10、场效应管放大电路
场效应管放大电路原理及应用

场效应管放大电路原理及应用
一、偏置电路有自生偏置和混合偏置两种方法,表1电路I利用漏极电ID通过Rs所产生的IdRs作为生偏置电压,即Ugs=-IdRso可以稳定工作点。
|IdRs| 越大,稳定性能越好,但过负的偏置电压,会使管子进入夹断而不能工作。
若采用如表2和表3混合偏置电路就可以克服上述缺陷。
它们是由自生偏压和外加偏置组成的混合偏置,由于外加偏压EdRp(Rp为分压系数)提高了栅极电位,以便于选用更大的IdRs来稳定工作点,电路2、3中Rg的作用是提高电路输入电阻二、图解法用图解法求电路的静态工作点如下:
常用场效应管放大电路1
2
3
公式
Ku=-gm(Rds//Rd)Ku=-gmRb(当RdsRd)Rt=Rg//Rgs=RgRO=Rg
Ku=-gm(Rds//Rd)Ku=-gmRd(当RdsRd)Rt=Rg+R1//R2=RgRo=Rd
Ku=gmRs(1+gmRs)Rt=Rg+(R1//R2)=RgRo=Rds/(1+gmRds)=1/gm
偏置方式
自生偏压因为:Us=RgIb及Ug=0所以:Ugs=-RsIo
自生偏压Us=IdRs外加偏压Ug=EdRp所以:Ugs=EdRp-IdRs分压系数:Rp=R2/R1+R2
与式边相同
(1)写出直流负载线的方程为:Uds=Ed-Id(Rd+Rs)=15-3.2Id令ID=0,则UDS=15伏,在横坐标上标出N点,又令UDS=0,得ID=4.7毫安,在纵坐标。
场效应管放大电路原理

场效应管放大电路原理场效应管放大电路原理1. 介绍场效应管(Field Effect Transistor,简称FET)是一种常用的电子器件,广泛应用于放大、开关和调节电路中。
作为一名文章写手,我将为您详细介绍场效应管放大电路的原理。
2. 场效应管概述场效应管是由源极、栅极和漏极三个主要部分组成的。
其中,栅极与源极之间的电压可以控制漏极电流的大小,从而实现信号的放大和调节。
和双极晶体管相比,场效应管具有输入电阻高、无需偏置电流等优点,因此在电子工程中得到广泛应用。
3. 场效应管放大电路的基本原理场效应管放大电路的基本原理是利用场效应管的特性来放大输入信号。
当输入信号施加在栅极上时,栅极源极间的电压将改变栅极-源极电流的大小,从而改变漏极电流。
根据场效应管工作状态的不同,可分为共源放大器、共漏放大器和共栅放大器三种。
3.1 共源放大器共源放大器是应用最广泛的一种场效应管放大电路。
在共源放大器中,输入信号通过耦合电容施加到栅极上,当信号施加后,栅极-源极电压发生变化,控制栅极-源极电流的大小,进而改变漏极电流。
共源放大器具有放大增益高、输入输出阻抗匹配等特点,适用于多种应用场景。
3.2 共漏放大器共漏放大器是场效应管放大电路的一种重要形式。
在共漏放大器中,漏极连接到电源,源极接地,输入信号通过漏极电阻耦合到栅极。
共漏放大器具有输入电阻高、输出电阻低等特点,适用于对电压放大和阻抗转换要求较高的场合。
3.3 共栅放大器共栅放大器是场效应管放大电路的另一种形式。
在共栅放大器中,信号通过源极电阻耦合到栅极,漏极连接到电源。
共栅放大器具有输入输出阻抗匹配、频率响应宽等特点,适用于高频放大和对输入频率响应要求较高的应用。
4. 实际应用案例场效应管放大电路广泛应用于各种电子设备中。
以音频放大器为例,通过合理选择场效应管的类型和工作点,可以实现对音频信号的放大和调节,保证音频设备的音质。
5. 个人观点和理解场效应管放大电路作为一种常见的放大器,具有输入电阻高、无需偏置电流、放大增益高等技术优点。
场效应管放大电路

