何k 元子集中都存在1m +个数121,,,m a a a +满足1(1,2,,)i i a a i m +=.【答案】21m n n ⋅-+. 【解析】 【分析】 【详解】 记{1,2,3,,}A n =,任何一个以i 为首项,2为公比的等比数列与A 的交集设为i A .一方面,由于M 中2m n n ⋅-个元的子集{}1,2,,2m n n n ++⋅中不存在题设的1m +个数,否则12112mm n a a a n ++≤<<<≤⋅,而1212m m nn a n ⋅+≤≤=,矛盾.故21m k n n ≥⋅-+.另一方面,21m k n n =⋅-+时,题设满足.若非如此,考虑以1212n i i -⎛⎫+≤ ⎪⎝⎭为首项,以2为公比的等比数列.其与M 的交集的元素个数为21i A m ++个.设M 任何k 元子集为T ,则上述等比数列与M 的交集中至少有21i A +个元素不在T 中,而i j ≠时,2121i j A A ++=∅.注意到21112||,i n iA A +-=所以21112|\|||ii n M T A A n +-≥==,可得2m T M n n n ≤⋅=⋅-与21mT k n n ==⋅-+矛盾.综上,所求k 为21m n n ⋅-+.42.(2021·全国·高三竞赛)对两个不全等的矩形A 、B ,称A B >,若A 的长不小于B 的长,且A 的宽也不小于B 的宽.现在若对任意的n 个两两不全等的,长和宽均为不超过2020的正整数的矩形,都必存在其中3个矩形A 、B 、C ,使得A B C >>,求n 的最小值. 【答案】2021 【解析】 【分析】 【详解】一方面,当2021n =时,若不存在满足要求的3个矩形,我们把所有的矩形如下分类: 对一个矩形A ,若在剩下2020个矩形中,存在一个矩形B ,使得A B >,则称A 为“父矩形”,否则称A 为“子矩形”.由抽屉原理,其中必有一类至少含有1011个矩形,设它们的宽为121011x x x ≤≤⋯≤. 但易知所有的“父矩形”之间两两不能比较大小,所有的“子矩形”之间也两两不能比较大小,于是必有121011x x x <<<且相应的它们的长121011y y y >>>,合在一起即121011*********x x x y y y <<<≤<<<,与它们均为不超过2020的正整数矛盾.另一方面,当2020n ≤时,考虑所有长宽满足要求的,周长为4040的矩形,共1010个,及周长为4042的矩形,也共1010个.由于周长相等的两个矩形无法比大小,因此这2020个矩形中不存在满足要求的3个矩形. 综上,n 的最小值为2021.43.(2021·全国·高三竞赛)已知X 是一个有限集.110110,X A A X B B =⋃⋃=⋃⋃是满足如下性质的两个分划:若,110i j A B i j ⋂=∅≤≤≤,则10i j A B ⋃≥.求X 的最小值. 【答案】50 【解析】 【分析】 【详解】X 的最小值为50.我们先证明||50X ≥. 考虑集合110110,,,,,A A B B 中元素个数最少的集合,不妨设为1A .记1A a =,则1A 至多与110,,B B 中a 个集合相交.不妨设1,1,,i A B i k ⋂≠∅=且1,1,,10i A B i k ⋂=∅=+,其中k a ≤.故110,1,,10i A B i k ⋃≥=+.从而对1i k ∀≥+有11010Bi A a ≥-=-. 由1A 的最小性知1,,k B B 的元素个数均不小于a .从而1101110||k k X B B B B B B +=⋃⋃=++++(10)(10)502(5)(5)k a k a k a ≥⋅+--=+--.(1)若5a ≤,则5k ≤,此时由上式知||50X ≥; (2)若5a >,由1A 是110,,A A 中元素个数最少的集合知||1050X a ≥>.故||50X ≥.另一方面,||X 能取到50,例如, 取11221010{1,2,3,4,5},{6,7,8,9,10},,{46,47,48,49,50}A B A B A B ======.显然它们满足条件,这时{}1,2,,50X =⋯.44.(2021·全国·高三竞赛)设集合S 是由平面上任意三点不共线的4039个点构成的集合,且其中2019个点为红色,2020个点为蓝色;在平面上画出一组直线,可以将平面分成若干区域,若一组直线对于点集S 满足下述两个条件,称这是一个“好直线组”: (1)这些直线不经过该点集S 中的任何一个点; (2)每个区域中均不会同时出现两种颜色的点.求k 的最小值,使得对于任意的点集S ,均存在由k 条直线构成的“好直线组”. 【答案】2019. 【解析】 【分析】 【详解】 先证明2019k ≥:在一个圆周上顺次交替标记2019个红点和2019个蓝点,在平面上另外任取一点染为蓝色,这个圆周就被分成了4038段弧,则每一段的两个端点均染了不同的颜色; 若要满足题目的要求,则每一段弧均与某条画出的直线相交; 因为每条直线和圆周至多有两个交点,所以,至少要有403820192=条直线. 再证明:用2019条直线可以满足要求.对于任意两个同色点AB 、,均可用两条直线将它们与其他的点分离. 作法:在直线AB 的两侧作两条与AB 平行的直线,只要它们足够接近AB ,它们之间的带状区域里就会只有A 和B 这两个染色点. 设P 是所有染色点的凸包,有以下两种情形:(1)假设P 有一个红色顶点,不妨记为A .则可作一条直线,将点A 和所有其他的染色点分离,这样,余下的2018个红点可以组成1009对,每对可以用两条平行直线将它们与所有其他的染色点分离.所以,总共用2019条直线可以达到要求.(2)假设P 的所有顶点均为蓝色.考虑P 上的两个相邻顶点,不妨记为AB 、.则用一条直线就可以将这两个点与所有其他染色点分离.这样,余下的2018个蓝点可以组成1009对,每对可以用两条直线将它们与所有其他染色点分离. 所以,总共也用了2019条直线可以达到要求. 综上:k 的最小值为2019.45.(2021·全国·高三竞赛)设函数:f ++→Z Z 满足对于每个n +∈Z ,均存在一个k +∈Z ,使得2()k f n n k =+,其中,m f 是f 复合m 次.设n k 是满足上述条件的k 中的最小值,证明:数列12,,k k 无界.【答案】证明见解析. 【解析】 【分析】 【详解】设{}21,(1),(1),S f f =,对于每个正整数n S ∈,存在正整数k ,使得2()kfn n k S =+∈.因此,集合S 是无界的,且函数f 将S 映射到S .此外,函数f 在集合S 上是单射. 事实上,若(1)(1)()i j f f i j =≠,则m f (1)从某个值开始周期性地进行重复.于是,集合S 是有界的,矛盾.定义:g S S →为2()()n kn g n f n n k ==+.首先证明:g 也是单射.假设()()()g a g b a b =<,则22()()a b k ka b a k f a f b b k +===+,于是,>a b k k .因为函数f 在集合S 上是单射,所以()()2()a b k k a b fa b a k k -==+-.又0a b a k k k <-<,与a k 的最小性矛盾.设T 是集合S 中非形如()()g n n S ∈的元素构成的集合.由于对每个n S ∈,均有()g n n >,则1T ∈.于是,T 是非空集合.对每个t T ∈,记{}2,(),(),t C t g t g t =,且称tC 为从t 开始的“链”.因为g 是单射,所以,不同的链不交.对每个n S T ∈,均有()n g n =',其中,n n '<,n S '∈.重复上述过程,知存在t T ∈,使得t n C ∈,从而,集合S 是链t C 的并.若(1)n f 是从(1)i nt f =开始的链t C 中的元素,则122t j n n a a =+++,其中,()()()()112221(1)(1)(1)(1)jj i t ta a a n n n n j j f g f ff f f fa a -===+++.故(1)(1)22t n nt tn n n n f f t --=+=+. ① 其次证明:集合T 是无限的.假设集合T 中只有有限个元素则只有有限个链()1212,,,t t t t t C C C t t t <<<.固定N .若(1)(1)n f n N ≤≤是链t C 中的元素,则由式①知:(1)22nt r n n Nf t t -=+≤+. 由于1N +个不同的正整数1,(1),,(1)N f f 均不超过2r N t +,则12r NN t +≤+. 当N 足够大时,这是不可能的.因此,集合,T 是无限的.选取任意正整数k ,考虑从集合T 中前1k +个数开始的1k +个链.设t 是这1k +个数中最大的一个.则每个链中均包含一个元素不超过t ,且至少有一个链中不含1,2,,t t t k +++中的任何一个数.于是,在这个链中存在一个元素n ,使得()g n n k ->,即n k k >.。

