数的整除练习题
小学五年级数的整除性练习题
小学五年级数的整除性练习题一、选择题1. 下列哪个数是7的倍数?A. 18B. 21C. 25D. 282. 64除以8的余数是多少?A. 7B. 0C. 4D. 23. 750能被下列哪个数整除?A. 5B. 6C. 7D. 84. 三个连续的整数相加,能得到一个偶数吗?A. 能B. 不能5. 一个数能同时被2和3整除,这个数至少能被下列哪个数整除?A. 4B. 5C. 6D. 7二、填空题1. 96除以8等于__。
2. 120能被__和__整除。
3. 135除以__等于15。
4. 1234除以__的余数是2。
5. 如果一个数能被12整除,那么它能被__、__、__和__整除。
三、解答题1. 用排除法判断下列数能否被6整除:21、36、48、52、64。
2. 将10、12、14、16、18五个连续的奇数相加,结果是多少?并说明为什么。
3. 找出100以内能被7整除的数,并将其列举出来。
四、应用题1. 一个篮子里有48个苹果,若要平分给4个小朋友,每个小朋友能分到__个苹果。
若要平分给6个小朋友,每个小朋友能分到__个苹果。
2. 爸爸用草草帽做了8个草人,如果每个草人帽子上都插着一支碧绿色的小旗子,帽子上插小旗子用__来计数。
3. 一个数能同时被3和4整除,这个数最小是__。
五、综合题1. 把一个数的最后两位数去掉,剩下的数能被4整除吗?请说明理由。
2. 找到一个大于20,不能被2、3、4、5全部整除的数,并解释为什么它不能被这些数全部整除。
3. 一个数能被6整除,那么它一定能被__和__整除。
注意事项:请同学们务必仔细阅读题目,认真思考后做出答案。
小学六年级数的整除性练习题
小学六年级数的整除性练习题小学数学练习题:数的整除性题1:计算以下数的整除性:a) 256 ÷ 4 = ?b) 189 ÷ 3 = ?c) 450 ÷ 5 = ?d) 648 ÷ 6 = ?题2:填入适当的数字,使等式成立:a) 62 ÷ _____ = 31b) 100 ÷ _____ = 20c) 45 ÷ _____ = 9d) 96 ÷ _____ = 12题3:判断以下等式是否成立,如果成立,在等号上方填写“√”,如果不成立,则填写“×”:a) 48 ÷ 8 = 6b) 75 ÷ 9 = 9c) 87 ÷ 13 = 8d) 60 ÷ 12 = 5题4:找出以下数的所有因数:a) 16b) 28c) 45d) 72题5:判断以下数是否为完全数,如果是,请在括号中写上“√”,否则请写上“×”:a) 6 ( )b) 16 ( )c) 28 ( )d) 30 ( )题6:求以下数的最大公因数(最大公约数):a) 20和30的最大公因数是多少?b) 48和72的最大公因数是多少?c) 35和70的最大公因数是多少?d) 60和90的最大公因数是多少?题7:求以下数的最小公倍数:a) 12和15的最小公倍数是多少?b) 9和14的最小公倍数是多少?c) 20和25的最小公倍数是多少?d) 36和48的最小公倍数是多少?题8:利用质因数分解求以下数的最大公因数和最小公倍数:a) 24和36的最大公因数和最小公倍数分别是多少?b) 30和45的最大公因数和最小公倍数分别是多少?c) 54和72的最大公因数和最小公倍数分别是多少?d) 50和80的最大公因数和最小公倍数分别是多少?题9:求以下数的倍数或因数:a) 14的一个因数是多少?b) 18的一个倍数是多少?c) 25的一个因数是多少?d) 36的一个倍数是多少?题10:用数的整除性填空:a) 12是6的________。
数的整除特征练习题
数的整除特征练习题一、判断题1. 一个数的个位是0,那么这个数能被2整除。
2. 一个数各位数字之和能被3整除,那么这个数能被3整除。
3. 一个数的个位是5,那么这个数能被5整除。
4. 一个数能被4整除,那么这个数一定能被2整除。
5. 一个数能被6整除,那么这个数一定能被9整除。
二、选择题A. 123B. 124C. 125D. 126A. 212B. 213C. 214D. 215A. 432B. 435C. 438D. 439A. 100B. 101C. 102D. 103A. 357B. 358C. 359D. 360三、填空题1. 一个数能被2整除的条件是:这个数的个位是______。
2. 一个数能被3整除的条件是:这个数的各位数字之和能被______整除。
3. 一个数能被5整除的条件是:这个数的个位是______或______。
4. 一个数能被4整除的条件是:这个数的末两位数能被______整除。
5. 一个数能被6整除的条件是:这个数既能被______整除,也能被______整除。
四、解答题1. 请写出三个能被2整除的数。
2. 请写出三个能被3整除的数。
3. 请写出三个能被5整除的数。
4. 请写出三个能被4整除的数。
5. 请写出三个能被6整除的数。
五、匹配题请将下列数字与其能整除的数配对:A. 48B. 51C. 100D. 121E. 1441. 能被2整除的是______2. 能被3整除的是______3. 能被5整除的是______4. 能被11整除的是______5. 能被12整除的是______六、简答题1. 请简述一个数能被8整除的条件。
2. 请简述一个数能被9整除的条件。
3. 请简述一个数能被10整除的条件。
4. 请简述一个数能被12整除的条件。
5. 请简述一个数能被18整除的条件。
