五年高考真题分类汇编第一章:集合与常用逻辑用语

合集下载

01第一章 集合与常用逻辑用语(解析版)

01第一章 集合与常用逻辑用语(解析版)

第一章 集合与常用逻辑用语答案高频考点高频考点一:集合的含义与表示1.【答案】D【详解】由于集合M 是由1,2,3三个元素构成,所以{}1,2,3M =.故选:D2.【答案】C【详解】{}24[2,2]A x x =≤=-,{}*1B x x N x A =∈-∈且, {1,2,3}B ∴=,故选:C3.【答案】C【详解】解:因为*6,3Z x N x ∈∈-,可得1,2,4,5,6,9x =; 所以66,3,2,1,3,63x∈-----. 故选:C高频考点二:集合间的基本关系1.【答案】B【详解】集合{|33}{0,1}A x N x=∈-=.对于:1A A -∈不对.对于:0B A ∈对;对于:3C A ∈不对;对于:2D A ∈不对.故选:B .2.【答案】A【详解】解:由题意得:{}{}13,0,1,2A x x x N =-<<∈=, 其真子集有:∅,{}0,{}1,{}2,{}0,1,{}0,2,{}1,2,共7个.故选:A .3.【答案】D【详解】解:因为{}3,4M =且M N ,所以3N ∈,且4N ∈,又()(){}30,N xx x a a =-+=∈R ∣,所以3x =和4x =为方程()()30x x a -+=的两个实数根,所以4a =-;故选:D高频考点三:集合的基本运算1.【答案】C【详解】由子集定义,可知B A ⊆.故选:C2.A.3.C4.【答案】A【详解】A B ⋃={}1,0,1,3-.故选:A.5.【答案】A【详解】由{}{}1,2,1,3A B ==得,A B ={}1.故选:A.6.【答案】B【详解】因为{}{}0,1,2,0,2,3A B ==,阴影部分表示的集合为(){}3U C A B =,故选:B7.【答案】(1){}|25=-≤≤A B x x ;(){}|20R A B x x =-≤<(2)1|4,12m m m ⎧⎫<--≤≤-⎨⎬⎩⎭或 (1)选条件①:(1)当1m =时,{}|05A x x =≤≤,{}2B x x =|-2≤≤{}|25A B x x ∴=-≤≤{}|0,5R A x x x =<>或(){}|20R A B x x ∴⋂=-≤<选条件②:此时集合{}2B x x =|-2≤≤与①相同,其余答案与①一致;(2)若A B A =,则A B ⊆当A =∅时,123m m ->+,解得4m <-当A ≠∅时,21123232m m m m -≤-⎧⎪-≤+⎨⎪+≤⎩,即1412m m m ⎧⎪≥-⎪≥-⎨⎪⎪≤-⎩,解得112m -≤≤-综上,实数m 的取值范围为1|412m m m ⎧⎫<--≤≤-⎨⎬⎩⎭或 高频考点高频考点一:充分条件与必要条件1.【答案】D【详解】A 选项,命题“存在R x ∈,20x +≤”的否命题是:“不存在R x ∈,20x +>”,所以A 选项错误.B 选项,()()260561x x x x --=+=-,1x =-或6x =,所以“1x =-”是“2560x x --=”的充分不必要条件,B 选项错误.C 选项,命题“存在R x ∈,使得210x x +-<”的否定是:“任意R x ∈,均有210x x +-≥”,所以C 选项错误.D 选项,命题“若sin sin x y ≠,则x y ≠”的逆否命题为:“若x y =,则sin sin x y =”,这是一个真命题,所以原命题也是真命题,所以D 选项正确.故选:D2.【答案】A【详解】解:“0<x<2”成立时,“2x <”一定成立,所以“0<x<2”成立是“2x <”成立的充分条件;“2x <”成立时,“0<x<2”不一定成立,所以“0<x<2”成立是“2x <”成立的非必要条件.所以“0<x <2”成立是“2x <”成立的充分不必要条件.故选:A3.【答案】B【详解】解:因为R x ∈,故由4x >可得4x >或4x <-,由4x >,可得4x >,故“4x >”是“4x >”必要不充分条件.故选:B.4.【答案】B【详解】因为q 是p 的必要而不充分条件所以(){|24}{|(2)0}x x x x x a -++<<⊂<,所以4a ->,即(4)a ∈∞-,-,答案选B .5.【答案】(1){|03}A B x x ⋃=≤≤(2)1[,)2+∞ (1)当1a =时,集合{|12}A x x =≤≤,因为{|03}B x x =≤≤,所以{|03}A B x x ⋃=≤≤;(2)若选择①,则由A ∪B =B ,得A B ⊆.当A =∅时,即211a a ->+,解得2a >,此时A B ⊆,符合题意;当A ≠∅时,即211a a -≤+,解得2a ≤,所以21013a a -≥⎧⎨+≤⎩,解得:122a ≤≤; 所以实数a 的取值范围是1[,)2+∞. 若选择②,则由“x A ∈“是“x B ∈”的充分不必要条件,得A ⫋B .当A =∅时,211a a ->+,解得2a >,此时A ⫋B ,符合题意;当A ≠∅时,211a a -≤+,解得2a ≤,所以21013a a -≥⎧⎨+≤⎩且等号不同时取,解得122a ≤≤; 所以实数a 的取值范围是1[,)2+∞. 高频考点二:全称量词与存在量词1.【答案】B【详解】全称命题的否定是特称命题,命题:“()1,x ∀∈+∞,210x ->”的否定是:()1,x ∃∈+∞,210x -≤.故选:B2.【答案】D【详解】命题p 为全称命题,该命题的否定为:p x ⌝∃∈R ,ln 10x x -+≥,故选:D.3.【答案】C【详解】因为特称命题的否定是全称命题,所以p 的否定是:0,20x x e x ∀>+-≤.故选:C4.【答案】(]-,0∞【详解】因为若对[]12,4x ∀∈,[]28,16x ∃∈,使得12()()f x g x ≥,所以min 1min 2()()f x g x ≥,因为2()23=-+f x x x 的对称轴为1x =,[]2,4x ∈所以min ()(2)f x f =,因为2()log g x x m =+,[]8,16x ∈,所以min ()(8)g x g =所以(2)(8)f g ≥,即33m ≥+所以0m ≤5.【答案】()2,-+∞【详解】因为()2f x x x a =++,所以()()()4f f x a af x +>可化为:()()()()()24f x a f x a a af x ++++>,整理得:()()()2222f x a f x a af x +++>,将()2f x x x a =++代入上式整理得:()()2223x x x x a +++>-, 令2t x x =+,[]1,1x ∈-,则1,24t ⎡⎤∈-⎢⎥⎣⎦,不等式()()2223x x x x a +++>-可化为: 23t t a +>-,1,24t ⎡⎤∈-⎢⎥⎣⎦, 所以存在实数[]1,1x ∈-,使得()()()4f f x a af x +>成立可转化成:存在1,24t ⎡⎤∈-⎢⎥⎣⎦,使得23t t a +>-成立, 由函数2y t t =+,1,24t ⎡⎤∈-⎢⎥⎣⎦可得:22226t t +≤+=, 所以63a >-,解得:2a >-.1.3集合与常用逻辑用语实战一、单选题1.【答案】C【详解】上课迟到的学生属于确定的互异的对象,所以能构成集合;小于π的正整数分别为1,2,3,所以能够组成集合;2022年高考数学试卷上的难题界定不明确,所以不能构成集合;任意给一个数都能判断是否为有理数,所以能构成集合.故选:C.2.【答案】C【详解】解:由N 表示自然数集,知0∈N ,故A 正确;由Q 表示有理数集,知12∈Q ,故B 正确; 由R 表示实数集,知2∈R ,故C 错;由Z 表示整数集,知1-∈Z ,故D 正确.故选:C3.【答案】B【详解】对于①:是集合与集合的关系,应该是{}{}00,1,2⊆,∴①不对;对于②:空集是任何集合的子集,{}1,2∅⊆,∴②对;对于③:∅是一个集合,是集合与集合的关系,{}0∅⊆,∴③不对;对于④:根据集合的无序性可知{}{}0,1,22,0,1=,∴④对;对于⑤:∅是空集,表示没有任何元素,应该是0∉∅,∴⑤不对;正确的是:②④.故选:B .4.【答案】C【详解】全称命题的否定为特称命题,∴“[]1,2x ∀∈,2320x x -+≤”的否定为“[]01,2x ∃∈,200320x x -+>”.故选:C.5.【答案】A【详解】解:因为集合{}{}2,0,1,0,1,2A B =-=,所以{}0,1A B =,故选:A.6.【答案】A【详解】由于不等式2230x x --<的解集为{}13x x -<<,则12x <<可推出13x ,反之不成立,所以“12x <<”是“2230x x --<”的充分而不必要条件.故选:A.7.【答案】C【详解】解:因为M N ,所以25x x =,解得0x =或5,故选:C8.【答案】C【详解】根据全量词命题的否定为存在量词命题,可得命题“()()0,ln 3sin x x x ∈+∞+>∀,”的否定为“()()0,ln 3sin x x x ∃∈+∞+≤,”. 故选: C.9.【答案】C合C 闭合,灯泡B 也亮,即“开关A 闭合”是“灯泡B 亮”的充分不必要条件;对于B ,灯泡B 亮当且仅当开关A 闭合,即“开关A 闭合”是“灯泡B 亮”的充要条件;对于C ,开关A 闭合,灯泡B 不一定亮,而开关A 不闭合,灯泡B 一定不亮,即“开关A 闭合”是“灯泡B 亮”的必要不充分条件;对于D ,开关A 闭合与否,只要开关C 闭合,灯泡B 就亮,“开关A 闭合”是“灯泡B 亮”的既不充分也不必要条件.故选:C二、多选题10.【答案】BD11.【答案】AB【详解】解:因为{}1,2,3,4A B =,所以{}1,4,a {}1,2,3,4,所以2a =或3a =;故选:AB12.【答案】AC【详解】A.原命题的否定为:x ∀∈R ,2104x x -+≥,是全称量词命题;因为2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,所以原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;C. 原命题为存在量词命题,所以其否定为全称量词命题,对于方程2220x x ++=,22840∆=-=-<,所以2220x x ++>,所以原命题为假命题,即其否定为真命题,所以该选项符合题意;.D. 原命题的否定为:对于任意实数x ,都有310x +≠,如1x =-时,310x +=,所以原命题的否定不是真命题,所以该选项不符合题意.故选:AC13.【答案】BC【详解】由13x ≤≤得219x ≤≤,因为命题为真,所以9a ≥,记为{|9}A a a =≥,因为要求命题为真的充分不必要条件,所以所选答案中a 的范围应为集合A 的真子集.故选:BC三、填空题14.【答案】0x >,0y >(答案不唯一).【详解】因为当0,0x y >>时,0xy >一定成立,而当0xy >时,可能0,0x y >>,可能0,0x y <<,所以0,0x y >>是0xy >的充分不必要条件,故答案为:0,0x y >>(答案不唯一)15.【答案】{}1,2,3,6【详解】解:因为6N 1a ∈-且N a ∈,所以11a -=或12a -=或13a -=或16a -=, 解得2a =或3a =或4a =或7a =,所以对应的61a -分别为6、3、2、1, 即{}6N N 1,2,3,61a a ⎧⎫∈∈=⎨⎬-⎩⎭∣; 故答案为:{}1,2,3,616.【答案】()3,-+∞【详解】若A B =∅是真命题,则3a ≤-,∴当A B =∅是假命题时,3a >-.故答案为:()3,-+∞.17.【答案】(,4]-∞-【详解】由题意得,“[1,2]x ∀∈-,230x x a -+≤”是真命题,则23a x x ≤-+对[1,2]x ∀∈-恒成立,在区间[]1,2-上,23x x -+的最小值为()()21314--+⨯-=-, 所以()2min 34a x x ≤-+=-,即a 的取值范围是(,4]-∞-.故答案为:(,4]-∞-。

集合与常用逻辑用语--2023高考真题分类汇编完整版

集合与常用逻辑用语--2023高考真题分类汇编完整版

集合与常用逻辑用语--高考真题汇编第一章第一节集合1.(2023全国甲卷理科1)设集合{}31,A x x k k ==+∈Z ,{}32,B x x k k ==+∈Z ,U 为整数集,则()U A B = ð()A.{}3,x x k k =∈ZB.{}31,x x k k =-∈ZC.{}32,x x k k =-∈Z D.∅【分析】根据整数集的分类,以及补集的运算即可解出.【解析】因为整数集{}{}{}3,3+1,3+2,x x k k x x k k x x k k ==∈=∈=∈Z Z Z Z ,=U Z ,所以(){}3,U A B x x k k ==∈Z ð.故选A .2.(2023全国甲卷文科1)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}2,5N =,则U N M = ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【分析】利用集合的交并补运算即可得解.【解析】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð.故选A.3.(2023全国乙卷理科2)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x =()A.()U M N ð B.U N Mð C.()U M N ð D.U M Nð【分析】由题意逐一考查所给的选项运算结果是否为{}2x x 即可.【解析】由题意可得{}2M N x x =< ,则(){}2U M N x x = ð,选项A 正确;{}1U M x x =ð,则{}1U N M x x =>- ð,选项B 错误;{}11M N x x =-<< ,则(){}11U M N x x x =- 或ð,选项C 错误;{}12U N x x x =-或ð,则{}12U M N x x x =< 或ð,选项D 错误;故选A.4.(2023全国乙卷文科2)设全集{}0,1,2,4,6,8U =,集合{}0,4,6M =,{}0,1,6N =,则U M N = ð()A.{}0,2,4,6,8 B.{}0,1,4,6,8 C.{}1,2,4,6,8 D.U【分析】由题意可得U N ð的值,然后计算U M N ð即可.【解析】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选A.5.(2023新高考I 卷1)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N =()A.{}2,1,0,1--B.{}0,1,2 C.{}2- D.{}2【解析】{}(][)260,23,N x x x =--≥=-∞-+∞ ,所以{}2M N =- ,故选C.6.(2023新高考II 卷2)2.设集合{}{}0,,1,2,22A a B a a =-=--,若A B ⊆,则a =()A.2 B.1 C.23D.1-【解析】因为A B ⊆,所以必有20a -=或220a -=,解得2a =或1a =.当2a =时,{}{}0,2,1,0,2A B =-=,不满足A B ⊆;当1a =时,{}{}0,1,1,1,0A B =-=-,符合题意.所以1a =.故选B.7.(2023北京卷1)已知集合{}20M x x =+,{}10N x x =-<,则M N = ()A.{}21x x -<B.{}21x x -<C.{}2x x - D.{}1x x <【分析】先化简集合,M N ,然后根据交集的定义计算.【解析】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣,根据交集的运算可知,{|21}M N x x =-≤< .故选A.8.(2023天津卷1)已知集合{}{}{}1,2,3,4,5,1,3,1,2,4U A B ===,则U B A = ð()A .{}1,3,5B .{}1,3C .{}1,2,4D .{}1,2,4,5【分析】对集合B 求补集,应用集合的并运算求结果;【解析】由{3,5}U B =ð,而{1,3}A =,所以{1,3,5}U B A = ð.故选A.第二节充分条件与必要条件、全称量词与存在量词1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023新高考I 卷7)已记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:n S n ⎧⎫⎨⎬⎩⎭为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解析】{}n a 为等差数列,设首项为1a 公差为d ,则()112n n n S na d -=+,111222n S n d d a d n a n -=+=+-,所以n S n ⎧⎫⎨⎬⎩⎭为等差数列,所以甲是乙的充分条件.n S n ⎧⎫⎨⎬⎩⎭为等差数列,即()()()1111111n n n n n n nS n S S S na S n n n n n n +++-+--==+++为常数,设为t ,即()11n nna S t n n +-=+,故()11n n S na tn n +=-+,()()()1112n n S n a t n n n -=---≥,两式相减得()1112n n n n n a S S na n a tn -+=-=---,12n n a a t +-=为常数,对1n =也成立,所以{}n a 为等差数列,所以甲是乙的必要条件.所以,甲是乙的充要条件,故选C.3.(2023北京卷8)若0xy ≠,则“0x y +=”是“2x yy x+=-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】解法一:证明充分性可由0x y +=得到x y =-,代入x yy x+化简即可,证明必要性可由2x y y x +=-去分母,再用完全平方公式即可;解法二:由x y y x+通分后用配凑法得到完全平方公式,证明充分性可把0x y +=代入即可;证明必要性把2x yy x+=-代入,解方程即可.【解析】解法一:充分性:因为0xy ≠,且0x y +=,所以x y =-,所以112x y y y y x y y-+=+=--=--,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.解法二:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy+-+++--+===-,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-,所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.4.(2023天津卷2)“22a b =”是“222a b ab +=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【解析】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立;由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立;所以22a b =是222a b ab +=的必要不充分条件.故选B.。

高考数学《1.1集合与常用逻辑用语》

高考数学《1.1集合与常用逻辑用语》
C
关闭
关闭
解析 答案
第一章
1.1 集合的概念与运算
知识体系
知识梳理
核心考点
-13-
知识梳理 双基自测 自测点评
12345
5.(教材例题改编P8例5)设集合A={x|(x+1)·(x-2)<0},集合 B={x|1<x<3},则A∩B=( )
A.(-1,3) B.(-1,0) C.(1,2) D.(2,3)
A.{1,2,3} B.{1,2,4}
C.{1,3,4} D.{2,3,4}
解析 ∵A={1,4},B={2,4}, ∴A∩B={4}. 又U={x∈N*|x≤4}={1,2,3,4}, A∴∁U(A∩B)={1,2,3}
关闭
关闭
解析 答案
第一章
1.1 集合的概念与运算
知识体系
知识梳理
核心考点
-12-
12345
2.集合间的基本关系
关系 自然语言
符号语言
集合 A 中所有元素都在 子集 集合 B 中(即若 x∈A,则 x A⊆B(或B⊇A)
∈B)
真子 集
相等
集合 A 是集合 B 的子集, 且集合 B 中至少有一个 元素不在集合 A 中
集合 A,B 中元素相同或 集合 A,B 互为子集
A⫋B(或B⫌A) A=B
-5-
Venn 图 或
第一章
1.1 集合的概念与运算
知识体系
知识梳理
核心考点
-6-
知识梳理 双基自测 自测点评
12345
3.集合的运算
集合的并集
集合的交集
集合的补集
图形
符号
A∪B
={x|x∈A或x∈B}

2024年高考数学真题分类汇编01:集合与常用逻辑用语

2024年高考数学真题分类汇编01:集合与常用逻辑用语

A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
二、填空题ห้องสมุดไป่ตู้
10.(2024·上海)设全集U 1, 2,3, 4,5 ,集合 A 2, 4 ,则 A

1.A
参考答案:
【分析】化简集合 A ,由交集的概念即可得解.
【解析】因为 A x | 3 5 x 3 5 , B 3, 1, 0, 2,3 ,且注意到1 3 5 2 ,
【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件. 【解析】根据立方的性质和指数函数的性质, a3 b3 和 3a 3b 都当且仅当 a b ,所以二者 互为充要条件. 故选:C.
10. 1, 3, 5
【分析】根据补集的定义可求 A .
【解析】由题设有 A 1,3,5 ,
b

a
b
”的(
)条件.
A.必要而不充分条件
B.充分而不必要条件
C.充分且必要条件
D.既不充分也不必要条件
8.(2024·天津)集合 A 1, 2,3, 4 , B 2,3, 4,5 ,则 A B ( )
A.1, 2,3, 4
B.2,3, 4
C.2, 4
D. 1
9.(2024·天津)设 a,b R ,则“ a3 b3 ”是“ 3a 3b ”的( )
【解析】因为 A 1, 2,3, 4,5,9, B x x A ,所以 B 1, 4,9,16, 25,81 ,
则 A B 1, 4,9 , ðA A B 2, 3, 5
故选:D
5.C
【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.
【解析】对 A,当 a b 时,则 a b 0 ,

高考数学(文)复习五年高考真题分类汇编集合与常用逻辑用语(2019高考复习资料)

高考数学(文)复习五年高考真题分类汇编集合与常用逻辑用语(2019高考复习资料)
第一章 集合与常用逻辑用语
第 1 节 集合
题型 1 集合的基本概念 —— 暂无 题型 2 集合间的基本关系 —— 暂无 题型 3 集合的运算
1. ( 2013 山东文 2) 已知集合 A ,B 均为全集 U 1,2,3,4 的子集, 且 eU A B B 1,2 ,则 A eU B ( ) .
4,
A. 3
C.5
D.7
25.( 2014 福建文 1)若集合 P x 2≤ x 4 , Q x x≥ 3 , 则 P Q 等于(

A. x 3≤ x 4
B. x 3 x 4
C. x 2≤ x 3
D. x 2≤ x≤ 3
26.( 2014 广东文 1)已知集合 M 2,3,4 , N 0,2,3,5 ,则 M N ( ) .
D. 16
解析 A B 1, 3,其中子集有 , 1 , 3 , 1,3 共 4 个 .故选 C.
8. (2013 天津文 1)已知集合 A x R x , 2 , B x R x? 1 , 则 A B ( ).
A. ( ,2]
B. 1,2
C. 2,2
8.分析 先化简集合 A ,再借助数轴进行集合的交集运算 .
B. 4
C. 3,4
D.
1.分析 利用所给条件计算出 A 和 eUB,进而求交集 .
解析: 因为 U 1,2,3,4 , 饀U A B 4 ,所以 A B 1,2,3 .又因为 B 1,2 , 所以 3 A 1,2,3 .又 饀U B 3,4 ,所以 A 饀U B 3 .故选 A.
2. (2013 安徽文 2) 已知 A x x 1>0 , B 2, 1,0,1 ,则 CR A B ( ) .
B.