浙江省2022学年高中数学竞赛六校第一次联考加试试题

浙江省2022学年高中数学竞赛六校第一次联考加试试题

2022学年第二学期数学竞赛六校第一次联考加试试题一.(本题满分40分)如图,在ABC D 中,90C Ð=o ,过点C 作CH AB ^于点H ,A 与CH 的中点M 所在的直线交BC 于点K ,L 是BC 的中点,线段AB 上一点T 满足ATK BTL Ð=Ð.若1BC =,求KTL D 的周长.注:答题时请将图画在答卷纸上.二.(本题满分40分)对于每个正整数k ,设k a 是最大的且不能被3整除的k 的约数,数列{}n S 满足12n n S a a a =+++L (例如:6121452S =+++++).证明:n S 被3整除当且仅当n 的三进制表示中,1的个数能被3整除.三.(本题满分50分)已知n 为正整数,对于1,2,,i n = ,正整数i a 和正偶数i b 满足01i ia b <<,且对于任意正整数1212,(1)i i i i n £<£,12i i a a ¹与12i i b b ¹中至少有一个成立.若对于每个正整数n 及所有满足上述条件的正整数i a 和正偶数(1,2,,)i b i n =L ,均有321n i i b c n =≥⋅∑,求实数c 的最大值.四.(本题满分50分)设(200)⨯≥n n n 的方格表中每个格被染成三种颜色之一,每个格中有一个箭头指向上、下、左、右四个相邻格之一(或指向表格外),且指向的格(若存在)与箭头所在格不同色.已知一只甲虫从任意一格开始,每次沿箭头方向移到相邻的格(或移到表格外),最终总能移到表格外.设三种颜色的格分别有,,A B C 个,证明:22240.64A B C n ++<.注:如果证明了比40.64n 弱的估计4n a ,会根据0.64a >的值,适当给分.。