七、应用题1. 小明有一堆糖果,如果每3个糖果分给一个小朋友,糖果正好分完。
请问这堆糖果的数量可能是多少?(至少写出三个可能的答案)2. 小红有若干本书,如果每5本书放一层书架,书架正好放满。
数的整除练习题
数的整除练习题一、选择题:1. 一个数能被4整除,那么这个数的个位数字是:A. 0B. 2C. 8D. 62. 以下哪个数是3的倍数?A. 12B. 14C. 16D. 183. 一个数的末两位数能被4整除,那么这个数:A. 一定被4整除B. 可能被4整除C. 不一定被4整除D. 一定不被4整除二、填空题:1. 一个数的个位是5,十位是偶数,这个数能被______整除。
2. 一个数的个位和十位数字交换位置后,得到的新数比原数大18,原数的个位数字是______。
3. 如果一个数的各位数字之和能被9整除,那么这个数也能被______整除。
三、判断题:1. 一个数是偶数,那么它一定可以被2整除。
(对/错)2. 一个数的各位数字之和是3的倍数,那么这个数也是3的倍数。
(对/错)3. 一个数的末尾是0或5,那么这个数一定是5的倍数。
(对/错)四、计算题:1. 计算下列各数的各位数字之和,并判断它们是否能被3整除。
- 123- 456- 7892. 一个数是9的倍数,且它的个位数字是6,求这个数的十位数字。
3. 一个数是11的倍数,且它的个位和百位数字相同,求这个数。
五、解答题:1. 证明:如果一个整数的末三位能被8整除,那么这个整数也能被8整除。
2. 一个数的个位数字是4,且这个数是11的倍数,求这个数的百位数字。
3. 一个数的各位数字之和是33,且这个数能被7整除,求这个数。
六、应用题:1. 一个班级有48名学生,如果每组有相同数量的学生,且每组至少有一名学生,那么可能的组数有几种?2. 一个数的各位数字之和是35,且这个数能被9整除,求这个数的可能值。
3. 一个数的末尾两位数是45,且这个数是7的倍数,求这个数。
整除练习题及答案
整除练习题及答案整除是数学中的一个基本概念,指的是一个整数除以另一个不是零的整数,得到的商是整数,而没有余数。
以下是一些整除练习题及答案,供同学们练习和参考。
练习题1:判断以下哪些数字可以整除10。
A. 2B. 5C. 3D. 7答案:B. 5解析:10除以5等于2,没有余数,所以5可以整除10。
练习题2:找出100以内能被3整除的所有整数。
答案:3, 6, 9, 12, ..., 99解析:从3开始,每次加3,得到的数都能被3整除。
练习题3:如果一个数能同时被2和3整除,那么这个数能被6整除吗?答案:是的。
解析:如果一个数能同时被2和3整除,那么这个数是6的倍数,因为6是2和3的最小公倍数。
练习题4:找出最小的能被7整除的三位数。
答案:105解析:从100开始,第一个能被7整除的数是105。
练习题5:如果一个整数的个位是偶数,那么这个数能被2整除吗?答案:是的。
解析:任何个位是偶数的整数都能被2整除,因为2的倍数的个位只能是0, 2, 4, 6, 或8。
练习题6:一个数如果能被9整除,那么它也能被3整除吗?答案:是的。
解析:如果一个数能被9整除,那么它也能被3整除,因为9是3的倍数。
练习题7:找出100以内能被11整除的所有整数。
答案:11, 22, 33, ..., 99解析:从11开始,每次加11,得到的数都能被11整除。
练习题8:如果一个数的各位数字之和能被3整除,那么这个数本身能被3整除吗?答案:是的。
解析:如果一个数的各位数字之和能被3整除,那么这个数本身也能被3整除,这是3的整除规则。
练习题9:找出最小的能被13整除的四位数。
答案:104解析:从1000开始,第一个能被13整除的数是104。
练习题10:如果一个数能被4整除,那么它的最后两位数能被4整除吗?答案:是的。
解析:如果一个数能被4整除,那么它的最后两位数也能被4整除,因为4的倍数的最后两位数必须是4, 8, 12, ..., 96, 100。
数的整除练习题
数的整除练习题数的整除练习题数的整除是数学中的一项基本概念,也是我们日常生活中常常会遇到的问题。
无论是在学校的数学课堂上,还是在购物时计算折扣,整除都扮演着重要的角色。
本文将通过一些练习题来帮助读者加深对数的整除的理解和应用。
1. 请问下列哪个数能够整除12:8、5、3、2?解答:整除是指一个数可以被另一个数整除,即没有余数。
我们可以逐个尝试这些数与12相除,看是否有余数。
首先,8 ÷ 12 = 0余8,所以8不能整除12。
然后,5 ÷ 12 = 0余5,所以5也不能整除12。
接下来,3 ÷ 12 = 0余3,所以3也不能整除12。
最后,2 ÷ 12 = 0余2,所以2也不能整除12。
综上所述,以上四个数都不能整除12。
2. 某个数能够整除15和35,那么它能够整除多少?解答:我们可以找出15和35的公约数,即能够同时整除这两个数的数。
首先,列出15的因数:1、3、5、15。
然后,列出35的因数:1、5、7、35。
可以看到,15和35的公约数是1和5。
所以,某个数能够整除15和35的话,它一定能够整除1和5。
因此,它能够整除的数有1和5。
3. 请问下列哪个数能够整除24:12、8、6、4?解答:同样地,我们可以逐个尝试这些数与24相除。
首先,12 ÷ 24 = 0余12,所以12不能整除24。
然后,8 ÷ 24 = 0余8,所以8也不能整除24。
接下来,6 ÷ 24 = 0余6,所以6也不能整除24。
最后,4 ÷ 24 = 0余4,所以4也不能整除24。