集合与常用逻辑用语(解析版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

集合与常用逻辑用语(解析版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

专题01集合与常用逻辑用语1.【2022年全国甲卷】设集合={−2,−1,0,1,2},=b0≤<∩=()A.0,1,2B.{−2,−1,0}C.{0,1}D.{1,2}【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因为=−2,−1,0,1,2,=b0≤<∩=0,1,2.故选:A.2.【2022年全国甲卷】设全集={−2,−1,0,1,2,3},集合={−1,2},=b2−4+3= 0,则∁(∪p=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}【答案】D【解析】【分析】解方程求出集合B,再由集合的运算即可得解.【详解】由题意,J{U2−4+3=0}={1,3},所以∪={−1,1,2,3},所以∁U(∪p={−2,0}.故选:D.3.【2022年全国乙卷】集合=2,4,6,8,10,=−1<<6,则∩=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因为=2,4,6,8,10,=U−1<<6,所以∩=2,4.故选:A.4.【2022年全国乙卷】设全集={1,2,3,4,5},集合M满足∁={1,3},则()A.2∈B.3∈C.4∉D.5∉【答案】A【分析】先写出集合,然后逐项验证即可【详解】由题知={2,4,5},对比选项知,A 正确,BCD 错误故选:A5.【2022年新高考1卷】若集合={b <4}, ={b3≥1},则∩=()A .{0≤<2}B .≤<2C .{3≤<16}D .≤<16【答案】D 【解析】【分析】求出集合s 后可求∩.【详解】={b0≤<16},={b ≥13},故∩={U 13≤<16},故选:D6.【2022年新高考2卷】已知集合={−1,1,2,4},=|−1|≤1,则∩=()A .{−1,2}B .{1,2}C .{1,4}D .{−1,4}【答案】B 【解析】【分析】求出集合后可求∩.【详解】={U0≤≤2},故∩={1,2},故选:B.7.【2021年甲卷文科】设集合{}{}1,3,5,7,9,27M N x x ==>,则M N = ()A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B 【解析】【分析】求出集合N 后可求M N ⋂.【详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=,8.【2021年甲卷理科】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B 【解析】【分析】根据交集定义运算即可【详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.9.【2021年乙卷文科】已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=ð()A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A 【解析】【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:{}1,2,3,4M N =U ,则(){}5U M N = ð.故选:A.10.【2021年乙卷文科】已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是()A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A 【解析】【分析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于sin 0=0,所以命题p 为真命题;由于x y e =在R 上为增函数,0x ≥,所以||01x e e ≥=,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .11.【2021年乙卷理科】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A .∅B .SC .TD .Z【答案】C 【解析】【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.12.【2021年新高考1卷】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B 【解析】【分析】利用交集的定义可求A B .【详解】由题设有{}2,3A B ⋂=,故选:B .13.【2021年新高考2卷】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B 【解析】【分析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.14.【2020年新课标1卷理科】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A .–4B .–2C .2D .4【答案】B 【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-.故选:B.【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.15.【2020年新课标1卷文科】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ()A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = ,故选:D.本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.16.【2020年新课标2卷理科】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.17.【2020年新课标2卷文科】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D 【解析】【分析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可.【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =- .故选:D.【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.18.【2020年新课标3卷理科】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B中元素的个数为()A .2B .3C .4D .6【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.19.【2020年新课标3卷文科】已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为()A .2B .3C .4D .5【答案】B 【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B 【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.20.【2020年新高考1卷(山东卷)】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C 【解析】【分析】根据集合并集概念求解.【详解】[1,3](2,4)[1,4)A B ==U U【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.21.【2020年新高考2卷(海南卷)】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =()A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C 【解析】【分析】根据集合交集的运算可直接得到结果.【详解】因为A{2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B = 故选:C 【点睛】本题考查的是集合交集的运算,较简单.22.【2019年新课标1卷理科】已知集合{}}242{60M x x N x x x =-<<=--<,,则M N⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.23.【2019年新课标1卷理科】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165cmB .175cmC .185cmD .190cm【答案】B 【解析】【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至肚脐的长为x cm ,肚脐至腿根的长为y cm ,则2626105x x y +=+42.07, 5.15x cm y cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B .【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.24.【2019年新课标1卷文科】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C 【解析】【分析】先求U A ð,再求U B A ð.【详解】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C .【点睛】本题主要考查交集、补集的运算.渗透了直观想象素养.使用补集思想得出答案.25.【2019年新课标2卷理科】设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)【答案】A 【解析】【分析】先求出集合A ,再求出交集.【详解】由题意得,{}{}23,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目.26.【2019年新课标2卷文科】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅【答案】C 【解析】【分析】本题借助于数轴,根据交集的定义可得.【详解】由题知,(1,2)A B =- ,故选C .【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.27.【2019年新课标2卷文科】在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙【答案】A 【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.28.【2019年新课标3卷理科】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B = A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】先求出集合B 再求出交集.【详解】21,x ≤∴ 11x -≤≤,∴{}11B x x =-≤≤,则{}1,0,1A B =- ,故选A .【点睛】本题考查了集合交集的求法,是基础题.29.【2019年新课标3卷文科】记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+ ;命题:(,),212q x y D x y ∀∈+ .给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是A .①③B .①②C .②③D .③④【答案】A【解析】【分析】根据题意可画出平面区域再结合命题可判断出真命题.【详解】如图,平面区域D 为阴影部分,由2,6y x x y =⎧⎨+=⎩得2,4x y =⎧⎨=⎩即A (2,4),直线29x y +=与直线212x y +=均过区域D ,则p 真q 假,有p ⌝假q ⌝真,所以①③真②④假.故选A .【点睛】本题将线性规划和不等式,命题判断综合到一起,解题关键在于充分利用取值验证的方法进行判断.30.【2018年新课标1卷理科】已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥【答案】B【解析】【详解】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.详解:解不等式220x x -->得12x x <->或,所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.31.【2018年新课标1卷文科】已知集合{}02A =,,{}21012B =--,,,,,则A B = A .{}02,B .{}12,C .{}0D .{}21012--,,,,【答案】A【解析】【分析】分析:利用集合的交集中元素的特征,结合题中所给的集合中的元素,求得集合A B 中的元素,最后求得结果.【详解】详解:根据集合交集中元素的特征,可以求得{}0,2A B =I ,故选A.点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.32.【2018年新课标2卷理科】已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】【分析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ 23,x ∴≤x Z∈ 1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【点睛】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.33.【2018年新课标2卷文科】已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B = A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C【解析】【详解】分析:根据集合{1,3,5,7},{2,3,4,5}A B ==可直接求解{3,5}A B = .详解:{1,3,5,7},{2,3,4,5}A B == ,{}3,5A B ∴⋂=,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算.34.【2018年新课标3卷理科】已知集合{}|10A x x =-≥,{}012B =,,,则A B = A .{}0B .{}1C .{}12,D .{}012,,【答案】C【解析】【详解】分析:由题意先解出集合A,进而得到结果.详解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.点睛:本题主要考查交集的运算,属于基础题.35.【2018年新课标3卷文科】已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B = A .{0}B .{1}C .{1,2}D .{0,1,2}【答案】C【解析】【分析】由题意先解出集合A,进而得到结果.【详解】解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.【点睛】本题主要考查交集的运算,属于基础题.36.【2020年新课标2卷理科】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.。

2025年新高考数学专题 集合与常用逻辑用语 含解析

2025年新高考数学专题 集合与常用逻辑用语 含解析

专题01集合与常用逻辑用语易错点一:对集合表示方法的理解存在偏差(集合运算问题两种解题方法)方法一:列举法列举法就是通过枚举集合中的所有元素,然后根据集合基本运算的定义求解的方法。

其解题具体步骤如下:第一步定元素:确定已知集合中的所有元素,利用列举法或画数轴写出所有元素或范围;第二步定运算:利用常见不等式或等式解未知集合;第三步:定结果。

方法二:赋值法高考对集合的基本运算的考查以选择题为主,所以我们可以利用特值法解题,即根据选项之间的明显差异,选择一些特殊元素进行检验排除,从而得到正确选项.其解题具体步骤如下:第一步:辨差异:分析各选项,辨别各选项的差异;第二步:定特殊:根据选项的差异,选定一些特殊的元素;第三步:验排除:将特殊的元素代入进行验证,排除干扰项;第四步:定结果:根据排除的结果确定正确的选项。

易错提醒:对集合表示法的理解先观察研究对象(丨前),研究对象是点集还是数集,故要对本质进行剖析,需要明确集合中的代表元素类型及代表元素的含义.若A B ⊆,即A 是B 的子集,所以A B A = ,所以(4)正确;根据元素与集合的关系可知{}∅∈∅正确,也即(5)正确.所以正确的个数是4.故选:A易错点二:忽视(漏)空集导致错误(集合中的含参问题)1.利用两个集合之间的关系确定参数的取值范围解题时务必注意:由于∅是任意集合的子集,若已知非空集合B,集合A 满足A ⊆B 或A ⊂B,则对集合A 分两种情中的含参问题况讨论:(1)当A=∅时,若集合A 是以不等式为载体的集合,则该不等式无解;(2)当A≠∅时,要利用子集的概念把子集关系转化为两个集合对应区间的端点值的大小关系,从而构造关于参数的不等式(组)求解.2.利用两集合的运算求参数的值或取值范围解决此类问题的步骤一般为:第一步:化简所给集合;第二步:用数轴表示所给集合;第三步:根据集合端点间关系列出不等式(组);(4)解不等式(组);第四步:检验,通过返回代入验证端点是否能够取到.第五步:解决此类问题多利用数形结合的方法,结合数轴或Venn 图进行求解.易错提醒:勿忘空集和集合本身.由于∅是任意集合的子集,是任何集合的真子集,任何集合的本身是该集合的子集,所以在进行列举时千万不要忘记。

高考数学五年(2019-2023)年高考真题分项汇编解析—集合与常用逻辑用语

高考数学五年(2019-2023)年高考真题分项汇编解析—集合与常用逻辑用语

高考数学五年(2019-2023)年高考真题分项汇编解析—集合与常用逻辑用语考点一元素与集合关系的判断1.(2023•上海)已知{1P =,2},{2Q =,3},若{|M x x P =∈,}x Q ∉,则(M =)A .{1}B .{2}C .{3}D .{1,2,3}【解析】{1P = ,2},{2Q =,3},{|M x x P =∈,}x Q ∉,{1}M ∴=.故选:A .考点二集合的包含关系判断及应用2.(2023•新高考Ⅱ)设集合{0A =,}a -,{1B =,2a -,22}a -,若A B ⊆,则(a =)A .2B .1C .23D .1-【解析】依题意,20a -=或220a -=,当20a -=时,解得2a =,此时{0A =,2}-,{1B =,0,2},不符合题意;当220a -=时,解得1a =,此时{0A =,1}-,{1B =,1-,0},符合题意.故选:B .3.(2021•上海)已知集合{|1A x x =>-,}x R ∈,2{|20B x x x =-- ,}x R ∈,则下列关系中,正确的是()A .A B⊆B .R RA B⊆痧C .A B =∅ D .A B R=【解析】已知集合{|1A x x =>-,}x R ∈,2{|20B x x x =--,}x R ∈,解得{|2B x x = 或1x - ,}x R ∈,{|1R A x x =- ð,}x R ∈,{|12}R B x x =-<<ð;则A B R = ,{|2}A B x x = ,故选:D .考点三并集及其运算4.(2022•浙江)设集合{1A =,2},{2B =,4,6},则(A B = )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}【解析】{1A = ,2},{2B =,4,6},{1A B ∴= ,2,4,6},故选:D .5.(2020•山东)设集合{|13}A x x = ,{|24}B x x =<<,则(A B = )A .{|23}x x < B .{|23}x x C .{|14}x x < D .{|14}x x <<【解析】 集合{|13}A x x = ,{|24}B x x =<<,{|14}A B x x ∴=< .故选:C .考点四交集及其运算6.(2023•新高考Ⅰ)已知集合{2M =-,1-,0,1,2},2{|60}N x x x =--,则(M N = )A .{2-,1-,0,1}B .{0,1,2}C .{2}-D .{2}【解析】260x x -- ,(3)(2)0x x ∴-+,3x ∴ 或2x - ,(N =-∞,2][3- ,)+∞,则{2}M N =- .故选:C .7.(2022•上海)若集合[1A =-,2),B Z =,则(A B = )A .{2-,1-,0,1}B .{1-,0,1}C .{1-,0}D .{1}-【解析】[1A =- ,2),B Z =,{1A B ∴=- ,0,1},故选:B .8.(2022•新高考Ⅰ)若集合{|4}M x =<,{|31}N x x = ,则(M N = )A .{|02}x x < B .1{|2}3x x < C .{|316}x x < D .1{|16}3x x <4<,得016x < ,{|4}{|016}M x x x ∴==< ,由31x ,得13x ,1{|31}{|}3N x x x x ∴== ,11{|016}{|}{|16}33M N x x x x x x ∴=<=< .故选:D .9.(2022•新高考Ⅱ)已知集合{1A =-,1,2,4},{||1|1}B x x =- ,则(A B = )A .{1-,2}B .{1,2}C .{1,4}D .{1-,4}【解析】|1|1x - ,解得:02x,∴集合{|02}B x x = {1A B ∴= ,2}.故选:B .10.(2021•新高考Ⅰ)设集合{|24}A x x =-<<,{2B =,3,4,5},则(A B = )A .{2,3,4}B .{3,4}C .{2,3}D .{2}【解析】 集合{|24}A x x =-<<,{2B =,3,4,5},{2A B∴=,3}.故选:C.11.(2021•浙江)设集合{|1}A x x= ,{|12}B x x=-<<,则(A B=) A.{|1}x x>-B.{|1}x x C.{|11}x x-<<D.{|12}x x<【解析】因为集合{|1}A x x= ,{|12}B x x=-<<,所以{|12}A B x x=<.故选:D.12.(2020•浙江)已知集合{|14}P x x=<<,{|23}Q x x=<<,则(P Q=) A.{|12}x x< B.{|23}x x<<C.{|34}x x<D.{|14}x x<<【解析】集合{|14}P x x=<<,{|23}Q x x=<<,则{|23}P Q x x=<<.故选:B.13.(2021•上海)已知{|21}A x x= ,{1B=-,0,1},则A B=.【解析】因为1{|21}{|}2A x x x x==,{1B=-,0,1},所以{1A B=-,0}.故答案为:{1-,0}.14.(2020•上海)已知集合{1A=,2,4},集合{2B=,4,5},则A B=.【解析】因为{1A=,2,4},{2B=,4,5},则{2A B=,4}.故答案为:{2,4}.15.(2019•上海)已知集合(,3)A=-∞,(2,)B=+∞,则A B=.【解析】根据交集的概念可得(2,3)A B=.故答案为:(2,3).考点五交、并、补集的混合运算16.(2021•新高考Ⅱ)若全集{1U =,2,3,4,5,6},集合{1A =,3,6},{2B =,3,4},则(U A B = ð)A .{3}B .{1,6}C .{5,6}D .{1,3}【解析】因为全集{1U =,2,3,4,5,6},集合{1A =,3,6},{2B =,3,4},所以{1U B =ð,5,6},故{1U A B = ð,6}.故选:B .17.(2019•浙江)已知全集{1U =-,0,1,2,3},集合{0A =,1,2},{1B =-,0,1},则()(U A B = ð)A .{1}-B .{0,1}C .{1-,2,3}D .{1-,0,1,3}【解析】{1U A =- ð,3},()U A B ∴ ð{1=-,3}{1-⋂,0,1}{1}=-故选:A .考点六命题的真假判断与应用18.(2020•浙江)设集合S ,T ,*S N ⊆,*T N ⊆,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y S ∈,若x y ≠,则xy T ∈;②对于任意的x ,y T ∈,若x y <,则yS x∈.下列命题正确的是()A .若S 有4个元素,则S T 有7个元素B .若S 有4个元素,则S T 有6个元素C .若S 有3个元素,则S T 有5个元素D .若S 有3个元素,则S T 有4个元素【解析】取:{1S =,2,4},则{2T =,4,8},{1S T = ,2,4,8},4个元素,排除C .{2S =,4,8},则{8T =,16,32},{2S T = ,4,8,16,32},5个元素,排除D ;{2S =,4,8,16}则{8T =,16,32,64,128},{2S T = ,4,8,16,32,64,128},7个元素,排除B ;故选:A .考点七充分条件与必要条件19.(2020•上海)命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a );命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =,则下列说法正确的是()A .只有1q 是p 的充分条件B .只有2q 是p 的充分条件C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件【解析】对于命题1q :当()f x 单调递减且()0f x >恒成立时,当0a >时,此时x a x +>,又因为()f x 单调递减,所以()()f x a f x +<又因为()0f x >恒成立时,所以()()f x f x f <+(a ),所以()()f x a f x f +<+(a ),所以命题1q ⇒命题p ,对于命题2q :当()f x 单调递增,存在00x <使得0()0f x =,当00a x =<时,此时x a x +<,f (a )0()0f x ==,又因为()f x 单调递增,所以()()f x a f x +<,所以()()f x a f x f +<+(a ),所以命题2p ⇒命题p ,所以1q ,2q 都是p 的充分条件,故选:C .20.(2020•浙江)已知空间中不过同一点的三条直线l ,m ,n .则“l ,m ,n 共面”是“l ,m ,n 两两相交”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】空间中不过同一点的三条直线m ,n ,l ,若m ,n ,l 在同一平面,则m ,n ,l 相交或m ,n ,l 有两个平行,另一直线与之相交,或三条直线两两平行.而若“m ,n ,l 两两相交”,则“m ,n ,l 在同一平面”成立.故m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的必要不充分条件,故选:B .21.(2019•浙江)若0a >,0b >,则“4a b +”是“4ab ”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】0a > ,0b >,4a b ∴+,2∴4ab ∴,即44a b ab +⇒ ,若4a =,14b =,则14ab =,但1444a b +=+>,即4ab推不出4a b + ,4a b ∴+ 是4ab 的充分不必要条件故选:A .22.(2019•上海)已知a 、b R ∈,则“22a b >”是“||||a b >”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【解析】22a b > 等价,22||||a b >,得“||||a b >”,∴“22a b >”是“||||a b >”的充要条件,故选:C .。

第一章 集合与常用逻辑用语知识点总结及高考原题

第一章 集合与常用逻辑用语知识点总结及高考原题

集合(必修1)1、常用数集及其表示方法(1)自然数集N (又称非负整数集); (2)正整数集+N N 或*;(3)整数集z ; (4)有理数集Q :包含分数、整数、有限小数等; (5)实数集R :全体实数的集合; (6)空集φ:不含任何元素的集合2、元素与集合的关系:属于∈,不属于∉ (例如:a 是集合A 的元素,就说a 属于A ,记作A a ∈)3、集合与集合的关系:子集、真子集、相等 (1)子集的概念如果集合A 中的每一个元素都是集合B 中的元素,那么集合A 叫做集合B 的子集(如图1),记作B A ⊂或A B ⊃.若集合P 中存在元素不是集合Q 的元素,那么P 不包含于Q ,记作Q P ⊄ (2)真子集的概念若集合A 是集合B 的子集,且B 中至少有一个元素不属于A ,那么集合A 叫做 集合B 的真子集(如图2). A ≠⊂B 或B ≠⊃A .(3)集合相等:若集合A 中的元素与集合B 中的元素完全相同则称集合A 等于集合B,记作A=B.B A A B B A =⇔⊆⊆,4、重要结论(1)传递性:若B A ⊆,C B ⊆,则C A ⊆(2)空Ф集是任意集合的子集,是任意非空集合的真子集.5、含有n 个元素的集合,它的子集个数共有n2 个;真子集有12-n个;非空子集有12-n 个(即不计空集);非空的真子集有22-n个.6、集合的运算:交集、并集、补集(1)一般地,由所有属于A 又属于B 的元素所组成的集合,叫做A,B 的交集.记作A ∩B (读作"A 交B "),即A ∩B={x |x ∈A ,且x ∈B }.(2)一般地,对于给定的两个集合A,B 把它们所有的元素并在一起所组成的集合,叫做A,B 的并集.记作A ∪B (读作"A 并B "),即A ∪B={x |x ∈A ,或x ∈B }. (3)若A 是全集U 的子集,由U 中不属于A 的元素构成的集合, 叫做A 在U 中的补集,记作A C U, {}A ,U |A C U ∉∈=x x x 且注:讨论集合的情况时,不要发遗忘了φ=A 的情况。

高考数学总复习5年高考真题分类汇编()第一章集合与常

高考数学总复习5年高考真题分类汇编()第一章集合与常

畅游学海敢搏风浪誓教金榜题名。

决战高考,改变命运。

凌风破浪击长空,擎天揽日跃龙门五年高考真题分类汇编:集合与常用逻辑用语一. 选择题1.(2015四川高考,理1)设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =( )(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x << (){|23}D x x <<【解析】选A {|12},{|13},{|13}A x x B x x AB x x =-<<=<<∴=-<<,选A.2.(2015广东高考,理1)若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =( )A .∅B .{}1,4--C .{}0D .{}1,4 【解析】选A 因为()(){}{}|4104,1M x x x =++==--,()(){}{}|4101,4N x x x =--==,所以MN =∅,故选A .3.( 2015新课标全国卷1,理3)设命题p :2,2nn N n ∃∈>,则p ⌝为( )(A )2,2nn N n ∀∈> (B )2,2nn N n ∃∈≤ (C )2,2nn N n ∀∈≤ (D )2,=2nn N n ∃∈ 【解析】选C p ⌝:2,2nn N n ∀∈≤,故选C.4.( 2015陕西高考,理1)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A【解析】选A {}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1MN =,故选A .5.(2015湖北高考,理5)设12,,,n a a a ∈R ,3n ≥. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【解析】A6.(2015天津高考,理4)设x R ∈ ,则“21x -< ”是“220x x +-> ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件【解析】选A 2112113x x x -<⇔-<-<⇔<<,2202x x x +->⇔<-或1x >,所以 “21x -< ”是“220x x +-> ”的充分不必要条件,故选A. 7.(2015重庆高考,理1)已知集合A ={}1,2,3,B ={}2,3,则( )A 、A =B B 、A ⋂B =∅C 、A ØBD 、B ØA 【解析】选D 由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D .8.(2015福建高考,理1)若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B等于 ( )A .{}1-B .{}1C .{}1,1-D .φ 【解析】选C 由已知得{},1,,1A i i =--,故AB ={}1,1-,故选C .9.(2015重庆高考,理4)“1x >”是“12log (2)0x +<”的( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件 【答案】B【解析】选B 12log (2)0211x x x +<⇔+>⇔>-,因此选B .10.(2015全国卷新课标Ⅱ,理1)已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则AB =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2 【解析】选A 由已知得{}21B x x =-<<,故{}1,0AB =-,故选A .11. (2015天津高考,理1)已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U AB =ð( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8 【解析】选A {2,5,8}U B =ð,所以{2,5}U AB =ð,故选A.12.(2015安徽高考,理3)设:12,:21xp x q <<>,则p 是q 成立的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件13.(2015山东高考,理1)已知集合{}2430A x x x =-+<,{}24B x x =<<,则A B =( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) 【解析】选C .因为{}{}243013A x x x x x =-+<=<<, 所以{}{}{}132423AB x x x x x x =<<<<=<<.故选:C.14.(2015浙江高考,理4)命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( ) A. **,()n N f n N ∀∈∈且()f n n > B. **,()n N f n N ∀∈∈或()f n n > C. **00,()n N f n N ∃∈∈且00()f n n > D. **00,()n N f n N ∃∈∈或00()f n n > 【解析】选D 根据全称命题的否定是特称命题,可知选D.15.(2015浙江高考,理1)已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =ð( )A.[0,1)B. (0,2]C. (1,2)D. [1,2] 【解析】选C 由题意得,)2,0(=P C R ,∴()(1,2)R P Q =ð,故选C.16.(2015湖南高考,理2).设A ,B 是两个集合,则“A B A =”是“A B ⊆”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【解析】选C. 由题意得,AB A A B =⇒⊆,反之,A B A B A =⇒⊆ ,故为充要条件,选C.17.(2015新课标全国卷Ⅰ,文1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合AB 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 【解析】选D18(2015重庆高考,文1)已知集合{1,2,3},B {1,3}A ==,则A B =( ) (A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3} 【解析】选C 由已知及交集的定义得A B ={1,3},故选C.19.(2015浙江高考,文3)设a ,b 是实数,则“0a b +>”是“0ab >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】D【解析】本题采用特殊值法:当3,1a b ==-时,0a b +>,但0ab <,故是不充分条件;当3,1a b =-=-时,0ab >,但0a b +<,故是不必要条件.所以“0a b +>”是“0ab >”的即不充分也不必要条件.故选D.20.(2015重庆高考,文2)“x 1=”是“2x 210x -+=”的( ) (A) 充要条件 (B) 充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件 【答案】A【解析】由“x 1= ”显然能推出“2x 210x -+=”,故条件是充分的,又由“2x 210x -+=”可得10)1(2=⇒=-x x ,所以条件也是必要的,故选A.21.(2015浙江高考,文1)已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =( )A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 【答案】A【解析】由题意得,{}|31P x x x =≥≤或,所以[3,4)PQ =,故选A.22.(2015天津高考,文1)已知全集{1,2,3,4,5,6}U =,集合{2,3,5}A =,集合{1,3,4,6}B =,则集合A U B =()ð( ) (A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5} 【答案】B【解析】{2,3,5}A =,{2,5}U B =ð,则{}A 2,5U B =()ð,故选B. 23.(2015天津高考,文4)设x R Î,则“12x <<”是“|2|1x -<”的( ) (A) 充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件 【答案】A【解析】由2112113x x x -<⇔-<-<⇔<<,可知“12x <<”是“|2|1x -<”的充分而不必要条件,故选A.24.(2015四川高考,文1)设集合A ={x |-1<x <2},集合B ={x |1<x <3},则A ∪B =( )(A ){x |-1<x <3} (B ){x |-1<x <1} (C ){x |1<x <2} (D ){x |2<x <3} 【答案】A25.(2015山东高考,文1) 已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂= ( )(A )1,3() (B )1,4() (C )(2,3() (D )2,4()) 【答案】C【解析】因为|13B x x =<<{},所以{|24}{|13}(2,3)A B x x x x ⋂=<<⋂<<=,故选C .26.(2015四川高考,文4)设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( )(A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】A【解析】a >b >1时,有log 2a >log 2b >0成立,反之当log 2a >log 2b >0成立时,a >b >1也正确.选A27.(2015陕西高考,文1)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A【解析】由2{|}{0,1}M x x x M ==⇒=,{|lg 0}{|01}N x x N x x =≤⇒=<≤,所以[0,1]MN =,故答案选A .28.(2015安徽高考,文2)设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U AC B =( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,, 【答案】B【解析】∵{}6,5,1=B C U ,∴()U A C B ={}1,∴选B . 29.(2015广东高考,文1)若集合{}1,1M =-,{}2,1,0N =-,则M N =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 【答案】C 【解析】{}1MN =,故选C .30.(2015山东高考,文5)设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是( )(A )若方程20x x m +-=有实根,则0m > (B) 若方程20x x m +-=有实根,则0m ≤ (C) 若方程20x x m +-=没有实根,则0m > (D) 若方程20x x m +-=没有实根,则0m ≤ 【答案】D【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D . 31.(2015湖南高考,文3)设x ∈R ,则“x >1”是“2x >1”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 【答案】C【解析】由题易知“x >1”可以推得“2x >1”, “2x >1”不一定得到“x >1”,所以“x >1”是“2x >1”的充分不必要条件,故选A.32.(2015福建高考,文2)若集合{}22M x x =-≤<,{}0,1,2N =,则MN 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1 【答案】D【解析】由交集定义得{}0,1MN =,故选D .33.(2015湖北高考,文3)命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠- D .(0,)x ∀∉+∞,ln 1x x =-【答案】C .【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选C .34.(2015北京高考,文1)若集合{}52x x A =-<<,{}33x x B =-<<,则A B =( )A .{}32x x -<< B .{}52x x -<< C .{}33x x -<< D .{}53x x -<< 【答案】A【解析】在数轴上将集合A ,B 表示出来,如图所示,由交集的定义可得,AB 为图中阴影部分,即{}32x x -<<,故选A.35.(2015安徽高考,文3)设p :x <3,q :-1<x <3,则p 是q 成立的( ) (A )充分必要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】C【解析】∵3: x p ,31: x q -∴p q ⇒,但p ⇒/q ,∴p 是q 成立的必要不充分条件,故选C .36.(2015湖南高考,文11)已知集合U={}1,2,3,4,A={}1,3,B={}1,3,4,则A(U B ð)=_____.【答案】{1,2,3}.【解析】由题U B ð={2},所以A (U B ð)={1,2,3}.37. (2014·新课标全国卷Ⅰ理) 已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)解析:选A A ={x |x ≤-1或x ≥3},故A ∩B =[-2,-1],选A.38. (2014·新课标全国卷Ⅰ文) 已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N=( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)解析:选B 借助数轴可得M∩N=(-1,1),选B.39. (2014·新课标全国卷Ⅱ理) 设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N =( )A.{1} B.{2}C.{0,1} D.{1,2}解析:选D N={x|x2-3x+2≤0}={x|1≤x≤2},又M={0,1,2},所以M∩N={1,2}.40. (2014·新课标全国卷Ⅱ文) 已知集合A={-2,0,2},B={ x|x2-x-2=0},则A∩B=( )A.∅B.{2}C.{0} D.{-2}解析:选B 法一:因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∩B ={2},故选B.法二:(代值验证法)将-2,0,2分别代入x2-x-2=0,经检验知只有2满足题意,故选B.41. (2014·浙江高考理) 设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=( )A.∅B.{2}C.{5} D.{2,5}解析:选B 由题意知U={x∈N|x≥2},A={x∈N|x≥5},所以∁U A={x∈N|2≤x<5}={2}.故选B.42. (2014·浙江高考文) 设集合S={x|x≥2},T={x|x≤5},则S∩T=( )A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5]解析:选D ∵S={x|x≥2},T={x|x≤5},∴S∩T=[2,5].43. (2014·重庆高考理) 已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是( )A.p∧q B.非p∧非qC.非p∧q D.p∧非q解析:选D 依题意,命题p是真命题.由x>2⇒x>1,而x>1⇒/x>2,因为此“x>1”是“x>2”的必要不充分条件,故命题q是假命题,则非q是真命题,p∧非q是真命题,选D.44. (2014·重庆高考文) 已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是( )A.p∧非q B.非p∧qC.非p∧非q D.p∧q解析:选A 命题p为真命题,命题q为假命题,所以命题非q为真命题,所以p∧非q 为真命题,选A.45. (2014·安徽高考理) “x<0”是“ln(x+1)<0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B ln(x+1)<0⇔0<x+1<1⇔-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.46. (2014·安徽高考文) 命题“∀x∈R,|x|+x2≥0”的否定是( )A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+x20<0 D.∃x0∈R,|x0|+x20≥0解析:选C 命题的否定是否定结论,同时把量词作对应改变,故命题“∀x∈R,|x|+x2≥0”的否定为“∃x0∈R,|x0|+x20<0”,故选C.47. (2014·北京高考理) 已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=( )A.{0} B.{0,1}C.{0,2} D.{0,1,2}解析:选C ∵A={x|x2-2x=0}={0,2},∴A∩B={0,2},故选C.48. (2014·北京高考文) 若集合A={0,1,2,4},B={1,2,3},则A∩B= ( )A.{0,1,2,3,4} B.{0,4}C.{1,2} D. {3}解析:选C 集合A与集合B的公共元素是1,2,即A∩B={1,2}.故选C.49.(2014·大纲高考理)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N=( )A.(0,4] B.[0,4)C.[-1,0) D.(-1,0]解析:选B 由题意可得M={x|-1<x<4},所以M∩N={x|0≤x<4},故选B.50. (2014·大纲高考文) 设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N 中元素的个数为( )A.2 B.3C .5D .7解析:选B 由M ∩N ={1,2,6},故M ∩N 中含有3个元素,故选B.51. (2014·福建高考理) 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k=1”是“△OAB 的面积为12”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件解析:选A 若k =1,则直线l :y =x +1与圆相交于(0,1),(-1,0)两点,所以△OAB的面积S △OAB =12×1×1=12,所以“k =1”⇒“△OAB 的面积为12”;若△OAB 的面积为12,则k =±1,所以“△OAB 的面积为12”⇒/“k =1”,所以“k =1”是“△OAB 的面积为12”的充分而不必要条件,故选A.52. (2014·福建高考文) 若集合P ={x |2≤x <4},Q ={x |x ≥3},则P ∩Q 等于 ( )A .{x |3≤x <4}B .{x |3<x <4}C .{x |2≤x <3}D .{x |2≤x ≤3}解析:选A 因为P ={x |2≤x <4},Q ={x |x ≥3},所以P ∩Q ={x |3≤x <4},故选A.53. (2014·广东高考理) 已知集合M ={-1,0,1},N ={0,1,2},则M ∪N =( )A .{-1,0,1}B .{-1,0,1,2}C .{-1,0,2}D .{0,1}解析:选B M ∪N 表示属于M 或属于N 的元素构成的集合,故M ∪N ={-1,0,1,2}.54. (2014·广东高考文) 已知集合M ={2,3,4},N ={0,2,3,5} ,则M ∩N =( )A .{0,2}B .{2,3}C .{3,4}D .{3,5}解析:选B 由交集的定义,注意到两集合的公共元素构成的集合为{2,3},故选B.55. (2014·湖北高考理) 设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C 是“A ∩B =∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件解析:选C “存在集合C 使得A ⊆C ,B ⊆∁U C ”⇔“A ∩B =∅”.故C 正确.56. (2014·湖北高考文) 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=( )A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:选C 由题意知∁U A={2,4,7},选C.57. (2014·湖南高考理) 已知命题p:若x>y,则-x<-y:命题q:若x>y,则x2>y2,在命题①p∧q;②p∨q;③p∧(非q);④(非p)∨q中,真命题是( )A.①③ B.①④C.②③ D.②④解析:选C 由不等式的性质可知,命题p是真命题,命题q为假命题,故①p∧q为假命题,②p∨q为真命题,③非q为真命题,则p∧(非q)为真命题,④非p为假命题,则(非p)∨q为假命题,所以选C.58. (2014·湖南高考文) 设命题p:∀x∈R,x2+1>0 ,则非p为( )A.∃x0∈R,x20+1>0 B.∃x0∈R,x20+1≤0C.∃x0∈R,x20+1<0 D.∀x∈R,x2+1≤0解析:选B 全称命题的否定,要对结论进行否定,同时要把全称量词换成存在量词,故命题p的否定为“∃x0∈R,x20+1≤0”,所以选B.59. (2014·江西高考文) 设全集为R ,集合A={x|x2-9<0},B={x|1<x≤5},则A∩(∁R B)= ( )A.(-3,0) B.(-3,-1)C.(-3,-1] D.(-3,3)解析:选C 因为A={x|-3<x<3},∁R B={x|x≤-1或x>5},所以A∩(∁R B)={x|-3<x<3}∩{x|x≤-1或x>5}={x|-3<x≤-1}.60. (2014·辽宁高考理) 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:选D A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.61. (2014·辽宁高考文) 已知全集U=R ,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)= ( )A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:选D 由题知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1},选D.62. (2014·山东高考理) 设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B =( )A.[0,2] B.(1,3)C.[1,3) D.(1,4)解析:选C |x-1|<2⇔-2<x-1<2,故-1<x<3,即集合A=(-1,3).根据指数函数的性质,可得集合B=[1,4].所以A∩B=[1,3).63. (2014·山东高考文) 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=( ) A.(0,2] B.(1,2)C.[1,2) D.(1,4)解析:选C 由题意得集合A=(0,2),集合B=[1,4],所以A∩B=[1,2).64. (2014·陕西高考理) 已知全集U=R ,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)= ( )A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:选D 由题知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1},选D.65.(2014·陕西高考文) 已知集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=( )A.[0,1] B.(0,1)C.(0,1] D.[0,1)解析:选D 由题意知,集合M=[0,+∞),N=(-1,1),∴M∩N=[0,1).66. (2014·四川高考理) 已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=( ) A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}解析:选A 因为A={x|-1≤x≤2},B=Z,故A∩B={-1,0,1,2}.67. (2014·四川高考文) 已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B =( )A.{-1,0} B.{0,1}C .{-2,-1,0,1}D .{-1,0,1,2}解析:选D 由二次函数y =(x +1)(x -2)的图象可以得到不等式(x +1)(x -2)≤0的解集A =[-1,2],属于A 的整数只有-1,0,1,2,所以A ∩B ={-1,0,1,2},故选D.68. (2014·天津高考理) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:选C 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |.选C. 69. (2014·天津高考文) 已知命题p :∀x >0,总有(x +1)e x>1,则非p 为 ( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x ≤1D .∀x ≤0,总有(x +1)e x ≤1解析:选B 全称命题的否定是特称命题,所以命题p :∀x >0,总有(x +1)e x >1的否定是非p :∃x 0>0,使得(x 0+1)e x 0≤1.70.(2013·福建高考理)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ” 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A 本题考查集合与充分必要条件等基础知识,意在考查考生转化和化归能力、逻辑推理能力和运算求解能力.因为A ={1,a },B ={1,2,3},若a =3,则A ={1,3},所以A ⊆B ;若A ⊆B ,则a =2或a =3,所以A ⊆B ⇒/ a =3,所以“a =3”是“A ⊆B ”的充分而不必要条件.71.(2013·辽宁高考理)已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B =( )A .(0,1)B .(0,2]C .(1,2)D .(1,2]【解析】选D 本题考查集合的运算,同时考查对数不等式的解法.求解对数不等式时注意将常数转化为对应的对数,而后准确应用对数函数的单调性进行求解.0<log 4x <1,即log 41<log 4x <log 44,故1<x <4,∴集合A ={x |1<x <4},∴A ∩B ={x |1<x ≤2}.72.(2013·安徽高考理) “a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选C 本题考查二次函数图象性质以及图象变换,意在考查转化与化归思想.根据二次函数的图象可知f (x )在(0,+∞)内单调递增等价于f (x )=0在区间(0,+∞)内无实根,本题不难求解.f (x )=|(ax -1)x |在(0,+∞)内单调递增等价于f (x )=0在区间(0,+∞)内无实根,即a =0或1a<0,也就是a ≤0,故“a ≤0”是“函数f (x )=|(ax -1)x |在(0,+∞)内单调递增”的充要条件,故选C.73.(2013·浙江高考理)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( )A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞)【解析】选C 本题考查无限元素集合间的交、并、补运算以及简单的一元二次不等式的解法.浙江省每年都会有一道涉及集合的客观题,主要考查对集合语言的理解以及简单的集合运算.T = {x |-4≤x ≤1},根据补集定义,∁R S ={x |x ≤-2},所以(∁R S )∪T ={x |x ≤1},选C.74.(2013·浙江高考理)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R),则“f (x )是奇函数”是“φ=π2”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选B 本题考查对必要条件、充分条件与充要条件的理解,考查三角函数的诱导公式、三角函数的奇偶性等,意在考查考生的推理能力以及三角函数性质的掌握等.若f (x )是奇函数,则φ=π2+k π(k ∈Z),且当φ=π2时,f (x )为奇函数. 75.(2013·重庆高考理)已知全集U ={1,2,3,4},集合A ={1,2} ,B ={2,3},则∁U (A ∪B )=( )A .{1,3,4}B .{3,4}C .{3}D .{4}【解析】选D 本题考查集合运算,意在考查考生运算能力.由题意A ∪B ={1,2,3},且全集U ={1,2,3,4},所以∁U (A ∪B )={4}.76.(2013·重庆高考理)命题“对任意x ∈R ,都有x 2≥0”的否定为 ( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0D .存在x 0∈R ,使得x 20<0【解析】选D 本题考查全称命题和特称命题,意在考查考生对基本概念的掌握能力.全称命题的否定为特称命题,所以答案为D.77.(2013·新课标Ⅰ高考理)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( )A.A∩B=∅ B.A∪B=R C.B⊆A D.A⊆B【解析】选B 本题考查一元二次不等式的解法和集合的运算,意在考查考生运用数轴进行集合运算的能力.解题时,先通过解一元二次不等式求出集合A,再借助数轴求解集合的运算.集合A={x|x>2或x<0},所以A∪B={x|x>2或x<0}∪{x|-5<x<5}=R,选择B.78.(2013·新课标Ⅱ高考理)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( )A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3} 【解析】选A 本题主要涉及简单不等式的解法以及集合的运算,属于基本题,考查考生的基本运算能力.不等式(x-1)2<4等价于-2<x-1<2,得-1<x<3,故集合M={x|-1<x<3},则M∩N={0,1,2},故选A.79.(2013·北京高考理)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=( )A.{0} B.{-1,0} C.{0,1} D.{-1,0,1} 【解析】选B 本题考查集合的含义与运算,意在考查考生基本的运算求解能力.集合B 含有整数-1,0,故A∩B={-1,0}.80.(2013·北京高考理) “φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【解析】选A 本题考查三角函数的诱导公式、三角函数的性质、充要条件的判断等基础知识和基本方法,意在考查考生分析问题、解决问题的能力.由sin φ=0可得φ=kπ(k ∈Z),此为曲线y=sin(2x+φ)过坐标原点的充要条件,故“φ=π”是“曲线y=sin(2x +φ)过坐标原点”的充分而不必要条件.81.(2013·陕西高考理)设全集为R ,函数f (x )= 1-x 2的定义域为M ,则∁R M 为 ( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞)【解析】选D 本题考查集合的概念和运算,涉及函数的定义域与不等式的求解.本题抓住集合元素是函数自变量,构建不等式并解一元二次不等式得到集合,然后利用补集的意义求解,使集合与函数有机结合,体现了转化化归思想的具体应用.从函数定义域切入,∵1-x 2≥0,∴-1≤x ≤1,依据补集的运算知所求集合为(-∞,-1)∪(1,+∞),选D.82.(2013·陕西高考理)设a ,b 为向量,则“|a·b |=|a ||b |”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选C 本题考查向量的数量积和向量共线的充要条件的判断,涉及向量的模及绝对值的概念.从数量积入手,设α为向量a ,b 的夹角,则|a·b |=|a ||b |·|cos α|=|a ||b |⇔|cos α|=1⇔cos α=±1⇔向量a ,b 共线.83.(2013·江西高考理)已知集合M {1,2,z i},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =( )A .-2iB .2iC .-4iD .4i【解析】选C 本题考查集合的交集运算及复数的四则运算,意在考查考生的运算能力.由M ∩N ={4},知4∈M ,故z i =4,故z =4i =4i i 2=-4i.84.(2013·广东高考理)设集合M ={x |x 2+2x =0,x ∈R},N ={x |x 2-2x =0,x ∈R},则M ∪N = ( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}【解析】选D 本题考查集合的并集、一元二次方程,旨在考查考生对集合并集的了解.M ={x |x (x +2)=0,x ∈R}={0,-2},N ={x |x (x -2)=0,x ∈R}={0,2},所以M ∪N ={-2,0,2}.85.(2013·山东高考理)已知集合A ={0,1,2},则集合B ={x -y |x ∈A, y ∈A }中元素的个数是( )A .1B .3C .5D .9【解析】选C 本题考查集合的含义,考查分析问题、解决问题的能力.逐个列举可得.x =0,y =0,1,2时,x -y =0,-1,-2;x =1,y =0,1,2时,x -y =1,0,-1;x =2,y =0,1,2时,x -y =2,1,0.根据集合中元素的互异性可知集合B 的元素为-2,-1,0,1,2.共5个86.(2013·山东高考理)给定两个命题p ,q .若非 p 是q 的必要而不充分条件,则p 是非 q的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】选A 本题考查命题、逻辑联结词及充分、必要条件等基础知识,考查等价转化的数学思想,考查分析问题和解决问题的能力.q ⇒非p 等价于p ⇒非q ,非p ⇒/ q 等价于非q ⇒/ p ,故p 是非q 的充分而不必要条件.87.(2013·大纲卷高考理)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( )A .3B .4C .5D .6【解析】选B 本题考查集合中元素的性质.由集合中元素的互异性,可知集合M ={5,6,7,8},所以集合M 中共有4个元素.88.(2013·湖北卷高考理)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x ⎝ ⎛⎭⎪⎫12x ≤1,B ={x |x 2-6x +8≤0},则A ∩∁R B =( )A.{x|x≤0} B.{x|2≤x≤4}C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}【解析】选C 本题主要考查集合的基本运算和不等式的求解,意在考查考生的运算求解能力.由题意可知,集合A={x|x≥0},B={x|2≤x≤4},所以∁R B={x|x<2或x>4},此时A∩∁R B={x|0≤x<2或x>4},故选C.89.(2013·湖北卷高考理)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 ( ) A.(非p)∨(非q) B.p∨(非q)C.(非p)∧(非q) D.p∨q【解析】选A 本题主要考查使用简单逻辑联结词来表示复合命题,意在考查考生对基础知识和基本概念的理解与掌握.由题意可知,“至少有一位学员没有降落在指定范围”意味着“甲没有或乙没有降落在指定范围”,使用“非”和“或”联结词即可表示该复合命题为(非p)∨(非q).90.(2013·四川卷高考理)设集合A={x|x+2=0},集合B={x|x2-4=0},则A∩B=( )A.{-2} B.{2} C.{-2,2} D.∅【解析】选A 本题考查集合的基本运算,意在考查考生对集合概念的掌握.由x2-4=0,解得x=±2,所以B={2,-2},又A={-2},所以A∩B={-2},故选A. 91.(2013·四川卷高考理)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x ∈A,2x∈B,则( )A.非p:∀x∈A,2x∉B B.非p:∀x∉A,2x∉BC.非p:∃x∉A,2x∈B D.非p:∃x∈A,2x∉B【解析】选D 本题考查常用逻辑用语中的∀,∃和非等概念,意在考查考生的逻辑判断能力.因为任意都满足的否定是存在不满足的,所以选D.92.(2013·天津卷高考理)已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号为( )A .①②③B .①②C .①③D .②③【解析】选C 本题考查命题真假的判断,意在考查考生的逻辑推理能力.若一个球的半径缩小到原来的12,则其体积缩小到原来的18,所以①是真命题;因为标准差除了与平均数有关,还与各数据有关,所以②是假命题;因为圆心(0,0)到直线x +y +1=0的距离等于12,等于圆的半径,所以③是真命题.故真命题的序号是①③.93.(2013·天津卷高考理)已知集合A ={x ∈R| |x |≤2}, B ={x ∈R| x ≤1}, 则A ∩B =( )A .(-∞,2]B .[1,2]C .[-2,2]D .[-2,1]【解析】选D 本题考查简单绝对值不等式的解法、集合的运算.意在考查考生对概念的理解能力.解不等式|x |≤2,得-2≤x ≤2,所以A =[-2,2],所以A ∩B =[-2,1].94.(2013·北京高考文)已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( )A .{0}B .{-1,0}C .{0,1} D. {-1,0,1}【解析】选B 集合A 中共有三个元素-1,0,1,而其中符合集合B 的只有-1和0,故选B.95.(2013·重庆高考文)已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )=( )A .{1,3,4}B .{3,4}C .{3}D .{4}【解析】选D 本题主要考查集合的并集与补集运算.因为A ∪B ={1,2,3},所以∁U (A ∪B )={4},故选D.96.(2013·重庆高考文)命题“对任意x ∈R ,都有x 2≥0”的否定为 ( )A .存在x 0∈R ,使得x 20<0B .对任意x ∈R ,都有x 2<0C .存在x 0∈R ,使得x 20≥0D .不存在x 0∈R ,使得x 2<0【解析】选A 本题主要考查全称命题的否定.根据定义可知命题的否定为存在x 0∈R ,使得x 20<0,故选A.97.(2013·安徽高考文)已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B = ( )A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1}【解析】选A 本题主要考查集合的基本运算,意在考查考生的运算能力和对基本概念的理解能力.集合A ={x |x >-1},所以∁R A ={x |x ≤-1},所以(∁R A )∩B ={-2,-1}.98.(2013·安徽高考文) “(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选B 本题主要考查充分必要条件的基础知识和基本概念,意在考查考生对方程的求解以及概念的识别.由(2x -1)x =0可得x =12或0,因为“x =12或0”是“x =0”的必要不充分条件. 99.(2013·山东高考文)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B={1,2},则A∩∁U B= ( ) A.{3} B.{4} C.{3,4} D.∅【解析】选A 本题主要考查集合的交集、并集和补集运算,考查推理判断能力.由题意知A∪B={1,2,3},又B={1,2},所以A中必有元素3,没有元素4,∁U B={3,4},故A∩∁U B ={3}.100.(2013·山东高考文)给定两个命题p,q.若﹁p是q的必要而不充分条件,则p是﹁q的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【解析】选A 本题主要考查充分必要条件的判断,通过等价命题的转化化难为易,也渗透了对转化思想的考查.由q⇒非p且非p⇒/ q可得p⇒非q且非q⇒/ p,所以p是非q 的充分而不必要条件.101.(2013·大纲卷高考文)设全集U={1,2,3,4,5},集合A={1,2},则∁U A=( )A.{1,2} B.{3,4,5} C.{1,2,3,4,5} D.∅【解析】选B 本题主要考查集合的补集运算.根据补集的定义可知∁U A={3,4,5}.102.(2013·福建高考文)设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y -1=0上”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【解析】选A 本题主要考查以点与直线的位置关系为背景的充分必要条件,意在考查考生的数形结合能力、逻辑推理能力和运算求解能力.“x=2且y=-1”满足方程x+y-1=0,故“x=2且y=-1”可推得“点P在直线l:x+y-1=0上”;但方程x+y-1=0有无数多个解,故“点P在直线l:x+y-1=0上”不能推得“x=2且y=-1”,故“x =2且y=-1”是“点P在直线l:x+y-1=0上”的充分不必要条件.103.(2013·福建高考文)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为( )A.2 B.3 C.4 D.16【解析】选C 本题主要考查集合的交集及子集的个数等基础知识,意在考查考生对集合概念的准确理解及集合运算的熟练掌握.A∩B={1,3},故A∩B的子集有4个.104.(2013·新课标Ⅱ高考文)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=( )A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}【解析】选C 本题主要考查集合的基本运算,意在考查考生对基本概念的理解.由交集的意义可知M∩N={-2,-1,0}.105.(2013·湖南高考文) “1<x<2”是“x<2”成立的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【解析】选A 本题主要考查不等式的基本性质和充分必要条件的判断,意在考查考生对充分性和必要性概念的掌握与判断.“1<x<2”可以推得“x<2”,即满足充分性,但“x<2”得不出“1<x<2”,所以为充分不必要条件.106.(2013·浙江高考文)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=( )A.[-4,+∞)B.(-2, +∞)C.[-4,1] D.(-2,1]【解析】选D 本题主要考查集合、区间的意义和交集运算等基础知识,属于简单题目,意在考查考生对基础知识的掌握程度.由已知得S ∩T ={x |x >-2}∩{x |-4≤x ≤1}= {x |-2<x ≤1}=(-2,1].107.(2013·浙江高考文)若α∈R ,则“α=0”是“sin α<cos α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A 本题主要考查充要条件的判断、三角函数值等基础知识,意在考查考生的推理论证能力.当α=0时,sin α=0,cos α=1,∴sin α<cos α;而当sin α<cos α时,α=0或α=π6,…. 108.(2013·新课标Ⅰ高考文)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( )A .{1,4}B .{2,3}C .{9,16}D .{1,2}【解析】选A 本题主要考查集合的基本知识,要求认识集合,能进行简单的运算.n =1,2,3,4时,x =1,4,9,16,∴集合B ={1,4,9,16},∴A ∩B ={1,4}.109.已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的 是( )A .p ∧qB .非p ∧qC .p ∧非qD .非p ∧非q【解析】选B 本题主要考查常用逻辑用语等基本知识,对分析问题的能力有一定要求.容易判断当x ≤0时2x >3x ,命题p 为假命题,分别作出函数y =x 3,y =1-x 2的图像,易知命题q 为真命题.根据真值表易判断非p ∧q 为真命题.110.(2013·天津高考文)已知集合A={x∈R| |x|≤2}, B= {x∈R| x≤1},则A∩B=( )A.(-∞,2] B.[1,2] C.[-2,2] D.[-2,1]【解析】选D 本题主要考查简单不等式的解法、集合的运算.意在考查考生对概念的理解能力.解不等式|x|≤2得,-2≤x≤2,所以A=[-2,2],又B=(-∞,1],所以A∩B =[-2,1].111.(2013·天津高考文)设a,b∈R则“(a-b)·a2<0”是“a<b”的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【解析】选A 本题主要考查充分条件、必要条件的判断,意在考查考生的逻辑推理能力.若(a-b)·a2<0,则a≠0,且a<b,所以充分性成立;若a<b,则a-b<0,当a=0时,(a-b)·a2=0,所以必要性不成立.故“(a-b)·a2<0”是“a<b”的充分而不必要条件.112.(2013·湖北高考文)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩∁U A=( )A.{2} B.{3,4} C.{1,4,5} D.{2,3,4,5}【解析】选B 本题主要考查集合的补集和交集运算.由题得,∁U A={3,4,5},则B∩∁U A ={3,4}.113. (2013·湖北高考文)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(非p)∨(非q) B.(p)∨(非q)C.(非p)∧(非q) D.p∨q【解析】选A 本题主要考查逻辑联结词和复合命题.非p:甲没有降落在指定范围;非q:乙没有降落在指定范围,至少有一位学员没有降落在指定范围,即非p或非q发生.114.(2013·陕西高考文)设全集为R,函数f(x)=1-x的定义域为M, 则∁R M为( )A.(-∞,1) B.(1,+∞)C.(-∞,1] D.[1,+∞)【解析】选B 本题主要考查集合的概念和运算,函数的定义域与不等式的求解方法.从函数定义域切入,1-x≥0,∴x≤1,依据补集的运算知识得所求集合为(1,+∞).115.(2013·江西高考文)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4 B.2 C.0 D.0或4【解析】选A 本题主要考查集合的表示方法(描述法)及其含义,考查化归与转化、分类讨论思想.由ax2+ax+1=0只有一个实数解,可得当a=0时,方程无实数解;当a≠0时,则Δ=a2-4a=0,解得a=4(a=0不合题意舍去).116.(2013·四川高考文)设集合A={1,2,3},集合B={-2,2},则A∩B=( )A.∅B.{2} C.{-2,2} D.{-2,1,2,3}【解析】选B 本题主要考查集合的运算,意在考查考生对基础知识的掌握.A,B两集合中只有一个公共元素2,∴A∩B={2},选B.117.(2013·四川高考文)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x ∈A,2x∈B,则( )A.非p:∃x∈A,2x∈BB.非p:∃x∉A,2x∈BC.非p:∃x∈A,2x∉BD.非p:∀x∉A,2x∉B【解析】选C 本题主要考查含有一个量词的命题的否定,意在考查考生基础知识的掌握.由命题的否定易知选C,注意要把全称量词改为存在量词.118.(2013·广东高考文)设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=( )A.{0} B.{0,2} C.{-2,0} D.{-2,0,2} 【解析】选A 本题主要考查集合的运算知识,意在考查考生的运算求解能力.因为S={-2,0},T={0,2},所以S∩T={0}.119.(2013·辽宁高考文)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=( )A.{0} B.{0,1} C.{0,2} D.{0,1,2}【解析】选B 本题主要考查集合的概念和运算,同时考查了绝对值不等式的解法,意在考查考生对集合运算的掌握情况,属于容易题.由已知,得B={x|-2<x<2},所以A∩B ={0,1},选B.120.(2012·重庆高考理)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的( )A.既不充分也不必要的条件 B.充分而不必要的条件C.必要而不充分的条件 D.充要条件【解析】由题意可知函数在[0,1]上是增函数,在[-1,0]上是减函数,在[3,4]上也是减函数;反之也成立.121.(2012·广东高考理)设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M=( )A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}【解析】选C 由于U={1,2,3,4,5,6},M={1,2,4},从而∁U M={3,5,6}.122.(2012·山东高考理)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁。

新高考数学(理)(北师大版)复习配套-五年高考真题分类汇编:第1章 集合与常用逻辑用语(含答案解析)

新高考数学(理)(北师大版)复习配套-五年高考真题分类汇编:第1章 集合与常用逻辑用语(含答案解析)

第1章 集合与常用逻辑用语一、选择题1. (莱州一中高三摸底考试)集合{x x y R y A ,lg =∈=>}{}2,1,1,2,1--=B ,则下列结论正确的是 ( ) A.{}1,2--=⋂B A B.()()0,∞-=⋃B A C R C.()+∞=⋃,0B AD.(){}1,2--=⋂B A C R【解析】{0}A y y =>,所以={0}R C A y y ≤,所以(){}1,2--=⋂B A C R ,选D. 2. (昆明一中高三模拟考试) 已知命题:"[1,2],-2p x x a ∀∈≥,命题:"R,+2+2=0"2q x x ax -a ∃∈使,若命题“p q 且”是真命题,则实数a 的取值范围是( )A. {|-2=1}a a a ≤或B. {|-2}a a ≤C. {|-22}a a a ≤≤≤或1D. {|-21}a a ≤≤【解析】由20x a -≥,得2,[1,2]a x x ≤∈,所以1a ≤.要使q 成立,则有244(2)0a a ∆=--≥,即220a a +-≥,解得1a ≥或2a ≤-.因为命题“p q 且”是真命题,则,p q 同时为真,即112a a a ≤⎧⎨≥≤-⎩或,即2a ≤-或1a =,选A.3. (温州中学高三模拟考试)已知函数()()lg 1f x x =-的定义域为M ,函数1y x=的定义域为N ,则MN = ( )A. {}10x x x <≠且 B . {}10x x x ≤≠且 C. {}1x x > D. {}1x x ≤ 【解析】}01|{},0|{},1|{≠<=≠=<=x x x N M x x N x x M 且 ,故选A.4. (泉州一中高三模拟考试)设集合}31|{},23|{≤<-∈=<<-∈=n N n B m Z m A ,则=⋂B A ( )A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}【解析】因为{|32}{21,0,1}A m Z m =∈-<<=--,,{0,1,2,3}B =,所以{01}A B ⋂=,,选A. 5. (济南一中高三模拟考试)下列命题的有关说法正确的是 ( )A.命题“若x 2=1,则x=1”的否命题为:若“x 2=1则x ≠1”B.“1x =-”是“2560x x --=”的必要不充分条件C.命题“∃x ∈R,使得x 2+x+1<0”的否定是:“∀x ∈R,均有x 2+x+1<0”D.命题“若x=y,则sinx=siny ”的逆否命题为真命题【解析】“若x 2=1,则x=1”的否命题为21x ≠,则1x ≠,即A 错误。

近五年高考数学(文)专题分类专题01 集合与常用逻辑用语第一讲 集合

近五年高考数学(文)专题分类专题01 集合与常用逻辑用语第一讲 集合

专题01 集合与常用逻辑用语第一讲 集合2019年1.(2019全国Ⅰ文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7UA B ===,,,则U B A =I ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,7 2.(2019全国Ⅱ文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅3.(2019全国Ⅲ文1)已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =IA .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2 4.(2019北京文1)已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =(A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞)5.(2019天津文1)设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈<„ ,则()A C B =I U(A ){2}(B ){2,3} (C ){-1,2,3} (D ){1,2,3,4}6.(2019江苏1)已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I .7.(2019浙江1) 已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B I ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-2015-2018年一、选择题1.(2018全国卷Ⅰ)已知集合{0,2}=A ,{21012}=--,,,,B ,则A B =I A .{0,2} B .{1,2} C .{0} D .{21012}--,,,, 2.(2018浙江)已知全集{1,2,3,4,5}U =,{1,3}A =,则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}3.(2018全国卷Ⅱ)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =IA .{3}B .{5}C .{3,5}D .{}1,2,3,4,5,74.(2018北京)已知集合{|||2}A x x =<,{2,0,1,2}B =-,则A B =IA .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}5.(2018全国卷Ⅲ)已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =IA .{0}B .{1}C .{1,2}D .{0,1,2}6.(2018天津)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-<R ≤,则()A B C =U IA .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}7.(2017新课标Ⅰ)已知集合{|2}A x x =<,{320}B x =->,则A .3{|}2A B x x =<I B .A B =∅IC .3{|}2A B x x =<UD .A B =R U 8.(2017新课标Ⅱ)设集合{1,2,3}A =,{2,3,4}B =则A B U =A .{1,2,3,4}B .{1,2,3}C .{2,3,4}D .{1,3,4}9.(2017新课标Ⅲ)已知集合{1,2,3,4}A =,{2,4,6,8}B =,则A B I 中元素的个数为A .1B .2C .3D .410.(2017天津)设集合{1,2,6}A =,{2,4}B =,{1,2,3,4}C =,则()A B C =U IA .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}11.(2017山东)设集合{}11M x x =-<,{}2N x x =<,则M N =I A .()1,1- B .()1,2- C .()0,2 D .()1,2 12.(2017北京)已知U =R ,集合{|22}A x x x =<->或,则U A ð=A .(2,2)-B .(,2)(2,)-∞-+∞UC .[2,2]-D .(,2][2,)-∞-+∞U13.(2017浙江)已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q U =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)14.(2016全国I 卷)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则=A B IA .{1,3}B .{3,5}C .{5,7}D .{1,7}15.(2016全国Ⅱ卷)已知集合{123}A =,,,2{|9}B x x =<,则A B =I A .{210123}--,,,,, B .{21012}--,,,, C .{123},, D .{12},16.(2016全国Ⅲ)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=A .{48},B .{026},,C .{02610},,,D .{0246810},,,,,17.(2015新课标2)已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A B U =A .)3,1(-B .)0,1(-C .)2,0(D .)3,2(18.(2015新课标1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I中的元素个数为A .5B .4C .3D .219.(2015北京)若集合{|52}A x x =-<<,{|33}B x x =-<<,则A B I =A .{|32}x x -<<B .{|52}x x -<<C .{|33}x x -<<D .{|53}x x -<<20.(2015天津)已知全集{1,2,3,4,5,6}U =,集合{}2,3,5A =,集合{1,3,4,6}B =,则集合U A B =I ðA .{3}B .{2,5}C .{1,4,6}D .{2,3,5}21.(2015陕西)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N U =A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]22.(2015山东)已知集合{}24A x x =<<,{}(1)(3)0B x x x =--<,则A B =IA .()1,3B .()1,4C .()2,3D .()2,423.(2015福建)若集合{}22M x x =-≤<,{}0,1,2N =,则M N I 等于A .{}0B .{}1C .{}0,1,2D .{}0,124.(2015广东)若集合{}1,1M =-,{}2,1,0N =-,则M N =IA .{}0,1-B .{}1C .{}0D .{}1,1-25.(2015湖北)已知集合22{(,)|1,,}A x y x y x y Z =+∈≤,{(,)|||2,B x y x =≤ ||2,,}y x y Z ∈≤,定义集合12121122{(,)|(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .30。

(新课标)高考数学总复习 5年高考真题分类汇编(-)第一章 集合与常用逻辑用语-人教版高三全册数学试

(新课标)高考数学总复习 5年高考真题分类汇编(-)第一章 集合与常用逻辑用语-人教版高三全册数学试

五年高考真题分类汇编:集合与常用逻辑用语一. 选择题1.(2015某某高考,理1)设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B ( )(){|13}A x x -<<(){|11}B x x -<<(){|12}C x x <<(){|23}D x x <<【解析】选A {|12},{|13},{|13}A x x B x x AB x x =-<<=<<∴=-<<,选A. 2.(2015某某高考,理1)若集合{|(4)(1)0}M x x x ,{|(4)(1)0}N x x x ,则M N ( )A .∅B .{}1,4--C .{}0D .{}1,4【解析】选A 因为()(){}{}|4104,1M x x x =++==--,()(){}{}|4101,4N x x x =--==,所以M N =∅,故选A .3.( 2015新课标全国卷1,理3)设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈【解析】选C p ⌝:2,2n n N n ∀∈≤,故选C.4.( 2015某某高考,理1)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A【解析】选A {}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N =,故选A .5.(2015某某高考,理5)设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列; q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【解析】A6.(2015某某高考,理4)设x R ∈ ,则“21x -< ”是“220x x +-> ”的( ) (A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件【解析】选A 2112113x x x -<⇔-<-<⇔<<,2202x x x +->⇔<-或1x >,所以 “21x -<”是“220x x +->”的充分不必要条件,故选A.7.(2015某某高考,理1)已知集合A ={}1,2,3,B ={}2,3,则( ) A 、A =B B 、A ⋂B =∅ C 、A B D 、B A【解析】选D 由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D .8.(2015某某高考,理1)若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .φ【解析】选C 由已知得{},1,,1A i i =--,故A B ={}1,1-,故选C .9.(2015某某高考,理4)“1x >”是“12log (2)0x +<”的( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件【答案】B【解析】选B 12log (2)0211x x x +<⇔+>⇔>-,因此选B .10.(2015全国卷新课标Ⅱ,理1)已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2【解析】选A 由已知得{}21B x x =-<<,故{}1,0A B =-,故选A .11. (2015某某高考,理1)已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B =( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8【解析】选A {2,5,8}U B =,所以{2,5}U A B =,故选A.12.(2015某某高考,理3)设:12,:21x p x q <<>,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件13.(2015某某高考,理1)已知集合{}2430A x x x =-+<,{}24B x x =<<,则A B =( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)【解析】选C.因为{}{}243013A x x x x x =-+<=<<,所以{}{}{}132423A B x x x x x x =<<<<=<<.故选:C.14.(2015某某高考,理4)命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n >B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >【解析】选D 根据全称命题的否定是特称命题,可知选D.15.(2015某某高考,理1)已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]【解析】选C 由题意得,)2,0(=P C R ,∴()(1,2)R P Q =,故选C.16.(2015某某高考,理2).设A ,B 是两个集合,则“AB A =”是“A B ⊆”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选C. 由题意得,AB A A B =⇒⊆,反之,A B A B A =⇒⊆ ,故为充要条件,选C. 17.(2015新课标全国卷Ⅰ,文1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2【解析】选D18(2015某某高考,文1)已知集合{1,2,3},B {1,3}A ,则A B =( )(A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3}【解析】选C 由已知及交集的定义得A B ={1,3},故选C.19.(2015某某高考,文3)设a ,b 是实数,则“0a b +>”是“0ab >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【解析】本题采用特殊值法:当3,1a b ==-时,0a b +>,但0ab <,故是不充分条件;当3,1a b =-=-时,0ab >,但0a b +<,故是不必要条件.所以“0a b +>”是“0ab >”的即不充分也不必要条件.故选D.20.(2015某某高考,文2)“x 1”是“2x 210x ”的( )(A) 充要条件 (B) 充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件【答案】A【解析】由“x 1”显然能推出“2x 210x ”,故条件是充分的,又由“2x 210x ”可得10)1(2=⇒=-x x ,所以条件也是必要的,故选A.21.(2015某某高考,文1)已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =()A .[)3,4B .(]2,3C .()1,2-D .(]1,3-【答案】A【解析】由题意得,{}|31P x x x =≥≤或,所以[3,4)PQ =,故选A. 22.(2015某某高考,文1)已知全集{1,2,3,4,5,6}U ,集合{2,3,5}A ,集合{1,3,4,6}B ,则集合A U B ()( )(A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5}【答案】B【解析】{2,3,5}A ,{2,5}U B ,则A 2,5U B (),故选B.23.(2015某某高考,文4)设x R ,则“12x ”是“|2|1x ”的( )(A) 充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件【答案】A 【解析】由2112113x x x -<⇔-<-<⇔<<,可知“12x ”是“|2|1x ”的充分而不必要条件,故选A.24.(2015某某高考,文1)设集合A ={x |-1<x <2},集合B ={x |1<x <3},则A ∪B =( )(A ){x |-1<x <3} (B ){x |-1<x <1} (C ){x |1<x <2} (D ){x |2<x <3}【答案】A25.(2015某某高考,文1) 已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂= ( )(A )1,3() (B )1,4() (C )(2,3() (D )2,4()) 【答案】C【解析】因为|13B x x =<<{},所以{|24}{|13}(2,3)A B x x x x ⋂=<<⋂<<=,故选C .26.(2015某某高考,文4)设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( )(A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件【答案】A【解析】a >b >1时,有log 2a >log 2b >0成立,反之当log 2a >log 2b >0成立时,a >b >1也正确.选A27.(2015某某高考,文1)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( ) A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A【解析】由2{|}{0,1}M x x x M ==⇒=,{|lg 0}{|01}N x x N x x =≤⇒=<≤,所以[0,1]M N =,故答案选A .28.(2015某某高考,文2)设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U A C B =( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,, 【答案】B【解析】∵{}6,5,1=B C U ,∴()U A C B ={}1,∴选B . 29.(2015某某高考,文1)若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C .{}1D .{}1,1-【答案】C【解析】{}1M N =,故选C .30.(2015某某高考,文5)设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是( )(A )若方程20x x m +-=有实根,则0m >(B) 若方程20x x m +-=有实根,则0m ≤(C) 若方程20x x m +-=没有实根,则0m >(D) 若方程20x x m +-=没有实根,则0m ≤【答案】D【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D .31.(2015某某高考,文3)设x ∈R ,则“x >1”是“2x >1”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件【答案】C【解析】由题易知“x >1”可以推得“2x >1”, “2x >1”不一定得到“x >1”,所以“x >1”是“2x >1”的充分不必要条件,故选A.32.(2015某某高考,文2)若集合{}22M x x =-≤<,{}0,1,2N =,则M N 等于( ) A .{}0 B .{}1 C .{}0,1,2 D {}0,1【答案】D【解析】由交集定义得{}0,1M N =,故选D .33.(2015某某高考,文3)命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( )A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-【答案】C . 【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选C .34.(2015高考,文1)若集合{}52x x A =-<<,{}33x x B =-<<,则AB =( ) A .{}32x x -<< B .{}52x x -<<C .{}33x x -<<D .{}53x x -<< 【答案】A【解析】在数轴上将集合A ,B 表示出来,如图所示,由交集的定义可得,A B 为图中阴影部分,即{}32x x -<<,故选A.35.(2015某某高考,文3)设p :x <3,q :-1<x <3,则p 是q 成立的( )(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件【答案】C【解析】∵3: x p ,31: x q -∴p q ⇒,但p ⇒/q ,∴p 是q 成立的必要不充分条件,故选C .36.(2015某某高考,文11)已知集合U={}1,2,3,4,A={}1,3,B={}1,3,4,则A (UB )=_____.【答案】{1,2,3}.【解析】由题U B ={2},所以A (U B )={1,2,3}.37. (2014·新课标全国卷Ⅰ理) 已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A∩B=( )A.[-2,-1] B.[-1,2)C.[-1,1] D.[1,2)解析:选A A={x|x≤-1或x≥3},故A∩B=[-2,-1],选A.38. (2014·新课标全国卷Ⅰ文) 已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N =( )A.(-2,1) B.(-1,1)C.(1,3) D.(-2,3)解析:选B 借助数轴可得M∩N=(-1,1),选B.39. (2014·新课标全国卷Ⅱ理) 设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N =( )A.{1}B.{2}C.{0,1} D.{1,2}解析:选D N={x|x2-3x+2≤0}={x|1≤x≤2},又M={0,1,2},所以M∩N={1,2}.40. (2014·新课标全国卷Ⅱ文) 已知集合A={-2,0,2},B={ x|x2-x-2=0},则A∩B =( )A.∅B.{2}C.{0} D.{-2}解析:选B 法一:因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∩B ={2},故选B.法二:(代值验证法)将-2,0,2分别代入x2-x-2=0,经检验知只有2满足题意,故选B.41. (2014·某某高考理) 设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=( )A.∅B.{2}C.{5} D.{2,5}解析:选B 由题意知U={x∈N|x≥2},A={x∈N|x≥5},所以∁U A={x∈N|2≤x<5}={2}.故选B.42. (2014·某某高考文) 设集合S={x|x≥2},T={x|x≤5},则S∩T=( ) A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5]解析:选D ∵S={x|x≥2},T={x|x≤5},∴S∩T=[2,5].43. (2014·某某高考理) 已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是( )A.p∧q B.非p∧非qC.非p∧q D.p∧非q解析:选D 依题意,命题p是真命题.由x>2⇒x>1,而x>1⇒/x>2,因为此“x>1”是“x>2”的必要不充分条件,故命题q是假命题,则非q是真命题,p∧非q是真命题,选D.44. (2014·某某高考文) 已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是( )A.p∧非q B.非p∧qC.非p∧非q D.p∧q解析:选A 命题p为真命题,命题q为假命题,所以命题非q为真命题,所以p∧非q 为真命题,选A.45. (2014·某某高考理) “x<0”是“ln(x+1)<0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选Bln(x+1)<0⇔0<x+1<1⇔-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.46. (2014·某某高考文) 命题“∀x∈R,|x|+x2≥0”的否定是( )A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+x20<0 D.∃x0∈R,|x0|+x20≥0解析:选C 命题的否定是否定结论,同时把量词作对应改变,故命题“∀x∈R,|x|+x2≥0”的否定为“∃x0∈R,|x0|+x20<0”,故选C.47. (2014·高考理) 已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=( ) A.{0} B.{0,1}C.{0,2} D.{0,1,2}解析:选C ∵A={x|x2-2x=0}={0,2},∴A∩B={0,2},故选C.48. (2014·高考文) 若集合A={0,1,2,4},B={1,2,3},则A∩B= ( ) A.{0,1,2,3,4} B.{0,4}C.{1,2} D. {3}解析:选C 集合A 与集合B 的公共元素是1,2,即A ∩B ={1,2}.故选C.49.(2014·大纲高考理)设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( )A .(0,4]B .[0,4)C .[-1,0)D .(-1,0]解析:选B 由题意可得M ={x |-1<x <4},所以M ∩N ={x |0≤x <4},故选B.50. (2014·大纲高考文) 设集合M ={1,2,4,6,8},N ={1,2,3,5,6,7},则M ∩N 中元素的个数为( )A .2B .3C .5D .7解析:选B 由M ∩N ={1,2,6},故M ∩N 中含有3个元素,故选B.51. (2014·某某高考理) 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k=1”是“△OAB 的面积为12”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件解析:选A 若k =1,则直线l :y =x +1与圆相交于(0,1),(-1,0)两点,所以△OAB的面积S △OAB =12×1×1=12,所以“k =1”⇒“△OAB 的面积为12”;若△OAB 的面积为12,则k =±1,所以“△OAB 的面积为12”⇒/“k =1”,所以“k =1”是“△OAB 的面积为12”的充分而不必要条件,故选A.52. (2014·某某高考文) 若集合P ={x |2≤x <4},Q ={x |x ≥3},则P ∩Q 等于 ( )A .{x |3≤x <4}B .{x |3<x <4}C.{x|2≤x<3} D.{x|2≤x≤3}解析:选A 因为P={x|2≤x<4},Q={x|x≥3},所以P∩Q={x|3≤x<4},故选A. 53. (2014·某某高考理) 已知集合M={-1,0,1},N={0,1,2},则M∪N=( ) A.{-1,0,1}B.{-1,0,1,2}C.{-1,0,2} D.{0,1}解析:选B M∪N表示属于M或属于N的元素构成的集合,故M∪N={-1,0,1,2}.54. (2014·某某高考文) 已知集合M={2,3,4},N={0,2,3,5} ,则M∩N=( ) A.{0,2} B.{2,3}C.{3,4} D.{3,5}解析:选B 由交集的定义,注意到两集合的公共元素构成的集合为{2,3},故选B. 55. (2014·某某高考理) 设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C 是“A∩B=∅”的( )A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件解析:选C “存在集合C使得A⊆C,B⊆∁U C”⇔“A∩B=∅”.故C正确.56. (2014·某某高考文) 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=( )A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:选C 由题意知∁U A={2,4,7},选C.57. (2014·某某高考理) 已知命题p:若x>y,则-x<-y:命题q:若x>y,则x2>y2,在命题①p∧q;②p∨q;③p∧(非q);④(非p)∨q中,真命题是( )A.①③ B.①④C.②③ D.②④解析:选C 由不等式的性质可知,命题p是真命题,命题q为假命题,故①p∧q为假命题,②p∨q为真命题,③非q为真命题,则p∧(非q)为真命题,④非p为假命题,则(非p)∨q为假命题,所以选C.58. (2014·某某高考文) 设命题p:∀x∈R,x2+1>0 ,则非p为( )A.∃x0∈R,x20+1>0 B.∃x0∈R,x20+1≤0C.∃x0∈R,x20+1<0 D.∀x∈R,x2+1≤0解析:选B 全称命题的否定,要对结论进行否定,同时要把全称量词换成存在量词,故命题p的否定为“∃x0∈R,x20+1≤0”,所以选B.59. (2014·某某高考文) 设全集为R ,集合A={x|x2-9<0},B={x|1<x≤5},则A∩(∁R B)= ( )A.(-3,0) B.(-3,-1)C.(-3,-1] D.(-3,3)解析:选C 因为A={x|-3<x<3},∁R B={x|x≤-1或x>5},所以A∩(∁R B)={x|-3<x<3}∩{x|x≤-1或x>5}={x|-3<x≤-1}.60. (2014·某某高考理) 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:选D A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.61. (2014·某某高考文) 已知全集U=R ,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)= ( )A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:选D 由题知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1},选D.62. (2014·某某高考理) 设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B =( )A.[0,2] B.(1,3)C.[1,3) D.(1,4)解析:选C |x-1|<2⇔-2<x-1<2,故-1<x<3,即集合A=(-1,3).根据指数函数的性质,可得集合B=[1,4].所以A∩B=[1,3).63. (2014·某某高考文) 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=( ) A.(0,2] B.(1,2)C.[1,2) D.(1,4)解析:选C 由题意得集合A=(0,2),集合B=[1,4],所以A∩B=[1,2).64. (2014·某某高考理) 已知全集U=R ,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)= ( )A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:选D 由题知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1},选D.65.(2014·某某高考文) 已知集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=( )A.[0,1] B.(0,1)C .(0,1]D .[0,1)解析:选D 由题意知,集合M =[0,+∞),N =(-1,1),∴M ∩N =[0,1).66. (2014·某某高考理) 已知集合A ={x |x 2-x -2≤0},集合B 为整数集,则A ∩B =( )A .{-1,0,1,2}B .{-2,-1,0,1}C .{0,1}D .{-1,0}解析:选A 因为A ={x |-1≤x ≤2},B =Z ,故A ∩B ={-1,0,1,2}.67. (2014·某某高考文) 已知集合A ={x |(x +1)(x -2)≤0},集合B 为整数集,则A ∩B =( )A .{-1,0}B .{0,1}C .{-2,-1,0,1}D .{-1,0,1,2}解析:选D 由二次函数y =(x +1)(x -2)的图象可以得到不等式(x +1)(x -2)≤0的解集A =[-1,2],属于A 的整数只有-1,0,1,2,所以A ∩B ={-1,0,1,2},故选D.68. (2014·某某高考理) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:选C 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |.选C. 69. (2014·某某高考文) 已知命题p :∀x >0,总有(x +1)e x>1,则非p 为 ( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C.∀x>0,总有(x+1)e x≤1D.∀x≤0,总有(x+1)e x≤1解析:选B 全称命题的否定是特称命题,所以命题p:∀x>0,总有(x+1)e x>1的否定是非p:∃x0>0,使得(x0+1)e x0≤1.70.(2013·某某高考理)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A 本题考查集合与充分必要条件等基础知识,意在考查考生转化和化归能力、逻辑推理能力和运算求解能力.因为A={1,a},B={1,2,3},若a=3,则A={1,3},所以A⊆B;若A⊆B,则a=2或a=3,所以A⊆B⇒/ a=3,所以“a=3”是“A⊆B”的充分而不必要条件.71.(2013·某某高考理)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=( ) A.(0,1) B.(0,2]C.(1,2) D.(1,2]【解析】选D 本题考查集合的运算,同时考查对数不等式的解法.求解对数不等式时注意将常数转化为对应的对数,而后准确应用对数函数的单调性进行求解.0<log4x<1,即log41<log4x<log44,故1<x<4,∴集合A={x|1<x<4},∴A∩B={x|1<x≤2}.72.(2013·某某高考理) “a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选C 本题考查二次函数图象性质以及图象变换,意在考查转化与化归思想.根据二次函数的图象可知f (x )在(0,+∞)内单调递增等价于f (x )=0在区间(0,+∞)内无实根,本题不难求解.f (x )=|(ax -1)x |在(0,+∞)内单调递增等价于f (x )=0在区间(0,+∞)内无实根,即a =0或1a<0,也就是a ≤0,故“a ≤0”是“函数f (x )=|(ax -1)x |在(0,+∞)内单调递增”的充要条件,故选C.73.(2013·某某高考理)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( )A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞)【解析】选C 本题考查无限元素集合间的交、并、补运算以及简单的一元二次不等式的解法.某某省每年都会有一道涉及集合的客观题,主要考查对集合语言的理解以及简单的集合运算.T = {x |-4≤x ≤1},根据补集定义,∁R S ={x |x ≤-2},所以(∁R S )∪T ={x |x ≤1},选C.74.(2013·某某高考理)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R),则“f (x )是奇函数”是“φ=π2”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选B 本题考查对必要条件、充分条件与充要条件的理解,考查三角函数的诱导公式、三角函数的奇偶性等,意在考查考生的推理能力以及三角函数性质的掌握等.若f (x )是奇函数,则φ=π2+k π(k ∈Z),且当φ=π2时,f (x )为奇函数. 75.(2013·某某高考理)已知全集U ={1,2,3,4},集合A ={1,2} ,B ={2,3},则∁U (A ∪B )=( )A .{1,3,4}B .{3,4}C .{3}D .{4}【解析】选D 本题考查集合运算,意在考查考生运算能力.由题意A ∪B ={1,2,3},且全集U={1,2,3,4},所以∁U(A∪B)={4}.76.(2013·某某高考理)命题“对任意x∈R,都有x2≥0”的否定为( )A.对任意x∈R,都有x2<0B.不存在x∈R,使得x2<0C.存在x0∈R,使得x20≥0D.存在x0∈R,使得x20<0【解析】选D 本题考查全称命题和特称命题,意在考查考生对基本概念的掌握能力.全称命题的否定为特称命题,所以答案为D.77.(2013·新课标Ⅰ高考理)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ) A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B【解析】选B 本题考查一元二次不等式的解法和集合的运算,意在考查考生运用数轴进行集合运算的能力.解题时,先通过解一元二次不等式求出集合A,再借助数轴求解集合的运算.集合A={x|x>2或x<0},所以A∪B={x|x>2或x<0}∪{x|-5<x<5}=R,选择B.78.(2013·新课标Ⅱ高考理)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( )A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3} 【解析】选A 本题主要涉及简单不等式的解法以及集合的运算,属于基本题,考查考生的基本运算能力.不等式(x-1)2<4等价于-2<x-1<2,得-1<x<3,故集合M={x|-1<x<3},则M∩N={0,1,2},故选A.79.(2013·高考理)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=( ) A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}【解析】选B 本题考查集合的含义与运算,意在考查考生基本的运算求解能力.集合B 含有整数-1,0,故A∩B={-1,0}.80.(2013·高考理) “φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【解析】选A 本题考查三角函数的诱导公式、三角函数的性质、充要条件的判断等基础知识和基本方法,意在考查考生分析问题、解决问题的能力.由sin φ=0可得φ=kπ(k ∈Z),此为曲线y=sin(2x+φ)过坐标原点的充要条件,故“φ=π”是“曲线y=sin(2x +φ)过坐标原点”的充分而不必要条件.81.(2013·某某高考理)设全集为R,函数f(x)=1-x2的定义域为M,则∁R M为( ) A.[-1,1] B.(-1,1)C.(-∞,-1]∪[1,+∞) D.(-∞,-1)∪(1,+∞)【解析】选D 本题考查集合的概念和运算,涉及函数的定义域与不等式的求解.本题抓住集合元素是函数自变量,构建不等式并解一元二次不等式得到集合,然后利用补集的意义求解,使集合与函数有机结合,体现了转化化归思想的具体应用.从函数定义域切入,∵1-x2≥0,∴-1≤x≤1,依据补集的运算知所求集合为(-∞,-1)∪(1,+∞),选D. 82.(2013·某某高考理)设a,b为向量,则“|a·b|=|a||b|”是“a∥b”的( ) A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【解析】选C 本题考查向量的数量积和向量共线的充要条件的判断,涉及向量的模及绝对值的概念.从数量积入手,设α为向量a,b的夹角,则|a·b|=|a||b|·|cos α|=|a||b|⇔|cos α|=1⇔cos α=±1⇔向量a,b共线.83.(2013·某某高考理)已知集合M{1,2,z i},i为虚数单位,N={3,4},M∩N={4},则复数z=( )A .-2iB .2iC .-4iD .4i【解析】选C 本题考查集合的交集运算及复数的四则运算,意在考查考生的运算能力.由M ∩N ={4},知4∈M ,故z i =4,故z =4i =4i i 2=-4i.84.(2013·某某高考理)设集合M ={x |x 2+2x =0,x ∈R},N ={x |x 2-2x =0,x ∈R},则M ∪N =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}【解析】选D 本题考查集合的并集、一元二次方程,旨在考查考生对集合并集的了解.M ={x |x (x +2)=0,x ∈R}={0,-2},N ={x |x (x -2)=0,x ∈R}={0,2},所以M ∪N ={-2,0,2}.85.(2013·某某高考理)已知集合A ={0,1,2},则集合B ={x -y |x ∈A, y ∈A }中元素的个数是( )A .1B .3C .5D .9【解析】选C 本题考查集合的含义,考查分析问题、解决问题的能力.逐个列举可得.x =0,y =0,1,2时,x -y =0,-1,-2;x =1,y =0,1,2时,x -y =1,0,-1;x =2,y =0,1,2时,x -y =2,1,0.根据集合中元素的互异性可知集合B 的元素为-2,-1,0,1,2.共5个86.(2013·某某高考理)给定两个命题p ,q .若非 p 是q 的必要而不充分条件,则p 是非 q的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】选A 本题考查命题、逻辑联结词及充分、必要条件等基础知识,考查等价转化的数学思想,考查分析问题和解决问题的能力.q ⇒非p 等价于p ⇒非q ,非p ⇒/ q 等价于非q ⇒/ p ,故p 是非q 的充分而不必要条件.87.(2013·大纲卷高考理)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( )A .3B .4C .5D .6【解析】选B 本题考查集合中元素的性质.由集合中元素的互异性,可知集合M ={5,6,7,8},所以集合M 中共有4个元素.88.(2013·某某卷高考理)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x ⎝ ⎛⎭⎪⎫12x ≤1,B ={x |x 2-6x +8≤0},则A ∩∁R B =( )A .{x |x ≤0} B.{x |2≤x ≤4}C .{x |0≤x <2或x >4}D .{x |0<x ≤2或x ≥4}【解析】选C 本题主要考查集合的基本运算和不等式的求解,意在考查考生的运算求解能力.由题意可知,集合A ={x |x ≥0},B ={x |2≤x ≤4},所以∁R B ={x |x <2或x >4},此时A ∩∁R B ={x |0≤x <2或x >4},故选C.89.(2013·某某卷高考理)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定X 围”,q 是“乙降落在指定X 围”,则命题“至少有一位学员没有降落在指定X 围”可表示为( )A .(非p )∨(非q )B .p ∨(非q )C .(非p )∧(非q )D .p ∨q【解析】选A 本题主要考查使用简单逻辑联结词来表示复合命题,意在考查考生对基础知识和基本概念的理解与掌握.由题意可知,“至少有一位学员没有降落在指定X 围”意味着“甲没有或乙没有降落在指定X 围”,使用“非”和“或”联结词即可表示该复合命题为(非p )∨(非q ).90.(2013·某某卷高考理)设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( )A .{-2}B .{2}C .{-2,2}D .∅【解析】选A 本题考查集合的基本运算,意在考查考生对集合概念的掌握.由x 2-4=0,解得x =±2,所以B ={2,-2},又A ={-2},所以A ∩B ={-2},故选A.91.(2013·某某卷高考理)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .非p :∀x ∈A,2x ∉B B .非p :∀x ∉A,2x ∉BC .非p :∃x ∉A,2x ∈BD .非p :∃x ∈A,2x ∉B【解析】选D 本题考查常用逻辑用语中的∀,∃和非等概念,意在考查考生的逻辑判断能力.因为任意都满足的否定是存在不满足的,所以选D.92.(2013·某某卷高考理)已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号为( )A .①②③B .①②C .①③D .②③【解析】选C 本题考查命题真假的判断,意在考查考生的逻辑推理能力.若一个球的半径缩小到原来的12,则其体积缩小到原来的18,所以①是真命题;因为标准差除了与平均数有关,还与各数据有关,所以②是假命题;因为圆心(0,0)到直线x +y +1=0的距离等于12,等于圆的半径,所以③是真命题.故真命题的序号是①③.93.(2013·某某卷高考理)已知集合A ={x ∈R| |x |≤2}, B ={x ∈R| x ≤1}, 则A ∩B =( )A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]【解析】选D 本题考查简单绝对值不等式的解法、集合的运算.意在考查考生对概念的理解能力.解不等式|x|≤2,得-2≤x≤2,所以A=[-2,2],所以A∩B=[-2,1].94.(2013·高考文)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=( ) A.{0} B.{-1,0}C.{0,1} D. {-1,0,1}【解析】选B 集合A中共有三个元素-1,0,1,而其中符合集合B的只有-1和0,故选B.95.(2013·某某高考文)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=( )A.{1,3,4} B.{3,4}C.{3} D.{4}【解析】选D 本题主要考查集合的并集与补集运算.因为A∪B={1,2,3},所以∁U(A∪B)={4},故选D.96.(2013·某某高考文)命题“对任意x∈R,都有x2≥0”的否定为( )A.存在x0∈R,使得x20<0B.对任意x∈R,都有x2<0C.存在x0∈R,使得x20≥0D.不存在x0∈R,使得x2<0【解析】选A 本题主要考查全称命题的否定.根据定义可知命题的否定为存在x0∈R,使得x20<0,故选A.97.(2013·某某高考文)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=( ) A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}【解析】选A 本题主要考查集合的基本运算,意在考查考生的运算能力和对基本概念的理解能力.集合A ={x |x >-1},所以∁R A ={x |x ≤-1},所以(∁R A )∩B ={-2,-1}.98.(2013·某某高考文) “(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选B 本题主要考查充分必要条件的基础知识和基本概念,意在考查考生对方程的求解以及概念的识别.由(2x -1)x =0可得x =12或0,因为“x =12或0”是“x =0”的必要不充分条件. 99.(2013·某某高考文)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩∁U B =( )A .{3}B .{4}C .{3,4}D .∅【解析】选A 本题主要考查集合的交集、并集和补集运算,考查推理判断能力.由题意知A ∪B ={1,2,3},又B ={1,2},所以A 中必有元素3,没有元素4,∁U B ={3,4},故A ∩∁U B ={3}.100.(2013·某某高考文)给定两个命题p ,q .若﹁ p 是q 的必要而不充分条件,则p 是﹁ q的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】选A 本题主要考查充分必要条件的判断,通过等价命题的转化化难为易,也渗透了对转化思想的考查.由q ⇒非p 且非p ⇒/ q 可得p ⇒非q 且非q ⇒/ p ,所以p 是非q 的充分而不必要条件.101.(2013·大纲卷高考文)设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A =( )A.{1,2} B.{3,4,5}C.{1,2,3,4,5} D.∅【解析】选B 本题主要考查集合的补集运算.根据补集的定义可知∁U A={3,4,5}.102.(2013·某某高考文)设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y -1=0上”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【解析】选A 本题主要考查以点与直线的位置关系为背景的充分必要条件,意在考查考生的数形结合能力、逻辑推理能力和运算求解能力.“x=2且y=-1”满足方程x+y-1=0,故“x=2且y=-1”可推得“点P在直线l:x+y-1=0上”;但方程x+y-1=0有无数多个解,故“点P在直线l:x+y-1=0上”不能推得“x=2且y=-1”,故“x =2且y=-1”是“点P在直线l:x+y-1=0上”的充分不必要条件.103.(2013·某某高考文)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为( ) A.2 B.3C.4 D.16【解析】选C 本题主要考查集合的交集及子集的个数等基础知识,意在考查考生对集合概念的准确理解及集合运算的熟练掌握.A∩B={1,3},故A∩B的子集有4个.104.(2013·新课标Ⅱ高考文)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=( )A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}【解析】选C 本题主要考查集合的基本运算,意在考查考生对基本概念的理解.由交集的意义可知M∩N={-2,-1,0}.105.(2013·某某高考文) “1<x<2”是“x<2”成立的( )A.充分不必要条件 B.必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A 本题主要考查不等式的基本性质和充分必要条件的判断,意在考查考生对充分性和必要性概念的掌握与判断.“1<x <2”可以推得“x <2”,即满足充分性,但“x <2”得不出“1<x <2”,所以为充分不必要条件.106.(2013·某某高考文)设集合S ={x |x >-2},T ={x |-4≤x ≤1},则S ∩T =( )A .[-4,+∞)B .(-2, +∞)C .[-4,1]D .(-2,1]【解析】选D 本题主要考查集合、区间的意义和交集运算等基础知识,属于简单题目,意在考查考生对基础知识的掌握程度.由已知得S ∩T ={x |x >-2}∩{x |-4≤x ≤1}= {x |-2<x ≤1}=(-2,1].107.(2013·某某高考文)若α∈R ,则“α=0”是“sin α<cos α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A 本题主要考查充要条件的判断、三角函数值等基础知识,意在考查考生的推理论证能力.当α=0时,sin α=0,cos α=1,∴sin α<cos α;而当sin α<cos α时,α=0或α=π6,….108.(2013·新课标Ⅰ高考文)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( )A .{1,4}B .{2,3}C .{9,16}D .{1,2}【解析】选A 本题主要考查集合的基本知识,要求认识集合,能进行简单的运算.n =1,2,3,4时,x =1,4,9,16,∴集合B ={1,4,9,16},∴A ∩B ={1,4}.109.已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )A.p∧q B.非p∧q C.p∧非q D.非p∧非q【解析】选B 本题主要考查常用逻辑用语等基本知识,对分析问题的能力有一定要求.容易判断当x≤0时2x>3x,命题p为假命题,分别作出函数y=x3,y=1-x2的图像,易知命题q为真命题.根据真值表易判断非p∧q为真命题.110.(2013·某某高考文)已知集合A={x∈R| |x|≤2}, B= {x∈R| x≤1},则A∩B=( )A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]【解析】选D 本题主要考查简单不等式的解法、集合的运算.意在考查考生对概念的理解能力.解不等式|x|≤2得,-2≤x≤2,所以A=[-2,2],又B=(-∞,1],所以A∩B =[-2,1].111.(2013·某某高考文)设a,b∈R则“(a-b)·a2<0”是“a<b”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】选A 本题主要考查充分条件、必要条件的判断,意在考查考生的逻辑推理能力.若(a-b)·a2<0,则a≠0,且a<b,所以充分性成立;若a<b,则a-b<0,当a=0时,(a-b)·a2=0,所以必要性不成立.故“(a-b)·a2<0”是“a<b”的充分而不必要条件.112.(2013·某某高考文)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩∁U A=( )A.{2} B.{3,4}C.{1,4,5} D.{2,3,4,5}【解析】选B 本题主要考查集合的补集和交集运算.由题得,∁U A={3,4,5},则B∩∁U A ={3,4}.113. (2013·某某高考文)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定X围”,q是“乙降落在指定X围”,则命题“至少有一位学员没有降落在指定X围”可表示为( )A.(非p)∨(非q) B.(p)∨(非q)C.(非p)∧(非q) D.p∨q【解析】选A 本题主要考查逻辑联结词和复合命题.非p:甲没有降落在指定X围;非q:乙没有降落在指定X围,至少有一位学员没有降落在指定X围,即非p或非q发生.114.(2013·某某高考文)设全集为R,函数f(x)=1-x的定义域为M, 则∁R M为( ) A.(-∞,1) B.(1,+∞)C.(-∞,1] D.[1,+∞)【解析】选B 本题主要考查集合的概念和运算,函数的定义域与不等式的求解方法.从函数定义域切入,1-x≥0,∴x≤1,依据补集的运算知识得所求集合为(1,+∞).115.(2013·某某高考文)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( ) A.4 B.2C.0 D.0或4【解析】选A 本题主要考查集合的表示方法(描述法)及其含义,考查化归与转化、分类讨论思想.由ax2+ax+1=0只有一个实数解,可得当a=0时,方程无实数解;当a≠0时,则Δ=a2-4a=0,解得a=4(a=0不合题意舍去).116.(2013·某某高考文)设集合A={1,2,3},集合B={-2,2},则A∩B=( ) A.∅B.{2}C.{-2,2} D.{-2,1,2,3}【解析】选B 本题主要考查集合的运算,意在考查考生对基础知识的掌握.A,B两集合中只有一个公共元素2,∴A∩B={2},选B.117.(2013·某某高考文)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x ∈A,2x∈B,则( )A.非p:∃x∈A,2x∈BB.非p:∃x∉A,2x∈BC.非p:∃x∈A,2x∉BD.非p:∀x∉A,2x∉B【解析】选C 本题主要考查含有一个量词的命题的否定,意在考查考生基础知识的掌握.由命题的否定易知选C,注意要把全称量词改为存在量词.118.(2013·某某高考文)设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=( )A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}【解析】选A 本题主要考查集合的运算知识,意在考查考生的运算求解能力.因为S={-2,0},T={0,2},所以S∩T={0}.119.(2013·某某高考文)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=( ) A.{0} B.{0,1}C.{0,2} D.{0,1,2}【解析】选B 本题主要考查集合的概念和运算,同时考查了绝对值不等式的解法,意在考查考生对集合运算的掌握情况,属于容易题.由已知,得B={x|-2<x<2},所以A∩B ={0,1},选B.120.(2012·某某高考理)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的( )A.既不充分也不必要的条件 B.充分而不必要的条件C.必要而不充分的条件 D.充要条件【解析】由题意可知函数在[0,1]上是增函数,在[-1,0]上是减函数,在[3,4]上也是减。

高考数学(文科)5年真题分类汇编第一章 集合与常用逻辑主语

高考数学(文科)5年真题分类汇编第一章 集合与常用逻辑主语

第一章集合与常用逻辑用语考点1 集合1.(2018全国卷I,1)已知集合,,,,,,,则A.,B.,C.D.,,,,解析:根据集合交集中元素的特征,可以求得,故选A.答案A2.(2018全国卷II,2) 已知集合,,则A.B.C.D.解析:,,故选C.答案C3.(2018全国卷Ⅲ,1)已知集合,,则A.B.C.D.解析:由集合A得,所以故选C.答案C4.(2018北京,1)已知集合A={(|||<2)},B={−2,0,1,2},则( )A.{0,1} B.{−1,0,1}C.{−2,0,1,2}D.{−1,0,1,2}解析:,因此A B=,选A.答案A5.(2018天津,1)设集合,,,则A .B .C .D .解析:由并集的定义可得: , 结合交集的定义可知: .故选C. 答案 C6.(2018浙江,1)已知全集U ={1,2,3,4,5},A ={1,3},则 A . B .{1,3} C .{2,4,5} D .{1,2,3,4,5}解析:因为全集 , ,所以根据补集的定义得 , 故选C. 答案 C7.(2018北京,8)设集合 则 A .对任意实数a , B .对任意实数a ,(2,1) C .当且仅当a <0时,(2,1) D .当且仅当时,(2,1)解析:若 ,则 且 ,即若 ,则, 此命题的逆否命题为:若,则有 ,故选D. 答案 D8.(2017全国卷1,1)已知集合A ={}|2x x <,B ={}|320x x ->,则( ) A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R解析:因为 , B={x|3-2x>0}={x|x<} , 所以A ∩B={x|x<}, A ∪B={x|x<2}.故选A. 答案 A9.(2017全国卷 I I ,1)设集合{1,2,3},{2,3,4}A B ==则AB = ( )A. {}123,4,, B. {}123,, C. {}234,, D. {}134,, 解析 由题意{1,2,3,4}A B =,故选A.答案A10.(2017全国卷3,1)已知集合A={1,2,3,4},B={2,4,6,8},则AB 中元素的个数为( ) A .1 B .2 C .3 D .4 解析 由题意可得:{}2,4A B = ,A B 中元素的个数为2,所以选B.答案 B11.(2017天津,1)设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()AB C =( )A {2}B {1,2,4}C {1,2,4,6}D {1,2,3,4,6} 解析 由题意可得:{}(){}1,2,4,6,1,2,4A B A B C =∴=. 故选B.答案 B12.(2017北京,1)已知U =R ,集合{|22}A x x x =<->或,则∁U A= ( ) A (2,2)- B (,2)(2,)-∞-+∞C [2,2]-D (,2][2,)-∞-+∞ 解析由已知可得,集合A 的补集 U A =[-2,2].故选A. 答案 A.13.(2017浙江,1)已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P ( ) A )2,1(- B .)1,0( C .)0,1(- D .)2,1( 解析 试题分析:利用数轴,取Q P ,所有元素,得=Q P )2,1(-. 答案 A14.(2017山东,1)设集合{}11M x x =-<,{}2N x x =<,则M N = ( )A.()1,1-B. ()1,2-C. ()0,2D. ()1,2 解析|x-1|<1⇔-1<x-1<1,0<x<2,则M={x|0<x<2},又N={x|x<2},所以M∩N=(0,2),故选C. 答案C15.(2016·新课标全国Ⅰ,1)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( )A.{1,3}B.{3,5}C.{5,7}D.{1,7}解析由A={1,3,5,7},B={x|2≤x≤5},得A∩B={3,5},故选B.答案 B16.(2016·新课标全国Ⅱ,1)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}解析由x2<9解得-3<x<3,∴B={x|-3<x<3},又因为A={1,2,3},所以A∩B={1,2},故选D.答案 D17.(2016·新课标全国Ⅲ,1)设集合A={0,2,4,6,8,10},B={4,8},则A B=()A.{4,8}B.{0,2, 6}C.{0,2,6,10}D.{0,2,4,6,8,10}解析A={0,2,4,6,8,10},B={4,8},∴AB={0,2,6,10}.答案 C18.(2016·北京,1)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x>5}解析A∩B={x|2<x<4}∩{x|x<3或x>5}={x|2<x<3}.答案 C19.(2016·四川,2)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6B.5C.4D.3解析∵A={x|1≤x≤5},Z为整数集,则A∩Z={1,2,3,4,5}.答案 B20.(2016·山东,1)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则U(A∪B)=()A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}解析∵A∪B={1,3,4,5},∴U(A∪B)={2,6},故选A.答案 A21.(2016·浙江,1)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(U P)∪Q=()A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}解析∵U P={2,4,6},∴(U P)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.答案 C22.(2015·新课标全国Ⅰ,1)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B 中元素的个数为()A.5 B.4 C.3 D.2解析A={…,5,8,11,14,17,…},B={6,8,10,12,14},集合A∩B中有两个元素.答案D23.(2015·陕西,1)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]解析由题意得M={0,1},N=(0,1],故M∪N=[0,1],故选A.答案A24.(2015·新课标全国Ⅱ,1)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=() A.(-1,3) B.(-1,0)C.(0,2) D.(2,3)解析由A={x|-1<x<2},B={x|0<x<3},得A∪B={x|-1<x<2}∪{x|0<x<3}={x|-1<x<3}.故选A.答案A25.(2015·北京,1)若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=()A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}解析由题意,得A∩B={x|-5<x<2}∩{x|-3<x<3}={x|-3<x<2}.答案A26.(2015·天津,1)已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩UB=()A.{3} B.{2,5}C.{1,4,6} D.{2,3,5}解析由题意知,∁U B={2,5},则A∩∁U B={2,3,5}∩{2,5}={2,5}.选B.答案B27.(2015·重庆,1)已知集合A={1,2,3},B={1,3},则A∩B=()A.{2} B.{1,2} C.{1,3} D.{1,2,3} 解析A∩B={1,2,3}∩{1,3}={1,3}.答案C28.(2015·山东,1)已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A∩B=() A.(1,3) B.(1,4) C.(2,3) D.(2,4)解析∵A={x|2<x<4},B={x|(x-1)(x-3)<0}={x|1<x<3},∴A∩B={x|2<x<3}=(2,3).答案C29.(2015·广东,1)若集合M={-1,1},N={-2,1,0},则M∩N=()A.{0,-1} B.{1}C.{0} D.{-1,1}解析M∩N={-1,1}∩{-2,1,0}={1}.答案B30.(2015·福建,2)若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于() A.{0} B.{1}C.{0,1,2} D.{0,1}解析M={x|-2≤x<2},N={0,1,2},则M∩N={0,1},故选D.答案D31.(2015·安徽,2)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(U B)=() A.{1,2,5,6} B.{1}C.{2} D.{1,2,3,4}解析∵U B={1,5,6},∴A∩(U B)={1,2}∩{1,5,6}={1},故选B.答案B32.(2015·浙江,1)已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=() A.[3,4) B.(2,3]C .(-1,2)D .(-1,3]解析 P ={x |x ≥3或x ≤-1},Q ={x |2<x <4}.∴P ∩Q ={x |3≤x <4}.故选A. 答案 A33.(2015·湖北,10)已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A ⊕B ={( 1x +2x ,1y +2y )|(1x ,1y )∈A ,(2x 2y )∈B },则A ⊕B 中元素的 个数为( )A .77B .49C .45D .30解析 如图,集合A 表示如图所示的所有圆点“”,集合B 表示如图所示的所有圆点“”+所有圆点“”,集合A ⊕B 显然是集合{(x ,y )||x |≤3,|y |≤3,x ,y ∈Z }中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A ⊕B 表示如图所示的所有圆点“”+所有“”圆点+所有圆点“”,共45个. 故A ⊕B 中元素的个数为45.故选C.答案 C34.(2014·新课标全国Ⅰ,1)已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N =( ) A .(-2,1) B .(-1,1) C .(1,3)D .(-2,3)解析 借助数轴可得M ∩N =(-1,1),选B. 答案 B35.(2014·湖南,2)已知集合A ={x |x >2},B ={x |1<x <3},则A ∩B =( ) A .{x |x >2} B .{x |x >1} C .{x |2<x <3}D .{x |1<x <3} 解析 由已知直接得,A ∩B ={x |x >2}∩{x |1<x <3}={x |2<x <3},选C. 答案 C36.(2014·湖北,1)已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,6},则 U A =( ) A .{1,3,5,6} B .{2,3,7} C .{2,4,7}D .{2,5,7}解析 由题意知 UA ={2,4,7},选C.答案 C37.(2014·福建,1)若集合P ={x |2≤x <4},Q ={x |x ≥3},则P ∩Q 等于( ) A .{x |3≤x <4} B .{x |3<x <4} C .{x |2≤x <3}D .{x |2≤x ≤3}解析 因为P ={x |2≤x <4},Q ={x |x ≥3},所以P ∩Q ={x |3≤x <4},故选A. 答案 A38.(2014·山东,2)设集合A ={x |x 2-2x <0},B ={x |1≤x ≤4},则A ∩B =( ) A .(0,2] B .(1,2) C .[1,2) D .(1,4) 解析 由题意得集合A =(0,2),集合B =[1,4],所以A ∩B =[1,2). 答案 C39.(2014·四川,1)已知集合A ={x |(x +1)(x -2)≤0},集合B 为整数集,则A ∩B =( ) A .{-1,0} B .{0,1} C .{-2,-1,0,1}D .{-1,0,1,2}解析 由二次函数y =(x +1)(x -2)的图象可以得到不等式(x +1)(x -2)≤0的解集 A =[-1,2],属于A 的整数只有-1,0,1,2,所以A ∩B ={-1,0,1,2},故选D. 答案 D40.(2018江苏,1)已知集合 , ,那么 ________. 解析:由题设和交集的定义可知: . 答案 {1,8}.41.( 2017江苏,1)已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =则实数a 的值为 .解析 由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.答案 142.(2014·浙江,1)设集合S ={x |x ≥2},T ={x |x ≤5},则S ∩T =( ) A .(-∞,5] B .[2,+∞) C .(2,5)D .[2,5]解析 S ={x |x ≥2},T ={x |x ≤5},∴S ∩T =[2,5]. 答案 D43.(2015·湖南,11)已知集合U ={1,2,3,4},A ={1,3},B ={1,3,4},则A ∪( U B )=________. 解析 U B ={2},∴A ∪( U B)={1,3}∪{2}={1,2,3}. 答案 {1,2,3}44.(2014·重庆,11)已知集合A ={3,4,5,12,13},B ={2,3,5,8,13},则A ∩B =________. 解析 A ∩B ={3,5,13}. 答案 {3,5,13}考点2 命题及其关系、充要条件1.(2018北京,4)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析:当时, 不成等比数列,所以不是充分条件; 当 成等比数列时,则 ,所以是必要条件.综上所述,“ ”是“ 成等比数列”的必要不充分条件,故选B. 答案 B2.(2018天津,3)设 ,则“ ”是“ ” 的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 解析:求解不等式 可得 ,求解绝对值不等式 可得 或 ,据此可知:“ ”是“ ” 的充分而不必要条件.故选A. 答案 A3.(2018浙江,6)已知直线 , 和平面 , ,则“ ”是“ ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析:直线,平面,且,若,当时,,当时不能得出结论,故充分性不成立;若,过作一个平面,若时,则有,否则不成立,故必要性也不成立.由上证知“”是“”的既不充分也不必要条件,故选D . 答案D4.(2017天津,2)设x ∈R ,则“20x -≥”是“|1|1x -≤”的 ( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分也不必要条件解析 由题意得 20x -≥,则2x ≤, 11x -≤, 则111,02x x -≤-≤≤≤,{}{}022x x x x ≤≤⊂≤ ,据此可知:“20x -≥”是“11x -≤”的的必要的必要不充分条件,本题选择B 选项. 答案B5.(2017北京,7)设m , n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A 充分而不必要条件B 必要而不充分条件C 充分必要条件D 既不充分也不必要条件解析:本题主要考查充分必要条件与平面向量的有关知识,意在考查考生的逻辑推理能力与分析问题、解决问题的能力.因为m,n 是非零向量,所以m ·n=|m|·|n|cos<m,n><0的充要条件是cos<m,n><0.因为λ<0,则由m=λn 可知m,n 的方向相反,<m,n>=180°,所以cos<m,n><0,所以“存在负数λ,使得m=λn ”可推得“m ·n<0”;而由“m ·n<0”,可推得“cos<m,n><0”,但不一定推得“m,n 的方向相反”,从而不一定推得“存在负数λ,使得m=λn ”.综上所述,“存在负数λ,使得m=λn ”是 “m ·n<0”的充分而不必要条件,故选A. 答案 A6.(2016·山东,6)已知直线a ,b 分别在两个不同的平面α ,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件.解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A. 答案 A7.(2016·四川,5)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件.解析 当11x y >>,时,+2x y >一定成立,即p q ⇒; 当+2x y >时,可以=-1=4x y ,,即q p ⇒, 故p 是q 的充分不必要条件. 答案 A8.(2016·浙江,6)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 .解析 由题意知f (x )=x 2+bx =22⎪⎭⎫ ⎝⎛+b x -b 24, f (x )min =-b 24,令t =x 2+bx ≥-b 24, 则f (f (x ))=f (t )=t 2+bt =22⎪⎭⎫ ⎝⎛+b t -b 24, 当b <0时,f (f (x ))的最小值为-b 24,所以“b <0”能推出“f (f (x ))的最小值与f (x )的最小值相等”; 当b =0时,f (f (x ))=x 4的最小值为0,f (x )的最小值也为0,所以“f (f (x ))的最小值与f (x )的最小值相等”不能推出“b <0”,选A.答案 A9.(2015·山东,5)若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m≤0.解析 原命题为“若p ,则q”,则其逆否命题为“若綈q ,则綈p”.∴所求命题为“若方程x2+x -m =0没有实根,则m≤0”.答案 D10.(2015·天津,4)设x ∈R ,则“1<x <2”是“|x -2|<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件.解析 由|x -2|<1得1<x <3,所以1<x <2⇒1<x <3;但1<x <31<x <2,故选A. 答案 A .11.(2015·重庆,2)“x =1”是“x 2-2x +1=0”的 ( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件.解析 解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件.答案 A12.(2015·福建,12)“对任意x ∈⎪⎭⎫ ⎝⎛2,0π,k sin x cos x <x ”是“k <1”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 解析 ∀x ∈⎪⎭⎫ ⎝⎛2,0π,k sin x cos x <x ⇔∀x ∈⎪⎭⎫ ⎝⎛2,0π,k <2x sin 2x , 令f(x)=2x -sin 2x.∴f′(x)=2-2cos 2x >0,∴f(x)在⎪⎭⎫ ⎝⎛2,0π为增函数,∴f(x)>f(0)=0. ∴2x >sin 2x ,∴2x sin 2x >1,∴k≤1,故选B. 答案 B13.(2015·安徽,3)设p :x <3,q :-1<x <3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 解析 ∵x<3-1<x<3,但-1<x<3⇒x<3,∴p 是q 的必要不充分条件,故选C.答案 C14.(2015·陕西,6)“sin α=cos α”是“cos 2α=0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 解析 ∵sin α=cos α⇒cos 2α=cos2α-sin2α=0;cos 2α=0⇔cos α=±sin αsin α=cos α,故选A.答案 A15.(2015·湖南,3)设x ∈R ,则“x >1”是“x 3>1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 由x >1知,x 3>1;由x 3>1可推出x >1.故选C.答案 C16.(2015·浙江,3)设a ,b 是实数,则“a +b >0”是“ab >0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 当a =3,b =-1时,a +b >0,但ab <0,故充分性不成立;当a =-1,b =-2时,ab >0,而a +b <0.故必要性不成立.故选D.答案 D17.(2014·陕西,8)原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假17.解析 从原命题的真假入手,由于a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列,即原命题和逆命题均为真命题,又原命题与逆否命题同真同假,逆命题与否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选A.答案 A18.(2014·新课标全国Ⅱ,3)函数f (x )在x =x 0处导数存在.若p :f ′(0x )=0;q :x =0x 是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析 设f (x )=x 3,f ′(0)=0,但是f (x )是单调增函数,在x =0处不存在极值,故若p 则q 是一个假命题,由极值的定义可得若q 则p 是一个真命题.故选C.答案 C19.(2014·北京,5)设a ,b 是实数,则“a >b ”是“a 2>b 2”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析 可采用特殊值法进行判断,令a =1,b =-1,满足a >b ,但不满足a 2>b 2,即条件“a >b ”不能推出结论“a 2>b 2”;再令a =-1,b =0,满足a 2>b 2,但不满足a >b , 即结论“a 2>b 2”不能推出条件“a >b ”.故选D.答案 D20.(2014·广东,7)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a≤b”是 “sin A≤sin B”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件解析 由正弦定理,得a sin A =b sin B,故a≤b ⇔sin A≤sin B ,选A. 答案 A21.(2015·四川,15)已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设 m =()()2121x x x f x f --,n =()()2121x x x g x g --, 现有如下命题:①对于任意不相等的实数,,都有m >0;②对于任意的a 及任意不相等的实数,,都有n >0;③对于任意的a ,存在不相等的实数,,使得m =n ;④对于任意的a ,存在不相等的实数,,使得m =-n .其中真命题有________(写出所有真命题的序号).解析 设A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 1,g (x 1)),D (x 2,g (x 2)),对于①:从y =2x 的图象可看出,m =k AB >0恒成立,故正确;对于②:直线CD 的斜率可为负,即n <0,故不正确;对于③:由m =n 得f (x 1)-f (x 2)=g (x 1)-g (x 2),即f (x 1)-g (x 1)=f (x 2)-g (x 2),令h (x )=f (x )-g (x )=2x -x 2-ax ,则h ′(x )=2x ·ln 2-2x -a ,由h ′(x )=0,∴2x ·ln 2=2x +a ,(*)结合图象知,当a 很小时,方程(*)无解,∴函数h (x )不一定有极值点,就不一定存在x 1,x 2使f (x 1)-g (x 1)=f (x 2)-g (x 2),不一定存在x 1,x 2使得m =n ;对于④:由m =-n ,得f (x 1)-f (x 2)=g (x 2)-g (x 1),即f (x 1)+g (x 1)=f (x 2)+g (x 2),1x 2x 1x 2x 1x 2x 1x 2x令F (x )=f (x )+g (x )=2x +x 2+ax ,则F ′(x )=2x ln 2+2x +a ,由F ′(x )=0,得2x ln 2=-2x -a ,结合如图所示图象可知,该方程有解,即F (x )必有极值点,∴存在x 1,x 2使F (x 1)=F (x 2),得m =-n .故①④正确.答案 ①④考点3 简单的逻辑联结词、全称量词与存在量词1.(2018北京,4)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:当 时, 不成等比数列,所以不是充分条件; 当 成等比数列时,则 ,所以是必要条件.综上所述,“ ”是“ 成等比数列”的必要不充分条件.故选B.答案 B2.(2018天津,3)设 ,则“ ”是“ ” 的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:求解不等式 可得 ,求解绝对值不等式 可得 或 ,据此可知:“ ”是“ ” 的充分而不必要条件.故选A.答案 A3.(2017山东,5)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是( )A .p q ∧ B.p q ∧⌝ C.p q ⌝∧ D.p q ⌝∧⌝解析 由0x =时210x x -+≥成立知p 是真命题,由221(2),12<->-可知q 是假命题,所以p q ∧⌝是真命题,故选B.答案 B4.(2015·湖北,3)命题“∃0x ∈(0,+∞),0ln x =-1”的否定是( )A .∀x ∈(0,+∞),x ln ≠x -1B .∀x (0,+∞),x ln =x -1C .∃x 0∈(0,+∞),0ln x ≠0x -1D .∃x 0 (0,+∞),0ln x =0x -1解析 特称性命题的否定是全称性命题,且注意否定结论,故原命题的否定是:“∀x ∈(0,+∞),x ln ≠x -1”.故选A.答案 A5.(2014·湖南,1)设命题p :∀x ∈R ,12+x >0,则⌝p 为( )A .∃0x ∈R ,0x +1>0 B .∃0x ∈R ,0x +1≤0 C .∃0x ∈R ,0x +1<0 D .∀x ∈R ,0x +1≤0.解析 全称命题的否定,要对结论进行否定,同时要把全称量词换成存在量词,故命题p 的否定为“∃0x ∈R ,0x +1≤0”,故选B.答案 B6.(2014·安徽,2)命题“∀x ∈R ,|x|+2x ≥0”的否定是( )A .∀x ∈R ,|x|+2x <0B .∀x ∈R ,|x|+2x ≤0C .∃0x ∈R ,|0x |+0x <0D .∃0x ∈R ,|0x |+0x ≥0解析 命题的否定是否定结论,同时把量词作对应改变,故命题“∀x ∈R ,|x|+x 2≥0”的 否定为“∃x 0∈R ,|x 0|+x 0<0”,故选C.答案 C7.(2014·湖北,3)命题“∀x ∈R ,2x ≠x”的否定是( )A .∀x R ,2x ≠xB .∀x ∈R ,2x =xC .∃x R ,2x ≠xD .∃x ∈R ,2x =x 解析 全称命题的否定是特称命题:∃x ∈R ,x 2=x ,故选D.答案 D8.(2014·福建,5)命题“∀x ∈[0,+∞),3x +x≥0”的否定是( )A .∀x ∈(-∞,0),3x +x <0B .∀x ∈(-∞,0),3x +x≥0C .∃x 0∈[0,+∞),x 0+x0<0D .∃x 0∈[0,+∞),x 0+x 0≥0解析 把全称量词“∀”改为存在量词“∃”,并把结论加以否定,故选C.答案C9.(2014·天津,3)已知命题p:∀x>0,总有(x+1)e x>1,则⌝p为()e x≤1A.∃x0 ≤0,使得(x0+1)0e x≤1B.∃x0 >0,使得(x0+1)0C.∀x>0,总有(x+1)ex≤1D.∀x≤0,总有(x+1)ex≤1解析:全称命题的否定是特称命题,所以命题p:∀x>0,总有(x+1)e x>1的否定是綈p:∃x0>0,使得(x0+1)e x0≤1.答案B10.(2014·重庆,6)已知命题p:对任意x∈R,总有|x|≥0;命题q:x=1是方程x+2=0的根.则下列命题为真命题的是()A.p∧⌝q B.⌝p∧q C.⌝p∧⌝q D.p∧q解析:命题p为真命题,命题q为假命题,所以命题⌝q为真命题,所以p∧⌝q为真命题,选A.答案A11.(2014·辽宁,5)设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是()A.p∨q B.p∧q C.(⌝p)∧(⌝q) D.p∨(⌝q)解析对于命题p:因为a·b=0,b·c=0,所以a,b与b,c的夹角都为90°,但a,c的夹角可以为0°或180°,故a·c≠0,所以命题p是假命题;对于命题q:a∥b,b∥c说明a,b 与b,c都共线,可以得到a,c的方向相同或相反,故a∥c,所以命题q是真命题.选项A 中,p∨q是真命题,故A正确;选项B中,p∧q是假命题,故B错误;选项C中,⌝p是真命题,⌝q是假命题,所以(⌝p)∧(⌝q)是假命题,所以C错误;选项D中,p∨(⌝q)是假命题,所以D错误.故选A.答案A12.(2018北京,11)能说明“若a﹥b,则”为假命题的一组a,b的值依次为_________. 解析:当时,不成立,即可填.答案(答案不唯一)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年高考真题分类汇编:集合与常用逻辑用语一. 选择题1.(2015四川高考,理1)设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B = ( )(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x <<(){|23}D x x <<【解析】选A {|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<< ,选A.2.(2015广东高考,理1)若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N = ( )A .∅B .{}1,4--C .{}0D .{}1,4【解析】选A 因为()(){}{}|4104,1M x x x =++==--,()(){}{}|4101,4N x x x =--==,所以M N =∅ ,故选A .3.( 2015新课标全国卷1,理3)设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈【解析】选C p ⌝:2,2n n N n ∀∈≤,故选C.4.( 2015陕西高考,理1)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = ( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A【解析】选A {}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N = ,故选A .5.(2015湖北高考,理5)设12,,,n a a a ∈R ,3n ≥. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++ ,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【解析】A6.(2015天津高考,理4)设x R ∈ ,则“21x -< ”是“220x x +-> ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件【解析】选A 2112113x x x -<⇔-<-<⇔<<,2202x x x +->⇔<-或1x >,所以 “21x -< ”是“220x x +-> ”的充分不必要条件,故选A.7.(2015重庆高考,理1)已知集合A ={}1,2,3,B ={}2,3,则( )A 、A =B B 、A ⋂B =∅C 、A ØBD 、B ØA【解析】选D 由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D .8.(2015福建高考,理1)若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .φ【解析】选C 由已知得{},1,,1A i i =--,故A B = {}1,1-,故选C .9.(2015重庆高考,理4)“1x >”是“12log (2)0x +<”的( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件【答案】B【解析】选B 12log (2)0211x x x +<⇔+>⇔>-,因此选B .10.(2015全国卷新课标Ⅱ,理1)已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B = ( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2【解析】选A 由已知得{}21B x x =-<<,故{}1,0A B =- ,故选A .11. (2015天津高考,理1)已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B = ð( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8【解析】选A {2,5,8}U B =ð,所以{2,5}U A B = ð,故选A.12.(2015安徽高考,理3)设:12,:21x p x q <<>,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件13.(2015山东高考,理1)已知集合{}2430A x x x =-+<,{}24B x x =<<,则A B = ( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)【解析】选C .因为{}{}243013A x x x x x =-+<=<<, 所以{}{}{}132423A B x x x x x x =<<<<=<< .故选:C.14.(2015浙江高考,理4)命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n >B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >【解析】选D 根据全称命题的否定是特称命题,可知选D.15.(2015浙江高考,理1)已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q = ð( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]【解析】选C 由题意得,)2,0(=P C R ,∴()(1,2)R P Q = ð,故选C.16.(2015湖南高考,理2).设A ,B 是两个集合,则“A B A = ”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选C. 由题意得,A B A A B =⇒⊆ ,反之,A B A B A =⇒⊆ ,故为充要条件,选C.17.(2015新课标全国卷Ⅰ,文1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2【解析】选D18(2015重庆高考,文1)已知集合{1,2,3},B {1,3}A ==,则A B = ( )(A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3}【解析】选C 由已知及交集的定义得A B = {1,3},故选C.19.(2015浙江高考,文3)设a ,b 是实数,则“0a b +>”是“0ab >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【解析】本题采用特殊值法:当3,1a b ==-时,0a b +>,但0ab <,故是不充分条件;当3,1a b =-=-时,0ab >,但0a b +<,故是不必要条件.所以“0a b +>”是“0ab >”的即不充分也不必要条件.故选D.20.(2015重庆高考,文2)“x 1=”是“2x 210x -+=”的( )(A) 充要条件 (B) 充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件【答案】A【解析】由“x 1= ”显然能推出“2x 210x -+=”,故条件是充分的,又由“2x 210x -+=”可得10)1(2=⇒=-x x ,所以条件也是必要的,故选A.21.(2015浙江高考,文1)已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P = ( ) A .[)3,4 B .(]2,3 C .()1,2-D .(]1,3-【答案】A【解析】由题意得,{}|31P x x x =≥≤或,所以[3,4)P Q = ,故选A.22.(2015天津高考,文1)已知全集{1,2,3,4,5,6}U =,集合{2,3,5}A =,集合{1,3,4,6}B =,则集合A U B =()ð( )(A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5}【答案】B 【解析】{2,3,5}A =,{2,5}U B =ð,则{}A 2,5U B=()ð,故选B. 23.(2015天津高考,文4)设x R Î,则“12x <<”是“|2|1x -<”的( )(A) 充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件【答案】A 【解析】由2112113x x x -<⇔-<-<⇔<<,可知“12x <<”是“|2|1x -<”的充分而不必要条件,故选A.24.(2015四川高考,文1)设集合A ={x |-1<x <2},集合B ={x |1<x <3},则A ∪B =( )(A ){x |-1<x <3} (B ){x |-1<x <1} (C ){x |1<x <2} (D ){x |2<x <3}【答案】A25.(2015山东高考,文1) 已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂= ( )(A )1,3() (B )1,4() (C )(2,3() (D )2,4()) 【答案】C【解析】因为|13B x x =<<{},所以{|24}{|13}(2,3)A B x x x x ⋂=<<⋂<<=,故选C .26.(2015四川高考,文4)设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( )(A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件【答案】A【解析】a >b >1时,有log 2a >log 2b >0成立,反之当log 2a >log 2b >0成立时,a >b >1也正确.选A27.(2015陕西高考,文1)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = ( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A【解析】由2{|}{0,1}M x x x M ==⇒=,{|lg 0}{|01}N x x N x x =≤⇒=<≤,所以[0,1]M N = ,故答案选A . 28.(2015安徽高考,文2)设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U A C B = ( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,, 【答案】B【解析】∵{}6,5,1=B C U ,∴()U A C B = {}1,∴选B . 29.(2015广东高考,文1)若集合{}1,1M =-,{}2,1,0N =-,则M N = ( )A .{}0,1-B .{}0C .{}1D .{}1,1-【答案】C【解析】{}1M N = ,故选C .30.(2015山东高考,文5)设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是( )(A )若方程20x x m +-=有实根,则0m >(B) 若方程20x x m +-=有实根,则0m ≤(C) 若方程20x x m +-=没有实根,则0m >(D) 若方程20x x m +-=没有实根,则0m ≤【答案】D【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D .31.(2015湖南高考,文3)设x ∈R ,则“x >1”是“2x >1”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件【答案】C【解析】由题易知“x >1”可以推得“2x >1”, “2x >1”不一定得到“x >1”,所以“x >1”是“2x >1”的充分不必要条件,故选A.32.(2015福建高考,文2)若集合{}22M x x =-≤<,{}0,1,2N =,则M N 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1【答案】D【解析】由交集定义得{}0,1M N = ,故选D .33.(2015湖北高考,文3)命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( )A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =- 【答案】C .【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选C .34.(2015北京高考,文1)若集合{}52x x A =-<<,{}33x x B =-<<,则A B = ( )A .{}32x x -<<B .{}52x x -<<C .{}33x x -<<D .{}53x x -<<【答案】A【解析】在数轴上将集合A ,B 表示出来,如图所示,由交集的定义可得,A B 为图中阴影部分,即{}32x x -<<,故选A.35.(2015安徽高考,文3)设p :x <3,q :-1<x <3,则p 是q 成立的( )(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件【答案】C【解析】∵3: x p ,31: x q -∴p q ⇒,但p ⇒/q ,∴p 是q 成立的必要不充分条件,故选C .36.(2015湖南高考,文11)已知集合U={}1,2,3,4,A={}1,3,B={}1,3,4,则A (U B ð)=_____.【答案】{1,2,3}.【解析】由题U B ð={2},所以A (U B ð)={1,2,3}.37. (2014·新课标全国卷Ⅰ理) 已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)解析:选A A ={x |x ≤-1或x ≥3},故A ∩B =[-2,-1],选A.38. (2014·新课标全国卷Ⅰ文) 已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)解析:选B 借助数轴可得M ∩N =(-1,1),选B.39. (2014·新课标全国卷Ⅱ理) 设集合M ={0,1,2},N ={x |x 2-3x +2≤0},则M ∩N =( )A .{1}B .{2}C .{0,1}D .{1,2}解析:选D N={x|x2-3x+2≤0}={x|1≤x≤2},又M={0,1,2},所以M∩N={1,2}.40. (2014·新课标全国卷Ⅱ文) 已知集合A={-2,0,2},B={ x|x2-x-2=0},则A∩B =()A.∅B.{2}C.{0} D.{-2}解析:选B法一:因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∩B ={2},故选B.法二:(代值验证法)将-2,0,2分别代入x2-x-2=0,经检验知只有2满足题意,故选B.41. (2014·浙江高考理) 设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5} D.{2,5}解析:选B由题意知U={x∈N|x≥2},A={x∈N|x≥5},所以∁U A={x∈N|2≤x<5}={2}.故选B.42. (2014·浙江高考文) 设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5]B.[2,+∞)C.(2,5) D.[2,5]解析:选D∵S={x|x≥2},T={x|x≤5},∴S∩T=[2,5].43. (2014·重庆高考理) 已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是()A.p∧q B.非p∧非qC.非p∧q D.p∧非q解析:选D依题意,命题p是真命题.由x>2⇒x>1,而x>1⇒/x>2,因为此“x>1”是“x>2”的必要不充分条件,故命题q是假命题,则非q是真命题,p∧非q是真命题,选D.44. (2014·重庆高考文) 已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是()A.p∧非q B.非p∧qC.非p∧非q D.p∧q解析:选A命题p为真命题,命题q为假命题,所以命题非q为真命题,所以p∧非q 为真命题,选A.45. (2014·安徽高考理) “x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B ln(x+1)<0⇔0<x+1<1⇔-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.46. (2014·安徽高考文) 命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+x20<0 D.∃x0∈R,|x0|+x20≥0解析:选C命题的否定是否定结论,同时把量词作对应改变,故命题“∀x∈R,|x|+x2≥0”的否定为“∃x0∈R,|x0|+x20<0”,故选C.47. (2014·北京高考理) 已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2} D.{0,1,2}解析:选C∵A={x|x2-2x=0}={0,2},∴A∩B={0,2},故选C.48. (2014·北京高考文) 若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4}B.{0,4}C.{1,2} D. {3}解析:选C集合A与集合B的公共元素是1,2,即A∩B={1,2}.故选C.49.(2014·大纲高考理)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N=()A.(0,4] B.[0,4)C.[-1,0) D.(-1,0]解析:选B由题意可得M={x|-1<x<4},所以M∩N={x|0≤x<4},故选B.50. (2014·大纲高考文) 设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N 中元素的个数为()A.2B.3C .5D .7解析:选B 由M ∩N ={1,2,6},故M ∩N 中含有3个元素,故选B.51. (2014·福建高考理) 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k=1”是“△OAB 的面积为12”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件解析:选A 若k =1,则直线l :y =x +1与圆相交于(0,1),(-1,0)两点,所以△OAB的面积S △OAB =12×1×1=12,所以“k =1”⇒“△OAB 的面积为12”;若△OAB 的面积为12,则k =±1,所以“△OAB 的面积为12”⇒/“k =1”,所以“k =1”是“△OAB 的面积为12”的充分而不必要条件,故选A.52. (2014·福建高考文) 若集合P ={x |2≤x <4},Q ={x |x ≥3},则P ∩Q 等于 ( )A .{x |3≤x <4}B .{x |3<x <4}C .{x |2≤x <3}D .{x |2≤x ≤3}解析:选A 因为P ={x |2≤x <4},Q ={x |x ≥3},所以P ∩Q ={x |3≤x <4},故选A.53. (2014·广东高考理) 已知集合M ={-1,0,1},N ={0,1,2},则M ∪N =( )A .{-1,0,1}B .{-1,0,1,2}C .{-1,0,2}D .{0,1}解析:选B M ∪N 表示属于M 或属于N 的元素构成的集合,故M ∪N ={-1,0,1,2}.54. (2014·广东高考文) 已知集合M ={2,3,4},N ={0,2,3,5} ,则M ∩N =( )A .{0,2}B .{2,3}C .{3,4}D .{3,5}解析:选B 由交集的定义,注意到两集合的公共元素构成的集合为{2,3},故选B.55. (2014·湖北高考理) 设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C 是“A ∩B =∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件解析:选C “存在集合C 使得A ⊆C ,B ⊆∁U C ”⇔“A ∩B =∅”.故C 正确.56. (2014·湖北高考文) 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6}B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:选C由题意知∁U A={2,4,7},选C.57. (2014·湖南高考理) 已知命题p:若x>y,则-x<-y:命题q:若x>y,则x2>y2,在命题①p∧q;②p∨q;③p∧(非q);④(非p)∨q中,真命题是()A.①③B.①④C.②③D.②④解析:选C由不等式的性质可知,命题p是真命题,命题q为假命题,故①p∧q为假命题,②p∨q为真命题,③非q为真命题,则p∧(非q)为真命题,④非p为假命题,则(非p)∨q为假命题,所以选C.58. (2014·湖南高考文) 设命题p:∀x∈R,x2+1>0 ,则非p为()A.∃x0∈R,x20+1>0B.∃x0∈R,x20+1≤0C.∃x0∈R,x20+1<0 D.∀x∈R,x2+1≤0解析:选B全称命题的否定,要对结论进行否定,同时要把全称量词换成存在量词,故命题p的否定为“∃x0∈R,x20+1≤0”,所以选B.59. (2014·江西高考文) 设全集为R ,集合A={x|x2-9<0},B={x|1<x≤5},则A∩(∁R B)=()A.(-3,0) B.(-3,-1)C.(-3,-1] D.(-3,3)解析:选C因为A={x|-3<x<3},∁R B={x|x≤-1或x>5},所以A∩(∁R B)={x|-3<x<3}∩{x|x≤-1或x>5}={x|-3<x≤-1}.60. (2014·辽宁高考理) 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:选D A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.61. (2014·辽宁高考文) 已知全集U=R ,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:选D由题知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1},选D.62. (2014·山东高考理) 设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B=() A.[0,2] B.(1,3)C.[1,3) D.(1,4)解析:选C|x-1|<2⇔-2<x-1<2,故-1<x<3,即集合A=(-1,3).根据指数函数的性质,可得集合B=[1,4].所以A∩B=[1,3).63. (2014·山东高考文) 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=() A.(0,2] B.(1,2)C.[1,2) D.(1,4)解析:选C由题意得集合A=(0,2),集合B=[1,4],所以A∩B=[1,2).64. (2014·陕西高考理) 已知全集U=R ,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:选D由题知,A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1},选D.65.(2014·陕西高考文) 已知集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.(0,1)C.(0,1] D.[0,1)解析:选D由题意知,集合M=[0,+∞),N=(-1,1),∴M∩N=[0,1).66. (2014·四川高考理) 已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=() A.{-1,0,1,2}B.{-2,-1,0,1}C.{0,1} D.{-1,0}解析:选A因为A={x|-1≤x≤2},B=Z,故A∩B={-1,0,1,2}.67. (2014·四川高考文) 已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A .{-1,0}B .{0,1}C .{-2,-1,0,1}D .{-1,0,1,2}解析:选D 由二次函数y =(x +1)(x -2)的图象可以得到不等式(x +1)(x -2)≤0的解集A =[-1,2],属于A 的整数只有-1,0,1,2,所以A ∩B ={-1,0,1,2},故选D.68. (2014·天津高考理) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:选C 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |.选C.69. (2014·天津高考文) 已知命题p :∀x >0,总有(x +1)e x >1,则非p 为 ( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x ≤1D .∀x ≤0,总有(x +1)e x ≤1解析:选B 全称命题的否定是特称命题,所以命题p :∀x >0,总有(x +1)e x >1的否定是非p :∃x 0>0,使得(x 0+1)e x 0≤1.70.(2013·福建高考理)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ” 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A 本题考查集合与充分必要条件等基础知识,意在考查考生转化和化归能力、逻辑推理能力和运算求解能力.因为A ={1,a },B ={1,2,3},若a =3,则A ={1,3},所以A ⊆B ;若A ⊆B ,则a =2或a =3,所以A ⊆B ⇒/ a =3,所以“a =3”是“A ⊆B ”的充分而不必要条件.71.(2013·辽宁高考理)已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B = ( )A .(0,1)B .(0,2]C .(1,2)D .(1,2]【解析】选D 本题考查集合的运算,同时考查对数不等式的解法.求解对数不等式时注意将常数转化为对应的对数,而后准确应用对数函数的单调性进行求解.0<log 4x <1,即log 41<log 4x <log 44,故1<x <4,∴集合A ={x |1<x <4},∴A ∩B ={x |1<x ≤2}.72.(2013·安徽高考理) “a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增” 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选C 本题考查二次函数图象性质以及图象变换,意在考查转化与化归思想.根据二次函数的图象可知f (x )在(0,+∞)内单调递增等价于f (x )=0在区间(0,+∞)内无实根,本题不难求解.f (x )=|(ax -1)x |在(0,+∞)内单调递增等价于f (x )=0在区间(0,+∞)内无实根,即a =0或1a<0,也就是a ≤0,故“a ≤0”是“函数f (x )=|(ax -1)x |在(0,+∞)内单调递增”的充要条件,故选C.73.(2013·浙江高考理)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T = ( )A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞)【解析】选C 本题考查无限元素集合间的交、并、补运算以及简单的一元二次不等式的解法.浙江省每年都会有一道涉及集合的客观题,主要考查对集合语言的理解以及简单的集合运算.T = {x |-4≤x ≤1},根据补集定义,∁R S ={x |x ≤-2},所以(∁R S )∪T ={x |x ≤1},选C.74.(2013·浙江高考理)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R),则“f (x )是奇函数”是“φ=π2”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选B 本题考查对必要条件、充分条件与充要条件的理解,考查三角函数的诱导公式、三角函数的奇偶性等,意在考查考生的推理能力以及三角函数性质的掌握等.若f (x )是奇函数,则φ=π2+k π(k ∈Z),且当φ=π2时,f (x )为奇函数. 75.(2013·重庆高考理)已知全集U ={1,2,3,4},集合A ={1,2} ,B ={2,3},则∁U (A ∪B ) =( )A .{1,3,4}B .{3,4}C .{3}D .{4}【解析】选D 本题考查集合运算,意在考查考生运算能力.由题意A ∪B ={1,2,3},且全集U ={1,2,3,4},所以∁U (A ∪B )={4}.76.(2013·重庆高考理)命题“对任意x ∈R ,都有x 2≥0”的否定为 ( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0D .存在x 0∈R ,使得x 20<0【解析】选D 本题考查全称命题和特称命题,意在考查考生对基本概念的掌握能力.全称命题的否定为特称命题,所以答案为D.77.(2013·新课标Ⅰ高考理)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( )A .A ∩B =∅ B .A ∪B =RC .B ⊆A D.A ⊆B【解析】选B 本题考查一元二次不等式的解法和集合的运算,意在考查考生运用数轴进行集合运算的能力.解题时,先通过解一元二次不等式求出集合A,再借助数轴求解集合的运算.集合A={x|x>2或x<0},所以A∪B={x|x>2或x<0}∪{x|-5<x<5}=R,选择B.78.(2013·新课标Ⅱ高考理)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N =() A.{0,1,2}B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3}【解析】选A本题主要涉及简单不等式的解法以及集合的运算,属于基本题,考查考生的基本运算能力.不等式(x-1)2<4等价于-2<x-1<2,得-1<x<3,故集合M={x|-1<x<3},则M∩N={0,1,2},故选A.79.(2013·北京高考理)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=() A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}【解析】选B本题考查集合的含义与运算,意在考查考生基本的运算求解能力.集合B 含有整数-1,0,故A∩B={-1,0}.80.(2013·北京高考理) “φ=π”是“曲线y=sin(2x+φ)过坐标原点”的() A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A本题考查三角函数的诱导公式、三角函数的性质、充要条件的判断等基础知识和基本方法,意在考查考生分析问题、解决问题的能力.由sin φ=0可得φ=kπ(k∈Z),此为曲线y=sin(2x+φ)过坐标原点的充要条件,故“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件.81.(2013·陕西高考理)设全集为R,函数f(x)=1-x2的定义域为M,则∁R M为() A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞) D.(-∞,-1)∪(1,+∞)【解析】选D本题考查集合的概念和运算,涉及函数的定义域与不等式的求解.本题抓住集合元素是函数自变量,构建不等式并解一元二次不等式得到集合,然后利用补集的意义求解,使集合与函数有机结合,体现了转化化归思想的具体应用.从函数定义域切入,∵1-x 2≥0,∴-1≤x ≤1,依据补集的运算知所求集合为(-∞,-1)∪(1,+∞),选D.82.(2013·陕西高考理)设a ,b 为向量,则“|a·b |=|a ||b |”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选C 本题考查向量的数量积和向量共线的充要条件的判断,涉及向量的模及绝对值的概念.从数量积入手,设α为向量a ,b 的夹角,则|a·b |=|a ||b |·|cos α|=|a ||b |⇔|cos α|=1⇔cos α=±1⇔向量a ,b 共线.83.(2013·江西高考理)已知集合M {1,2,z i},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =( )A .-2iB .2iC .-4iD .4i【解析】选C 本题考查集合的交集运算及复数的四则运算,意在考查考生的运算能力.由M ∩N ={4},知4∈M ,故z i =4,故z =4i =4i i 2=-4i. 84.(2013·广东高考理)设集合M ={x |x 2+2x =0,x ∈R},N ={x |x 2-2x =0,x ∈R},则M ∪N = ( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}【解析】选D 本题考查集合的并集、一元二次方程,旨在考查考生对集合并集的了解.M ={x |x (x +2)=0,x ∈R}={0,-2},N ={x |x (x -2)=0,x ∈R}={0,2},所以M ∪N ={-2,0,2}.85.(2013·山东高考理)已知集合A ={0,1,2},则集合B ={x -y |x ∈A, y ∈A }中元素的个数 是( )A .1B .3C .5D .9【解析】选C 本题考查集合的含义,考查分析问题、解决问题的能力.逐个列举可得.x =0,y =0,1,2时,x -y =0,-1,-2;x =1,y =0,1,2时,x -y =1,0,-1;x =2,y =0,1,2时,x -y =2,1,0.根据集合中元素的互异性可知集合B 的元素为-2,-1,0,1,2.共5个86.(2013·山东高考理)给定两个命题p ,q .若非 p 是q 的必要而不充分条件,则p 是非 q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】选A 本题考查命题、逻辑联结词及充分、必要条件等基础知识,考查等价转化的数学思想,考查分析问题和解决问题的能力.q ⇒非p 等价于p ⇒非q ,非p ⇒/ q 等价于非q ⇒/ p ,故p 是非q 的充分而不必要条件.87.(2013·大纲卷高考理)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为 ( )A .3B .4C .5D .6【解析】选B 本题考查集合中元素的性质.由集合中元素的互异性,可知集合M ={5,6,7,8},所以集合M 中共有4个元素.88.(2013·湖北卷高考理)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x ⎝⎛⎭⎫12x ≤1,B ={x |x 2-6x +8≤0},则A ∩∁R B =( )A .{x |x ≤0}B .{x |2≤x ≤4}C .{x |0≤x <2或x >4}D .{x |0<x ≤2或x ≥4}【解析】选C 本题主要考查集合的基本运算和不等式的求解,意在考查考生的运算求解能力.由题意可知,集合A ={x |x ≥0},B ={x |2≤x ≤4},所以∁R B ={x |x <2或x >4},此时A ∩∁R B ={x |0≤x <2或x >4},故选C.89.(2013·湖北卷高考理)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 ( )A .(非p )∨(非q )B .p ∨(非q )C .(非p )∧(非q )D .p ∨q【解析】选A 本题主要考查使用简单逻辑联结词来表示复合命题,意在考查考生对基础知识和基本概念的理解与掌握.由题意可知,“至少有一位学员没有降落在指定范围”意味着“甲没有或乙没有降落在指定范围”,使用“非”和“或”联结词即可表示该复合命题为(非p )∨(非q ).90.(2013·四川卷高考理)设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B = ( )A .{-2}B .{2}C .{-2,2}D .∅【解析】选A 本题考查集合的基本运算,意在考查考生对集合概念的掌握.由x 2-4=0,解得x =±2,所以B ={2,-2},又A ={-2},所以A ∩B ={-2},故选A.91.(2013·四川卷高考理)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .非p :∀x ∈A,2x ∉B B .非p :∀x ∉A,2x ∉BC .非p :∃x ∉A,2x ∈BD .非p :∃x ∈A,2x ∉B【解析】选D 本题考查常用逻辑用语中的∀,∃和非等概念,意在考查考生的逻辑判断能力.因为任意都满足的否定是存在不满足的,所以选D.92.(2013·天津卷高考理)已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号为( )A .①②③B .①②C .①③D .②③【解析】选C 本题考查命题真假的判断,意在考查考生的逻辑推理能力.若一个球的半径缩小到原来的12,则其体积缩小到原来的18,所以①是真命题;因为标准差除了与平均数有关,还与各数据有关,所以②是假命题;因为圆心(0,0)到直线x +y +1=0的距离等于12,等于圆的半径,所以③是真命题.故真命题的序号是①③.93.(2013·天津卷高考理)已知集合A ={x ∈R| |x |≤2}, B ={x ∈R| x ≤1}, 则A ∩B =( )A .(-∞,2]B .[1,2]C .[-2,2]D .[-2,1]【解析】选D 本题考查简单绝对值不等式的解法、集合的运算.意在考查考生对概念的理解能力.解不等式|x |≤2,得-2≤x ≤2,所以A =[-2,2],所以A ∩B =[-2,1].94.(2013·北京高考文)已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B = ( )A .{0}B .{-1,0}C .{0,1} D. {-1,0,1}【解析】选B 集合A 中共有三个元素-1,0,1,而其中符合集合B 的只有-1和0,故选B.95.(2013·重庆高考文)已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B ) =( )A .{1,3,4}B .{3,4}C .{3}D .{4}【解析】选D 本题主要考查集合的并集与补集运算.因为A ∪B ={1,2,3},所以∁U (A ∪B )={4},故选D.96.(2013·重庆高考文)命题“对任意x ∈R ,都有x 2≥0”的否定为 ( )A .存在x 0∈R ,使得x 20<0B .对任意x ∈R ,都有x 2<0C .存在x 0∈R ,使得x 20≥0D .不存在x 0∈R ,使得x 2<0【解析】选A 本题主要考查全称命题的否定.根据定义可知命题的否定为存在x 0∈R ,使得x 20<0,故选A.97.(2013·安徽高考文)已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B = ( )A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1}【解析】选A 本题主要考查集合的基本运算,意在考查考生的运算能力和对基本概念的理解能力.集合A ={x |x >-1},所以∁R A ={x |x ≤-1},所以(∁R A )∩B ={-2,-1}.98.(2013·安徽高考文) “(2x -1)x =0”是“x =0”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选B 本题主要考查充分必要条件的基础知识和基本概念,意在考查考生对方程的求解以及概念的识别.由(2x -1)x =0可得x =12或0,因为“x =12或0”是“x =0”的必要不充分条件. 99.(2013·山东高考文)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩∁U B = ( )A .{3}B .{4}C .{3,4}D .∅【解析】选A 本题主要考查集合的交集、并集和补集运算,考查推理判断能力.由题意知A ∪B ={1,2,3},又B ={1,2},所以A 中必有元素3,没有元素4,∁U B ={3,4},故A ∩∁U B ={3}.100.(2013·山东高考文)给定两个命题p ,q .若﹁ p 是q 的必要而不充分条件,则p 是﹁ q的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】选A本题主要考查充分必要条件的判断,通过等价命题的转化化难为易,也渗透了对转化思想的考查.由q⇒非p且非p⇒/ q可得p⇒非q且非q⇒/ p,所以p是非q的充分而不必要条件.101.(2013·大纲卷高考文)设全集U={1,2,3,4,5},集合A={1,2},则∁U A=() A.{1,2}B.{3,4,5} C.{1,2,3,4,5} D.∅【解析】选B本题主要考查集合的补集运算.根据补集的定义可知∁U A={3,4,5}.102.(2013·福建高考文)设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A本题主要考查以点与直线的位臵关系为背景的充分必要条件,意在考查考生的数形结合能力、逻辑推理能力和运算求解能力.“x=2且y=-1”满足方程x+y-1=0,故“x=2且y=-1”可推得“点P在直线l:x+y-1=0上”;但方程x+y-1=0有无数多个解,故“点P在直线l:x+y-1=0上”不能推得“x=2且y=-1”,故“x=2且y=-1”是“点P在直线l:x+y-1=0上”的充分不必要条件.103.(2013·福建高考文)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为( )A.2 B.3 C.4 D.16【解析】选C本题主要考查集合的交集及子集的个数等基础知识,意在考查考生对集合概念的准确理解及集合运算的熟练掌握.A∩B={1,3},故A∩B的子集有4个.104.(2013·新课标Ⅱ高考文)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N =() A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}【解析】选C本题主要考查集合的基本运算,意在考查考生对基本概念的理解.由交集的意义可知M ∩N ={-2,-1,0}.105.(2013·湖南高考文) “1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A 本题主要考查不等式的基本性质和充分必要条件的判断,意在考查考生对充分性和必要性概念的掌握与判断.“1<x <2”可以推得“x <2”,即满足充分性,但“x <2”得不出“1<x <2”,所以为充分不必要条件.106.(2013·浙江高考文)设集合S ={x |x >-2},T ={x |-4≤x ≤1},则S ∩T = ( )A .[-4,+∞)B .(-2, +∞)C .[-4,1]D .(-2,1]【解析】选D 本题主要考查集合、区间的意义和交集运算等基础知识,属于简单题目,意在考查考生对基础知识的掌握程度.由已知得S ∩T ={x |x >-2}∩{x |-4≤x ≤1}= {x |-2<x ≤1}=(-2,1].107.(2013·浙江高考文)若α∈R ,则“α=0”是“sin α<cos α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A 本题主要考查充要条件的判断、三角函数值等基础知识,意在考查考生的推理论证能力.当α=0时,sin α=0,cos α=1,∴sin α<cos α;而当sin α<cos α时,α=0或α=π6,…. 108.(2013·新课标Ⅰ高考文)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( )A .{1,4}B .{2,3}C .{9,16}D .{1,2}【解析】选A 本题主要考查集合的基本知识,要求认识集合,能进行简单的运算.n =1,2,3,4时,x=1,4,9,16,∴集合B={1,4,9,16},∴A∩B={1,4}.109.已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是()A.p∧q B.非p∧q C.p∧非q D.非p∧非q【解析】选B本题主要考查常用逻辑用语等基本知识,对分析问题的能力有一定要求.容易判断当x≤0时2x>3x,命题p为假命题,分别作出函数y=x3,y=1-x2的图像,易知命题q为真命题.根据真值表易判断非p∧q为真命题.110.(2013·天津高考文)已知集合A={x∈R| |x|≤2}, B={x∈R| x≤1},则A∩B=()A.(-∞,2]B.[1,2] C.[-2,2] D.[-2,1]【解析】选D本题主要考查简单不等式的解法、集合的运算.意在考查考生对概念的理解能力.解不等式|x|≤2得,-2≤x≤2,所以A=[-2,2],又B=(-∞,1],所以A∩B=[-2,1].111.(2013·天津高考文)设a,b∈R则“(a-b)·a2<0”是“a<b”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】选A本题主要考查充分条件、必要条件的判断,意在考查考生的逻辑推理能力.若(a-b)·a2<0,则a≠0,且a<b,所以充分性成立;若a<b,则a-b<0,当a=0时,(a-b)·a2=0,所以必要性不成立.故“(a-b)·a2<0”是“a<b”的充分而不必要条件.112.(2013·湖北高考文)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩∁U A=()A.{2}B.{3,4} C.{1,4,5} D.{2,3,4,5}【解析】选B本题主要考查集合的补集和交集运算.由题得,∁U A={3,4,5},则B∩∁U A ={3,4}.113. (2013·湖北高考文)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(非p)∨(非q) B.(p)∨(非q)C.(非p)∧(非q) D.p∨q【解析】选A本题主要考查逻辑联结词和复合命题.非p:甲没有降落在指定范围;非q:乙没有降落在指定范围,至少有一位学员没有降落在指定范围,即非p或非q发生.114.(2013·陕西高考文)设全集为R,函数f(x)=1-x的定义域为M, 则∁R M为()A.(-∞,1)B.(1,+∞)C.(-∞,1] D.[1,+∞)【解析】选B本题主要考查集合的概念和运算,函数的定义域与不等式的求解方法.从函数定义域切入,1-x≥0,∴x≤1,依据补集的运算知识得所求集合为(1,+∞).115.(2013·江西高考文)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4 B.2 C.0 D.0或4【解析】选A本题主要考查集合的表示方法(描述法)及其含义,考查化归与转化、分类讨论思想.由ax2+ax+1=0只有一个实数解,可得当a=0时,方程无实数解;当a≠0时,则Δ=a2-4a=0,解得a=4(a=0不合题意舍去).116.(2013·四川高考文)设集合A={1,2,3},集合B={-2,2},则A∩B=()A.∅B.{2} C.{-2,2} D.{-2,1,2,3}【解析】选B本题主要考查集合的运算,意在考查考生对基础知识的掌握.A,B两集合中只有一个公共元素2,∴A∩B={2},选B.117.(2013·四川高考文)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x ∈A,2x∈B,则()A.非p:∃x∈A,2x∈BB.非p:∃x∉A,2x∈BC.非p:∃x∈A,2x∉BD.非p:∀x∉A,2x∉B【解析】选C本题主要考查含有一个量词的命题的否定,意在考查考生基础知识的掌握.由命题的否定易知选C,注意要把全称量词改为存在量词.118.(2013·广东高考文)设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=()A.{0}B.{0,2} C.{-2,0} D.{-2,0,2}【解析】选A本题主要考查集合的运算知识,意在考查考生的运算求解能力.因为S={-2,0},T={0,2},所以S∩T={0}.119.(2013·辽宁高考文)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=() A.{0}B.{0,1} C.{0,2} D.{0,1,2}【解析】选B本题主要考查集合的概念和运算,同时考查了绝对值不等式的解法,意在考查考生对集合运算的掌握情况,属于容易题.由已知,得B={x|-2<x<2},所以A∩B。

相关文档
最新文档