P沟道结型场效应管工作时,电源的极性与N沟道结型 场效应管的电源极性相反。
第四章 场效应管放大电路
图5 VGS对沟道电阻的控制作用
第四章 场效应管放大电路
上述分析表明: (a)改变栅源电压vGS的大小,可以有效控制沟道电阻的大小. (b)若同时在漏源-极间加上固定的正向电压vDS,则漏极电流 iD将受vGS的控制,|vGS|增大时,沟道电阻增大,iD减小。 (c)上述效应也可以看作是栅-源极间的偏置电压在沟道两边 建立了电场,电场强度的大小控制了沟道的宽度,即控制了 沟道电阻的大小,从而控制了漏极电流iD的大小。
第四章 场效应管放大电路
图6 vDS对iD的影响
第四章 场效应管放大电路
图6 vDS对iD的影响
6V
4V
6V
2V
0V
导电沟道中电位分布情况
第四章 场效应管放大电路
(b)在vDS较小时,iD随vDS增加而几乎呈线性地增加 它对iD的影响应从两个角度来分析:一方面vDS增加时,沟道的
电场强度增大,iD随着增加;另一方面,随着vDS的增加,沟道的不均 匀性增大,即沟道电阻增加,iD应该下降,但是在vDS较小时,沟道的 不均匀性不明显,在漏极附近的区域内沟道仍然较宽,即vDS对沟道 电阻影响不大,故iD随vDS增加而几乎呈线性地增加。
第四章 场效应管放大电路
(2)转移特性曲线
转移特性曲线用来描述vDS取一定值时,iD与vGS间的关系的 曲线,即:
智慧树知到《模拟电子技术》章节测试答案

智慧树知到《模拟电子技术》章节测试答案第一章1、电子线路是由电子器件和电子元件组成的具有一定功能的电路。
A:对B:错答案: 对2、电子器件又称无源器件,如电阻、电容、电感等.A:对B:错答案: 错3、第一代电子器件为晶体管,晶体管出现后,拉开了人类社会步入信息时代的序幕。
A:对B:错答案: 错4、电子器件是电子线路的核心,电子技术的发展很大程度上反映在电子器件的发展上。
A:对B:错答案: 对5、电子器件发展的第三代是集成电路,具有外接元件少、可靠性高、性能稳定的特点A:对B:错答案: 对6、模拟电路和数字电路处理的信号特性是相同的,只是处理信号的幅度有差别。
A:对B:错答案: 错7、计算机能够直接接收和处理的信号一般为模拟信号A:对B:错答案: 错8、数字信号一般指时间和数值上都连续的信号A:对B:错答案: 错9、含有计算机的电子信息系统一般属于模拟和数字的混合系统A:对B:错答案: 对10、下列信号不属于模拟信号的是( )A:0~5V的电压信号B:20Hz~20kHz的音频信号C:4~20mA的电流信号D:灯的亮灭状态答案: 灯的亮灭状态第二章1、在运算电路中,集成运放的反相输入端均为虚地A:对B:错答案: 错2、凡是运算电路都可利用“虚短”和“虚断”的概念求解运算关系A:对B:错答案: 对3、集成运放在开环情况下一定工作在非线性区A:对B:错答案: 对4、理想运算放大器的两个重要结论是A:虚地与反相B:虚短与虚地C:虚短与虚断D:短路和断路答案: 虚短与虚断5、集成运放的线性和非线性应用电路都存在A:虚短B:虚地C:虚短与虚断D:虚断答案: 虚断6、如图所示电路中,若电阻Rf虚焊,则电路的输出电压为A:+UOMB:-UOMC:无穷大D:0答案:+UOM,-UOM7、反相输入积分电路中的电容接在电路的A:反相输入端B:同相输入端C:反相端与输出端之间D:同相端与输出端之间答案: 反相端与输出端之间8、电路如图所示,若R1=5KΩ,R2=R3=10KΩ,Vi=1V,则VO= A:-1VB:1VC:-2VD:2V答案:2V9、集成运放能处理A:交流信号B:直流信号C:交流和直流信号D:正弦信号答案: 交流和直流信号10、理想运算放大器的输出电阻Ro为A:零B:有限值C:无穷大D:不确定答案: 零第三章1、设稳压管DZ1和DZ2的稳定电压分别为6V和9V,正向压降为0.7V,则图3.2电路中的输出电压VO为A:15VB:6.7VC:9.7VD:3V答案:B2、用万用表的电阻档测量二极管,当时说明二极管的单向导电性好A:正向电阻小反向电阻大B:正向电阻大反向电阻小C:正向电阻反向电阻都小D:正向电阻反向电阻都大答案:A3、如果把一个二极管直接同一个电动势为1.5V、内阻为0的电池正向连接,则该管A:击穿B:电流为0C:电流过大而使管子烧坏D:正常导通答案:C4、二极管稳压电路一般是由稳压二极管(反向接法)和负载并联而得到。
场效应管放大电路

