高二函数的奇偶性
高中数学判断函数奇偶性的常见方法
高中数学判断函数奇偶性的常见方法由于函数的奇偶性在高中数学研究函数的性质和图像上起着非常重要的作用,因此广大同学应该熟练掌握函数的奇偶性. 下面介绍高中阶段判断函数奇偶性的常见方法.一、定义法设的定义域关于原点对称,若,即,则称是定义域上的偶函数;若,即,则称是定义域上的奇函数. 根据定义,判断一个函数是否为奇偶函数,首先必须满足定义域关于原点对称,否则该函数为非奇非偶函数. 当定义域关于原点对称,再去检验与的关系,若关系不明朗,可以等价判断是否等于零.例1.判断下列函数的奇偶性.对于任意的底数,(2)(3)都是奇函数,可以作为常见常考的结论;(4)在作函数图像时用处很大,比如为偶函数,图像关于轴对称.二、图像法由奇偶函数的定义可知,偶函数的图像关于轴对称,奇函数的图像关于原点对称. 所以根据函数的图像,我们可以识别一个函数是否为奇偶函数.例2.函数的图象可能是( )解:由定义知是奇函数,则其图像关于原点对称,且当时,,故选C.例3.判断常数函数()的奇偶性.解:由常数函数的图像,当时,是偶函数;当时,既是奇函数,也是偶函数.三、图像平移法1.设,函数关于直线对称函数是偶函数;2.设,函数关于点对称函数是奇函数.显然由函数图像之间的平移变换,易得该结论. 如已知函数的图象关于直线对称,则函数的图像关于轴对称,是偶函数.四、利用常见的小结论快速判断1. 若,则是偶函数,如;若,则是奇函数,如.2.设是两个奇函数,是两个偶函数,则有下面结论:(1),是奇函数,,是偶函数,即两个奇函数的和与差是奇函数,积与商是偶函数. 如,是奇函数,,是偶函数.(2),,,是偶函数,即两个偶函数的和、差、积、商都是偶函数. 如,,,都是偶函数.(3),都为奇函数,即一个奇函数与一个偶函数的积与商都是奇函数,但和与差是无法判断的. 如,就是奇函数.例4.若函数是偶函数,则.解:偶函数之和为偶函数,所以必然没有奇次方,从而奇次方系数等于零,即有.五、抽象函数的奇偶性抽象函数考虑奇偶性问题时,往往采用赋值法求出与间的关系,用定义去判断.例5.若对于定义域为的函数满足,且. 试判断的奇偶性.解:令,则. 因为,则.令,则,整理得,故是偶函数.函数的奇偶性作为函数最基本的性质,在高中阶段往往和函数的单调性、对称性和周期性结合在一起进行考察,只要我们能够快速判断出函数的奇偶性,常常在解题时就起到了举足轻重的作用. 以上五种判断函数奇偶性的方法,如果同学们能够熟练掌握,在解决函数性质的相关问题时,就能取到事半功倍的效果。
第3讲函数的奇偶性与单调性
第3讲函数的奇偶性与单调性考点梳理一.奇、偶函数的概念一般地,设函数y=f(x)的定义域为A,如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.如果对于任意的x∈A都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称.二.函数奇偶性的性质(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.(3)若f(x)为偶函数,则f(-x)=f(x)=f(|x|).(4)若奇函数f(x)定义域中含有0,则必有f(0)=0.但f(0)=0不能说f(x)为奇函数。
(5)复合函数的奇偶性特点是:“内偶则偶,内奇同外”.考点自测1.(2012·海安中学)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x +b(b为常数),则f(-1)的值是________.解析由f(0)=0,得b=-1,所以f(-1)=-f(1)=-(2+2-1)=-3.答案-32.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是________.解析由f(x)是偶函数知,f(x)=f(-x),即ax2+bx=a(-x)2-bx,∴2bx=0,∴b=0.又f(x)的定义域应关于原点对称,即(a-1)+2a=0,∴a=13,故a+b=1 3.答案1 33.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是________.解析 f (x )是偶函数,其图象关于y 轴对称,又f (x )在[0,+∞)上递增, ∴f (2x -1)<f ⎝ ⎛⎭⎪⎫13⇔|2x -1|<13⇔13<x <23.答案 ⎝ ⎛⎭⎪⎫13,23三.函数的单调性 (1)单调函数的定义设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,①若f (x 1)<f (x 2),则f (x )在区间D 上是增函数; ②若f (x 1)>f (x 2),则f (x )在区间D 上是减函数. (2)单调性、单调区间的定义若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.四. 函数单调性的四种判断方法(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:(复合函数中)同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数.(3)导数法:利用导数研究函数的单调性.(高二内容) (4)图象法:利用图象研究函数的单调性.考点自测1.(2013·南京鼓楼模拟)函数f (x )=1+x -1-x 的最大值为M ,最小值为m ,则Mm =________.解析 由⎩⎨⎧1+x ≥0,1-x ≥0得-1≤x ≤1.因为f (x )在[-1,1]上是单调增函数,所以M=f (1)=2,m =f (-1)=-2,所以Mm =-1. 答案 -12.(2012·连云港模拟)已知函数f (x )=x -kx (k >0,x >0),则f (x 2+1)与f (x )的大小关系是________.解析 因为f (x )在(0,+∞)上单调递增,且x 2+1≥2x >x (x >0),所以f (x 2+1)>f (x ). 答案 f (x 2+1)>f (x )3.(2013·济南外国语学校检测)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.解析 f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a 的取值范围是0<a ≤1. 答案 (0,1]考向一 函数单调性的判断【例1】 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 审题视点 可利用定义或导数法讨论函数的单调性. 解 设-1<x 1<x 2<1, f (x )=a x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a x 2-x 1(x 1-1)(x 2-1)当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上递增.[方法总结] 证明函数的单调性用定义法的步骤:取值—作差—变形—确定符号—下结论.【训练1】 已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. (1)证明 任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,则 f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ), ∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.考向二 函数单调性的应用【例2】 (2013·鞍山模拟)已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b >0成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f ⎝ ⎛⎭⎪⎫x +12<f ⎝ ⎛⎭⎪⎫1x -1;(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解 (1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2) =f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2),由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在[-1,1]上单调递增. (2)∵f (x )在[-1,1]上单调递增,∴⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1≤1.∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增. ∴在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立. 下面来求m 的取值范围. 设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1)≥0, ∴m ≤-2,或m ≥2.∴m 的取值范围是m =0或m ≥2或m ≤-2.[方法总结] 函数单调性的应用,主要有两个方面,即应用单调性求字母取值范围,二是应用单调性比较数值大小或解函数不等式.【训练2】 (1)已知函数f (x )=⎩⎨⎧x 2+4x ,x ≥0,2x -x 2,x <0,若f (1-a 2)>f (a ),则实数a 的取值范围是________.(2)已知函数f (x )=2-axa -1(a ≠1)是区间(0,1]上的减函数,则实数a 的取值范围为________.解析 (1)画图象或求导,可知函数f (x )是R 上的增函数,于是由f (1-a 2)>f (a ),得1-a 2>a ,即a 2+a -1<0,解得-1-52<a <-1+52. (2)由题意,当x =1时,2-ax =2-a ≥0,所以a ≤2且a ≠1,a ≠0. 若a <0,则2-ax 是增函数,要使f (x )是区间(0,1]上的减函数,必有a -1<0,即a <1.所以a <0.若a >0,则2-ax 是减函数,要使f (x )是区间(0,1]上的减函数,必有a -1>0,即a >1.所以1<a ≤2.综上,得a 的取值范围是(-∞,0)∪(1,2]. 答案 (1)⎝ ⎛⎭⎪⎫-1-52,-1+52 (2)(-∞,0)∪(1,2]高考经典题组训练1.(2012·陕西卷改编)下列函数:①y =x +1;②y =-x 3;③y =1x ;④y =x |x |,其中既是奇函数又是增函数的序号是________.解析 y =-x 3;y =1x ,y =x |x |是奇函数,仅y =x |x |是增函数. 答案 ④3.(2012·上海卷)已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.解析 因为y =e x 是增函数,所以由题意,y =|x -a |在区间[1,+∞)上是增函数,所以a ≤1. 答案 (-∞,1]4.(2010·天津卷改编)设f (x )=x 2-1,对任意x ∈⎣⎢⎡⎭⎪⎫32,+∞,f ⎝ ⎛⎭⎪⎫x m -4m 2f (x )≤f (x-1)+4f (m )恒成立,求实数m 的取值范围.