历年高中数学竞赛加试题

历年高中数学竞赛加试题

加 试1. (本题满分40分)实数a 使得对于任意实数12345,,,,x x x x x ,不等式222221234512233445()x x x x x a x x x x x x x x ++++≥+++都成立,求a 的最大值.2. (本题满分40分)在直角三角形ABC 中,90B ∠=︒,它的内切圆分别与边BC ,CA ,AB 相切与点D ,E ,F ,连接AD ,与内切圆相交于另一点P ,连接PC ,PE ,PF .已知PC PF ⊥,求证:PE ∥BC .F C BA3.(本题满分50分)对正整数n ,记()f n 为数231n n ++的十进制表示的数码和.(1) 求()f n 的最小值;(2) 是否存在一个正整数n ,使得()f n =100?4.(本题满分50分)求满足如下条件的最小正整数n ,在圆O 的圆周上任取n 个点12,,,n A A A L ,则在2n C 个角(1)i j A OA i j n ∠≤<≤中,至少有2011个不超过120︒.加 试1. a. 因为当123451,2,1x x x x x =====时,得a ≤又当a =2222212345222222223322441522332233x x x x x x x x x x x x x ++++⎛⎫⎛⎫⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12233445x x x x x x x ≥++, 所以,a的最大值为3.2.连接DE ,DF ,则△BDF 是等腰直角三角形.于是45FPD FDB ∠=∠=︒,故45DPC ∠=︒.又PDC PFD ∠=∠,所以△PFD ∽ △PDC ,所以PF PDFD DC=. ① 又由AFP ADF ∠=∠,AEP ADE ∠=∠,所以,△AFP ∽ △ADF ,△AEP ∽ △ADE ,于是EP AP AP FPDE AE AF DF===,故由①得 EP PDDE DC =. ② 因为EPD EDC ∠=∠,结合②得,△EPD ∽ △EDC ,所以,△EPD 也是等腰三角形,于是PED EPD EDC ∠=∠=∠,所以,PE ∥BC .F CBA3.(1)由于231n n ++是大于3的奇数,故()1f n ≠.若()2f n =,则231n n ++只能为首位和末位为1,其余数码为0的一个数,即231n n ++=101k +,k 是大于1的整数.于是(31)25k k n n +=⋅,由于(),311n n +=,所以2,315,kkn n ⎧=⎪⎨+=⎪⎩于是314425k kn n +≤=⋅<,矛盾!故()2f n ≠. 又当n =8时,231n n ++=201,所以(8)3f =. 综上所述,()f n 的最小值为3. (2)事实上,令101k n =-,则22313105103k k n n ++=⨯-⨯+1129999500003k k --=L L 1424314243, 他的数码和为29(1)5391k k +-++=+.由于100=9×11+1,所以,取11101n =-,则()f n =100.4.首先,当n =90时,如图,设AB 是圆O 的直径,在点A 和B 的附近分别取45个点,此时,只有245245441980C =⨯=个角不超过120︒,所以,n =90不满足题意.当n =91时,下面证明至少有2011个角不超过120︒.把圆周上的91个点1291,,,A A A L 看作一个图的91个顶点,1291,,,v v v L ,若120i j A OA ∠>︒,则在它们对应的顶点,i j v v 之间连一条边,这样就得到一个图G .设图G 中有e 条边,易知,图中没有三角形.若e =0,则有29140952011C =>个角不超过120︒,命题得证. 若1e ≥,不妨设顶点12,v v 之间有边相连,因为图中没有三角形,所以,对于顶点(3,4,,91)i v i =L ,它至多与12,v v 中的一个有边相连,所以12()()89291d v d v +≤+=,其中()d v 表示顶点v 的度,即顶点v 处引出的边数.因为1291()()()2d v d v d v e +++=L ,而对于图G 中的每一条边的两个顶点,i j v v ,都有()()91i j d v d v +≤,于是,上式对每一条边求和可得2221291(())(())(())91d v d v d v e +++≤L ,由柯西不等式A222221*********[(())(())(())][()()()]4d v d v d v d v d v d v e +++≥+++=L L ,所以 222212914(())(())(())9191e d v d v d v e ≤+++≤L , 故29120714e ≤<,所以,91个顶点中,至少有291207120242011C -=>个点对,它们之间没有边相连,从而,它们对应的顶点所对应的角不超过120︒.综上所述,n 但最小值为91.2010年全国高中数学联赛模拟题3加试(二试)9:40~12:10共150分钟 满分180分平面几何、代数、数论、组合1、(本题40分)在△ABC 中,AB >BC ,K 、M 分别是边AB 和AC 的中点,O 是△ABC 的内心。

全国高中数学联合竞赛加试试题及参考答案4

全国高中数学联合竞赛加试试题及参考答案4

全国高中数学联合竞赛加试试题(A 卷)
10月16日 9:40—12:10
二、(本题满分40分)证明:对任意整数4≥n ,存在一个n 次多项式
0111)(a x a x a x x f n n n ++++=--
具有如下性质:
(1)110,,,-n a a a 均为正整数;
(2)对任意正整数m ,及任意)2(≥k k 个互不相同的正整数k r r r ,,,21 ,均有
)()()()(21k r f r f r f m f ≠.
三、(本题满分50分)设)4(,,,21≥n a a a n 是给定的正实数,n a a a <<< 21.对任意正实数r ,满足)1(n k j i r a a a a j k i
j ≤<<≤=--的三元数组),,(k j i 的个数记为)(r f n . 证明:4
)(2n r f n <.
四、(本题满分50分)设A 是一个93⨯的方格表,在每一个小方格内各填一个正整数.称A 中的一个)91,31(≤≤≤≤⨯n m n m 方格表为“好矩形”,若它的所有数的和为10的倍数.称A 中的一个11⨯的小方格为“坏格”,若它不包含于任何一个“好矩形”.求A 中“坏格”个数的最大值.。

2022 年全国高中数学联赛一试+加试 试题 (A 卷)

2022 年全国高中数学联赛一试+加试 试题 (A 卷)

2022年全国中学生数学奥林匹克竞赛(预赛)暨2022年全国高中数学联合竞赛一试试题(A卷)一、填空题(本题共8小题,每题8分,共64分)1集合A={n|n3<2022<3n,n∈Z}的所有元素之和为.2设函数f(x)=x2+x+16x(2≤x≤a),其中实数a>2,若f(x)的值域为[9,11],则a的取值范围是.3一枚不均匀的硬币,若随机抛掷它两次均得到正面的概率是均得到反面的概率的9倍,则随机抛掷它两次得到正面,反面各一次的概率为.4若复数z满足:z−3iz+i为负实数(i为虚数单位),z−3z+1为纯虚数,则z的值为.5若四棱锥P−ABCD的棱AB,BC的长均为√2,其他各棱长均为1,则该四棱锥的体积为.6已知函数y=f(x)的图像既关于点(1,1)中心对称,又关于直线x+y=0轴对称.若x∈(0,1)时,f(x)=log2(x+1),则f(log210)的值为.7在平面直角坐标系中,椭圆Ω:x24+y2=1,P为Ω上的动点,A,B为两个定点,其中B的坐标为(0,3),若△P AB的面积的最小值为1,最大值为5,则线段AB的长为.8一个单位方格的四条边中,若有两条边染了颜色i,另两条边分别染了异于i色的另两种不同颜色,则称该单位方格是“i色主导”的.如图,一个1×3方格表的表格线共含10条单位长线段,现要对这10条线段染色,每条线段染为红,黄,蓝三色之一,使得红色主导,黄色主导,蓝色主导的单位方格各有一个.这样的染色方式数为(答案用数值表示).1二、解答题(第9题16分,第10,11题各20分,共56分)9.(本题满分16分)若△ABC的内角为A,B,C满足sin A=cos B=tan C,求cos3A+cos2A−cos A的值.10.(本题满分20分)给定正整数m(m≥3).设正项等差数列{a n}与正项等比数列{b n}满足:{a n}的首项等于{b n}的公比,{b n}的首项等于{a n}的公差,且a m=b m.求a m的最小值,并确定当a m取到最小值时a1与b1的比值.11.(本题满分20分)在平面直角坐标系中,双曲线Γ:x23−y2=1.对平面内不在Γ上的任意一点P.记ΩP为过点P且与Γ有两个交点的直线的全体.对任意直线ℓ∈ΩP,记M,N为ℓ与Γ的两个交点.定义f P(ℓ)=|P M|·|P N|.若存在一条直线ℓ0∈ΩP满足:ℓ0与Γ的两个交点位于y轴异侧,且对任意直线ℓ∈ΩP,ℓ=ℓ0,均有f P(ℓ)>f P(ℓ0),则称P为“好点”.求所有好点所构成的区域的面积.22022年全国中学生数学奥林匹克竞赛(预赛)暨2022年全国高中数学联合竞赛加试试题(A 卷)一、(本题满分40分)如图,在凸四边形ABCD 中,90ABC ADC ∠=∠=对角线BD 上一点P 满足2APB CPD ∠=∠,线段AP 上两点,X Y ,满足2AXB ADB ∠=∠,2AYD ABD ∠=∠,证明:2BD XY =二、(本题满分40分)设整数(1)n n >恰有k 个互不相同的素因子,记n 的所有正约数之和为()n σ,证明:()(2)!n n k σ−.三、(本题满分50分)设12100,,a a a 是非负整数,同时满足以下条件:(1)存在正整数100k ≤,使得12k a a a ≤≤≤,而当>i k 时0i a =; (2)123100100a a a a +++=; (3)123100231002022a a a a +++= 求22212310023100a a a a +++的最小可能值.四、(本题满分50分)求具有下述性质的最小正整数t :将100100⨯的方格纸的每个小方格染为某一种颜色,若每一种颜色的小方格数目均不超过104,则存在一个1t ⨯或1t ⨯的矩形,其中t 个小方格含有至少三种不同颜色.3。