这种偏置电路的特点是: 栅极直流偏压直接由电源UGG经电阻Rg供给,因为3DO1是耗 尽型MOS管,故 UGS = - UGG。由于场效应管输入电阻很大, 所以 Ig = 0 。栅偏压是由固定的外加电源供给的,故称为固 定偏置电路。此电路是共源极放大电路。
⑵ 自给栅偏压偏置电路
这种偏置电路的特点是: 在源极上接一个电阻RS,外加电压UDD产生的ID就会在RS 上产 生压降URS ,由于Ig = 0,所以可以得 :UGS = - URS = - ID RS 。 这种电路栅 偏压是由漏极电流流过源极电阻产生的,故称为 自给偏压电路。增强型MOS管不采用此种这种方式。
(mA) ID UGS = 0 V
6
击穿区
rN小
可变电阻区
5
4 3 2
UGS = -1V 放 大 区 UGS = -2V UGS = -3V UGS = -4V
4 8 12 16 20 24
rN大
1 0
截止区
BUDSS
UDS(V)
⑶ 截止区 当|UGS|≥|UP|时,导电沟道完全夹断,电阻rn最大, 漏极电流 ID = 0,管子截止。
id
T2 T1 Id0
T3
Q0
ugso
ugs
从图可以看出当 UGS选在零工作 点,则温度变化时,漏极电流 ID 不变。T1,T2,T3为不同的温度 曲线。
4. 场效应管结构对称,应用灵活 ,方便。有时漏极和源极 可以互换使用,但是当衬底与源极相连在一起是不能互换使 用的。
5. 场效应管的制造工艺简单,有利于大规模集成。 6. 由于MOS场效应管输入电阻高达10¹² KΩ,故受外界静电 场感应产生的电荷不容易泄露,会在栅极上产生很高的电场 强度会引起 SiO2绝缘层击穿损坏管子。焊接时,应将电烙铁 外壳可靠接地。 7. 由于场效应管的跨导小,组成放大电路时,在相同负载 电阻的情况下,其电压放大倍数比三极管放大电路低。
模拟电子技术题库-答案分解

模拟电子技术试题汇编成都理工大学工程技术学院电子技术基础教研室2010-9第一章 半导体器件一、填空题1、本征硅中若掺入5价元素的原子,则多数载流子应是 电子 ,少数载流子应是 空穴 。
2、 在N 型半导体中,电子浓度 大于 空穴浓度,而在P 型半导体中,电子浓度 小于 空穴浓度。
3、PN 结反向偏置时,空间电荷区将变 宽 。
4、双极型三极管输出特性的三个区域分别是_____饱和_____区、______放大___区、__截止________区。
5、场效应管分为两大类:一类称为_结型场效应管___________,另一类称为__ 绝缘栅场效应管_______。
6、PN 结外加反向电压,即电源的正极接N 区,电源的负极接P 区,这种接法称为___反向接法_______或_反向偏置_________。
7、半导体二极管的基本特性是 单向导电性 ____,在电路中可以起___整流____和___检波____等作用。
8、双极型半导体三极管按结构可分为__NPN_____型和__PNP_____型两种,它们的符号分别为_______和________。
9、PN 结中进行着两种载流子的运动:多数载流子的 扩散 运动和少数载流子的___漂移_____运动。
10、硅二极管的死区电压约为,锗二极管的死区电压约为。
11、晶体管穿透电流CEO I 是反向饱和电流CBO I 的___1+β_______倍,在选用晶体管的时候,一般希望CBO I 尽量___小_______。
12、场效应管实现放大作用的重要参数是___跨导_mg ______。
13、PN 结具有__单向导电_______特性。
14、双极型三极管有两个PN 结,分别是___集电结____和_发射结______。
15、为了保证三极管工作在放大区,应使发射结_____正向________偏置,集电路______反向_______偏置。
16、场效应管是____电压______控制型元件,而双极型三极管是____电流_______控制型元件。
场效应管放大电路

场效应管放大电路
一、实验要求
(1)建立场效应管放大电路。
(2)分析场效应管放大电路的性能
二、实验内容
(1)建立结型场效应管共源放大电路。
结型场效应管取理想模式。
用信号发生器产生频率为lkHz、幅值为10mV的正弦信号。
(2)打开仿真开关,用示波器观察场效应管放大电路的输入波形和输出波形。
测量输出波形的幅值,计算电压放大倍数。
(3)建立如图3-3所示的场效应管放大电路的直流通路。
打开仿真开关,利用电压表和电流表测量电路静态参数。
三、实验电路原理图
结型场效应管共源放大电路
场效应管放大电路的直流通路
四、实验结果及分析
1、函数信号发生器
输入信号输出信号波形:
分析:
共源放大电路的电压放大倍数为10。
输出波形的幅值为100mv。
2、场效应管放大电路的直流通路大电路的直流通路
分析:
根据实验数据可得,场效应管的漏源电压为15.076V,栅源电压为0.411V,漏极电流为0。
.05mA。
电压表和电流表测到的栅源电压,漏源电压,漏极电流。
五、实验结论
与双极型晶体管放大电路的共发射极、共集电极和共基极电路相对应,场效应管放大电路也有三种基本组态:共源电路、共漏电路、共栅电路。
其电路结构与分析方法与双极型晶体管放大电路类似。
场效应管放大电路原理