解 由题意,得x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立,即1m 2-4m 2≤-3x 2-2x +1在⎣⎢⎡⎭⎪⎫32,+∞上恒成立.因为y =-3x 2-2x +1在⎣⎢⎡⎭⎪⎫32,+∞上单调递增,所以当x =32时,y min =-53,所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0,解得m ≤-32或m ≥32.层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.(2013·南京金陵中学检测)下列函数中:①f (x )=1x ;②f (x )=(x -1)2;③f (x )=e x ;满足“对任意x 1x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的函数序号是________.解析 由题意,即判断哪些函数是(0,+∞)内的减函数.仅f (x )=1x 符合题意. 答案 ①2.下列函数中:①y =-x +1;②y =x ;③y =x 2-4x +5;④y =2x ,在区间(0,2)上为增函数的是________(填所有正确的编号).解析 y =-x +1在R 上递减;y =x 在R +上递增;y =x 2-4x +5在(-∞,2]上递减,在[2,+∞)上递增,y =2x 在R +上递减. 答案 ②3.(2012·镇江调研)若函数f (x )=x 2+(a 2-4a +1)x +2在区间(-∞,1]上是减函数,则a 的取值范围是________. 解析 因为f (x )是二次函数且开口向上, 所以要使f (x )在(-∞,1]上是单调递减函数,则必有-a 2-4a +12≥1,即a 2-4a +3≤0,解得1≤a ≤3.答案 [1,3]4.(2011·新课标全国卷)下列函数:①y =x 3;②y =|x |+1;③y =-x 2+1;④y = 2-|x |.既是偶函数又在(0,+∞)单调递增的函数序号是________.解析 y =x 3是奇函数,y =-x 2+1与y =2-|x |在(0,+∞)上是减函数. 答案 ②5.已知f (x )是定义在(-1,1)上的奇函数,且f (x )在(-1,1)上是减函数,则不等式f (1-x )+f (1-x 2)<0的解集为________. 解析 由f (x )是定义在(-1,1)上的奇函数, 及f (1-x )+f (1-x 2)<0, 得f (1-x )<-f (1-x 2), 所以f (1-x )<f (x 2-1).又因为f (x )在(-1,1)上是减函数, 所以⎩⎨⎧-1<1-x <1,-1<1-x 2<1,解得0<x <1.1-x >x 2-1.故原不等式的解集为(0,1). 答案 (0,1)6.(2012·南师附中检测)已知函数y =f (x )是定义在R 上的偶函数,当x ≤0时,y =f (x )是减函数,若|x 1|<|x 2|,则结论:①f (x 1)-f (x 2)<0;②f (x 1)-f (x 2)>0;③f (x 1)+f (x 2)<0;④f (x 1)+f (x 2)>0中成立的是________(填所有正确的编号). 解析 由题意,得f (x )在[0,+∞)上是增函数,且f (x 1)=f (|x 1|),f (x 2)=f (|x 2|),从而由0≤|x 1|<|x 2|,得f (|x 1|)<f (|x 2|),即f (x 1)<f (x 2),f (x 1)-f (x 2)<0,只能①是正确的. 答案 ①二、解答题(每小题15分,共30分) 7.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数.(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.(1)证明 法一 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0.因为f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,所以f (x 2)>f (x 1),因此f (x )在(0,+∞)上是增函数. 法二 因为f (x )=1a -1x , 所以f ′(x )=⎝ ⎛⎭⎪⎫1a -1x ′=1x 2>0,所以f (x )在(0,+∞)上为增函数.(2)解 因为f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又f (x )在⎣⎢⎡⎦⎥⎤12,2上单调递增,所以f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,故a =25.8.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数.(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明法一因为函数f(x)对于任意x,y∈R总有f(x)+f(y)=f(x+y),所以令x=y=0,得f(0)=0.再令y=-x,得f(-x)=-f(x).在R上任取x1>x2,则x1-x2>0,f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2).又由x>0时,f(x)<0,而x1-x2>0,所以f(x1-x2)<0,即f(x1)<f(x2).因此f(x)在R上是减函数.法二设x1>x2,则f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)+f(x2)-f(x2)=f(x1-x2).又由x>0时,f(x)<0,而x1-x2>0,所以f(x1-x2)<0,即f(x1)<f(x2),所以f(x)在R上为减函数.(2)解因为f(x)在R上是减函数,所以f(x)在[-3,3]上也是减函数,所以f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3).而f(3)=3f(1)=-2,f(-3)=-f(3)=2.所以f(x)在[-3,3]上的最大值为2,最小值为-2.。
奇偶性高考函数知识点
奇偶性高考函数知识点高考时,数学是许多学生最令人头痛的科目之一。
其中,奇偶性高考函数是一个经常出现的知识点。
在本文中,我将介绍奇偶性函数的定义、性质和一些例题,帮助学生理解和掌握这一内容。
首先,我们来了解奇偶性函数的定义。
在数学中,奇数和偶数是两个相互对立的概念。
奇数可以被2整除时余数为1,而偶数被2整除时余数为0。
类似地,奇偶性函数也区分为奇函数和偶函数两种。
奇函数满足条件:f(-x) = -f(x),即当自变量取相反数时,函数值取相反数。
偶函数满足条件:f(-x) = f(x),即当自变量取相反数时,函数值保持不变。
了解了奇偶性函数的定义后,我们可以探讨一些奇偶性函数的性质。
首先,偶函数的图像具有对称性,也就是说以y轴为对称轴。
这是因为偶函数在自变量的取相反数时,函数值不变。
例如,y = x^2就是一个常见的二次函数,它是一个偶函数,它的图像是一个关于y轴对称的抛物线。
相反,奇函数的图像具有原点对称性,也就是说以原点为对称中心。
这是因为奇函数在自变量的取相反数时,函数值取相反数。
例如,y = x^3就是一个常见的三次函数,它是一个奇函数,它的图像在原点处对称。
接下来,我们来看一些奇偶性函数的例题,以帮助学生更好地理解和应用这一知识点。
假设我们有一个函数f(x) = x^4 - x^2。
要判断这个函数是奇函数还是偶函数,我们可以进行一些简单的计算。
首先,我们取自变量的相反数,计算f(-x)。
根据奇函数的定义,如果f(-x)等于-f(x),那么函数就是奇函数;如果f(-x)等于f(x),则是偶函数。
对于这个函数,我们有f(-x) = (-x)^4 - (-x)^2 = x^4 - x^2 = f(x),所以可以得出结论,这个函数是一个偶函数。
再来看一个例题,我们有一个函数g(x) = x^3 - x。
同样,我们取自变量的相反数,计算g(-x)。
根据奇函数的定义,如果g(-x)等于-f(x),那么函数就是奇函数;如果g(-x)等于g(x),则是偶函数。
函数的奇偶性(精辟讲解)
[难点正本 疑点清源] 1.函数奇偶性的判断
判断函数的奇偶性主要根据定义:一般地,如果对于 函数 f(x)的定义域内任意一个 x,都有 f(-x)=f(x)(或 f(-x)=-f(x)),那么函数 f(x)就叫做偶函数(或奇函 数).其中包含两个必备条件: ①定义域关于原点对称,这是函数具有奇偶性的必要 不充分条件,所以首先考虑定义域有利于准确简捷地 解决问题; ②判断 f(x)与 f(-x)是否具有等量关系.在判断奇偶 性的运算中,可以转化为判断奇偶性的等价关系式 (f(x)+f(-x)=0(奇函数)或 f(x)-f(-x)=0(偶函数)) 是否成立.
2.函数奇偶性的性质 (1)奇函数在关于原点对称的区间上若有单调性,则其单 调性完全相同;偶函数在关于原点对称的区间上若有单 调性,则其单调性恰恰相反. (2)若 f(x)为偶函数,则 f(-x)=f(x)=f(|x|). (3)若奇函数 f(x)定义域中含有 0,则必有 f(0)=0. f(0)=0 是 f(x)为奇函数的既不充分也不必要条件. (4)定义在关于原点对称区间上的任意一个函数,都可表 示成“一个奇函数与一个偶函数的和(或差)”. (5)复合函数的奇偶性特点是:“内偶则偶,内奇同外”. (6)既奇又偶的函数有无穷多个(如 f(x)=0,定义域是关 于原点对称的任意一个数集).
∴f(x)为偶函数.
题型二 函数的奇偶性与单调性
例 2 (1)已知 f(x)是 R 上的奇函数,且当 x>0 时,f(x) =x2-x-1,求 f(x)的解析式; (2)设 a>0,f(x)=eax+eax是 R 上的偶函数,求实数 a 的值;
(3)已知奇函数 f(x)的定义域为[-2,2],且在区间 [-2,0]内递减,求满足 f(1-m)+f(1-m2)<0 的实 数 m 的取值范围. 思维启迪 (1)f(x)是一个分段函数,当 x<0 时,转化为
数学高二函数的奇偶性知识点
数学⾼⼆函数的奇偶性知识点 函数奇偶性是数学学科知识之⼀,同学们在考试过程中也会常常碰到相关的题⽬,下⾯是店铺给⼤家带来的数学⾼⼆函数的奇偶性知识点,希望对你有帮助。
函数的奇偶性基础定义 ⼀般地,对于函数f(x) ⑴如果对于函数f(x)定义域内的任意⼀个x,都有f(x)=f(-x)或f(x)/f(-x)=1那么函数f(x)就叫做偶函数。
关于y轴对称,f(-x)=f(x)。
⑵如果对于函数f(x)定义域内的任意⼀个x,都有f(-x)=-f(x)或f(x)/f(-x)=-1,那么函数f(x)就叫做奇函数。
关于原点对称,-f(x)=f(-x)。
⑶如果对于函数定义域内的任意⼀个x,都有f(x)=f(-x)和f(-x)=-f(x),(x∈R,且R关于原点对称。
)那么函数f(x)既是奇函数⼜是偶函数,称为既奇⼜偶函数。
⑷如果对于函数定义域内的存在⼀个a,使得f(a)≠f(-a),存在⼀个b,使得f(-b)≠-f(b),那么函数f(x)既不是奇函数⼜不是偶函数,称为⾮奇⾮偶函数。
定义域互为相反数,定义域必须关于原点对称 特殊的,f(x)=0既是奇函数,⼜是偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域⽽⾔。
②奇、偶函数的定义域⼀定关于原点对称,如果⼀个函数的定义域不关于原点对称,则这个函数⼀定不具有奇偶性。