综上所述,以上四个数都不能整除24。
4. 某个数能够整除18和27,那么它能够整除多少?解答:同样地,我们列出18和27的因数。
18的因数是1、2、3、6、9、18,27的因数是1、3、9、27。
可以看到,18和27的公约数是1、3和9。
所以,某个数能够整除18和27的话,它一定能够整除1、3和9。
(完整版)数的整除练习题
数的整除练习题A 组1、(1)五位数73□28能被9整除,□里应填上()。
(2)一个六位数2709□6能被12整除,□里应填上()。
(3)一个五位数4□1□6是72的倍数,这个五位数是()。
(4)一个六位数356□□□能被3、4、5整除,这个六位数最小是()。
(5)能同时被2、3、5整除的三位数中最大的是()。
(6)四位数36□□能同时被2、3、4、5、6、9整除,则36□□是()。
(7)一个位数减去它的各位数字之和,其差还是一个四位数362□,那么□填()。
(8)有一六位数能被11整除,首位是3,其余各位数字各不相同,这个六位数最小是()。
2、已知五位数154xy _________能被72整除,求x+y 的值3、一个六位数358□□□能同时被4、5、9整除,求这样的六位数中最小的一个。
4、有数字0、1、4、7、9,如果从中选出四个数字组成不同的四位数,把其中能被3整除的从小到大排列起来,第三个数是多少?5、从0、1、3、5这四个数字中任选三个数字排成能同时被2、3、5整除的三位数,这样的三位数有多少个?把他们写出来。
6、在五位数中,数字和等于43且能被11整除的数有那些?7、一个自然数与17的乘积的最后三位数是999,求满足条件的最小的自然数。
8、从1~1996中选出一些数,使得这些数中任意两个数的和都能被18整除。
这样的数最多能取多少个?9、一个四位数能被9整除,如果去掉末位数字后得到的三位数是8的倍数。
这样的四位数中最大的一个是多少?10、从2、3、5、7四个数中任选三个数,组成能同时被3和25整除的三位数,这样的三位数是多少?11、下列这个51位数55...5□99 (9)能被7整除,那么中间方格内的数字是几?25个5 25个912、商店里有六箱货物,分别重20、21、23、12、14、17千克。
两位顾客买走了其中的五箱。
已知一位顾客买的货物重量是另一位顾客的3倍。
那么剩下的一箱货物重多少千克?B组1、如果把1、3、5、7这四个数字进行各种各样的排列,可以组成24个数,其中能被11整除的数从大到小排列的第三个数是多少?2、用数字1~9组成九位数,左起第一位数能被1整除,前两位数能被2整除,前三位数能被3整除……前九位数能被9整除。
数的整除性质练习题
数的整除性质练习题1. 数的整除性质在数学中,我们经常研究数的整除性质。
整除是指一个数能够被另一个数整除,也就是没有余数的除法。
在解决问题时,理解和熟悉数的整除性质是非常重要的。
下面是一些数的整除性质的练习题,通过解答这些题目,我们可以更好地掌握数的整除性质。
2. 练习题一已知数a能够被数b整除,数b能够被数c整除,那么数a能否被数c整除?请给出理由。
解答:根据整除的定义,如果一个数能够被另一个数整除,那么它们的商一定是一个整数。
假设数a能够被数b整除,即a=kb,其中k为整数。
同时,数b能够被数c整除,即b=mc,其中m为整数。
将b代入第一个等式中得到a=k(mc)。
根据乘法结合律,可以得到a=(km)c。
根据定义,如果一个数能够被另一个数整除,那么它们的商一定是一个整数。
因此,数a能够被数c整除。
3. 练习题二已知数a能够被数b整除,数a能够被数c整除,那么数b能否被数c整除?请给出理由。
解答:根据整除的定义,如果一个数能够被另一个数整除,那么它们的商一定是一个整数。
假设数a能够被数b整除,即a=kb,其中k为整数。
同时,数a能够被数c整除,即a=mc,其中m为整数。
将b代入第二个等式中得到kb=mc。
根据乘法结合律,可以得到k(b-c)=0。
根据乘法的性质,当两个数的乘积等于0时,至少有一个数为0。
因此,根据k(b-c)=0,可以得出结论b-c=0,即b=c。
所以,数b能够被数c整除。
4. 练习题三已知数a能够被数b整除且b不为0,数c能够被数a整除且c不为0,那么数c能否被数b整除?请给出理由。
解答:根据整除的定义,如果一个数能够被另一个数整除,那么它们的商一定是一个整数。
假设数a能够被数b整除,即a=kb,其中k为整数,且b不为0。
同时,数c能够被数a整除,即c=ma,其中m为整数,且a不为0。
将a代入第二个等式中得到c=mkb。
根据定义,如果一个数能够被另一个数整除,那么它们的商一定是一个整数。
数的整除特征练习题
数的整除特征练习题一、选择题1. 一个数能被2整除,这个数一定是:A. 奇数B. 偶数C. 质数D. 合数2. 一个数能被3整除的特征是:A. 各位数字之和能被3整除B. 百位数字能被3整除C. 十位数字能被3整除D. 个位数字能被3整除3. 一个数能被4整除,这个数的:A. 个位数必须是偶数B. 十位数必须是偶数C. 百位数必须是偶数D. 任意两位数必须是偶数4. 一个数能被5整除的特征是:A. 个位数是0或5B. 十位数是0或5C. 百位数是0或5D. 千位数是0或55. 一个数能被8整除,这个数的:A. 个位数必须是偶数B. 十位数必须是偶数C. 任意连续的三位数字之和能被8整除D. 任意连续的四位数字之和能被8整除二、填空题6. 一个数能被9整除的特征是:各位数字之和________。
7. 一个数能被11整除的特征是:从左到右,奇数位上的数字之和与偶数位上的数字之和的差能被11整除。
8. 一个数能被13整除的特征是:从左到右,隔一位数字相加,再隔一位数字相加,两次结果之差能被13整除。
三、判断题9. 一个数如果个位是偶数,那么这个数一定能被2整除。
()10. 一个数如果个位是5,那么这个数一定能被5整除。
()11. 一个数如果各位数字之和能被4整除,那么这个数一定能被4整除。
()12. 一个数如果个位是0,那么这个数一定能被10整除。
()13. 一个数如果各位数字之和能被3整除,那么这个数一定能被3整除。
()四、简答题14. 请列举出能被7整除的最小三位数和最大三位数。
15. 请说明一个数能被12整除需要满足哪些条件。
五、计算题16. 计算下列数中哪些能被3整除:123,456,789,321。
17. 计算下列数中哪些能被6整除:102,204,306,408。
18. 计算下列数中哪些能被9整除:999,1000,1001,1002。
六、应用题19. 某班级有48名学生,如果需要将他们平均分成若干小组,每组人数相同,且每组人数必须是偶数,问最多可以分成多少个小组?20. 某商店需要将一批货物平均分配给8个仓库,如果每个仓库分配的货物数量必须是5的倍数,问这批货物最少有多少件?通过这些练习题,可以帮助学生掌握数的整除特征,提高他们的数学思维能力和解题技巧。
数的整除练习题
数的整除练习题文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-数的整除练习题一.填空题:1、在18,27,30,46,51,65,102这些数中,能被2整除的数是;能被5整除的数是 .2、如果数A=2×2×5,B=2×3×3,那么A和B的最小公倍数是;最大公因数是 .3、12的因数有 .4、30的素因数有 .5、能同时被2、5整除的最小三位数是 .6、已知A=2×2×5,则它的所有因数有个.7、两个连续奇数的和是24,那么这两个数的最小公倍数是 .8、最小的自然数是 .9、能被5整除的数,个位数字一定是.10、一个数最小的倍数是 .11、既是素数又是偶数的数是 .12、能同时被2、3、5整除的最小三位数是 .13、把18分解素因数 .14、如果a、b互素,那么这两个数的最小公倍数是 .15、在75,42,50,88,40中,既是2的倍数又能被5整除的数有 .二、选择题:1、下列算式中,被除数能被除数整除的是……………………………………()A.25÷4 B25÷0.5 C25÷25 D0.4÷0.42、要使四位数324 能被4整除, 中可以有几个数可填………………………()A.4B.3C.2D.13、下列关于1的叙述,不正确的是……………………………………()A.1是最小的自然数B.1既不是素数也不是合数C.1是奇数D.1的因数只有1个4、下列各式中整除的算式是……………………………………………()A.11÷5=2……1B.27÷3=9C.18÷4=4.5D.2.4÷0.6=45、24、50和75分别分解素因数,发现它们公共的素因数是………………()A.2B.5 C2和5 D2、3和5三、解答题1、面积是90平方厘米,形状不同且长和宽都是整厘米数的长方形有多少种?2、三个连续自然数的乘积是120,求这三个数.3、已知两个素数的积是551,那么这两个素数的和是多少?4、老师将301本笔记本、215支铅笔和86块橡皮分给班里同学,每个同学得到的笔记本、铅笔和橡皮的数量都相同,那么,每个同学各拿到多少?5、有三根绳子,分别长24米,30米,48米,现要把它们截成长度相等的短绳子,每根短绳最长可以是几米这样的短绳有几根6、一筐苹果500多个,每次拿3个,每次拿4个,每次拿5个都恰好多1个,这筐苹果共有多少个?7、一个400米的环形跑道,原来每隔5米插有一面彩旗,现在需要改成每隔8米插一面彩旗,不需要拨掉的彩旗有几面?计算练习(一)1)分解素因数18 32 45 51 758442 65 78 93 1381442)求最大公因数15和20 18和20 9和63 21和3551和34 24和56 121和44 45和27012、18和24 14、28和56 16、40和483)求最小公倍数12和7 15和30 12和18 30和45 7和9 21和35 17和68 60和1268、12和30 24、36和48 16、40和48。
小学数学数的整除练习题
小学数学数的整除练习题一、填空题1. 49除以7的商是____。
2. 判断以下数是否能被3整除:8 ____ 15 ____ 21 ____。
3. 28除以4的余数是____。
4. 60除以10的商是____。
5. 下面哪个数是3的倍数:35 ____ 59 ____ 84 ____。
6. 48除以6的余数是____。
7. 90除以5的商是____。
8. 15除以3的商是____。
9. 36除以9的余数是____。
10. 63除以7的商是____。
二、选择题1. 将24除以4,得到的商是:A. 5B. 6C. 82. 判断以下数是否能被7整除:21、35、49。
正确的是:A. 21B. 35C. 493. 下面哪个数是9的倍数:A. 12B. 27C. 424. 将56除以8,得到的商是:A. 2B. 6C. 75. 判断以下数是否能被5整除:25、30、37。
正确的是:A. 25B. 30C. 37三、计算题1. 计算以下式子的值:(12 + 18) ÷ 6 = ___。
2. 计算以下式子的值:(35 - 20) ÷ 5 = ___。
3. 计算以下式子的值:(48 + 72) ÷ 12 = ___。
4. 计算以下式子的值:(80 - 40) ÷ 8 = ___。
5. 计算以下式子的值:(63 + 14) ÷ 9 = ___。
四、应用题1. 小明有48个糖果,他想把它们平均分给6个朋友,每个人能得到几个糖果?2. 阿姨买了120个苹果,她想把它们装进12个纸箱,每个纸箱应放几个苹果?3. 小华有200元,他想买一本价值25元的书,还想买一本价值20元的书,他最多能买几本书?4. 一架飞机有180个座位,每排座位有9个,共有几排座位?5. 一共有84个学生,他们要坐在6个桌子旁边,每桌最多可坐几个学生?以上就是小学数学整除的练习题,希望对学生们的数学能力提升有所帮助。
数的整除
数的整除姓名1(例)、判断:354796能不能被4整除?能否被8整除?2、(1)写一个六位数,使它能被4整除。
(2)写一个六位数,使它能被8整除。
3(例)、在□里填上适当的数,使47587□能被25整除。
4、在□里填上适当的数,使47587□能被9整除。
5(例)、923□□后面填上什么数字,使它能被60整除?6、97247□□后面填上什么数字,使它能被45整除?7(例)、在□里填上适当的数字,使七位数□2002□□能同时被8、9、25整除。
8、已知一个五位数□392□能被55整除,所有符合条件的五位数有哪些?9(例)、小明妈妈去批发市场购了72条毛巾,回家后不小心把发票弄脏了,只能看到总计栏里金额为□54.9□元,请你算算这些毛巾共用了多少钱?10、一位马虎的采购员购买了72只热水瓶,洗衣服时把发票洗烂了,只能依稀看到:72只热水瓶共□63.5□元(□内数字看不清),请你帮他算一算,共用了多少钱?11(例)、右边这个17位数333……3□999……9(其中3和9各8个)能被7整除,那么中间方格内的数字是多少?12、右边这个41位数777……7□444……4(其中7和4各20个)能被7整除,那么中间方格内的数字是多少?13(例)、商店里有6箱货物,分别重18、19、20、22、25、27千克,两位顾客买去了其中的5箱,已知一个顾客买走的重量是另一个顾客的2倍,问商店里剩下的一箱货物重多少千克?14、有一水果店进了6袋水果,分别装着苹果和橘子。
重量分别是18、20、30、31、38、46千克,当天下午卖出一袋苹果,在剩下的5袋水果中,橘子是苹果的3倍,问水果店进了多少千克橘子?练习题(A组)1、在62的右边补上三位数,组成一个五位数使它能被3、4、5整除,求这样的最小五位数。
2、一个五位数各个数位上的数各不相同,它能被3、5、7、13整除,这样的五位数最小是几?3、一个五位数能被11整除,首位是7,其余数位上的数各不相同,这五位数最小是几?4、有一个六位数□2002□能被88整除,求这个六位数。
数的整除练习题
数的整除练习题 The manuscript was revised on the evening of 2021数的整除练习题一.填空题:1、在18,27,30,46,51,65,102这些数中,能被2整除的数是;能被5整除的数是 .2、如果数A=2×2×5,B=2×3×3,那么A和B的最小公倍数是;最大公因数是 .3、12的因数有 .4、30的素因数有 .5、能同时被2、5整除的最小三位数是 .6、已知A=2×2×5,则它的所有因数有个.7、两个连续奇数的和是24,那么这两个数的最小公倍数是 .8、最小的自然数是 .9、能被5整除的数,个位数字一定是.10、一个数最小的倍数是 .11、既是素数又是偶数的数是 .12、能同时被2、3、5整除的最小三位数是 .13、把18分解素因数 .14、如果a、b互素,那么这两个数的最小公倍数是 .15、在75,42,50,88,40中,既是2的倍数又能被5整除的数有 .二、选择题:1、下列算式中,被除数能被除数整除的是……………………………………()÷4 B25÷ C25÷25 ÷2、要使四位数324 能被4整除, 中可以有几个数可填………………………()3、下列关于1的叙述,不正确的是……………………………………()是最小的自然数既不是素数也不是合数是奇数的因数只有1个4、下列各式中整除的算式是……………………………………………()÷5=2……1 ÷3=95、 ÷4= 、50和75分别分解素因数,发现它们公共的素因数是………………()C2和5 D2、3和5三、解答题1、面积是90平方厘米,形状不同且长和宽都是整厘米数的长方形有多少种?2、三个连续自然数的乘积是120,求这三个数.3、已知两个素数的积是551,那么这两个素数的和是多少?4、老师将301本笔记本、215支铅笔和86块橡皮分给班里同学,每个同学得到的笔记本、铅笔和橡皮的数量都相同,那么,每个同学各拿到多少?5、有三根绳子,分别长24米,30米,48米,现要把它们截成长度相等的短绳子,每根短绳最长可以是几米这样的短绳有几根6、一筐苹果500多个,每次拿3个,每次拿4个,每次拿5个都恰好多1个,这筐苹果共有多少个?7、一个400米的环形跑道,原来每隔5米插有一面彩旗,现在需要改成每隔8米插一面彩旗,不需要拨掉的彩旗有几面?计算练习(一)1)分解素因数18 32 45 51 758442 65 78 93 1381442)求最大公因数15和20 18和20 9和63 21和3551和34 24和56 121和44 45和27012、18和24 14、28和56 16、40和483)求最小公倍数12和7 15和30 12和18 30和45 7和9 21和35 17和68 60和1268、12和30 24、36和48 16、40和48。
数的整除练习题
数的整除练习题一.填空题:1、在18,27,30,46,51,65,102这些数中,能被2整除的数是;能被5整除的数是.2、如果数A=2×2×5,B=2×3×3,那么A和B的最小公倍数是;最大公因数是.3、12的因数有.4、30的素因数有.5、能同时被2、5整除的最小三位数是.6、已知A=2×2×5,则它的所有因数有个.7、两个连续奇数的和是24,那么这两个数的最小公倍数是.8、最小的自然数是.9、能被5整除的数,个位数字一定是.10、一个数最小的倍数是.11、既是素数又是偶数的数是.12、能同时被2、3、5整除的最小三位数是.13、把18分解素因数.14、如果a、b互素,那么这两个数的最小公倍数是.15、在75,42,50,88,40中,既是2的倍数又能被5整除的数有.二、选择题:1、下列算式中,被除数能被除数整除的是……………………………………()A.25÷4 B25÷0.5 C25÷25 D0.4÷0.42、要使四位数324 能被4整除, 中可以有几个数可填………………………()A.4B.3C.2D.13、下列关于1的叙述,不正确的是……………………………………()A.1是最小的自然数B.1既不是素数也不是合数C.1是奇数D.1的因数只有1个4、下列各式中整除的算式是……………………………………………()A.11÷5=2……1B.27÷3=9C.18÷4=4.5D.2.4÷0.6=45、24、50和75分别分解素因数,发现它们公共的素因数是………………()A.2B.5 C2和5 D2、3和5三、解答题1、面积是90平方厘米,形状不同且长和宽都是整厘米数的长方形有多少种?2、三个连续自然数的乘积是120,求这三个数.3、已知两个素数的积是551,那么这两个素数的和是多少?4、老师将301本笔记本、215支铅笔和86块橡皮分给班里同学,每个同学得到的笔记本、铅笔和橡皮的数量都相同,那么,每个同学各拿到多少?5、有三根绳子,分别长24米,30米,48米,现要把它们截成长度相等的短绳子,每根短绳最长可以是几米?这样的短绳有几根?6、一筐苹果500多个,每次拿3个,每次拿4个,每次拿5个都恰好多1个,这筐苹果共有多少个?7、一个400米的环形跑道,原来每隔5米插有一面彩旗,现在需要改成每隔8米插一面彩旗,不需要拨掉的彩旗有几面?计算练习(一)1)分解素因数18 32 45 51 75 8442 65 78 93 138 1442)求最大公因数15和20 18和20 9和63 21和35 51和34 24和56 121和44 45和27012、18和24 14、28和56 16、40和483)求最小公倍数12和7 15和30 12和18 30和457和9 21和35 17和68 60和1268、12和30 24、36和48 16、40和48。
小学二年级数的整除性练习题
小学二年级数的整除性练习题练习一:判断整除关系将下列数按照整除关系填入括号中:12 ÷ 2 ( 2 ) 42 ÷ 5 ( 6 ) 35 ÷ 7 ( 5 )44 ÷ 4 ( 2 ) 24 ÷ 3 ( 4 ) 55 ÷ 5 ( 11 )15 ÷ 3 ( 5 ) 36 ÷ 6 ( 6 ) 27 ÷ 9 ( 3 )40 ÷ 4 ( 10 ) 33 ÷ 6 ( 5 ) 50 ÷ 10 ( 5 )练习二:找规律观察下列数字,填入括号中的数字,并写出规律:6 ÷ 2 = ( 3 ) 8 ÷ 2 = ( 4 ) 10 ÷ 2 = ( 5 )12 ÷ 2 = ( 6 ) 14 ÷ 2 = ( 7 ) 16 ÷ 2 = ( 8 )18 ÷ 2 = ( 9 ) 20 ÷ 2 = ( 10 ) 22 ÷ 2 = ( 11 )规律:_______ 每次数字增加___,商也增加___。
练习三:整除的判断判断下列数字中,哪些数能整除16,用√表示,不满足条件的用×表示。
16 √ 23 × 32 √ 40 √52 × 64 √ 79 × 80 √96 √ 98 × 112 √ 128 √练习四:计算题计算下面每组数字的商和余数:1) 23 ÷ 8商:_____ 余数:_____ 2) 36 ÷ 9商:_____ 余数:_____ 3) 48 ÷ 7商:_____ 余数:_____ 4) 57 ÷ 5商:_____ 余数:_____练习五:填空题找出下面的数中,能整除12的数:9 12 4 14 8 16 6练习六:综合运用小明有40颗糖果,他打算把这些糖果平均分给他的3个朋友。
小学三年级数的整除练习题
小学三年级数的整除练习题
一、填空题
1. 将16分成4等份,每份是 ________。
2. 18除以3等于 ________。
3. 20除以2等于 ________。
4. 24除以4等于 ________。
5. 将36分成6等份,每份是 ________。
二、选择题
1. 40除以5的商是:
A. 4
B. 8
C. 10
2. 48除以6的商是:
A. 6
B. 8
C. 12
3. 50除以10的商是:
A. 4
B. 5
C. 10
4. 54除以9的商是:
A. 5
B. 6
C. 9
三、解答题
1. 用列竖式计算:
647 ÷ 7 = _____
2. 请你判断下面的数是不是13的倍数,并用√或×表示:
a) 26 b) 39 c) 65 d) 78
3. 小华把80元均分成10等份,每份是多少钱?
4. 小明用手算出来80除以8的商是10,请你用竖式验证一下。
5. 将14分成2等份,每份是多少?
四、应用题
1. 一个班级有36名同学,他们排成6排,每排有几个同学?
2. 小明想把90个橙子平均分成6袋,每袋有多少个橙子?
3. 小华有24支铅笔,他要将它们平均分给3个朋友,每人可以得到几支铅笔?
4. 一个花坛里有36朵花,小红想将它们平均放在3个花盆里,每个花盆里有几朵花?
以上就是一份关于小学三年级数的整除练习题,希望可以帮助学生们巩固和提高自己的数学能力。
小学数学数的整除练习题
小学数学数的整除练习题一、填空题:(每空1分,共10分)1. 36 ÷ ____ = 92. 72 ÷ 8 = ____3. 48 ÷ ____ = 64. 54 ÷ 9 = ____5. 25 ÷ ____ = 5二、选择题:(每题2分,共20分)1. 下列哪个数是 12 的倍数?A. 36B. 28C. 45D. 192. 下列哪个数是 7 的倍数?A. 56B. 63C. 71D. 823. 现有 63 个苹果需要平均分给 7 个小朋友,每个小朋友可以拿到几个苹果?A. 9B. 7C. 6D. 84. 48 ÷ 6 = ?A. 9B. 7C. 8D. 65. 72 ÷ 9 = ?A. 6B. 7C. 8D. 9三、计算题:(每题5分,共20分)1. 将 90 打成 3 个相等的份,每份有多少?2. 小明有 36 本故事书,他要将这些书分成相等的三组,每组有多少本?3. 先展示两个数:42 和 6。
求这两个数的最大公约数(约数)是什么?4. 若一个数能同时被 4 和 9 整除,那这个数最小是多少?四、应用题:(每题10分,共30分)1. 小明有 63 颗糖,他想将这些糖分成若干组,每组有 7 颗糖并且糖的数量要尽可能最多。
请问小明最多可以分成几组?每组分别有多少颗糖?2. 一个糖果盒可以装 16 颗糖。
如果有 80 颗糖,那么至少需要多少个糖果盒才能完整地装下这些糖?3. 某班学生参加了一个校运动会,学生们排成几队进行比赛。
如果每队至少要有 6 人,并且要求学生总数为 48 人,那么这个班级最多能排几队?请按照题号进行解答。
小学数学数的小数整除练习题
小学数学数的小数整除练习题一、填空题:1. 60÷5=?2. 72÷8=?3. 85÷17=?4. 96÷4=?5. 0.6÷0.2=?6. 0.36÷0.06=?7.8.4÷12=? 8.9.3÷1.2=?二、选择题:1. 一个数 ÷ 4 的商等于 3,这个数是多少?A. 7B. 12C. 8D. 52. 一个数 ÷ 9 的商等于 7,这个数是多少?A. 49B. 63C. 16D. 563. 将 0.8÷2 得到的商用小数表示是?A. 0.4B. 2.5C. 40D. 0.044. 将5.6 ÷ 4 得到的商用小数表示是?A. 1.4B. 0.14C. 14D. 140三、计算题:1. 有一列共 48 个相同的数字,将它们平均分成 6 组,每组有几个数字?2. 一个长方形的周长是 40,其中一条边的长度是 8,求另一条边的长度。
3. 小明用一根长 18 厘米的绳子分别把三只小蚂蚁绑在一起,计算每只小蚂蚁所占的长度。
4. 一篮子中有48 个桃子,把它们平均分成6 盘,每盘有几个桃子?四、解决问题:某林地面积为 345 平方米,小明想把它分成 5 块相等的面积,每块面积是多少平方米?五、综合题:小华学校一个班级有 48 个学生,班级的平均体重是 30 千克,如果小华离开了班级,那么剩下的学生的平均体重是多少千克?。
三十以内除法练习题(整除)
三十以内除法练习题(整除)
1. 3 ÷ 1 = ___
2. 6 ÷ 2 = ___
3. 9 ÷ 3 = ___
4. 12 ÷ 4 = ___
5. 15 ÷ 5 = ___
6. 18 ÷ 6 = ___
7. 21 ÷ 7 = ___
8. 24 ÷ 8 = ___
9. 27 ÷ 9 = ___
10. 30 ÷ 10 = ___
解答:
1. 3 ÷ 1 = 3
2. 6 ÷ 2 = 3
3. 9 ÷ 3 = 3
4. 12 ÷ 4 = 3
5. 15 ÷ 5 = 3
6. 18 ÷ 6 = 3
7. 21 ÷ 7 = 3
8. 24 ÷ 8 = 3
9. 27 ÷ 9 = 3
10. 30 ÷ 10 = 3
解析:
这是一些简单的除法练习题,只考虑整除的情况。
题目中给出了一系列三十以内的数,让我们计算它们与1至10之间的整数的商。
由于这些数都可以被相应的整数整除,所以答案都是3。
这是因为三十以内的数除以1至10之间的整数时,都可以整除,没有余数。
这是因为三十以内的数可以被1至10之间的因数整除。
通过这些练习题,我们可以熟悉三十以内的数与1至10之间的整数的整除关系。
除法是数学中很重要的一部分,它可以帮助我们解决实际生活中的问题。
掌握除法的基本概念和技巧,对我们日常生活和学习中的数学运算非常有帮助。
数的整除(简单练习题及答案)
数的整除(简单练习题及答案)1、将分别写有数字3,7,8的三张卡片排成三位数abc ———,使它是43的倍数,求abc ———。
2、求被7除,余数是3的最小的三位数。
3、求被7除,余数是4的最大的四位数。
4、从1开始,依次写出1234…20032004,这个多位数除以9的余数是多少?5、一个两位数与109的乘积为四位数,它能被23整除且商是一位数,这个两位数最大等于。
6、已知六位数□9786□是99的整数倍,这个六位数除以99的商是。
7、判断15158能否被7、11或13整除。
8、六位数能被18整除,则两位数最大是多少?9、在所有五位数中,各位数字之和等于43,且能够被11整除的数有多少个?其中最大的一个五位数是多少?10、有72名学生共捐款□94.9□元,那么平均每人捐了多少元?11、已知五位数能被8和9整除,则x+y 是多少?12、一个六位数能被99整除,这个六位数最小是多少?13、在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除。
14、若四位数能被11整除,那么a 表示哪个数?15、(难度系数:四颗星)如果653整除a b 2347—————————————,则a + b= 。
分析与答案1、(387)方法一、三张卡片可以排成=6种可能,把这六种可能进行枚举,再一一被43除。
方法二、根据积的个位数字是由两个乘数的个位数字决定的性质。
当c=8时,分别用16、26 与43相乘,计算时可以先做估算,以便快速排除。
如26×43>20×43>800。
【点评】因为这个三位数的可能性只有6种,所以方法一所花的时间不会太长。
而方法二要求有较高的估算能力。
大家可以试试把方法一和方法二进行融合。
2、(101)方法一:找最小的三位数去除以7。
100÷7=14……2,3>2,3-2=1,∴100+1=101方法二:用字母表示N=7k+3,k为自然数。
∵N≥100,∴k≥(100-3)÷7=13 (6)【点评】方法一能够快速定位,但容易忽略题目的条件而出错;方法二是一般法,但要求学生有代数思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的整除练习题
1. 在自然数里,最小的质数是( ),最小的合数是( ),最小的奇数是( ),最小的自然数是( )。
2. 在1,2,9这三个数中,( )既是质数又是偶数,( )既是合数又是奇数,( )既不是质数也不是合数。
3. 10能被0.5( ),10能被5( )。
4. a ÷b=4(a ,b 都是非0自然数),a 是b 的( )数,b 是a 的( )数。
5. 自然数a 的最小因数是( ),最大因数是( ),最小倍数是( )。
6. 20以内不是偶数的合数有( ),不是奇数的质数有( )。
7. 同时是2,3,5的倍数的最小三位数是( ),最大三位数是( )。
8. 18和30的最大公因数是( ),最小公倍数是( )。
9. 102分解质因数是( )。
10. 数a 和数b 是互质数,它们的最小公倍数是最大公因数的( )倍。
11. 在1到10之间的十个数中,( )和( )这两个数既是合数又是互质数;
( )和( )这两个数既是奇数又是互质数;( )和( )这两个数既是质数又是互质数;( )和( )这两个数一个是质数,一个 是合数,它们是互质数。
12. 在6,9,15,32,45,60这六个数中,3的倍数的数是( );含有因
数5的数是( );既是2的倍数又是3的倍数的数是( );同时是3和5的倍数的数是( )。
13. 28的因数有( ),50以内13的倍数有( )。
14. 一位数中,最大的两个互质合数的最小公倍数是( )。
15. 在自然数中,最小的质数与最小的奇数的和是( ),最小的合数与最小的自然数的差是( )。
16. 256 的分数单位是( ),它减少( )个这样的分数单位是最小的质数,增加( )个这样的分数单位是最小的合数。
17. 493至少增加( )才是3的倍数,至少减少( )才有因数5,至少增加( )才是2的倍数。
18. 把4.87的小数点向左移动三位,再向右移动两位后,这个数是()。
19. 一个最简真分数的分子是质数,分子与分母的积是48,这个最简真分数是()。
20. A=2×2×3×7,B=2×2×2×7,A和B的最大公因数是(),最小公倍数是()。
21. 一个数的最大因数是36,这个数是(),把它分解质因数是()。
22. 三个质数的最小公倍数是231,这三个质数是(),(),()。
23. 从0,2,3,6,8和5这六个数中选四个数,组成的同时是2,3,5的倍数的最大四位数是()。
24. 三个连续自然数的和是21,这三个数的最小公倍数是()。
25. 用2,3,5去除都余1的数中,最小的数是()。