场效应管放大电路原理场效应管(Field Effect Transistor,简称FET)是一种重要的电子元器件,广泛应用于各种电子设备中。
它具有高输入阻抗、低输出阻抗、低噪声、高增益等优点,因此在放大电路中得到了广泛的应用。
场效应管放大电路是一种利用场效应管进行信号放大的电路。
它通过控制场效应管的栅极电压来控制电流的流动,从而实现信号的放大。
下面将详细介绍场效应管放大电路的原理。
场效应管放大电路主要由场效应管、负载电阻、输入电容、输出电容等组成。
其中,场效应管是核心部件,起到放大信号的作用。
负载电阻用于提供输出端的负载,使得输出信号能够正常传递。
输入电容和输出电容则用于对输入信号和输出信号进行耦合。
在场效应管放大电路中,输入信号首先经过输入电容进入场效应管的栅极。
当栅极电压发生变化时,场效应管内部的通道将打开或关闭,从而控制电流的流动。
当栅极电压较低时,场效应管处于截止状态,电流无法通过。
当栅极电压较高时,场效应管处于导通状态,电流可以通过。
当输入信号经过场效应管后,会在负载电阻上产生一个较小的输出电压。
为了放大这个输出电压,需要通过负反馈来增加放大倍数。
具体来说,可以将输出信号通过输出电容耦合到放大器的输入端,然后再将输出信号与输入信号进行比较,从而调整栅极电压,使得输出信号得到放大。
在场效应管放大电路中,需要注意一些问题。
首先是输入阻抗和输出阻抗的匹配问题。
为了使得信号能够正常传递,输入阻抗和输出阻抗需要相互匹配。
其次是稳定性问题。
由于场效应管的工作点受到温度和其他因素的影响,因此需要采取一些措施来保持工作点的稳定性。
最后是频率响应问题。
由于场效应管本身具有一定的频率响应特性,因此在设计放大电路时需要考虑频率响应的影响。
总结起来,场效应管放大电路是一种利用场效应管进行信号放大的电路。
它通过控制场效应管的栅极电压来控制电流的流动,从而实现信号的放大。
在实际应用中,需要注意输入阻抗和输出阻抗的匹配、工作点的稳定性以及频率响应等问题。
MOS管放大电路

同相放大器的特点是输入阻抗低、输出阻抗高,因此具有良好的驱动能力。它通 常由一个运算放大器和两个电阻构成,其输出电压与输入电压成比例,且放大倍 数由两个电阻的比值决定。
差分放大器
总结词
差分放大器是一种用于放大差分信号的电路,其输出信号与两个输入信号之差成正比。
详细描述
差分放大器的特点是抑制共模信号、放大差分信号,因此具有较高的抗干扰性能。它通 常由两个对称的放大电路组成,分别对两个输入信号进行放大,然后通过减法器得到差
易于集成
由于MOSFET是平面结构,易 于集成到集成电路中,有利于 减小放大电路的体积和重量。
MOS管放大电路的应用场景
音频放大
用于放大音频信号,如扬声器、 耳机等。
电源管理
用于调整和放大电源电压,如直流 /直流转换器等。
信号放大
用于放大各种传感器输出的微弱信 号,如压力、温度、光等传感器。
ቤተ መጻሕፍቲ ባይዱ
02
输出阻抗匹配的目的是使放大电路的输出信号能够有效地传输到负载,同时避免信号的损失或失真。通过选择适 当的输出阻抗元件,可以使得放大电路的输出阻抗与负载阻抗相匹配。
带宽与增益的权衡
带宽
带宽是指放大电路能够处理的信号频 率范围。在设计和优化MOS管放大电 路时,需要考虑所需的带宽,并选择 适当的元件和电路拓扑以实现所需的 频率响应。
的调节。
电容器
01
电容器是一种储能元件, 由两个平行板中间填充 绝缘介质构成。
02
它具有隔直流通交流的 特性,常用于滤波、耦 合、旁路等电路中。
03
根据介质类型和结构, 电容器可分为固定电容 器和可变电容器两大类。
04
在MOS管放大电路中, 主要使用固定电容器, 用于实现信号耦合和滤 波等功能。
场效应管放大电路