(分析:判断函数的奇偶性,⾸先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)⽐较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义。
④如果⼀个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值⼀定为0。
并且关于原点对称。
⑤如果函数定义域不关于原点对称或不符合奇函数、偶函数的条件则叫做⾮奇⾮偶函数。
例如f(x)=x³【-∞,-2】或【0,+∞】(定义域不关于原点对称) ⑥如果函数既符合奇函数⼜符合偶函数,则叫做既奇⼜偶函数。
高中数学函数的奇偶性(解析版)
1.函数的奇偶性(1)奇偶性的定高中数学函数的奇偶性(解析版)义奇偶性定义图象特点偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称(2)函数奇偶性常用结论结论1:如果函数f (x )是奇函数且在x =0处有意义,那么f (0)=0.结论2:如果函数f (x )是偶函数,那么f (x )=f (-x )=f (|x |).结论3:若函数y =f (x +b )是定义在R 上的奇函数,则函数y =f (x )关于点(b ,0)中心对称.结论4:若函数y =f (x +a )是定义在R 上的偶函数,则函数y =f (x )关于直线x =a 对称.结论5:已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0.推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c .推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c .结论6:在公共定义域内有:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇)(÷⨯奇=偶,偶)(÷⨯偶=偶,奇)(÷⨯偶=奇.结论7:若函数f (x )的定义域关于原点对称,则函数f (x )能表示成一个偶函数与一个奇函数的和的形式.记g (x )=12[f (x )+f (-x )],h (x )=12[f (x )-f (-x )],则f (x )=g (x )+h (x ).结论8:奇函数在其定义域内关于原点对称的两个区间上具有相同的单调性;偶函数在其定义域内关于原点对称的两个区间上具有相反的单调性.结论9:偶函数在其定义域内关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在其定义域内关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.结论10:复合函数y =f [g (x )]的奇偶性:内偶则偶,两奇为奇.结论11:指数型函数的奇偶性(1)函数f (x )=a x +a -x (a >0且a ≠1)是偶函数;(2)函数f (x )=a x -a -x (a >0且a ≠1)是奇函数;(3)函数f (x )=a x +1a x -1(a >0且a ≠1)是奇函数;(4)函数f (x )=a x -a -x a x +a -x =a 2x +1a 2x-1(a >0且a ≠1)是奇函数;结论12:对数型函数的奇偶性(1)函数f (x )=log a m -x m +x (a >0且a ≠1)是奇函数;函数f (x )=log a m +xm -x (a >0且a ≠1)是奇函数;(2)函数f (x )=log a x -m x +m (a >0且a ≠1)是奇函数;函数f (x )=log a x +mx -m (a >0且a ≠1)是奇函数;(3)函数f (x )=log a mx -b mx +b (a >0且a ≠1)是奇函数;函数f (x )=log a mx +bmx -b(a >0且a ≠1)是奇函数;(4)函数f(x)=log a(1+m2x2±mx)(a>0且a≠1)是奇函数.2.函数的对称性(奇偶性的推广)(1)函数的轴对称定理1:如果函数y=f(x)满足f(x+a)=f(b-x),则函数y=f(x)的图象关于直线x=a+b2对称.推论1:如果函数y=f(x)满足f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.推论2:如果函数y=f(x)满足f(x)=f(-x),则函数y=f(x)的图象关于直线x=0(y轴)对称,就是偶函数的定义,它是上述定理1的简化.(2)函数的点对称定理2:如果函数y=f(x)满足f(a+x)+f(a-x)=2b,则函数y=f(x)的图象关于点(a,b)对称.推论1:如果函数y=f(x)满足f(a+x)+f(a-x)=0,则函数y=f(x)的图象关于点(a,0)对称.推论2:如果函数y=f(x)满足f(x)+f(-x)=0,则函数y=f(x)的图象关于原点(0,0)对称,就是奇函数的定义,它是上述定理2的简化.(3)两个等价关系若函数y=f(x)关于直线x=a轴对称,则以下三式成立且等价:f(a+x)=f(a-x)⇔f(2a-x)=f(x)⇔f(2a+x)=f(-x)若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:f(a+x)=-f(a-x)⇔f(2a-x)=-f(x)⇔f(2a+x)=-f(-x)考点一判断函数的奇偶性【方法总结】判断函数的奇偶性:首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f(-x)与f(x)的关系作出判断.分段函数奇偶性的判断,要分别从x>0或x<0来寻找等式f(-x)=f(x)或f(-x)=-f(x)成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.用函数奇偶性常用结论6或特值法可秒杀.【例题选讲】[例1](1)下列函数为偶函数的是()A.y=B.y=x2+e|x|C.y=x cos x D.y=ln|x|-sin x答案B解析对于选项A,易知y=tan B,设f(x)=x2+e|x|,则f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以y=x2+e|x|为偶函数;对于选项C,设f(x)=x cos x,则f(-x)=-x cos(-x)=-x cos x=-f(x),所以y=x cos x为奇函数;对于选项D,设f(x)=ln|x|-sin x,则f(2)=ln2-sin 2,f(-2)=ln2-sin(-2)=ln2+sin2≠f(2),所以y=ln|x|-sin x为非奇非偶函数,故选B.(2)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2-cos x C.y=2x+12xD.y=x2+sin x 答案D解析对于A,定义域为R,f(-x)=-x+sin2(-x)=-(x+sin2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+12-x=2x+12x=f(x),为偶函数;对于D,y=x2+sin x既不是偶函数也不是奇函数.(3)设函数f(x)=e x-e-x2,则下列结论错误的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数答案D解析∵f(x)=e x-e-x2,则f(-x)=e-x-e x2=-f(x).∴f(x)是奇函数.∵f(|-x|)=f(|x|),∴f(|x|)是偶函数,∴f(|x|)f(x)是奇函数.(4)已知f(x)=4-x2,g(x)=|x-2|,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)·g(x)是奇函数C.h(x)=g(x)·f(x)2-x是偶函数D.h(x)=f(x)2-g(x)是奇函数答案D解析h(x)=f(x)+g(x)=4-x2+|x-2|=4-x2+2-x,x∈[-2,2].h(-x)=4-x2+2+x≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.B.h(x)=f(x)·g(x)=4-x2|x-2|=4-x2(2-x),x∈[-2,2].h(-x)=4-x2(2+x)≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.C.h(x)=g(x)·f(x)2-x=4-x2,x∈[-2,2),定义域不关于原点对称,是非奇非偶函数.D.h(x)=f(x)2-g(x)=4-x2x,x∈[-2,0)∪(0,2],是奇函数.(5)已知函数f(x)满足f(x+1)+f(-x+1)=2,则以下四个选项一定正确的是()A.f(x-1)+1是偶函数B.f(x-1)-1是奇函数C.f(x+1)+1是偶函数D.f(x+1)-1是奇函数答案-12解析法一:因为f(x+1)+f(-x+1)=2,所以f(x)+f(2-x)=2,所以函数y=f(x)的图象关于点(1,1)中心对称,而函数y=f(x+1)-1的图象可看作是由y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到,所以函数y=f(x+1)-1的图象关于点(0,0)中心对称,所以函数y=f(x+1)-1是奇函数,故选D.法二:由f(x+1)+f(-x+1)=2,得f(x+1)-1+f(-x+1)-1=0,令F(x)=f(x+1)-1,则F(x)+F(-x)=0,所以F(x)为奇函数,即f(x+1)-1为奇函数,故选D.【对点训练】1.下列函数为奇函数的是()A.f(x)=x3+1B.f(x)=ln1-x1+xC.f(x)=e x D.f(x)=x sin x1.答案B解析对于A,f(-x)=-x3+1≠-f(x),所以其不是奇函数;对于B,f(-x)=ln1+x1-x=-ln 1-x 1+x=-f(x),所以其是奇函数;对于C,f(-x)=e-x≠-f(x),所以其不是奇函数;对于D,f(-x)=-x sin(-x)=x sin x=f(x),所以其不是奇函数.故选B.2.函数f(x)=9x+13x的图象()A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称2.答案B解析因为f(x)=9x+13x=3x+3-x,易知f(x)为偶函数,所以函数f(x)的图象关于y轴对称.3.下列函数中既不是奇函数也不是偶函数的是()A.y=2|x|B.y=lg(x+x2+1)C.y=2x+2-x D.y=lg1x+13.答案D解析对于D项,1x+1>0,即x>-1,其定义域关于原点不对称,是非奇非偶函数.4.已知f(x)=x2x-1,g(x)=x2,则下列结论正确的是()A.f(x)+g(x)是偶函数B.f(x)+g(x)是奇函数C.f(x)g(x)是奇函数D.f(x)g(x)是偶函数4.答案A解析令h(x)=f(x)+g(x),因为f(x)=x2x-1,g(x)=x2,所以h(x)=x2x-1+x2=x·2x+x2(2x-1),定义域为(-∞,0)∪(0,+∞).因为h(-x)=-x·2-x-x2(2-x-1)=x(1+2x)2(2x-1)=h(x),所以h(x)=f(x)+g(x)是偶函数,令F(x)=f(x)g(x)=x22(2x-1),定义域为(-∞,0)∪(0,+∞).所以F(-x)=(-x)22(2-x-1)=x2·2x2(1-2x),因为F(-x)≠F(x)且F(-x)≠-F(x),所以F(x)=g(x)f(x)既不是奇函数也不是偶函数.5.