全国高中数学联合竞赛加试试题参考 答案及评分标准B卷

全国高中数学联合竞赛加试试题参考 答案及评分标准B卷

全国高中数学联合竞赛加试试题参考答案及评分标准(B卷)说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分;2.如果考生的解答方法与本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次.一、(本题满分50分)如题一图,ABCD是圆内接四边形.AC与BD的交点为P,E是弧AB上一点,连接EP并延长交DC于点F,点,G H分别在CE,DE的延长线上,满足EAG FAD∠=∠,求证:,,,∠=∠,EBH FBCC D G H四点共圆.[证] 由已知条件知…10分又180DAE DCE∠+∠=︒,所以180∠+∠=︒,FAG DCE从而,,,A F C G四点共圆,此圆记为1Γ.同理可证:,,,B F D H四点共圆,此圆记为2Γ.…20分点E在圆Γ,2Γ内.延长FE与圆1Γ相交于点I,则1故,,,B F D I四点共圆.…30分所以I在BFD∆的外接圆上,故I在2Γ上.…40分再用相交弦定理:故,,,C D G H 四点共圆.…50分 二、(本题满分50分)求满足下列关系式组 的正整数解组(,,)x y z 的个数.[解] 令r y z =-,由条件知050r <≤,方程化为222()2x z r z ++=,即2222x zr r z ++=. (1)因0y z r -=>,故22222z x y z x =+->,从而z x >. 设0p z x =->.因此(1)化为22220zp p zr r -+++=. (2) (10)分下分r 为奇偶讨论,(ⅰ)当r 为奇数时,由(2)知p 为奇数. 令121r r =+,121p p =+,代入(2)得221111112()10p p zp zr r r +-++++=.(3)(3)式明显无整数解.故当r 为奇数时,原方程无正整数解.…20分(ⅱ)当r 为偶数时,设12r r =,由方程(2)知p 也为偶数.从而可设12p p =,代入(2)化简得2211110p zp zr r -++=. (4)由(4)式有221111()0z p r p r -=+>,故11p r >,从而可设11p r a =+,则(4)可化为2211()0r a za r +-+=,2211220r ar za a +-+=. (5)因21122r z r a a=++为整数,故212a r .…30分 又1122()z z x p r a >-==+,因此22111()2()r a r za r a a ++=>+,得2212a r <,因此,对给定的11,2,,25r =⋅⋅⋅,解的个数恰是满足条件a <的212r 的正因数a 的个数1()N r .因212r 不是完全平方数,从而1()N r 为212r 的正因数的个数21(2)r σ的一半.即211()(2)/2N r r σ=.…40分由题设条件,1125r ≤≤.而25以内有质数9个:2,3,5,7,11,13,17,19,23.将25以内的数分为以下八组::从而易知将以上数相加,共131个.因此解的个数共131.…50分 三、(本题满分50分)设0k a >,1,2,,2008k =.证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件: (ⅱ)lim n n x →∞存在;[证] 必要性:假设存在{}n x 满足(ⅰ),(ⅱ).注意到(ⅲ)中式子可化为 其中00x =.将上式从第1项加到第n 项,并注意到00x =得111222200820082008()()()n n n n x a x x a x x a x x +++=-+-++-. (10)分由(ⅱ)可设lim n n b x →∞=,将上式取极限得因此200811k k a =>∑. …20分充分性:假设200811k k a =>∑.定义多项式函数如下:则()f s 在[0,1]上是递增函数,且因此方程()0f s =在[0,1]内有唯一的根0s s =,且001s <<,即0()0f s =. (30)分下取数列{}n x 为01nk n k x s ==∑,1,2,n =,则明显地{}n x 满足题设条件(ⅰ),且因001s <<,故1lim 0n n s+→∞=,因此1000lim lim 11n n n n s s s x s s +→∞→∞-==--,即{}n x 的极限存在,满足(ⅱ).…40分最后验证{}n x 满足(ⅲ),因0()0f s =,即2008011k k k a s ==∑,从而综上,已证得存在数列{}n x 满足(ⅰ),(ⅱ),(ⅲ).…50分高中数学联合竞赛一试 试题参考答案及评分标准(B 卷)以说明:1.评阅试卷时,请依据本评分标准.选择题只设6分与0分两档,填空题只设9分与0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法与本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题(本题满分36分,每小题6分) 1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是( B )A .3B .2C .1D .0 [解]当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x+-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( A )A .[0,3)B .[0,3]C .[1,2)-D .[1,2]- [解] 因240x ax --=有两个实根 故B A ⊆等价于12x ≥-且24x <,即22a ≥-且42a <, 解之得03a ≤<.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为( C ) A.670243 B. 27481 C. 26681D. 24181 [解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有 故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜.由独立性与互不相容性得 故520162662469818181E ξ=⨯+⨯+⨯=.4.若三个棱长均为整数(单位:cm )的正方体的表面积之与为564 cm 2,则这三个正方体的体积之与为( D ) A.586 cm 3B.586cm 3或564 cm 3 C.764cm 3D.764cm 3或586 cm 3[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =.若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3. 5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为( C )A. 4B. 3C. 2D. 1[解] 若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩, 若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=.易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C A B C B++的( B )A. )+∞B.C.D. (0,)+∞[解] 设,,a b c 的公比为q ,则2,b aq c aq ==,而因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得11.22q q q <<⎨⎪><-⎪⎩或从而1122q <<,因此所求的取值范围是. 二、填空题(本题满分54分,每小题9分) 7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =,若7()128381f x x =+,则2(2)f =17. [解] 由题意知12()(1)n n n n f x a x a a a b --=+++++由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =.因此2222121(2)28317121a f ab a --=+⋅=+⋅=--.8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a =2-.[解]2()2cos 122cos f x x a a x =---(1) 2a >时,()f x 当cos 1x =时取最小值14a -; (2) 2a <-时,()f x 当cos 1x =-时取最小值1;(3) 22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---.又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得2a =-+2a =-舍去).9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222 种.[解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如 表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”.“每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种.又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种. 10.设数列{}n a 的前n 项与n S 满足:1(1)n n n S a n n -+=+,1,2,n =,则n S =1112nn -+.[解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221由此得2)1(1))2)(1(1(1++=++++n n a n n a n n . 令1(1)n n b a n n =++,111122b a =+= (10a =),有112n n b b +=,故12n n b =,所以)1(121+-=n n a n n . 因此 11111()(1)2(1)12n n n n S n n n n n -=--=-+++.11.设()f x 是定义在R 上的函数,若(0)2009f = ,且对任意x ∈R ,满足(2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =200822008+.[解法一] 由题设条件知 因此有(2)()32x f x f x +-=⋅,故[解法二] 令()()2x g x f x =-,则即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,所以200820082008(2008)(2008)2(0)222008f g g =+=+=+. 12.一个半径为1的小球在一个内壁棱长为的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是.[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,则小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因11111113P A B CA B C V S PD -∆=⋅ 故44PD OD r ==,从而43PO PD OD r r r =-=-=.记此时小球与面PAB 的切点为1P ,连接1OP ,则考虑小球与正四面体的一个面(不妨取为PAB )相切时的情况,易知小球在面PAB 上最靠近边的切点的轨迹仍为正三角形,记为1P EF ,如答12图2.记正四面体的棱长为a ,过1P 作1PM PA ⊥于M .因16MPP π∠=,有11cos PM PP MPP =⋅==,故小三角形的边长12PE PA PM a =-=-.小球与面PAB 不能接触到的部分的面积为(如答12图2中阴影部分)又1r =,a =由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为三、解答题(本题满分60分,每小题20分)13.已知函数|sin |)(x x f =的图像与直线y kx =)0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+.[证]()f x 的图象与直线y kx =)0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈. …5分由于()cos f x x '=-,3(,)2x ππ∈,所以sin cos ααα-=-,即tan αα=. (10)分因此14sin cos αα=…15分214αα+=. …20分14.解不等式[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于 即1210864353210x x x x x +++-->.…5分分组分解12108x x x +-864242(241)(1)0x x x x x x +++++->,…10分 所以4210x x +->,22(0x x >. …15分所以2x >,即x <x >故原不等式解集为51(,()2--∞+∞. …20分[解法二]由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+.…5分 即)1(2)1()1(2)1(232232+++<+x x xx , …10分令3()2g t t t =+,则不等式为显然3()2g t t t =+在R 上为增函数,由此上面不等式等价于2211x x<+, …15分即222()10x x +->,解得2x >(2x <舍去),故原不等式解集为51(,()2--∞+∞. …20分15.如题15图,P 是抛物线22210y x y -+-=上的动点,点B C ,在直线1x =-上,圆22(1)1x y ++=内切于PBC ∆,求PBC ∆面积的最小值.[解] 设00(,),(1,),(1,)P x y B b C c --,不妨设b c >.直线PB 的方程:00(1)1y by b x x --=++, 化简得0000()(1)0y b x x y x b y --+++=.又圆心(0,1)-到PB 的距离为1,1= , (5)分故222200000000()(1)(1)()2(1)()y b x x x b y x x b y -++=++++++, 展开得22000000(1)2(1)()2(1)0x b x x y b y x -+++++=,易知01x >, 故20000(1)2()20x b x y b y -+++=,同理有20000(1)2()20x c x y c y -+++=. …10分 所以0002()1x y b c x -++=-,0021y bc x =-, 因00(,)P x y 是抛物线上的点,有20002210y x y -+-=,即2000221y y x +=+,则故220204(1)()(1)x b c x +-=-,0002(1)4211x b c x x +-==+--. …15分所以0000002(1)12()(1)(1)(1)1211PBC x S b c x x x x x ∆+=-+=++=++-- 当20(1)4x -=时,上式取等号,此时003,1x y ==±.因此PBCS ∆的最小值为8. …20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加 试1. (本题满分40分)实数a 使得对于任意实数12345,,,,x x x x x ,不等式222221234512233445()x x x x x a x x x x x x x x ++++≥+++都成立,求a 的最大值.2. (本题满分40分)在直角三角形ABC 中,90B ∠=︒,它的内切圆分别与边BC ,CA ,AB 相切与点D ,E ,F ,连接AD ,与内切圆相交于另一点P ,连接PC ,PE ,PF .已知PC PF ⊥,求证:PE ∥BC .F C BA3.(本题满分50分)对正整数n ,记()f n 为数231n n ++的十进制表示的数码和.(1) 求()f n 的最小值;(2) 是否存在一个正整数n ,使得()f n =100?4.(本题满分50分)求满足如下条件的最小正整数n ,在圆O 的圆周上任取n 个点12,,,n A A A ,则在2n C 个角(1)i j A OA i j n ∠≤<≤中,至少有2011个不超过120︒.加 试1. a. 因为当123451,2,1x x x x x =====时,得a ≤又当a =2222212345222222223322441522332233x x x x x x x x x x x x x ++++⎛⎫⎛⎫⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1223345x x x x x x≥, 所以,a.2.连接DE ,DF ,则△BDF 是等腰直角三角形.于是45FPD FDB ∠=∠=︒,故45DPC ∠=︒.又PDC PFD ∠=∠,所以△PFD ∽ △PDC ,所以PF PDFD DC=. ① 又由AFP ADF ∠=∠,AEP ADE ∠=∠,所以,△AFP ∽ △ADF ,△AEP ∽ △ADE ,于是EP AP AP FPDE AE AF DF===,故由①得 EP PDDE DC =. ② 因为EPD EDC ∠=∠,结合②得,△EPD ∽ △EDC ,所以,△EPD 也是等腰三角形,于是PED EPD EDC ∠=∠=∠,所以,PE ∥BC .F CBA3.(1)由于231n n ++是大于3的奇数,故()1f n ≠.若()2f n =,则231n n ++只能为首位和末位为1,其余数码为0的一个数,即231n n ++=101k +,k 是大于1的整数.于是(31)25k k n n +=⋅,由于(),311n n +=,所以2,315,kkn n ⎧=⎪⎨+=⎪⎩于是314425k kn n +≤=⋅<,矛盾!故()2f n ≠. 又当n =8时,231n n ++=201,所以(8)3f =. 综上所述,()f n 的最小值为3. (2)事实上,令101k n =-,则22313105103k k n n ++=⨯-⨯+1129999500003k k --=,他的数码和为29(1)5391k k +-++=+.由于100=9×11+1,所以,取11101n =-,则()f n =100.4.首先,当n =90时,如图,设AB 是圆O 的直径,在点A 和B 的附近分别取45个点,此时,只有245245441980C =⨯=个角不超过120︒,所以,n =90不满足题意.当n =91时,下面证明至少有2011个角不超过120︒.把圆周上的91个点1291,,,A A A 看作一个图的91个顶点,1291,,,v v v ,若120i j A OA ∠>︒,则在它们对应的顶点,i j v v 之间连一条边,这样就得到一个图G .设图G 中有e 条边,易知,图中没有三角形.若e =0,则有29140952011C =>个角不超过120︒,命题得证. 若1e ≥,不妨设顶点12,v v 之间有边相连,因为图中没有三角形,所以,对于顶点(3,4,,91)i v i =,它至多与12,v v 中的一个有边相连,所以12()()89291d v d v +≤+=,其中()d v 表示顶点v 的度,即顶点v 处引出的边数. 因为1291()()()2d v d v d v e +++=,而对于图G 中的每一条边的两个顶点,i j v v ,都有()()91i j d v d v +≤,于是,上式对每一条边求和可得2221291(())(())(())91d v d v d v e +++≤,由柯西不等式A222221*********[(())(())(())][()()()]4d v d v d v d v d v d v e +++≥+++=,所以 222212914(())(())(())9191e d v d v d v e ≤+++≤, 故29120714e ≤<,所以,91个顶点中,至少有291207120242011C -=>个点对,它们之间没有边相连,从而,它们对应的顶点所对应的角不超过120︒.综上所述,n 但最小值为91.2010年全国高中数学联赛模拟题3加试(二试)9:40~12:10共150分钟 满分180分平面几何、代数、数论、组合1、(本题40分)在△ABC 中,AB >BC ,K 、M 分别是边AB 和AC 的中点,O 是△ABC 的内心。

设P 点是直线KM 和CO 的交点,而Q 点使得QP⊥KM 且QM∥BO,证明:QO⊥AC。

2、(本题40分)已知无穷数列{}n a 满足,,10y a x a ==() ,2,11111=++=--+n a a a a a n n n n n .(1)对于怎样的实数x ,y ,总存在正整数0n ,使当0n n ≥时,n a 恒为常数? (2)求数列{}n a 的通项公式.3、(本题50分)空间六点,任三点不共线,任四点不共面,成对地连接它们得十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色).求证:无论怎样染,总存在同色三角形.(1953年美国普特南数学竞赛题)由此,证明有17位科学家,其中每一个人和其他所有人的人通信,他们的通信中只讨论三个题目.求证:至少有三个科学家相互之间讨论同一个题目. (第6届国际数学奥林匹克试题)4、(本题50分)设*211,1,3N n a a a a n n n ∈-+==+,证明:(1)对所有)4(m od 3,≡n a n ;(2)当m m ≠时,1),(=n m a a (即n m a a ,互质)二试 1、证:作OR ⊥AC 于R ,过P 作MK 的垂线,交直线OR 于Q 点(如图)。

这样只需证Q’M ∥O ,因为这时Q 和Q’重合。

因为K ,M 分别为AB 和AC 的中点,所以KM ∥BC ,于是∠MPC =∠BCP =21∠ACB =∠MCP 。

因此MP =MC =MA ,这样一来,P 点在以AC 为直径的圆周上,且∠APC =90°。

在四边形APOR 中,∠APO =∠ARO =90°,所以APOR 内接于圆,∠RPO =∠RAO =21×∠BAC 。

在四形边MPQ’R 中,∠MPQ’=∠MRQ’=90°,所以MPQ’R 内接于圆,于是∠Q’MR =∠Q’PR =∠Q’PO +∠OPR =(90°-∠OPM )+21∠BAC =(90°-21∠ACB )+21∠BAC 。

设BO 交AC 于D ,在△BDC 中,∠BDC =180°-∠ACB -21∠ABC =90°+21∠BAC-21∠ACB =∠Q’MR ,因此MQ’∥BO ,于是本题得证。

2、解:由递归方程()x xx x f =+=212,得不动点1±=x .由不动点方法 111111111111+++-++=+-----++n n n n n n n n n n a a a a a a a a a a 111111----+++--+=n n n n n n n n a a a a a a a a ()()()()111111++--=--n n n n a a a a 111111+-⋅+-=--n n n n a a a a . 令11+-=n n n a a b ,则()+-+∈=N n b b b n n n 11.易知110+-=x x b ,111+-=y y b . 注意到()23221-----==n n n n n n b b b b b b 21012433322--====----n n FFn n n n b b b b b b ,其中,11-++=n n n F F F ,110==F F ,{}n F 为斐波那契数列.于是,11+-=n nn a a b 2101--=n n F F b b 211111--⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-=n n F F x x y y.故11+-n na a ()2111121≥⎪⎭⎫⎝⎛+-⎪⎪⎭⎫⎝⎛+-=--n x x y y n n F F .(1)要使总存在正整数0n ,当0n n ≥时,n a 恒为常数,还需分情况讨论. (i )若10=n ,当0n n ≥时,n a 恒为常数.由y a =1,101021a a a a a ++=y y x xy =++=1,y yy a =+=2123,……有1=y ,且x y -≠. 此时,n a 恒为常数1或1-. (ii )若20≥n ,当0n n ≥时,n a 恒为常数.首先,当()01n n a n ≥-=时,如果30≥n ,由10-=n a ,110-=+n a 及=+10n a 1100001--++n n n n a a a a ,有110≠-n a .注意到110-≠-n a . 又由=0n a 212100001----++n n n n a a a a ,有120-=-n a .于是,由=-10n a 323200001----++n n n n a a a a ,有110-=-n a ,矛盾.此时,只能是20=n ,即()21≥-=n a n ,所以,101021a a a a a ++=11-=++=yx xy ,12122121311a a a a a a a a a ++=++=1111-=+-+⋅-=yy ,……于是,11-=++yx xy ,且1≠y 01=+++⇒y x xy ,且x y -≠,1≠y 1-=⇒x 或1-=y ,且x y -≠,1≠y .因此,当1-=x 或1-=y ,且x y -≠时,取20=n .当2≥n 时,n a 恒为常数1-.其次,当n a 在()200≥≥n n n 时不恒为1-,但当0n n ≥时,使n a 恒为常数,故1-≠n a ()2,00≥≥n n n .则11+-n na a 211111--⎪⎭⎫⎝⎛+-⎪⎪⎭⎫⎝⎛+-=n n F F x x y y 在0n n ≥时恒为常数.显然,111≠+-x x ,111≠+-y y . 若111-=+-x x 且111-=+-y y ,则0==y x ,有101021a a a a a ++=的分母为0,矛盾.所以,只能011=+-x x 或011=+-y y ,即1=x 或1=y ,且x y -≠时,当()200≥≥n n n 时,n a 恒为常数1.综上,当1=x 且x y -≠或1=y 且y x -≠时,总存在正整数0n ,使当0n n ≥时n a 恒为常数1或1-.(2)注意到11+-n na a ()2111121≥⎪⎭⎫⎝⎛+-⎪⎪⎭⎫⎝⎛+-=--n x x y y n n F F .则111111221-⎪⎭⎫⎝⎛+-⎪⎪⎭⎫⎝⎛+--=--n n F F n x x y y a ()()()()()()11111112212121----++++=------n n n n n n F F F F FFx y x y x y . 故()()()()()()()()()21111111121212121≥---++--+++=--------n x y x y x y x y a n n n n n n n n FF FF FFFF n , x a =0,y a =1.3、证明 设A 、B 、C 、D 、E 、F 是所给六点.考虑以A 为端点的线段AB 、AC 、AD 、AE 、AF ,由抽屉原则这五条线段中至少有三条颜色相同,不妨设就是AB 、AC 、AD ,且它们都染成红色.再来看△BCD 的三边,如其中有一条边例如BC 是红色的,则同色三角形已出现(红色△ABC );如△BCD 三边都不是红色的,则它就是蓝色的三角形,同色三角形也现了.总之,不论在哪种情况下,都存在同色三角形. 证明 用平面上无三点共线的17个点A 1,A 2,…,A 17分别表示17位科学家.设他们讨论的题目为x,y,z,两位科学家讨论x 连红线,讨论y 连蓝线,讨论z 连黄线.于是只须证明以这17个点为顶点的三角形中有一同色三角形.考虑以A 1为端点的线段A 1A 2,A 1A 3,…,A 1A 17,由抽屉原则这16条线段中至少有6条同色,不妨设A 1A 2,A 1A 3,…,A 1A 7为红色.现考查连结六点A 2,A 3,…,A 7的15条线段,如其中至少有一条红色线段,则同色(红色)三角形已出现;如没有红色线段,则这15条线段只有蓝色和黄色,由例5知一定存在以这15条线段中某三条为边的同色三角形(蓝色或黄色).问题得证. (属图论中的接姆赛问题.) 4、证明:(1)由递推关系得11(1)n n n a a a ++=+当1n =时,133(mod 4)a =≡,33(mod 4)n a =≡即43n a k =+,那么1(1)14(43)(1)13(mod 4)n n n a a a k k +=+-=+--≡∴对所有n ,3(mod 4)n a ≡(2)由递推关系得112114n n n n a a a a a +--+=不妨设m n <,得|1m n a a -,令1,n m a qa q N +=∈ 则,()(,1)(,1)1m n m m m m a a a qa a a =-=-=加 试1. (40分)如图,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于点N ,直线CD 与AB 交于点M .求证:若OK ⊥MN ,则A ,B ,D ,C 四点共圆.2. (40分)设k 是给定的正整数,12r k =+.记(1)()()f r f r r r ==⎡⎤⎢⎥,()()l f r =(1)(()),2l f fr l -≥.证明:存在正整数m ,使得()()m f r为一个整数.这里,x ⎡⎤⎢⎥表示不小于实数x 的最小整数,例如:112⎡⎤=⎢⎥⎢⎥,11=⎡⎤⎢⎥. 3. (50分)给定整数2n >,设正实数12,,,n a a a 满足1,1,2,,k a k n ≤=,记12,1,2,,kk a a a A k n k+++==.求证:1112n nk kk k n a A==--<∑∑. 4. (50分)一种密码锁的密码设置是在正n 边形12n A A A 的每个顶点处赋值0和1两个数中的一个,同时在每个顶点处涂染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?解 答1. 用反证法.若A ,B ,D ,C 不四点共圆,设三角形ABC 的外接圆与AD 交于点E ,连接BE 并延长交直线AN 于点Q ,连接CE 并延长交直线AM 于点P ,连接PQ . 因为2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O ) ()()2222PO r KO r=-+-,同理()()22222QK QO rKOr =-+-,所以 2222PO PK QO QK -=-, 故OK ⊥PQ . 由题设,OK ⊥MN ,所以PQ ∥MN ,于是AQ APQN PM=. ① 由梅内劳斯(Menelaus )定理,得1NB DE AQBD EA QN⋅⋅=, ② 1MC DE APCD EA PM ⋅⋅=. ③ 由①,②,③可得NB MC BD CD =, 所以ND MDBD DC=,故△DMN ∽ △DCB ,于是DMN DCB ∠=∠,所以BC ∥MN ,故OK ⊥BC ,即K 为BC 的中点,矛盾!从而,,,A B D CM四点共圆.注1:“2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O )”的证明:延长PK 至点F ,使得PK KF AK KE ⋅=⋅, ④则P ,E ,F ,A 四点共圆,故PFE PAE BCE ∠=∠=∠,从而E ,C ,F ,K 四点共圆,于是PK PF PE PC ⋅=⋅, ⑤⑤-④,得2PK PE PC AK KE =⋅-⋅=P 的幂(关于⊙O )+K 的幂(关于⊙O ). 注2:若点E 在线段AD 的延长线上,完全类似.2. 记2()v n 表示正整数n 所含的2的幂次.则当2()1m v k =+时,()()m f r 为整数.下面我们对2()v k v =用数学归纳法. 当0v =时,k 为奇数,1k +为偶数,此时()111()1222f r k k k k ⎛⎫⎡⎤⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎢⎥⎝⎭为整数. 假设命题对1(1)v v -≥成立.对于1v ≥,设k 的二进制表示具有形式1212222v v v v v k αα++++=+⋅+⋅+,这里,0i α=或者1,1,2,i v v =++.于是 ()111()1222f r k k k k ⎛⎫⎡⎤⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎢⎥⎝⎭FE QPONM K DCBA2122kk k =+++ 11211212(1)2()222v v v vv v v ααα-++++=+++⋅++⋅+++12k '=+, ①这里1121122(1)2()22v v v v v v v k ααα-++++'=++⋅++⋅+++.显然k '中所含的2的幂次为1v -.故由归纳假设知,12r k ''=+经过f 的v 次迭代得到整数,由①知,(1)()v fr +是一个整数,这就完成了归纳证明.3. 由01k a <≤知,对11k n ≤≤-,有110,0kniii i k ak an k ==+<≤<≤-∑∑.注意到当,0x y >时,有{}max ,x y x y -<,于是对11k n ≤≤-,有11111kn n k i i i i k A A a a n k n ==+⎛⎫-=-+ ⎪⎝⎭∑∑11111n ki i i k i a a n k n =+=⎛⎫=-- ⎪⎝⎭∑∑ 11111max ,nk i i i k i a a n k n =+=⎧⎫⎛⎫<-⎨⎬ ⎪⎝⎭⎩⎭∑∑ 111max (),n k k n k n ⎧⎫⎛⎫≤--⎨⎬ ⎪⎝⎭⎩⎭1kn=-, 故111nnnk kn k k k k a AnA A ===-=-∑∑∑()1111n n nk n k k k AA A A --===-≤-∑∑111n k k n -=⎛⎫<- ⎪⎝⎭∑12n -=. 4. 对于该种密码锁的一种密码设置,如果相邻两个顶点上所赋值的数字不同,在它们所在的边上标上a ,如果颜色不同,则标上b ,如果数字和颜色都相同,则标上c .于是对于给定的点1A 上的设置(共有4种),按照边上的字母可以依次确定点23,,,n A A A 上的设置.为了使得最终回到1A 时的设置与初始时相同,标有a 和b 的边都是偶数条.所以这种密码锁的所有不同的密码设置方法数等于在边上标记a ,b ,c ,使得标有a 和b 的边都是偶数条的方法数的4倍.设标有a 的边有2i 条,02n i ⎡⎤≤≤⎢⎥⎣⎦,标有b 的边有2j 条,202n i j -⎡⎤≤≤⎢⎥⎣⎦.选取2i 条边标记a 的有2in C 种方法,在余下的边中取出2j 条边标记b 的有22jn i C -种方法,其余的边标记c .由乘法原理,此时共有2i n C 22jn i C -种标记方法.对i ,j 求和,密码锁的所有不同的密码设置方法数为222222004n n i i j n n i i j C C -⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦-==⎛⎫ ⎪ ⎪ ⎪⎝⎭∑∑. ①这里我们约定001C =.当n 为奇数时,20n i ->,此时22221202n i jn i n ij C-⎡⎤⎢⎥⎣⎦---==∑. ②代入①式中,得()()2222222221222000044222n n i n n i j i n i i n i n n i n n i j i i C C C C -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦----====⎛⎫ ⎪== ⎪ ⎪⎝⎭∑∑∑∑ 022(1)(21)(21)nnk n kk n kk n n nn k k C C --===+-=++-∑∑ 31n =+.当n 为偶数时,若2n i <,则②式仍然成立;若2ni =,则正n 边形的所有边都标记a ,此时只有一种标记方法.于是,当n 为偶数时,所有不同的密码设置的方法数为222222004n n i i j n n i i j C C -⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦-==⎛⎫ ⎪= ⎪⎪⎝⎭∑∑()122210412n i n i n i C ⎡⎤-⎢⎥⎣⎦--=⎛⎫ ⎪⨯+ ⎪ ⎪⎝⎭∑ ()222124233n i n i n n i C ⎡⎤⎢⎥⎣⎦--==+=+∑.综上所述,这种密码锁的所有不同的密码设置方法数是:当n 为奇数时有31n+种;当n 为偶数时有33n+种.加 试一、(本题满分40分)设A B C D E 、、、、为直线l 上顺次排列的五点,AC BCCE CD=,F 在直线l 外的一点,连结FC 并延长至点G ,恰使FAC AGD ∠=∠,FEC EGB ∠=∠同时成立.求证:FAC FEC ∠=∠。

相关文档
最新文档