i ②转移特性曲线 Df(VGS)VDSC
输入电压VGS对输出漏极电流ID的控制
iD / v G Q S d D /d iG v Q S g m m s
精选课件
结型场效应管的特性小结
N 沟 道 耗
结尽 型型
场
效P 应沟 管道
耗 尽 型
精选课件
金属-氧化物-半导体场效应管
绝缘栅型场效应管Metal Oxide Semiconductor —— MOSFET
第二种命名方法是CS××#,CS代表场效应管, ××以数字代表型号的序号,#用字母代表同一型 号中的不同规格。例如CS14A、CS45G等。
精选课件
双极型三极管与场效应三极管的比较
双极型三极管
场效应三极管
结构
NPN型
结型 N沟道 P沟道
与
PNP型
绝缘栅 增强型 N沟道 P沟道
分类 C与E一般不可 绝缘栅 耗尽型 N沟道 P沟道
强
型
精选课件
耗尽型MOSFET
N沟道耗尽型MOS管,它是在栅极下方的SiO2绝缘层中掺入 了大量的金属正离子,在管子制造过程中,这些正离子已经在漏 源之间的衬底表面感应出反型层,形成了导电沟道。 因此,使 用时无须加开启电压(VGS=0),只要加漏源电压,就会有漏极 电流。当VGS>0 时,将使ID进一步增加。VGS<0时,随着VGS 的 减小ID 逐渐减小,直至 ID=0。对应ID=0 的 VGS 值为夹断电压 VP 。
至VGD=VT,即VGS-VDS=VT或VDS=VGS-VT
时,则漏端沟道消失,出现预精选夹课件断点。
当VDS增加到使
当VDS增加到使VGDVT时,预
小此匀当时时降V落,VDDS在VS为G基沟D0>本或道V均较中T,,V将称电下G缩为子,D=减预在仍VTV到夹 能时D刚断 沿S,电刚。 着漏场开源 沟极力启区 道处的的向的沟作情漏自道用况端由,夹 断 而 此 在断 未 , 该区点 夹 夹。VD由向 断 断S增于源沟区加预极道内的夹端部,部断延分而分区伸为沟基呈成低道本现小阻中上高的,的降阻夹因电落,
场效应管放大电路

R2 Rg VG R1
Rd g + UGS
ID d +
+VDD C2 + uo -
UGSQ = VG - IDQRS UGSQ IDQ= IDO( UGS(th)
Rs
UDS s - R L ID CS
1)
分压-自偏压式共源放大电路
UDSQ = VDD - IDQ ( Rd + Rs )
+VDD d g s C2 RL + uo -
RG R1
RS
+ RG Ui R1 R2
g +U & - gs RS
d
s + RL Uo -
16
上页
下页
首页
第六节 场效应管放大电路
g +
& Ui
& + Ugs
s -
id +
& gmUgs
仿真
RG RS RL R2 d
& Uo
R1 -
-
源极输出器的微变等效电路
C1 R2 g s R1 RS C2 RL + uo + ui +VDD d
可用近似估算法 或图解法, 或图解法, 求解过程可参阅 分压– 分压–自偏压式 共源放大电路。 共源放大电路。
RG
共漏极放大电路
15
上页
下页
首页
第六节 场效应管放大电路
2. 动态分析
R2 C1 + ui id
& gmUgs
分压-自偏压式共源放大电路
Ui = Ugs
Uo = - gmUgs RD′
场效应管的三种放大电路

和半导体三极管一样,场效应管的电路也有三种接法即共源极电路、
共漏极电路和共栅极电路。
1.共源极电路
共源极电路除有图16-13 所示的接法外,还可采用图16-14 所示的电路。
这种电路的栅偏压是由负电压UG经偏置电阻RG提供的。
该电路虽然简单.但R G不易取得过大.否则会在栅漏泄电流流过时产生较大的压降,使栅偏压发生变化.造成工作点的偏离。
共源极基本放大电路的主要参数,可由以下各式确定:
2. 共漏极电路(源极输出器)
共漏极电路如图16-15 所示。
该电路中除有源极电阻Rs提供的自偏压外,还有由R1和R2组成的分压器为栅极提供的固定栅偏压。
共漏极电路的输出与输入同相,可起到阻抗变换器的作用。
共漏极基本放大电路的主要参数可由以下各式确定:
3. 共栅极电路
共栅极电路如图16-16 所示。
偏置电路为自给偏置,当ID流经Rs 时产生压降ID·Rs,由于栅极接地,相当于源极电位比栅极高出一个ID·Rs值。
这种方法简单.栅极电压也会随信号自动调节,对工作点的稳定有好处C 该电路有良好的放大特性。
共栅极电路的输入电阻和输出电阻由下式确定:。
模电第10讲 场效应管及其放大电路