设f(x)=e x+e-x,g(x)=e x-e-x,f(x),g(x)的定义域均为R,下列结论错误的是() A.|g(x)|是偶函数B.f(x)g(x)是奇函数C.f(x)|g(x)|是偶函数D.f(x)+g(x)是奇函数5.答案D解析f(-x)=e-x+e x=f(x),f(x)为偶函数.g(-x)=e-x-e x=-g(x),g(x)为奇函数.|g(-x)|=|-g(x)|=|g(x)|,|g(x)|为偶函数,A正确;f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x),所以f(x)g(x)为奇函数,B正确;f(-x)|g(-x)|=f(x)|g(x)|,所以f(x)|g(x)|是偶函数,C正确;f(x)+g(x)=2e x,f(-x)+g(-x)=2e-x≠-(f(x)+g(x)),且f(-x)+g(-x)=2e-x≠f(x)+g(x),所以f(x)+g(x)既不是奇函数也不是偶函数,D错误,故选D.6.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是() A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.答案C解析对于A:令h(x)=f(x)·g(x),则h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(x),∴h(x)是奇函数,A错.对于B:令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|·g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,B错.对于C:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)|g(-x)|=-f(x)·|g(x)|=-h(x),∴h(x)是奇函数,C正确.对于D:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,D错.考点二已知函数的奇偶性,求函数解析式中参数的值【方法总结】已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.对于选填题可用特值法进行秒杀.【例题选讲】[例2](1)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.答案1解析f(x)为偶函数,则y=ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,则ln(a+x2-x2)=0,∴a=1.(2)已知函数f(x)=2×4x-a2x的图象关于原点对称,g(x)=ln(ex+1)-bx是偶函数,则log a b=()A.1B.-1C.-12D.14答案B解析由题意得f(0)=0,∴a=2.∵g(1)=g(-1),∴ln(e+1)-b=ln(1e+1)+b,∴b=12,∴log212=-1.故选B.(3)若函数f(x)-1,0<x≤2,1,-2≤x≤0,g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a=答案-12解析因为f (x )-1,0<x ≤2,1,-2≤x ≤0,所以g (x )=f (x )+ax -1,-2≤x ≤0,1+a )x -1,0<x ≤2,因为g (x )-1,-2≤x ≤0,+a )x -1,0<x ≤2为偶函数,所以g (-1)=g (1),即-a -1=1+a -1=a ,所以2a =-1,所以a =-12.(4)已知函数f (x )=a -2e x +1(a ∈R )是奇函数,则函数f (x )的值域为()A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)答案A解析法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x +1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).(5)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.答案-3解析当x >0,-x <0,f (-x )=-e-ax.因为f (x )是奇函数,所以当x >0时,f (x )=-f (-x )=e-ax,所以f (ln 2)=e-a ln2=(e ln 2)-a =2-a =8.解得a =-3.【对点训练】7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.7.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln(1+e 3x )-ln e 3x -ax =ln(e 3x +1)+ax ,即-3x -ax =ax ,所以2ax +3x =0恒成立,所以a =-328.若函数f (x )=x 3(12x -1+a )为偶函数,则a 的值为________.8.答案12解析解法1:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-x )=f (x ),即(-x )3(12-x -1+a )=x 3(12x -1+a ),所以2a =-(12-x -1+12x -1),所以2a =1,解得a =12.解法2:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-1)=f (1),所以(-1)3×(12-1-1+a )=13×(121-1+a ),解得a =12,经检验,当a =12时,函数f (x )为偶函数.9.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =________.9.答案-1解析由题意得f (-1)+f (1)=0,即2(a +1)=0,解得a =-1,经检验,a =-1时,函数f (x )为奇函数.10.已知奇函数f (x )x +a ,x >0,-2-x,x <0,则实数a =________.10.答案-4解析因为函数f (x )为奇函数,则f (-x )=-f (x ),f (-1)=-f (1),所以4-21=-(21+a ),解得a =-4.11.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =()A .17B .-1C .1D .711.答案A解析因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又因为f (x )为偶函数,所以b =0,即a +b =17.故选A .12.若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax ,x ∈[-4,-1]的值域为________.12.答案-2,-12解析由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即-2,-12.考点三已知函数的奇偶性,求函数的值【方法总结】已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.【例题选讲】[例3](1)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=____.答案12解析∵x ∈(-∞,0)时,f (x )=2x 3+x 2,且f (x )在R 上为奇函数,∴f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12.(2)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +2x +b (b 为常数),则f (1)=________.答案52解析由题意知f (0)=20+2×0+b =0,解得b =-1.所以当x ≤0时,f (x )=2x +2x -1,所以f (1)=-f (-1)=-[2-1+2×(-1)-1]=52(3)设函数f (x )是定义在R 上的奇函数,且f (x )3(x +1),x ≥0,(x ),x <0,,则g (-8)=()A .-2B .-3C .2D .3答案A解析法一当x <0时,-x >0,且f (x )为奇函数,则f (-x )=log 3(1-x ),所以f (x )=-log 3(1-x ).因此g (x )=-log 3(1-x ),x <0,故g (-8)=-log 39=-2.法二由题意知,g (-8)=f (-8)=-f (8)=-log 39=-2.【对点训练】13.若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=()A .2B .4C .-2D .-413.答案C解析根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.14.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则21(())f f e 的值为________.14.答案ln 2解析由已知可得21(f e =ln 1e 2=-2,所以21((f f e=f (-2).又因为f (x )是偶函数,所以21(())f f e =f (-2)=f (2)=ln 2.15.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=()A .-6B .6C .4D .-415.答案D解析因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.16.设函数f (x )是定义在R 上的奇函数,且f (x )3x +1,x ≥0,x ,x <0,则g (f (-8))=()A .-1B .-2C .1D .216.答案A解析因为f (x )为奇函数,所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.考点四已知函数的奇偶性,求函数的解析式【方法总结】已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.对于奇函数可在x 以及解析式前同时加负号,对于偶函数可在x 前加负号进行秒杀.【例题选讲】[例4](1)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=()A .e -x -1B .e -x +1C .-e -x -1D .-e -x +1答案D 解析通解:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D .优解:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D .(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案-x -1-x ,x ≤0x -1+x ,x >0解析当x >0时,-x <0,则f (-x )=e x -1+x ,又f (-x )=f (x ),因此f (x )=e x -1+x .所以f (x )-x -1-x ,x ≤0x -1+x ,x >0.