三、场效应管放大电路的动态分析
1. 场效应管的交流等效模型
与晶体管的h参数等效模型类比:
近似分析时可认 为其为无穷大!
iD gm uGS
U DS
根据iD的表达式或转移特性可求得gm。
i D 2 I DSS 1 uGS gm uGS U U GS(off) U GS(off)
U
DS
2 I
2 DSS
1 uGS U GS(off) U GS(off)
2
U DS
2 U GS(off)
2 U GS(off)
2 UGS(th)
I DSS iD
当小信号作用时,可以用来 I DQ近似id,所以
gm
I DSS I DQ
同理,对于增强型MOS管
gm
I DO I DQ
2. 基本共源放大电路的动态分析
• 例2.7.1 已知图中所示电路 VGG 6V VDD 12V Rd 3kΩ
VGS(th) 4V I DO 10mA
试估算电路的Q点
Au
Ro
解:(1)求Q:
VGS VGG 6V 2 U GSQ I DQ I DO 1 2.5mA U GS(th) UDSQ VDD I DQ Rd 4.5V
优点:输入电阻高、噪声系数低、温度稳定性好、 抗辐射能力强、便于集成化。缺点:放大能力差。
输入 输出 公共极
Au
gm Rd 大 倒相
Ri
Ro
共源 g
d
s
很大 大几千欧 几倍~几十倍
gm Rs 1 gm Rs 小同相
场效应管功放电路原理

场效应管功放电路原理场效应管功放电路是一种在音频电路中广泛使用的放大器。
这种电路依赖于场效应管的输出功率进行放大,可提供高品质的音频输出。
在本文中,我们将解释场效应管功放电路的原理,以及它是如何工作的。
场效应管(FET)是一种半导体器件,与双极型晶体管相比,其特点是输入电阻高、输出电阻低,并且具有高增益和低噪声。
由于这些优点,场效应管在音频电路中经常被用作放大器。
场效应管功放电路的基本原理如下:信号源通过输入电容连接到场效应管的栅极。
栅极电压变化,通过栅极和源极之间的通道控制了场效应管的电流。
输出电容将电流信号连接到负载,如扬声器或耳机。
一个负反馈网络可以添加在输出和输入之间,以确保输出信号匹配输入信号。
放大器的设计和实现是针对性的。
如果希望放大器具有高功率输出,需要使用高功率的场效应管。
此类场效应管需要与合适的散热器相连。
因为这些场效应管工作时会产生大量的热量。
另外,输出电容的大小应适当地选择,以确保信号不被截断。
场效应管功放电路的另一个关键因素是选择适当的电源电压和电源电容。
电源电压可以影响放大器的最大输出功率,但是过高的电源电压可能会使放大器过载。
电源电容可以降低电源的波动,从而提高放大器的噪声性能。
但是,选择过大的电源电容可能会导致初始启动时的过电流。
在设计场效应管功放电路时,还需要选择适当的输入和输出电容,以确保阻止带外信号。
输入电容是信号源和放大器之间的阻断电容,而输出电容是放大器和负载之间的阻断电容。
总的来说,场效应管功放电路是一种在音频应用中非常重要的放大器。
它具有高输入阻抗,低输出阻抗和高增益,是电子产品中广泛应用的器件之一。
合适的选型和设计可以使其产生出清晰、高质量的音频效果。
场效应管分压式偏置共源放大电路

场效应管分压式偏置共源放大电路场效应管(Field Effect Transistor,FET)是一种三极管,主要用于放大电路中。
其中,分压式偏置共源放大电路是一种常用的场效应管放大电路。
分压式偏置共源放大电路的主要特点是通过合理的分压方法,将电压分配到场效应管的栅极和源极,实现对管子的偏置。
这种偏置方式可以有效地保持管子处于工作区域,从而实现放大电路的正常工作。
相比于其他偏置方式,分压式偏置可以提供更稳定、更可靠的偏置电压。
在分压式偏置共源放大电路中,栅极和源极之间串联了一个偏置回路,其中包含一个电阻和一个电容。
该偏置回路起到了稳定偏置电压的作用。
在实际的电路设计中,栅极上还会串联一个电阻,用于限制输入信号对偏置电压的影响。
在电路工作时,输入信号通过输入耦合电容传输到场效应管的栅极,产生正常放大信号。
同时,偏置回路稳定地提供了合适的偏置电压,使得场效应管在合适的工作区域内工作。
通过源极上的负载电阻,放大后的信号输出到负载上,完成放大电路的功能。
分压式偏置共源放大电路具有许多优点。
首先,它通过合适的分压方式提供了稳定、可靠的偏置电压,使得场效应管可在合适的工作区域内工作。
其次,通过适当选择偏置回路中的电阻和电容,可以实现对偏置电压稳定性和放大电路带宽的优化。
此外,电路结构简单,成本低廉,易于生产和维护。
在实际电路设计中,需要根据具体需求来确定分压式偏置共源放大电路的参数。
例如,需要考虑偏置电压的稳定性、放大倍数、带宽等因素。
同时,还需要合理选择电阻和电容的数值,以满足特定的目标要求。
总之,分压式偏置共源放大电路是一种常用的场效应管放大电路。
通过合理选择分压方式和适当调整参数,可以实现稳定、可靠的放大功能。
在实际应用中,需要充分考虑电路的设计要求,以确保电路性能的优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增强型:场效应管没有加偏置电压时,没有导电沟道
一 绝缘栅型场效应管(MOSFET)
N沟道增强型管
大到一定 值才开启
高掺杂 耗尽层
空穴
衬底 SiO2绝缘层 反型层
vGS增大,反型层(导电沟道)将变厚变长。当 反型层将两个N区相接时,形成导电沟道。
N沟道增强型MOSFET的工作原理 –
MOSFET的工作 原理表现在:
饱和区
iD K n(vGS VT )2
N沟道增强型MOSFET的转移特性
i D f(vGS )|v
DS
C
N沟道增强型MOSFET的放大电路
共源极放大电路(带源极电阻)的计算举例
1.静态分析 —求vi =0时(直流电源单独作用 时)VGS ,ID ,VDS 直流通路: VGS Rg2 (VDD VSS ) I D R
g m rds R ) rds Rd // RL R
id gmvgs· rds +
rds
s
vi vgs vso vgs (1
v Av o vi
gm
rds Rd // RL rds Rd // RL R g m rds R 1 rds Rd // RL R
Rg3
id
+ vgs + gmvgs
R Rd
+ vi vS - -
vo
RL
Rg1
-
Rg2
(4)纯电压增益Avs (5)输入电阻
Avs
vo Ri Av vS Ri RS
Ri=Rg3+Rg1//Rg2
(6)输出电阻 Ro≈Rd
三
各种放大器件电路性能比较
模拟电子技术基础
第五章 场效应管放大电路
电流控制器件(基极电流 控制晶体管导电能力),输入 阻抗不高,双极型器件(两种 载流子:多子少子参与导 电),噪声高
电压控制器件(用电压产生 电场来控制器件的导电能力) 故称为,输入阻抗极高,单极型 器件(一种载流子:多子参与 导电),噪声小,缺点速度慢
场效应管有三个极:源极(s)、栅极(g)、漏极(d), 对应于晶体管的e、b、c;有三个工作区域:截止区、恒流区、 可变电阻区,对应于晶体管的截止区、放大区、饱和区。
SiO2
N+
耗尽层
N+ P
反型层 (导电沟道)
耗尽型NMOS管在 vGS=0时,漏源极间已 有导电沟道产生,通 过施加负的栅源电压 (夹断电压)使沟道 消失,而增强型 NMOS管在vGS≥VT时 才出现导电沟道。 D D G S
b G
S
2. 耗尽型MOS管原理 s Al g
SiO2
d
N+
耗尽层
N+ P
v DS +
D
– v + GS G S
N+
栅压vGS对沟道导 电能力的控制,
漏源电压vDS对漏 电流的影响。
N+
P
(1) vGS对沟道的控制作用
当vGS=0时, 漏源极间是两个背靠 背的PN结,无论漏源 极间如何施加电压, 总有一个PN结处于反 偏状态,漏-源极间没 有导电沟道,将不会 有漏电流出现iD≈0。 S
反型层 (导电沟道)
b
N沟道耗尽型MOS管 当vGS为负时,沟道变窄, 沟道电阻变大,iD减小。 当vGS负向增加到某一数 值时,导电沟道消失, iD趋于零,管子截止; 使沟道消失时的栅源电 压称为夹断电压,用VP 表示。