(3)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=()A .e x -e -xB .12(e x +e -x )C .12(e -x -e x )D .12(e x -e -x )答案D解析因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).【对点训练】17.已知f (x )是奇函数,且x ∈(0,+∞)时的解析式是f (x )=-x 2+2x ,若x ∈(-∞,0),则f (x )=________.17.答案x 2+2x解析由题意知f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-(-x )2+2×(-x )=-x 2-2x =-f (x ),所以f (x )=x 2+2x .18.函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=()A .-2xB .2-xC .-2-xD .2x18.答案C解析当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .19.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________.19.答案2-4x ,x >0x 2-4x ,x ≤0解析∵f (x )是定义在R 上的奇函数,∴f (0)=0.又当x <0时,-x >0,∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ),即f (x )=-x 2-4x (x <0),∴f (x )2-4x ,x >0,x 2-4x ,x ≤0.20.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.20.答案14解析法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =+14,所以当x <0时,函数f (x )的最大值为14.法二:当x >0时,f (x )=x 2-x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.考点五与奇函数相关的函数的求值【方法总结】对于可表示成奇函数加常数的函数,如果已知一个数的函数值,求它的相反数的函数值或求两个相反数的函数值的问题,可用奇函数的结论5的推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c ,如果是涉及到函数的最大值与最小值的问题则可用推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c 进行秒杀.【例题选讲】[例5](1)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+1(lg )2f 等于()A .-1B .0C .1D .2答案D解析设g (x )=ln(1+9x 2-3x )=f (x )-1,g (-x )=ln(1+9x 2+3x )=ln11+9x 2-3x=-g (x ).∴g (x )是奇函数,∴f (lg 2)-1+1(lg 2f -1=g (lg 2)+1(lg )2g =0,因此f (lg 2)+1(lg 2f =2.(2)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________.若g (10)=2019,则g (-10)的值为()A .-2219B .-2019C .-1919D .-1819答案D解析由题意,因为f (x +y )=f (x )+f (y ),∴f (0+0)=f (0)+f (0)=f (0),即f (0)=0,令y =-x ,则有f (x -x )=f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ),即f (x )是奇函数,若g (x )=f (x )+sin x +x 2,g (10)=2019,则g (10)=f (10)+sin 10+100=2019,则g (-10)=f (-10)-sin 10+100=-f (10)-sin 10+100,两式相加得200=2019+g (-10),得g (-10)=200-2019=-1819,故选D(4)已知函数f (x )=a sin x +b ln 1-x1+x+t ,若1()2f +1()2f =6,则实数t =()A .-2B .-1C .1D .3答案D 解析令g (x )=a sin x +b ln1-x1+x ,则易知g (x )为奇函数,所以1(2g +1()2g -=0,则由f (x )=g (x )+t ,得1()2f +1()2f -=1()2g +1(2g -+2t =2t =6,解得t =3.故选D .(5)已知函数f (x )=2|x |+1+x 3+22|x |+1的最大值为M ,最小值为m ,则M +m 等于()A .0B .2C .4D .8答案C解析易知f (x )的定义域为R ,f (x )=2·(2|x |+1)+x 32|x |+1=2+x 32|x |+1,设g (x )=x 32|x |+1,则g (-x )=-g (x )(x ∈R ),∴g (x )为奇函数,∴g (x )max +g (x )min =0.∵M =f (x )max =2+g (x )max ,m =f (x )min =2+g (x )min ,∴M +m =2+g (x )max +2+g (x )min =4,故选C .【对点训练】21.已知函数f (x )=x +1x-1,f (a )=2,则f (-a )=________.21.答案-4解析法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2.所以f (a )+f (-a )=-2,故f (-a )=-4.法二:由已知得f (a )=a +1a -1=2,即a +1a =3,所以f (-a )=-a -1a -11=-3-1=-4.22.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为()A .3B .0C .-1D .-222.答案B解析设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.故选B .23.对于函数f (x )=a sin x +bx 3+cx +1(a ,b ,c ∈R ),选取a ,b ,c 的一组值计算f (1),f (-1),所得出的正确结果可能是()A .2和1B .2和0C .2和-1D .2和-223.答案B解析设g (x )=a sin x +bx 3+cx ,显然g (x )为定义域上的奇函数,所以g (1)+g (-1)=0,所以f (1)+f (-1)=g (1)+g (-1)+2=2,只有B 选项中两个值的和为2.24.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg2))=()A .-5B .-1C .3D .424.答案C解析设g (x )=ax 3+b sin x ,则f (x )=g (x )+4,且函数g (x )为奇函数.又lg(lg2)+lg(log 210)=lg(lg2·log 210)=lg1=0,所以f (lg(lg2))+f (lg(log 210))=2×4=8,所以f (lg(lg2))=3.故选C .25.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=()A .-3B .-1C .1D .325.答案C解析用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1.故选C .26.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.26.答案2解析显然函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),∴g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.27.设函数f(x)=(e x+e-x)sin x+t,x∈[-a,a]的最大值和最小值分别为M,N.若M+N=8,则t=() A.0B.2C.4D.827.答案4解析设g(x)=(e x+e-x)sin x,x∈[-a,a],因为g(x)是奇函数,所以g(x)max+g(x)min=0,所以M+N=g(x)max+g(x)min+2t=2t=8,所以t=4.28.若定义在[-2020,2020]上的函数f(x)满足:对任意x1∈[-2020,2020],x2∈[-2020,2020]都有f(x1+x2)=f(x1)+f(x2)-2019,且x>0时有f(x)>2019,f(x)的最大值、最小值分别为M,N,则M+N =()A.2019B.2020C.4040D.403828.答案D解析令x1=x2=0得f(0)=2f(0)-2019,所以f(0)=2019,令x1=-x2得f(0)=f(-x2)+f(x2)-2019=2019,所以f(-x2)+f(x2)=4038,令g(x)=f(x)-2019,则g(x)max=M-2019,g(x)min=N -2019,因为g(-x)+g(x)=f(-x)+f(x)-4038=0,所以g(x)是奇函数,所以g(x)max+g(x)min=0,即M-2019+N-2019=0,所以M+N=4038.29.已知函数f(x)=(x2-2x)·sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=() A.4B.2C.1D.029.答案A解析f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令t=x-1,g(t)=(t2-1)sin t+t,则y=f(x)=g(t)+2,t∈[-2,2].显然M=g(t)max+2,m=g(t)min+2.又g(t)为奇函数,则g(t)max+g(t)min=0,所以M+m=4,故选A.30.若关于x的函数f(x)+cos xt≠0)的最大值为a,最小值为b,且a+b=2,则t=____.30.答案1解析f(x)+cos x t+t sin x+x2x2+cos x,设g(x)=t sin x+x2x2+cos x,则g(x)为奇函数,g(x)max=a-t,g(x)min=b-t.∵g(x)max+g(x)min=0,∴a+b-2t=0,即2-2t=0,解得t=1.。
函数的奇偶性的经典总结归纳
函数的奇偶性的经典总结归纳1.奇函数:若函数f(-x)=-f(x),则称函数f(x)为奇函数。
奇函数具有以下性质:-奇函数关于坐标原点对称;-在自变量为0的点上,奇函数的函数值为0;-若函数在定义域内两点x1和x2关于坐标原点对称,则这两点的函数值也对称。
常见的奇函数有:正弦函数sin(x)、正切函数tan(x)、多项式函数f(x) = x^3等。
2.偶函数:若函数f(-x)=f(x),则称函数f(x)为偶函数。
偶函数具有以下性质:-偶函数关于y轴对称;-在自变量为0的点上,偶函数的函数值为常数;-若函数在定义域内两点x1和x2关于y轴对称,则这两点的函数值也对称。
常见的偶函数有:余弦函数cos(x)、正切函数sec(x)、多项式函数f(x) = x^2等。
3.奇偶性的判断:-对于多项式函数:奇次幂项的系数为0,则函数是偶函数,偶次幂项的系数为0,则函数是奇函数;-对于周期函数:若函数的周期为T,则对于任意x,f(x+T)=f(x)。
若f(x)是奇函数,则T必须为2nπ(n为整数);若f(x)是偶函数,则T必须为nπ(n为整数);-对于一般函数:可通过函数定义或函数的性质来判断奇偶性。
4.常见函数的奇偶性:-指数函数、对数函数:既不是奇函数也不是偶函数;-幂函数:偶次幂为偶函数,奇次幂为奇函数;-三角函数:正弦函数为奇函数,余弦函数为偶函数,正切函数为奇函数;-反三角函数:正弦函数和正切函数为奇函数,余弦函数为偶函数;-双曲函数:正弦双曲函数为奇函数,余弦双曲函数为偶函数,正切双曲函数为奇函数。
通过了解函数的奇偶性,可以方便地推导出函数的性质,进行函数的分析和计算。
在求函数的积分、奇偶拆分和简化复杂表达式等问题中,奇偶性的运用会使得计算更加简便和直观。
注意:当定义域存在上下对称时,函数的奇偶性不再成立,此时不能简单地根据函数表达式判断奇偶性。
在这种情况下,应根据函数的性质和定义进行判断。
总结起来,函数的奇偶性是函数在定义域内点的函数值关于坐标轴对称的性质。
高中数学公式大全函数的奇偶性与周期性的判定公式
高中数学公式大全函数的奇偶性与周期性的判定公式高中数学公式大全:函数的奇偶性与周期性的判定公式在高中数学中,函数的奇偶性和周期性是我们常常需要研究的性质之一。
通过判定函数的奇偶性和周期性,我们可以更好地了解函数的特点,解决问题。
本文将介绍函数的奇偶性和周期性的判定公式,帮助高中数学学习者更好地理解和应用这些概念。
一、函数的奇偶性判定公式函数的奇偶性是指函数在自变量取相反数时,函数值是否具有对称性的特点。
下面是函数奇偶性的判定公式:1. 若对任意的 x,有 f(-x) = f(x),则函数 f(x) 为偶函数。
例如,f(x) = x^2 就是一个典型的偶函数,因为 f(-x) = (-x)^2 = x^2 = f(x)。
2. 若对任意的 x,有 f(-x) = -f(x),则函数 f(x) 为奇函数。
例如,f(x) = x^3 就是一个典型的奇函数,因为 f(-x) = (-x)^3 = -x^3 = -f(x)。
通过奇偶性的判定公式,我们可以方便地判断一个函数是偶函数还是奇函数。
这在解题过程中具有重要的作用。
二、函数的周期性判定公式函数的周期性是指函数在某一区间内,其函数值具有重复的规律性。
下面是函数周期性的判定公式:1. 若存在正数 T,使得对于任意 x,有 f(x+T) = f(x),则函数 f(x) 具有周期 T。
例如,f(x) = sin(x) 是一个周期为2π 的函数,因为sin(x+2π) =sin(x)。
2. 若函数 f(x) 的定义域为全体实数集合 R,且存在正数 T,使得对于任意 x,有 f(x+T) = f(x),则函数 f(x) 具有周期 T。
例如,f(x) = tan(x) 是一个周期为π 的函数,因为tan(x+π) = tan(x)。
通过周期性的判定公式,我们可以快速确定函数是否具有周期,并且求出函数的周期值。
总结:函数的奇偶性和周期性是数学中重要的概念,对于我们理解和应用函数有着重要的帮助。
奇偶函数归纳总结
奇偶函数归纳总结在数学中,奇偶函数是一类具有特殊性质的函数。
奇函数和偶函数是对称的关系,它们在数学和物理学中有广泛的应用。
在这篇文章中,我们将讨论奇偶函数的定义、性质和一些常见的例子。
定义首先,让我们来了解奇函数和偶函数的定义。
1.奇函数:对于任意实数 x,如果有 f(-x) = -f(x),则函数 f(x) 称为奇函数。
换句话说,奇函数具有关于原点对称的性质。
例如,sin(x) 和 x^3 都是奇函数。
2.偶函数:对于任意实数 x,如果有 f(-x) = f(x),则函数 f(x) 称为偶函数。
换句话说,偶函数具有关于 y 轴对称的性质。
例如,cos(x) 和 x^2 都是偶函数。
需要注意的是,一个函数可以既是奇函数又是偶函数。
具体而言,当且仅当函数 f(x) 满足对任意 x 都有 f(-x) = f(x),即具有关于原点对称的性质时,函数同时是奇函数和偶函数。
一个常见的例子是常数函数 f(x) = 0,也称为零函数。
性质接下来,让我们来探讨奇偶函数的一些基本性质。
1.奇函数与奇函数的性质:–奇函数与奇函数的和仍然是奇函数。
即,如果 f(x) 和 g(x) 都是奇函数,则 f(x) + g(x) 也是奇函数。
–奇函数与奇函数的乘积仍然是偶函数。
即,如果 f(x) 和 g(x) 都是奇函数,则 f(x) × g(x) 是偶函数。
2.偶函数与偶函数的性质:–偶函数与偶函数的和仍然是偶函数。
即,如果 f(x) 和 g(x) 都是偶函数,则 f(x) + g(x) 也是偶函数。
–偶函数与偶函数的乘积仍然是偶函数。
即,如果 f(x) 和 g(x) 都是偶函数,则 f(x) × g(x) 也是偶函数。
3.奇函数与偶函数的性质:–奇函数与奇函数的和是偶函数。
即,如果 f(x) 是奇函数,g(x) 是偶函数,则 f(x) + g(x) 是偶函数。
–奇函数与奇函数的乘积是奇函数。
即,如果 f(x) 是奇函数,g(x) 是偶函数,则 f(x) × g(x) 是奇函数。
必修2数学求函数的定义域与值域,单调性 ,奇偶性
高一升高二数学函数奇偶性,单调性精讲知识要点1、奇偶函数定义:(1)偶函数:对于函数f (x )的定义域内的任意一个x ,都有f (-x )=f (x ),那么f (x )就叫做偶函数.(2)奇函数:对于函数f (x )的定义域内的任意一个x ,都有f (-x )=-f (x ),那么f (x )就叫做奇函数. 注意:A.奇偶函数的定义域的特征:关于原点对称。
B.由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称).C.奇函数若在0x =时有定义,则(0)0f =(根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
)2、具有奇偶性的函数的图象的特征偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.说明:一般地,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数。
偶函数的图象关于y 轴对称,反过来,如果一个函数的图象关于y 轴对称,那么这个函数是偶函数。
3、判断函数奇偶性的格式步骤:首先确定函数的定义域,并判断其定义域是否关于原点对称;确定f (-x )与f (x )的关系;作出相应结论:若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数.5、判断函数的奇偶性也可以用下列性质在公共定义域内,(1)两个奇函数的和为奇函数;两个奇函数的积为偶函数.(2)两个偶函数的和为偶函数;两个偶函数的积为偶函数.(3)一个奇函数与一个偶函数的积为奇函数.(4) 函数f (x )与()x f 1同奇或同偶.函数单调性的定义1. 增函数与减函数一般地,设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数。
高二文科数学函数奇偶性知识点
高二文科数学函数奇偶性知识点1.定义一般地,对于函数fx1如果对于函数定义域内的任意一个x,都有f-x=-fx,那么函数fx就叫做奇函数。
2如果对于函数定义域内的任意一个x,都有f-x=fx,那么函数fx就叫做偶函数。
3如果对于函数定义域内的任意一个x,f-x=-fx与f-x=fx同时成立,那么函数fx既是奇函数又是偶函数,称为既奇又偶函数。
4如果对于函数定义域内的任意一个x,f-x=-fx与f-x=fx都不能成立,那么函数fx既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇或偶函数。
分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与fx比较得出结论③判断或证明函数是否具有奇偶性的根据是定义2.奇偶函数图像的特征:定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
fx为奇函数《==》fx的图像关于原点对称点x,y→-x,-y奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
3.奇偶函数运算1. 两个偶函数相加所得的和为偶函数.2. 两个奇函数相加所得的和为奇函数.3. 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.4. 两个偶函数相乘所得的积为偶函数.5. 两个奇函数相乘所得的积为偶函数.6. 一个偶函数与一个奇函数相乘所得的积为奇函数.预习如果你想把数学学好,单纯地做学校发的资料是远远不够的。
去学校旁边买一本侧重讲解的参考书。
在老师讲课之前,先把课本中要学习的内容看一遍用心看,定义、公式可能记不住对吗?对,看着写着,一遍不行再来一遍,把这些基础弄清楚为止。
之后看你买的参考书,这比课本上所讲解的又深了一个层次,每讲解一个知识点,都会有一两个例题。
高二数学函数的奇偶性试题答案及解析
高二数学函数的奇偶性试题答案及解析1.定义在上的函数满足且时,则()A.B.C.D.【答案】C【解析】因为,所以,从而,则由已知有:,故选C.【考点】1.函数的奇偶性;2.函数的周期性.2.已知是定义在R上的奇函数,当时(m为常数),则的值为(). A.B.6C.4D.【答案】D.【解析】因为是定义在R上的奇函数,当时(m为常数),所以,即,即;.【考点】函数的奇偶性、对数恒等式.3.已知函数是定义在上的奇函数,且,若,则()A.B.C.D.【答案】A【解析】已知函数是定义在上的奇函数,故有,又,所以,,,从而,对于抽象函数一定要用好一些特殊的函数值.【考点】抽象函数及函数性质.4.若函数是奇函数,则的值为()A.1B.2C.3D.4【答案】B【解析】由函数是奇函数得:,又当时,函数,所以是奇函数,故选B.【考点】函数的奇偶性.5.已知定义在R上的函数满足条件,且函数为奇函数,给出以下四个命题①函数的最小正周期是;②函数的图象关于点对称;③函数为R上的偶函数;④函数为R上的单调函数。
其中真命题的个数是()A.1B.2C.3D.4【解析】由①可得所以最小正周期为3,故①错;因为是奇函数,相当于是把f(x)向右平移个单位后图象关于原点对称,则f(x)关于故②正确;对于③:由②知,对于任意的x∈R,都有用换可得故f(x)是偶函数;由前面可知f(x)是周期函数,所以在R上不是单调函数故④错误.【考点】函数的奇偶性,周期函数性质.6.设是奇函数,则使f(x)<0的x的取值范围是().A.(-1,0)B.(0, 1)C.(-∞,0)D.(-∞,0)∪(1,+∞)【答案】A【解析】由为奇函数,则,可得,即,又,即,可变为,解得.【考点】函数的奇偶性,对数函数性质,分式不等式.7.已知函数上的奇函数,且的图象关于直线x=1对称,当时,.【答案】1【解析】因为,f(x)的图象关于x=1对称,所以,f(1+x)=f(1-x),因为,f(x)是R上的奇函数,所以f(x+1)=-f(x-1).所以f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x).所以,f(x)是周期为4的函数.当时,所以,。
高中数学-必修一5.2.1函数奇偶性-知识点
高中数学-必修一5.2.1函数奇偶性-知识点1、偶函数:对于定义域内任意实数x,都有f(-x)=f(x),图像关于y轴对称;奇函数:对于定义域内任意实数x,都有f(-x)=-f(x),图像关于原点对称。
奇函数若在x=0时有定义,则必有f(0)=0 .2、函数奇偶性的判断:①看定义域是否关于原点对称,若不对称,则非奇非偶,若对称,则进行下一步,②验证f(x)= -f(-x) 还是= f(-x) ,③下结论。
3、f(x)=0既是奇函数,又是偶函数。
4、函数奇偶性的运算法则:(1)加/减法法则:①偶函数±偶函数=偶函数;②奇函数±奇函数=奇函数;③偶函数±奇函数=非奇非偶。
(2)乘/除法法则:①偶函数×/÷偶函数=偶函数;②奇函数×/÷奇函数=偶函数;③偶函数×/÷奇函数=奇函数。
5、常见函数的奇偶性:①一次函数y=kx+b,当b=0时是奇函数,②反比例函数y=k/x是奇函数,③二次函数y=ax2+bx+c,当b=0时是偶函数。
6、对于复合函数f[g(x)],g(x)称为内函数,f(x)称为外函数,复合函数奇偶性的判断口诀:①内偶则偶,内奇同外;②有偶则偶,无偶则奇。
7、可以通过函数(或函数的某部分)的奇偶性,由f(a)求f(-a)的值。
典例:已知f(x)=x5+ax3+bx-8,且f(-2)=10,求f(2)。
解析:令g(x)=x5+ax3+bx ,因为是奇函数,可求得g(-2)= 18,所以g(2)= -18,所以f(2)= -26。
8、根据奇偶性求函数解析式.典例:f(x)为R的奇函数,当x>0时,f(x)=-2x2+3x+1,求f(x)在x<0时的解析式。
解法:令x<0 ,则-x>0 ,f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1,因为f(x)是R上的奇函数,所以f(x)=-f(-x)=-(-2x2-3x+1)=2x2+3x+1 .9、含参数的函数的奇偶性,需要分类讨论,既可以讨论奇偶性,也可以讨论a 的取值。
高二函数图像的性质知识点
高二函数图像的性质知识点函数图像的性质是高中数学中一个重要的知识点,尤其在高二学习中更加突出。
在本文中,我们将介绍高二函数图像的性质,包括函数的奇偶性、对称性、单调性和周期性等方面。
一、函数的奇偶性在研究函数的性质时,奇偶性是一个重要的方面。
函数的奇偶性是指函数的图像关于y轴或者原点的对称性。
具体而言,如果对于函数中的任意一个点(x, y),当x取相反数时,y的值也取相反数,那么这个函数就是偶函数;如果对于函数中的任意一个点(x, y),当x取相反数时,y的值取相反数的相反数,即:y=-y,那么这个函数就是奇函数。
二、函数的对称性除了奇偶性之外,函数还具有其他的对称性。
在函数图像中,如果图像关于y轴对称,也就是说函数中的任意一个点(x, y)对应的点(-x, y)也在函数图像中,那么这个函数就具有关于y轴的对称性。
类似地,如果图像关于原点对称,也就是说函数中的任意一个点(x, y)对应的点(-x, -y)也在函数图像中,那么这个函数就具有关于原点的对称性。
三、函数的单调性函数的单调性是函数图像的一个重要性质。
在函数中,如果对于任意两个实数x1和x2,当x1小于x2时,对应的y1和y2也满足y1小于y2,那么这个函数就是增函数;如果对于任意两个实数x1和x2,当x1小于x2时,对应的y1和y2也满足y1大于y2,那么这个函数就是减函数。
增函数的图像呈现逐渐上升的趋势,减函数的图像呈现逐渐下降的趋势。
四、函数的周期性某些函数具有周期性,即函数图像在一定范围内重复出现。
周期性可以通过函数的图像观察得到,当函数在一个周期内的取值规律与整个函数的取值规律相似时,就具有周期性。
例如,三角函数就是一类常见的周期函数,如正弦函数和余弦函数等。
综上所述,高二函数图像的性质包括函数的奇偶性、对称性、单调性和周期性等方面。
这些性质能够帮助我们更好地理解函数的图像,从而更好地解决与函数相关的问题。
对于高二学生来说,掌握这些性质是非常重要的,它们不仅能够帮助我们在学习中深入理解函数的本质,还能够应用到实际问题的解决中。
函数奇偶知识点高中总结
函数奇偶知识点高中总结一、奇偶数的定义1.1 奇数的定义奇数是指一个自然数除以2余1的数,即如果一个数能被2整除余1,则它是奇数。
例如:1、3、5、7、9等都是奇数。
1.2 偶数的定义偶数是指一个自然数除以2余0的数,即如果一个数能被2整除余0,则它是偶数。
例如:2、4、6、8、10等都是偶数。
二、奇偶数的性质2.1 奇数的性质(1)奇数加奇数等于偶数;(2)奇数加偶数等于奇数;(3)奇数乘奇数等于奇数;(4)奇数乘偶数等于偶数;(5)奇数的立方是奇数;(6)奇数的倍数仍然是奇数。
2.2 偶数的性质(1)偶数加偶数等于偶数;(2)偶数加奇数等于奇数;(3)偶数乘偶数等于偶数;(4)偶数乘奇数等于偶数;(5)偶数的立方是偶数;(6)偶数的倍数仍然是偶数。
三、奇偶数的运算规律3.1 加法运算(1)奇数加奇数等于偶数;(2)奇数加偶数等于奇数;(3)偶数加偶数等于偶数。
3.2 减法运算奇数减奇数或偶数减偶数结果往往是奇数,而奇数减偶数结果则往往是偶数。
3.3 乘法运算(1)奇数乘奇数等于奇数;(2)奇数乘偶数等于偶数;(3)偶数乘偶数等于偶数。
3.4 除法运算奇数除以奇数或偶数除以偶数结果往往是奇数,而奇数除以偶数结果则往往是偶数。
四、奇偶数的解题技巧4.1 求和求积在解题中,经常会涉及到奇偶数的求和与求积。
根据奇偶数的性质,我们可以灵活运用奇偶数的特点,帮助我们更快地解题。
4.2 奇偶数判断在解析数学问题中,经常需要判断某个数是奇数还是偶数。
我们可以通过取余、观察末位数字等方法,进行奇偶数的判断。
4.3 奇偶数运算在解析数学问题中,有时需要进行奇偶数的运算,例如奇数加偶数、奇数乘偶数等,需要根据奇偶数的运算规律进行灵活运用。
4.4 奇偶数的应用奇偶数在生活和数学中都有很多的实际应用,例如在统计学中奇偶数的应用、在概率统计中奇偶数的应用等,都需要我们掌握奇偶数的基本知识和运用技巧。
五、奇偶数的实际应用奇偶数在实际生活和数学中有着丰富的应用。
高三奇偶函数知识点
高三奇偶函数知识点奇偶函数是数学中的一种特殊类型的函数,它们具有一些独特的性质和规律。
在高三数学学习中,奇偶函数是一个重要的知识点。
本文将从定义、性质和例题三个方面介绍高三奇偶函数的相关知识。
一、定义奇偶函数的定义如下:对于定义在一个对称区间上的函数f(x),当对于该区间上任意一个 x,都满足 f(-x) = -f(x) 时,函数 f(x) 称为奇函数;当对于该区间上任意一个 x,都满足 f(-x) = f(x) 时,函数 f(x) 称为偶函数。
二、性质1. 对于奇函数来说,如果函数图像关于原点对称,那么它的自变量和因变量之间具有一种特殊的关系:当 x 属于定义区间时,f(x) = -f(-x)。
2. 对于偶函数来说,如果函数图像关于 y 轴对称,那么它的自变量和因变量之间具有一种特殊的关系:当 x 属于定义区间时,f(x) = f(-x)。
3. 奇函数与偶函数的性质可以通过函数图像的对称性来判断。
奇函数的图像关于原点对称,偶函数的图像关于 y 轴对称。
4. 如果一个函数既是奇函数又是偶函数,那么它必须是常值函数,即对于某一个实数 k,f(x) = k,对于定义区间上任意一个 x都成立。
5. 奇函数和偶函数的性质在函数的运算中也能体现出来。
奇函数和奇函数、偶函数和偶函数的和、积、商都是奇函数;奇函数和偶函数的和、差、乘积、商都是奇函数;偶函数和偶函数的和、差、乘积、商都是偶函数。
三、例题下面通过几道例题来加深对奇偶函数知识点的理解。
例题1:已知函数 f(x) = x^3 - x,判断其是否为奇函数或者偶函数。
解析:将函数f(x) 分别代入奇函数和偶函数的定义中进行判断。
奇函数定义:f(-x) = (-x)^3 - (-x) = -x^3 + x偶函数定义:f(-x) = (-x)^3 - (-x) = -x^3 + x由计算可知,f(-x) = -f(x),f(-x) = f(x)。
因此,函数 f(x) 同时是奇函数和偶函数。
最新数学高二必修知识点:函数的奇偶性与周期性
最新数学高二必修知识点:函数的奇偶性与周期
性
高中是高中最重要的阶段,大家一定要把握好高中,多做题,多练习,为高考奋战,小编为大家整理了最新数学高二必修知识点,希望对大家有帮助。
一、函数的奇偶性
1.定义:对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;
对于函数f(x),如果对于定义域内任意一个x,都有
f(-x)=f(x),那么f(x)为偶函数;
2.性质:
(1)函数依据奇偶性分类可分为:奇函数非偶函数,偶函数非奇函数,既奇且偶函数,非奇非偶函数;
(2) f(x),g(x)的定义域为D;
(3)图象特点:奇函数的图象关于原点对称;偶函数的图象关于原点对称;
(4)定义域关于原点对称是函数具有奇偶性的必要不充分条件,奇函数f(x)在原点处有定义,则有f(0)=0;
(5)任意一个定义域关于原点对称的函数f(x)总可以表示为一个奇函数与偶函数的和的形式:f(x)=g(x)+h(x),其中g(x)=-[f(x)+f(-x)]为偶函数,h(x)=-[f(x)-f(-x)]为奇函数;
(6)奇函数在关于原点对称的区间具有相同的单调性,偶函数在关于原点对称的区间具有相反的单调性。
小编为大家整理了最新数学高二必修知识点,希望对大家有所帮助。
高二数学奇偶性
1 x
-3
-2
-1 -1 -2
O
1
2
3
x
x f(x)=x
-3
-3
-2 -2
-1 -1
0 0
f ( Байду номын сангаас ) x,
f (-x) =-f (x)
1 f ( x) x
1 1
2
2
3
3
一般地,如果对于函数f(x)的定义域内任意一个x, 都有 f (-x)= f (x) ,那么函数f(x)就叫做偶函数. 偶函数函数图象关于y轴对称
x
-3
-2
-1 -1
O
1
2
3
x
f ( x ) x 1,
2
20 f ( x) 2 x 6
一般地,如果对于函数f(x)的定义域内任意一个x, 都有 f (-x)= f (x) ,那么函数f(x)就叫做偶函数. 偶函数函数图象关于y轴对称
3 2 1
y
f ( x ) x,
f ( x)
偶函数函数图象关于y轴对称
商业wifi微信吸粉 微信连wifi认证路由器久安智成
止他の行动?所以无可奈何の水清只能是强忍着心中の别快,眼睁睁地看着自己の地盘被他壹步步地蚕食。其实还别待他走进到里屋,只是到房门附近,他就看清楚咯里面の壹切, 正如水清所说,原本应该放梳妆台の位置现在空空如也,而妆匣、镜子、粉盒、珠花……,统统暂时挪至小桌、窗台等处。第壹卷 第536章 丢脸他忽然想起她嫁进王府那壹年の 八月节宫宴后,因为她の高调亮相,引起咯当时太子の瞩目,以至当天回到府中之后,他便立即来到怡然居兴师问罪,第壹次,他亲自出手狠狠地处治咯她,那各“笑问鸳鸯两字 怎生书”害得她病倒咯好几各月。那壹次兴师动众の兴师问罪,他可先是坐在那各梳妆台の旁边,极为沉得住气地写写画画咯壹晚上之后才开始羞辱她の,然后他又坐在那各梳妆 台旁边,装模作样地读咯半夜の书。由于当时怒别可遏,怒气冲冲,他当时根本就没什么发现,竟然是坐在梳妆台前完成の那壹切。现在当他终于搞明白情况之后,却是越想越滑 稽,越想越别自在。壹各大老爷们,居然坐在诸人の梳妆台前写写画画,成何体统?简直就是壹件让他丢脸丢到家の事情!那要是传咯出去,他可是要成咯整各京城人の笑柄!水 清整天将脸面看得比命都重要,宁可别要命,也必须要脸面。而他何尝别是同样の壹各人呢?原本壹进院子就例行公事般地受到咯整各怡然居奴才们の冷落,进咯屋子之后,水清 既别喜悦也别慌张,而是同样地例行公事般地行礼请安。假设是以往,他别会有那么大の别满。虽然在怡然居受到の冷遇也别是第壹次,可是今天,他是带着对她の满腔热忱而来, 却是遭到咯兜头壹盆冷水,那样の结果当然会令他格外地沮丧。现在竟又意外地发现咯曾经误将梳妆台当书桌の那么壹件尴尬至极、窝囊透顶の事情,令他原本就已经极为别满の 情绪又急剧地高涨起来,甚至是掺杂咯壹丝丝の恼怒。所以待他看清楚咯里间屋の情况之后,壹句话也没什么说,转身就离开咯怡然居。眼看着爷要走咯,众人忙别迭地出门相送。 壹直送到院门口,水清才开口说道:“妾身恭送爷。”他只是随口应咯壹声,头也没什么回,直接回咯朗吟阁。众人被王爷の那壹番没头没脑の大驾光临搞得莫明其妙,特别是临 走の时候,脸色极为难看,可是,从头到尾,没什么任何人招惹他,也没什么任何人犯错,全都是中规中矩地服侍,所以众人除咯面面相觑以外,想别出来任何原因。众人心情忐 忑,唯有水清心情愉快,送走咯壹各大瘟神,安然躲过壹劫,她当然是高兴得别得咯。所以从院门口到房间の那壹路上,尽管寒风凛冽,天寒地冻,她却是步履轻盈、神清气爽。 回到房里,月影终于忍别住先开咯口:“仆役,您说,爷那是怎么咯?”“谁晓得爷是怎么咯,也许是来抽查吧。”“抽查?”“嗯,查查咱们怡然居从主子到奴才,是别是都老 老实实、本本分分,有没什么背地里嚼哪位主子の舌根,有没什么背地里干壹些对别起爷の事情,……”“仆役,别会吧,爷来の时候,奴婢看着爷の表情怎么还有壹些欣喜の样 子呢?”“欣喜?月影,您真能从爷の表情上看出来欣喜?”第壹卷 第537章 开端月影真是别明白,王爷の脸上分明是有欣喜の神情呢,怎么她家仆役就看别到?“怎么,仆役, 您难道没什么看到吗?”“我壹直在写字,听到您那壹声大喊大叫,才晓得是爷来咯,然后就俯身请安咯,哪里有机会能看得到爷の表情?”水清确实没什么注意到王爷过来の时 候是何种表情,但是小心谨慎の月影可是壹直在察颜观色,特别是昨天晚上,王爷将她家仆役抱咯回来,今天又特意过来探望,那么巨大の变化,月影当然是要惊着十二万分の心 去小心服侍他。当她看到王爷の脸上有壹些欣喜の情绪时,月影の心情格外地激动,所以那么重要の事情,她壹定别会搞错の,于是月影万分肯定地说道:“仆役,奴婢敢肯定, 爷来の时候,壹点儿都没什么生气の样子,而且就是欣喜の神情!”“别管爷来の时候是别是高兴,反正走の时候可是气得别轻。那各嘛,您家仆役我可是看准咯,千真万 确。”“那怎么办啊,仆役!您怎么还有心思寻开心呢?要别,您赶快去给爷赔各别是吧,让爷消消气。”“给爷赔啥啊别是?爷都已经走咯,上哪儿赔去?再说咯,爷为啥啊生 の气都别晓得,怎么壹各赔法儿?”“别管怎么说,爷也是从咱们那里生着气走の,咱们别去赔各别是,爷肯定会寻咯咱们怡然居の错处……”“行咯,月影,您就别瞎操心咯, 该做啥啊就去做啥啊。”“仆役,爷可是生着那么大の气走の,您怎么壹点儿也别担心,别着急呢?”“唉,您可真是壹各傻丫头!爷要真是想寻咱们の错处,哪儿还用藏着掖 着?直接处罚就是咯。您又别是没见过爷真正发脾气の样子,生那么点儿气算啥啊。所以说,那壹次,爷壹定会别寻咱们の短处の,您就放壹万各心吧。”月影被水清如此漫别经 心、满别在乎又胸有成竹の样子惊得半天都说别出来更多劝解の话来,可是她又担心壹会儿王爷真の寻咯她们怡然居の错处来。此外,经历咯昨天晚上那各史无前例の王爷将水清 抱回来の经历,让月影の心中暗暗生咯许多の期盼,她壹门心思地认为,爷对仆役变咯,变得喜欢上仆役咯,否则怎么可能又是抱着仆役回来,又是千叮咛万嘱咐地要她伺候好仆 役呢?要晓得那次仆役为咯向王爷求壹件送给大姑奶奶の新婚贺礼而跪伤咯腿,即使腿跪伤咯,王爷宁
高中数学常见的九大奇函数和偶函数类型你真的掌握了吗
高中数学常见的九大奇函数和偶函数类型你真的掌握了吗奇函数是指对于一个定义域关于原点对称的函数f(某)的定义域内任意一个某,都有f(某)=-f(某),那么函数f(某)就叫做奇函数。
偶函数是指如果对于函数f(某)的定义域内任意的一个某,都有f(某)=f(-某),那么函数f(某)就叫做偶函数。
一、高考常考的九大奇函数类型说到常见奇函数类型有哪些,很多同学很快就能说上几个,但理解和记忆比较单一,所以在做题时就很难灵活运用。
1、平时大家是怎么记忆的呢?比如:奇函数性质是什么呢?①、图象关于原点对称②、满足f(-某)=-f(某)③、关于原点对称的区间上单调性一致④、如果奇函数在某=0上有定义,那么有f(0)=0⑤、定义域关于原点对称(奇偶函数共有的)奇函数有哪些呢?正比例函数是奇函数;反比例函数是奇函数;正弦函数是奇函数;正切函数是奇函数;幂函数:三种都是有很有可能,指数值为双数的为偶函数,指数为正奇数的则是奇函数,指数为负奇数的,只在第一象限有图像,非奇非偶;对数函数,非奇非偶偶函数性质是什么呢?①、图象关于y轴对称②、满足f(-某)=f(某)③、关于原点对称的区间上单调性相反④、如果一个函数既是奇函数有是偶函数,那么有f(某)=0⑤、定义域关于原点对称(奇偶函数共有的)偶函数有哪些呢?f(某)=a某^2+b(a,b≠0)是偶函数余弦函数是偶函数……当然这是最基本的,但这还不够,还需要进一步延伸才能够灵活运用。
比如下图第3个奇函数类型,平时大家可能记忆的是f(某)=某+1/某或者f(某)=某-1/某,但实质我们可以进一步延伸为f(某)=a某+b/某,是不是应用范围更广,更灵活?后面几个公式也是如此。
如下图:注意:这里的某只是一个代号,可以是任何形式,如2某,1/3某,这样就可以灵活变通解题。
二、高考常见常考六大偶函数类型:相比之下,偶函数类型虽然没有奇函数重要,但这6个常见偶函数类型,需要你彻底掌握。
三、高中奇偶函数经典例题接下来做一些比较经典的例题,如果同学们真正掌握其精髓的话,有些题就变得非常简单!看例1,你平时是怎么做的呢?直接将用偶函数的定义将f(某)=f(-某)代进去算吗?肯定不是,前面某为奇函数,只有奇函数某奇函数才能为偶函数,所以后面的式子必为奇函数,是不是属于前面奇函数中的第8个奇函数类型?a直接为1,完全不用计算。
最新数学高二必修知识点:函数的奇偶性与周期性
最新数学高二必修知识点:函数的奇偶性与周期性
最新数学高二必修知识点:函数的奇偶性与周期
性
高中是高中最重要的阶段,大家一定要把握好高中,多做题,多练习,为高考奋战,小编为大家整理了最新数学高二必修知识点,希望对大家有帮助。
一、函数的奇偶性
1.定义:对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;
对于函数f(x),如果对于定义域内任意一个x,都有
f(-x)=f(x),那么f(x)为偶函数;
2.性质:
(1)函数依据奇偶性分类可分为:奇函数非偶函数,偶函数非奇函数,既奇且偶函数,非奇非偶函数;
(2) f(x),g(x)的定义域为D;
(3)图象特点:奇函数的图象关于原点对称;偶函数的图象关于原点对称;
(4)定义域关于原点对称是函数具有奇偶性的必要不充分条件,奇函数f(x)在原点处有定义,则有f(0)=0;
(5)任意一个定义域关于原点对称的函数f(x)总可以表示为一个奇函数与偶函数的和的形式:f(x)=g(x)+h(x),其中g(x)=-[f(x)+f(-x)]为偶函数,h(x)=-[f(x)-f(-x)]为奇函数;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连经贸高中导学案(高二文科数学)
主编:李明 审核: 李秀云
课题:函数的奇偶性 日期:2012 年 11月 21日
一. 学习目标:
1. 理解函数的奇偶性,学会运用奇偶性的定义和函数图象判断函数的奇偶性;
2. 应用函数的奇偶性求分段函数解析式与解不等式.
二. 课前预习
1.奇偶函数的定义:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有x D -∈,则当 时,这个函数叫做奇函数;当 时,这个函数叫做偶函数.
2.奇偶函数图象的特点:如果一个函数是奇函数,则这个函数的图象以 为对称中心的 图形;如果一个函数的图象关于原点对称,则这个函数是 ;
如果一个函数是偶函数,则这个函数的图象以 为对称轴的 图形.
3.函数按奇偶性分类可分为 .
4.判断函数的奇偶性的方法:
①定义法:第一步,求函数的定义域,并判断定义域 (前提条件);
第二步,求()f x -,验证()f x 与()f x -的关系;
若()f x =()f x -,则函数为 ;若()f x -=()f x -,则函数为 . ②图象法:奇函数⇔图象 ;偶函数⇔图象 ; 5.奇偶性的简单性质:若奇函数()f x 的定义域内有零,则(0)=f .
偶函数+偶函数= ;偶函数-偶函数= ; 偶函数⨯偶函数= ; 奇函数+奇函数= ;奇函数-奇函数= ;奇函数⨯偶函数= .
6.单调性与奇偶性的联系: 奇函数在关于原点的对称区间上有 的单调性;
偶函数在关于原点的对称区间上有 的单调性.
三. 典例分析:
知识点一:判断函数的奇偶性
1. 判断下列函数的奇偶性
(1)()11;f x x x =+--
(2)()f x =
(3)(;f x = 1(4)()(1)
;1x f x x x +=-- 11(5)()();212x f x x =+- 2223,(0)(6)()0,(0)23,(0)x x x f x x x x x ⎧-+>⎪==⎨⎪---<⎩
知识点二:抽象函数的奇偶性
2.如果奇函数()f x 在区间[]5,3--上是增函数,且最大值是4-,那么()f x 在[]3,5上是 ( )
.4A 增函数且最大值是.4B 增函数且最小值是
.4C 减函数且最大值是.4D 减函数且最小值是
3.函数(),f x ,x R ∈对任意实数,a b 都有()()(),f a b f a f b +=+则(0)f = ,()f x 是 函数. 知识点三:利用奇偶性求函数解析式
4.()f x 是定义在R 上的奇函数,当0x <时,()(1)f x x x =-,求当0x ≥时,函数().f x 的解析式 知识点四:解不等式
5.奇函数()f x 是定义在(-1,1)上的减函数,且(1)(12)0f a f a -+->,求实数a 的取值范围.
四.课堂练习.
6.对于定义域是R 的任意奇函数(),f x 都有( )
.()()0A f x f x --> .()()0B f x f x -
-≤ .()()0C f x f x -≤ .()()0D f x f x -> 7.已知函数2()(1)23f x m x mx =-++为偶函数,则()f x 在(-5.-2)上是 (增或减)函数.
8.若函数()f x 为偶函数,当10x -≤<,,()1f x x =+,则当01x <≤时,()f x =
9.若函数()f x 和()g x 都是奇函数,且()()()2F x af x bg x =++在(0,)+∞上有最大值5,则()F x 在(,0)-∞上有最 值为 .
10.若偶函数()f x 在(,0)-∞上是减函数,则满足(1)()f f a ≤的实数a 的取值范围
五.随堂检测
1.函数()log (a f x x =的奇偶性为 ;函数1()log 1a x f x x
-=+的奇偶性为 2.已知()f x 为定义在(-1,1)上的奇函数,当(0,1)x ∈时,2()41
x
x f x =+.求()f x 在(-1,1)上的解析式.
3.函数2()1ax b f x x +=+是定义在(1,1)-上的奇函数,且12()25
f =. (1)确定()f x 的解析式;(2)用定义证明()f x 在(1,1)-上是增函数;(3)解不等式(1)()0.f t f t -+<。