3. 耗尽型MOS管特性曲线
二 结型场效应管(JFET)
D
P 型区 漏极
耗尽层 (PN 结)
①分析动态 ②信号很小 ③中低频
+ vgs -
rds id +
gmvgs s
d
vds -
其中:rds=1/ID 但JFET的rds=几百k,很大
g + vgs id + d
s
gmvgs
vds -
JFET放大电路的计算举例
(1).静态分析直流通路:
Rg1 Rd VDD
ID + +VGS – VDS –
转移特性
iD f (uGS ) U DS 常量
场效应管工作在恒流区,因而uGS>UGS(off)且uDS<UGS(off)。
漏极饱 和电流
夹断 电压
在恒流区时 uGS 2 iD I DSS (1 ) U GS(off)
JFET的小信号模型
id g
+ vgs g
d + s vds -
R Rd RL
vo
Rg1
-
Rg2
(3)电压增益Av vo=-gmvgs· (Rd//RL) vi=vgs+ gm vgs · R
vo (gm v gs )(Rd //R L ) g R //R Av m d L vi v gs gm v gs R 1 gm R
ii RS +
–
v DS +
D
– v + G GS
N+
N+
P
–
vGS增加,作用于半导 体表面的电场就越强, 吸引到P衬底表面的电 子就越多,导电沟道 越厚,沟道电阻越小。 开始形成沟道时的栅 源极电压称为开启电 压,用VT表示。 S
v DS +
D
– v + G GS
N+
N+
P
导电沟道增厚 沟道电阻减小
–
当vGS>VT时,电场增强 将P衬底的电子吸引到表 面,这些电子在栅极附 近的P衬底表面便形成一 个N型薄层,称为反型层 且与两个N+区相连通, 在漏源极间形成N型导电 沟道。
v DS +
D
S
– v + G GS
N+
N+
P
N沟道增强型MOSFET的输出特性
输出特性描述当栅源电压|vGS|=C为常量时,漏电流iD与漏 源电压vDS之间的关系。
iD f(vDS )|v
GS
C
① vGS VT
截止区
② vGS VT vDS 可变电阻区 iD 2K n(vGS VT )vDS ③ vGS VT vDS
栅极 G
P+
N 型 沟 道
P+ N
在漏极和源极之间加 上一个正向电压,N 型半 导体中多数载流子电子可 以导电。
导电沟道是 N 型的, 称 N 沟道结型场效应管。
N型硅棒
S 源极
N 沟道结型场效应管结构图
D
P G
N+
型 沟 道
N+
P 沟道场效应管是在 P 型硅棒的两侧做成高掺 杂的 N 型区(N+),导电沟 道为 P 型,多数载流子为 空穴。
D G
S
图 P沟道结型场效应管结构图
S
符号
栅-源电压对导电沟道宽度的控制作用
VGS(off)
沟道最宽
沟道变窄
沟道消失 称为夹断
vGS可以控制导电沟道的宽度。为什么g-s必 须加负电压?
漏-源电压对漏极电流的影响
vGD>VGS(off) vGD=VGS(off) 预夹断
vGD<VGS(off)
vGS>VGS(off)且不变,VDD增大,iD增大。 VDD的增大,几乎全部用来克服沟道 的电阻,iD几乎不变,进入恒流区,iD 几乎仅仅决定于vGS。
2.动态分析 —求vS 单独作用时Av , ri , ro (1) MOSFET的小信号模型 id
d g
g ①分析动态 ②信号很小 ③中低频 + vgs -
id
+ vgs -
s
+ vds -
rds
gmvgs s
d + vds -
其中:rds=1/ID (几十k ~几百k)
(2) 带源极电阻共源极放大电路的小信号模型
输出特性
iD f (uDS ) U GS 常量
IDSS g-s电压控 制d-s的等 效电阻
可 变 电 阻 区 恒 流 区
预夹断轨迹,uGD=UGS(off)
iD几乎仅决 定于uGS
ΔiD
击
穿 区
低频跨导:
gm iD uGS
U DS 常量
夹断区(截止区)
夹断电压
不同型号的管子UGS(off)、IDSS 将不同。
rdsgmvgs来自R Rd+ v id
v v (i g mvgs )rds vso Rd
v (i ) R Rd
RS Rg1 Rg2
v (rds g m rds R R)(i ) Rd
ii RS +
Rg1 R g2
v Ro (rds g m rds R R) // Rd i 当rds≈时:Ro≈Rd
ii
id + vgs Rg1 R g2
RS +
+ vi vS - -
rds
+ vo
Rd RL
当rds≈时:
vo gm Rd // RL Av vi 1 gm R
gmvgs
R
-
i
(4)输入电阻 Ri=Rg1//Rg2
(5)输出电阻 vgs+vso=0
vso=-vgs
+ vgs -
Rg1 Rg2
Rd
Rg1
VDD ID=Kn (VGS-VT )2 —根据上两式解出VGS、ID VDS=VDD+VSS -ID (Rd+R ) 由上面计算结果可判断出: