2020版数学人教A版必修3学案:第二章 2.2.2 用样本的数字特征估计总体的数字特征 Word版含解析

合集下载

人教A版高中数学必修3第二章2.2.2 用样本的数字特征估计总体的数字特征

人教A版高中数学必修3第二章2.2.2 用样本的数字特征估计总体的数字特征

2.2.2 用样本的数字特征估计总体的数字特征第1课时众数、中位数、平均数学情分析:本节课的学习者是高一学生,他们在初中已经学习过统计的初步知识,他们的观察、猜想能力较强。

但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、紧密性、灵活性比较欠缺,自主探究和合作学习能力需要在课堂教学中进一步加强和引导。

一、三维目标:1、知识与技能(1)能利用频率分布直方图估计总体的众数、中位数、平均数;(2)能用样本的众数、中位数、平均数估计总体的众数、中位数、平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法;。

(3)形成对数据处理过程进行初步评价的意识。

2、过程与方法初步体会、领悟“用数据说话”的统计思想方法;通过对有关数据的搜集、整理、分析、判断,培养学生“实事求是”的科学态度和严谨的工作作风.3、情感态度与价值观在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法;会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辨证地理解数学知识与现实世界的联系.二、重点与难点重点:根据实际问题对样本数据中提取基本的数据特征并作出合理解释,估计总体的基本数字特征;体会样本数字特征具有随机性.难点:能应用相关知识解决简单的实际问题。

三、教学过程导入新课在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了.于是,需要通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征. (板书课题)新知探究提出问题(1)什么是众数、中位数、平均数?(1)如何绘制频率分布直方图?(3)如何从频率分布直方图中估计众数、中位数、平均数?活动:那么学生回忆初中所学的一些统计知识,思考后展开讨论,教师提示引导.讨论结果:(1)初中我们曾经学过众数(在一组数据中,出现次数最多的数称为众数)、中位数(在按大小顺序排列的一组数据中,居于中间的数称为中位数)、平均数(一般是一组数据和的算术平均数)等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息.(2)画频率分布直方图的一般步骤为:计算一组数据中最大值与最小值的差,即求极差;决定组距与组数;将数据分组;列频率分布表;画频率分布直方图.(3)教材前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25 t(最高的矩形的中点),它告诉我们,该市的月均用水量为2.25 t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.请大家翻回到课本看看原来抽样的数据,有没有 2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失了,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等.由此可以估计出中位数的值为2.02.思考:2.02这个中位数的估计值,与样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)课本显示,大部分居民的月均用水量在中部(2.02 t左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的.思考:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)对极端值不敏感有利的例子:考察课本中表21中的数据,如果把最后一个数据错写成22,并不会对样本中位数产生影响.也就是说对极端数据不敏感的方法能够有效地预防错误数据的影响,而在实际应用中,人为操作的失误经常造成错误数据.对极端值不敏感有弊的例子:某人具有初级计算机专业技术水平,想找一份收入好的工作,这时如果采用各个公司计算机专业技术人员收入的中位数作为选择工作的参考指标就会冒这样的风险:很可能所选择公司的初级计算机专业技术水平人员的收入很低,其原因是中位数对极小的数据不敏感.这里更好的方法是同时用平均工资和中位数来作为参考指标,选择平均工资较高且中位数较大的公司就业.对极端值不敏感的方法,不能反映数据中的极端情况.同样的,可以从频率分布直方图中估计平均数,上图就显示了居民用水的平均数,它等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.由估计可知,居民的月均用水量的平均值为2.02 t.显示了居民月均用水量的平均数,它是频率分布直方图的“重心”.由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变.这是中位数、众数都不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.从图上可以看出,用水量最多的几个居民对平均数影响较大,这是因为他们的月均用水量与平均数相差太多了.利用频率分布直方图估计众数、中位数、平均数:估计众数:频率分布直方图面积最大的方条的横轴中点数字.(最高矩形的中点)估计中位数:中位数把频率分布直方图分成左右两边面积相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.总之,众数、中位数、平均数都是对数据中心位置的描述,可以作为总体相应特征的估计.样本众数易计算,但只能表达样本数据中的很少一部分信息,不一定唯一;中位数仅利用了数据中排在中间数据的信息,与数据的排列位置有关;平均数受样本中的每一个数据的影响,绝对值越大的数据,对平均数的影响也越大.三者相比,平均数代表了数据更多的信息,描述了数据的平均水平,是一组数据的“重心”.应用示例例1 下面是某校学生日睡眠时间抽样频率分布表(单位:h),试估计该校学生的日平均睡眠时间.分析:要确定这100名学生的平均睡眠时间,就必须计算其总睡眠时间,由于每组中的个体睡眠时间只是一个范围,可以用各组区间的组中值近似地表示.解法一:总睡眠时间约为6.25×5+6.75×17+7.25×33+7.75×37+8.25×6+8.75×2=739(h),故平均睡眠时间约为7.39 h.解法二:求组中值与对应频率之积的和6.25×0.05+6.75×0.17+7.25×0.33+7.75×0.37+8.25×0.06+8.75×0.02=7.39(h). 答:估计该校学生的日平均睡眠时间约为7.39 h.例2 某单位年收入在10 000到15 000、15 000到20 000、20 000到25 000、25 000到30 000、30 000到35 000、35 000到40 000及40 000到50 000元之间的职工所占的比分别为10%,15%,20%,25%,15%,10%和5%,试估计该单位职工的平均年收入.分析:上述百分比就是各组的频率.解:估计该单位职工的平均年收入为12 500×10%+17500×15%+22 500×20%+27 500×25%+32 500×15%+37 500×10%+45 000×5%=26 125(元).答:估计该单位人均年收入约为26 125元.知能训练从甲、乙两个公司各随机抽取50名员工月工资:甲公司:800 800 800 800 800 1 000 1 000 1 000 1 0001 000 1 000 1 000 1 000 1 000 1 0001 2001 2001 2001 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 2001 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 5001 500 1 500 1 500 1 500 1 500 1 5002 000 2 000 2 0002 000 2 000 2 500 2 500 2 500乙公司:700 700 700 700 700 700 700 700 700700 700 700 700 700 700 1 000 1 000 1 0001 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 0001 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 0001 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 0001 000 1 000 6 000 8 000 10 000试计算这两个公司50名员工月工资平均数、众数、中位数,并估计这两个企业员工平均工资. 答案:甲公司:员工月工资平均数1 240,众数1 200,中位数1 200;乙公司:员工月工资平均数1 330,众数1 000,中位数1 000;从总体上看乙公司员工月工资比甲公司少,原因是乙公司有几个收入特高的员工影响了工资平均数.拓展提升“用数据说话”, 这是我们经常可以听到的一句话.但是,数据有时也会被利用,从而产生误导.例如,一个企业中,绝大多数是一线工人,他们的年收入可能是一万元左右,另有一些经理层次的人,年收入可以达到几十万元.这时,年收入的平均数会比中位数大得多.尽管这时中位数比平均数更合理些,但是这个企业的老板到人力市场去招聘工人时,也许更可能用平均数来回答有关工资待遇方面的提问.你认为“我们单位的收入水平比别的单位高”这句话应当怎么解释?这句话的目的是谨防利用人们对统计术语的模糊认识进行误导(蒙骗).使学生能够正确理解在日常生活中像“我们单位的收入水平比别的单位高”这类话的模糊性,这里的“收入水平”是指员工收入数据的某个中心点,即可以是中位数、平均数或众数,不同的解释有不同的含义.在这里应该注意以下几点:1.样本众数通常用来表示分类变量的中心值,容易计算,但是它只能表达样本数据中的很少一部分信息,通常用于描述分类变量的中心位置.2.中位数不受少数几个极端数据(即排序靠前或排序靠后的数据)的影响,容易计算,它仅利用了数据中排在中间数据的信息.当样本数据质量比较差,即存在一些错误数据(如数据的录入错误、测量错误等)时,应该用抗极端数据强的中位数表示数据的中心值,可以利用计算机模拟样本,向学生展示错误数据对样本中位数的影响程度.3.平均数受样本中的每一个数据的影响,“越离群”的数据,对平均数的影响也越大.与众数和中位数相比,平均数代表了数据更多的信息.当样本数据质量比较差时,使用平均数描述数据的中心位置可能与实际情况产生较大的误差.可以利用计算机模拟样本,向学生展示错误数据对样本平均数的影响程度.在体育、文艺等各种比赛的评分中,使用的是平均数.计分过程中采用“去掉一个最高分,去掉一个最低分”的方法,就是为了防止个别裁判的人为因素而给出过高或过低的分数对选手的得分造成较大的影响,从而降低误差,尽量保证公平性4.如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.在实际应用中,如果同时知道样本中位数和样本平均数,可以使我们了解样本数据中极端数据的信息,帮助我们作出决策.5.使用者常根据自己的利益去选取使用中位数或平均数来描述数据的中心位置,从而产生一些误导作用.课堂小结1.能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(平均数),会用样本的基本数字特征估计总体的基本数字特征;2.平均数对数据有“取齐”的作用,代表一组数据的平均水平;3.形成对数据处理过程进行初步评价的意识.作业习题2.2A组3.设计感想本堂课在初中学习的众数、中位数、平均数的基础上,学习了利用频率分布直方图估计众数、中位数、平均数,这是一种近似估计,但都能说明总体的分布特征,各有优缺点,讲解时紧扣课本内容,讲清讲透,使学生活学活用,会画频率分布直方图,会利用频率分布直方图估计众数、中位数、平均数,对总体作出正确的估计.。

[精品]新人教A版必修三高中数学第二章2.2.2用样本的数字特征估计总体的数字特征导学案

[精品]新人教A版必修三高中数学第二章2.2.2用样本的数字特征估计总体的数字特征导学案

2.22 用样本的数字特征估计总体的数字特征1.掌握众数、中位数、平均数、标准差、方差的定义和特征.2.会求众数、中位数、平均数、标准差、方差,并能用之解决有关问题.1.众数(1)定义:一组数据中出现次数的数称为这组数据的众数.(2)特征:一组数据中的众数可能个,也可能没有,反映了该组数据的.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使其无法客观地反映总体特征.【做一做1】 数据组8,-1,0,4,17,4,3的众数是. 2.中位数(1)定义:一组数据按从小到大的顺序排成一列,处于位置的数称为这组数据的中位数.(2)特征:一组数据中的中位数是的,反映了该组数据的.在频率分布直方图中,中位数左边和右边的直方图的面积.中位数不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点.【做一做2】数据组-5,7,9,6,-1,0的中位数是.3.平均数(1)定义:一组数据的和与这组数据的个数的商.数据1,的平均数为\t()=2,…,n(2)特征:平均数对数据有“取齐”的作用,代表该组数据的.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.所以与众数、中位数比较起,平均数可以反映出更多的关于样本数据全体的,但平均数受数据中的影响较大,使平均数在估计总体时可靠性降低.【做一做3】 10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,则其平均数是.4.标准差(1)定义:标准差是样本数据到平均数的一种平均距离,一般用s表示,通常用以下公式计算s=可以用计算器或计算机计算标准差.(2)特征:标准差描述一组数据围绕波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差较大,数据的离散程度较;标准差较小,数据的离散程度较.【做一做4】一组数据的单位是,平均数是\t(),标准差为s,则( )A.\t()与s的单位都是B.\t()与s的单位都是c.\t()与s的单位都是D.\t()与s的单位不同5.方差[](1)定义:标准差的平方,即s2=(2)特征:与的作用相同,描述一组数据围绕平均数波动程度的大小.(3)取值范围:数据组1,2,…,n的平均数为\t(),方差为s2,标准差为s,则数据组a1+b,a2+b,…,a n+b(a,b为常数)的平均数为a\t()+b,方差为a2s2,标准差为as【做一做5】下列刻画一组数据离散程度的是( )A.平均数B.方差.中位数D.众数6.用样本估计总体现实中的总体所包含的个体数往往很多,总体的平均数、众数、中位数、标准差、方差是不知道的,因此,通常用的平均数、众数、中位数、标准差、方差估计.这与上一节用的频率分布近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.用样本的数字特征估计总体的数字特征分两类:用样本平均数估计总体平均数;用样本标准差估计总体标准差.样本容量越大,估计就越精确.【做一做6-1】下列判断正确的是( )A.样本平均数一定小于总体平均数B.样本平均数一定大于总体平均数.样本平均数一定等于总体平均数[]D.样本容量越大,样本平均数越接近总体平均数【做一做6-2】电池厂从某日生产的电池中抽取10个进行寿命测试,得数据如下(单位:小时):30,35,25,25,30,34,26,25,29,21,则该日生产电池的平均寿命估计为( )A.27 B.28 .29 D.30答案:1.(1)最多(2)不止一集中趋势【做一做1】 42.(1)中间(2)唯一集中趋势相等[]【做一做2】 3 将该组数据按从小到大排列为-5,-1,0,6,7,9,则中位数是0+62=33.(1)1+2+…+n n(2)平均水平 信息 极端值 【做一做3】 147 平均数是110(15+17+14+10+15+17+17+16+14+12)=1474.(1)错误! (2)平均数 大 小 【做一做4】 \t()与s 的单位都与数据组中的数据单位相同,是5.(1)1n[(1-\t())2+(2-\t())2+…+(n -\t())2] (2)标准差 (3)[0,+∞)【做一做5】 B 方差刻画一组数据离散程度的大小.6.样本 样本【做一做6-1】 D【做一做6-2】 B 这10个数据的平均数是110(30+35+25+25+30+34+26+25+29+21)=28,则该日生产的电池的平均寿命估计为28小时.1.理解众数、中位数、平均数剖析:(1)众数体现了样本数据的最大集中点,容易计算,但它只能表达样本数据中很少一部分信息,显然对其他数据信息的忽略使其无法客观地反映总体特征.(2)中位数不受少数几个极端值的影响,容易计算,但它对极端值的不敏感有时也会成为缺点.(3)由于平均数与每一个样本的数据有关,“越离群”的数据,对平均数的影响也越大,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数都不具有的性质.也正因为这个原因,与众数、中位数比较起,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.如在体育、文艺等各种比赛的评分中,使用的是平均数,计分过程中采用“去掉一个最高分,去掉一个最低分”的方法,就是为了防止由于个别裁判的人为因素而给出过高或过低的分数,对选手的得分造成较大的影响,从而降低误差,尽量保证公平性.(4)在一组数据中,它们的众数、中位数、平均数可能相同,也可能不同,而实际问题中,计算平均数时应该注意按实际要求进行计算.(5)实际问题中求得的平均数、众数和中位数应带上单位.2.众数、中位数、平均数与频率分布直方图的关系剖析:(1)在样本数据的频率分布直方图中,众数的估计值就是最高矩形的中点的横坐标.(2)在频率分布直方图中,中位数左右两侧的直方图的面积相等,但是因为样本数据的频率分布直方图只是直观地表明分布的特征,因而从直方图本身得不出原始的数据内容,所以由频率分布直方图得到的中位数估计值往往与样本的实际中位数的值不一致.(3)平均数显然是频率分布直方图的“重心”.我们知道,n个样本数据1,2,…,n的平均数\t()=1n(1+2+3+…+n),则就有n\t()=1+2+3+…+n,所以\t()对数据有“取齐”的作用,代表了一组数据的数值平均水平.在频率分布直方图中,平均数是直方图的平衡点,假设横轴表示一块放置直方图的跷跷板,则支点取在平均数处时跷跷板达到平衡.3.理解方差与标准差剖析:(1)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.(2)标准差、方差的取值范围是[0,+∞).标准差、方差为0时,样本各数据全相等,表明数据没有波动幅度,数据没有离散性.(3)因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差.题型一计算方差(标准差)【例题1】从某项综合能力测试中抽取100人的成绩,统计如下表,则这100人成绩的标准差为.反思:求一组数据的方差和标准差的步骤如下:①先求平均数\t()②代入公式得方差和标准差s2=1n[(1-\t())2+(2-\t())2+…+(n-\t())2],s=错误!题型二众数、中位数、平均数的应用【例题2】某工厂人员及月工资构成如下:(1)指出这个问题中的众数、中位数、平均数.(2)这个问题中,平均数能客观地反映该工厂的月工资水平吗?为什么?分析:(由平均数的定义)→(计算平均数)→(已知数据从小到大排列)→(得中位数、众数)→(结论) 反思:(1)如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.在实际应用中,如果同时知道样本中位数和样本平均数,可以使我们了解样本数据中的极端数据信息,帮助我们作出决策.(2)众数、中位数、平均数三者比较,平均数更能体现每个数据的特征,它是各个数据的重心.题型三方差的应用【例题3】甲、乙两台包装机同时包装质量为200克的糖果,从中各抽出10袋,测得其实际质量分别如下(单位:克):甲:203 204 202 196 199 201 205 197 202 199乙:201 200 208 206 210 209 200 193 194 194(1)分别计算两个样本的平均数与方差.(2)从计算结果看,哪台包装机包装的10袋糖果的平均质量更接近于200克?哪台包装机包装的10袋糖果的质量比较稳定?反思:研究两个样本的波动情况或比较它们的稳定性、可靠性、平整性等性能好坏的这类题,先求平均数,比较一下哪一个更接近标准.若平均数相等,则再比较两个样本方差的大小作出判断.在计算过程中,要仔细观察所给样本数据的特征,选择恰当的公式计算平均数和方差,这样可避免计算的烦琐,降低错误率.题型四易错辨析【例题4】小明是班里的优秀生,他的历次数成绩是96,98,95,93分,但最近的一次考试成绩只有45分,原因是他带病参加了考试.期末评价时,怎样给小明评价?错解:这五次数考试的平均分是96+98+95+93+455=854,则按平均分给小明一个“良好”. 错因分析:这种评价是不合理的,尽管平均分是反映一组数据平均水平的重要特征,但任何一个数据的改变都会引起它的变化,而中位数则不受某些极端值的影响.本题中的5个成绩从小到大排列为:45,93,95,96,98,中位数是95,较为合理地反映了小明的数水平,因而应该用中位数衡量小明的数成绩.答案:【例题1】 2105这100人的总成绩为5×20+4×10+3×30+2×30+1×10=300,平均成绩为300100=3,则该100人成绩的标准差为错误! =2105【例题2】 解:(1)由表格可知,众数为2 000元.把23个数据按从小到大(或从大到小)的顺序排列,排在中间的数应是第12个数,其值为2 200,故中位数为2 200元.平均数为(22 000+15 000+11 000+20 000+1 000)÷23=69 000÷23=3 000(元).(2)虽然平均数为3 000元/月,但由表格中所列出的数据可见,只有经理在平均数以上,其余的人都在平均数以下,故用平均数不能客观真实地反映该工厂的工资水平.【例题3】解:(1)\t()甲=110(3+4+2-4-1+1+5-3+2-1)+200=2008\t()乙=110(1+0+8+6+10+9+0-7-6-6)+200=2015s\al(2,甲)=796,s\al(2,乙)=3805(2)∵200<\t()甲<\t()乙,∴甲台包装机包装的10袋糖果的平均质量更接近于200克.∵s\al(2,甲)<s\al(2,乙),∴甲台包装机包装的10袋糖果的质量比较稳定.【例题4】正解:小明5次考试成绩,从小到大排列为45,93,95,96,98,中位数是95,应评定为“优秀”.1.如图,是某篮球运动员在一个赛季的30场比赛中得分的茎叶图,则得分的中位数与众数分别为( )A.3与3 B.23与3 .3与23D.23与232.(2011·北京海淀二模,理5)某赛季甲、乙两名篮球运动员各13场比赛的得分情况用茎叶图表示如下:根据上图,对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( )A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数.甲运动员的得分平均值大于乙运动员的得分平均值D.甲运动员的成绩比乙运动员的成绩稳定3.抛硬币20次,抛得正面朝上12次,反面朝上8次.如果抛到正面朝上得3分,抛到反面朝上得1分,则平均得分是,得分的方差是.4.某人5次上班途中所花的时间(单位:分钟)分别为,y,10,11,9已知这组数据的平均数为10,方差为2,则2+y2=5.某校高二年级在一次数选拔赛中,由于甲、乙两人的竞赛成绩相同,从而决定根据平时在相同条件下进行的六次测试确定出最佳人选,这六次测试的成绩数据如下:求两人比赛成绩的平均数以及方差,并且分析成绩的稳定性,从中选出一位参加数竞赛.答案:1.D 中位数是指一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数),从茎叶图中可知中位数为23;众数是指一组数据中出现次数最多的数,从茎叶图中可知23出现了3次,次数最多,因此众数也是23,所以选D.2.D 甲运动员比赛得分的最高分为47,最低分为18,极差为29,乙运动员比赛得分的最高分为33,最低分为17,极差为16,所以A项正确;甲运动员比赛得分的中位数为30,乙运动员比赛得分(18的中位数为26,所以B项正确;甲运动员的得分平均值x甲=113+18+19+20+21+26+30+32+33+35+40+41+47)=343,乙13(17+17+19+19+22+25+26+27+运动员的得分平均值x乙=113,甲运动员的得分平均值大于乙运动员29+29+30+32+33)=32513的得分平均值,所以项正确;由茎叶图知甲得分较为分散,乙得分较为集中,故甲的成绩没有乙的成绩稳定.=3.22 096 总得分为12×3+8×1=44,则平均分是4420[(3-22)2×12+(1-22)2×8]=09622,方差s2=120=10,4.208 由平均数为10,得(+y+10+11+9)×15则+y=20;又由于方差为2,则[(-10)2+(y-10)2+(10-10)2+(11-=2,10)2+(9-10)2]×15整理得2+y2-20(+y)=-192,则2+y2=20(+y)-192=20×20-192=208 5.解:设甲乙两人成绩的平均数分别为x甲,x乙,则x甲=130+1(380751)6-+++++=133,x乙=130+1(318426)6-++-+=133,2 s 甲=2222221[(6)5(3)42(2)]6-++-+++-=473,2 s 乙=2222221[0(4)51(5)3]6+-+++-+=383因此,甲与乙的平均数相同,由于乙的方差较小,所以乙的成绩比甲的成绩稳定,应该选乙参加竞赛比较合适.。

高中数学人教A版必修三2.2.2【教学设计】《用样本的数字特征估计总体的数字特征》

高中数学人教A版必修三2.2.2【教学设计】《用样本的数字特征估计总体的数字特征》

用样本的数字特征估计总体的数字特征(1)1、知识与技能(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差。

(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释。

(3)会用样本的基本数字特征估计总体的基本数字特征。

(4)形成对数据处理过程进行初步评价的意识。

2、过程与方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。

3、情感态度与价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辨证地理解数学知识与现实世界的联系。

【教学重点】用样本平均数和标准差估计总体的平均数与标准差。

【教学难点】能应用相关知识解决简单的实际问题。

(一)知识回顾回顾初中所学三数概念:1、众数:在一组数据中,出现次数最多的数据叫做这一组数据的众数。

2、中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或两个数据的平均数)叫做这组数据的中位数。

3、平均数:一组数据的总和除以数据的个数所得的值。

(二)新课导入美国NBA在2011——2012年度赛季中,甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:甲运动员得分:12,15,20,25,31,30, 36,36,37,39,44,49;乙运动员得分:8,13,14,16,23,26, 28,38,39,51,31,39.如果要求我们根据上面的数据,估计、比较甲,乙两名运动员哪一位发挥得比较稳定,就应有相应的数据作为比较依据,即通过样本数字特征对总体的数字特征进行研究.所以今天我们开始学习用样本的数字特征估计总体的数字特征。

(三)新课讲授探究:众数、中位数、平均数与频率分布直方图的关系思考1:如何在样本数据的频率分布直方图中,估计出众数的值?举例加以说明。

答:众数大致的值就是样本数据的频率分布直方图中最高矩形的中点的横坐标。

2020版数学人教A版必修3课件:第二章 2.2.2 用样本的数字特征估计总体的数字特征 .pdf

2020版数学人教A版必修3课件:第二章 2.2.2 用样本的数字特征估计总体的数字特征 .pdf

第二章§2.2 用样本估计总体2.2.2 用样本的数字特征估计总体的数字特征学习目标XUEXIMUBIAO1.理解样本数据标准差的意义和作用,学会计算数据的标准差.2.会用样本的基本数字特征来估计总体的基本数字特征.NEIRONGSUOYIN内容索引自主学习题型探究达标检测1自主学习PART ONE知识点一 众数、中位数、平均数众数、中位数、平均数定义(1)众数:一组数据中出现次数的数.(2)中位数:把一组数据按 的顺序排列,处在 位置的数(或中间两个数的 )叫做这组数据的中位数.(3)平均数:如果n 个数x 1,x 2,…,x n ,那么 = 叫做这n 个数的平均数.最多从小到大(或从大到小)中间平均数思考 平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点?答案 平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但是平均数受数据中极端值的影响较大.知识点二 方差、标准差标准差、方差的概念及计算公式平均距离(1)标准差是样本数据到平均数的一种,一般用s表示.s=.(2)标准差的平方s2叫做方差.s2= (x n是样本数据,n是样本容量,是样本平均数).(3)标准差(或方差)越小,数据越稳定在平均数附近.s=0时,每一组样本数据均为 .知识拓展:平均数、方差公式的推广(1)若数据x1,x2,…,x n的平均数为,那么mx1+a,mx2+a,mx3+a,…,mx n+a的平均数是m +a.(2)设数据x1,x2,…,x n的平均数为,方差为s2,则②数据x1+a,x2+a,…,x n+a的方差也为s2;③数据ax1,ax2,…,ax n的方差为a2s2;④数据ax1+b,ax2+b,…,ax n+b的方差也为a2s2,标准差为as.1.中位数是一组数据中间的数.( )2.众数是一组数据中出现次数最多的数.( )3.一组数据的标准差越小,数据越稳定,且稳定在平均数附近.( )4.一组数据的标准差不大于极差.( )思考辨析 判断正误SIKAOBIANXIPANDUANZHENGWU×√√√2题型探究PART TWO题型一 众数、中位数、平均数的计算例1 (1)某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数、众数、中位数分别为A.85,85,85B.87,85,86√C.87,85,85D.87,85,90(2)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为A.2,5B.5,5√C.5,8D.8,8解析 结合茎叶图上的原始数据,根据中位数和平均数的概念列出方程进行求解.由于甲组数据的中位数为15=10+x,所以x=5.所以y=8,所以x,y的值分别为5,8.反思感悟 平均数、众数、中位数的计算方法平均数一般是根据公式来计算的;计算众数、中位数时,可先将这组数据按从小到大或从大到小的顺序排列,再根据各自的定义计算.跟踪训练1 在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:成绩(单位:m) 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90人数23234111分别求这些运动员成绩的众数、中位数与平均数.解 在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是1.70.故17名运动员成绩的众数、中位数、平均数依次为1.75 m,1.70 m,1.69 m.题型二 标准差、方差的计算及应用例2 甲、乙两名战士在相同条件下各打靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算以上两组数据的平均数;(2)分别求出两组数据的方差;(3)根据计算结果,估计两名战士的射击情况.若要从这两人中选一人参加射击比赛,选谁去合适?因此,乙战士比甲战士射击情况稳定,从成绩的稳定性考虑,应选择乙参加比赛.反思感悟 (1)方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.(2)样本标准差反映了各样本数据围绕样本平均数波动的大小,标准差越小,表明各样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散.(3)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数据分布情况,而样本数据的离散程度是由标准差来衡量的.跟踪训练2 某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其质量,分别记录抽查数据如下(单位:kg):甲:102 101 99 98 103 98 99乙:110 115 90 85 75 115 110(1)这种抽样方法是哪一种方法?解 采用的抽样方法是:系统抽样.(2)试计算甲、乙两个车间产品质量的平均数与方差,并说明哪个车间产品比较稳定.核心素养之数据分析频率分布直方图与数字特征的综合应用HEXINSUYANGZHISHUJUFENXI典例 某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(1)求这次测试数学成绩的众数;(2)求这次测试数学成绩的中位数.解 设中位数为x,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x-70),所以x≈73.3.引申探究1.若本例条件不变,求数学成绩的平均分.2.本例条件不变,求80分以上(含80分)的学生人数.解 [80,90)分的频率为0.025×10=0.25,频数为0.25×80=20.[90,100]分的频率为0.005×10=0.05,频数为0.05×80=4.所以80分以上的学生人数为20+4=24.素养评析 (1)利用频率分布直方图估计总体数字特征①众数是最高的矩形的底边中点的横坐标;②中位数左右两侧直方图的面积相等;③平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.(2)利用直方图求众数、中位数、平均数均为估计值,与实际数据可能不一致.(3)在解决本题时,需要选择运算方法,掌握运算法则,求得运算结果,并根据结果进行合理推断,获得结论.这些都是数学核心素养的内含所在.3达标检测PART THREE1.某市2017年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是A.19B.20C.21.5D.23解析 由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有5个月,恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数为20.故选B.√2.下列关于平均数、中位数、众数的说法中正确的一个是A.中位数可以准确地反映出总体的情况B.平均数可以准确地反映出总体的情况C.众数可以准确地反映出总体的情况√D.平均数、中位数、众数都有局限性,都不能准确地反映出总体的情况3.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得的数据,则A,B两样本的下列数字特征对应相同的是A.众数B.平均数√C.中位数D.标准差4.某校开展“爱我母校,爱我家乡”摄影比赛,七位评委为甲,乙两名选手的作品打出的分数的茎叶图如图所示(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲,乙两名选手得分的平均数分别为a1,a2,则一定有A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小与m的值有关解析由茎叶图知,√5.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-116的标准差为________.解析 设样本数据x1,x2,…,x10的标准差为s,则s=8,可知数据2x1-1,2x2-1,…,2x10-1的标准差为2s=16.课堂小结KETANGXIAOJIE1.标准差的平方s2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性,用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.。

高中数学人教A版必修3《2.2.2用样本的数字特征估计总体的数字特征》教学案3

高中数学人教A版必修3《2.2.2用样本的数字特征估计总体的数字特征》教学案3

必修三2.2.2用样本的数字特征估计总体的数字特征●三维目标1.知识与技能(1)能利用频率分布直方图估计总体的众数,中位数,平均数.(2)结合实际,能选取恰当的样本数字特征,对问题作出合理判断,制定解决问题的有效方法.2.过程与方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.3.情感、态度与价值观通过对有关数据的搜集、整理、分析、判断培养学生“实事求是”的科学态度和严谨的工作作风.●重点难点重点:利用频率分布直方图估计总体的众数、中位数、平均数.难点:(1)从频率分布直方图中计算出中位数;(2)选取恰当的样本数字特征来估计总体,从而正确的对实际问题做出决策.●教学建议1.本节课让学生通过熟知的一组数据的代表-众数、中位数、平均数,并辅以计算器、多媒体手段,通过一定手脑结合的训练,让学生感受在只能得到频率分布直方图的情况下也可以估计总体数字特征.在课堂结构上,建议根据学生的认知水平,采取“仔细观察—分析研究—小组讨论—总结归纳”的方法,使知识的获得与知识的发生过程环环相扣,层层深入,从而顺利完成教学目标.2.教学方法与手段分析(1)教学方法:结合本节课的教学内容和学生的认知水平,在教法上,建议采用“问答探究”式的教学方法,层层深入.充分发挥教师的主导作用,让学生真正成为教学活动的主体.(2)教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性.(3)本节课的教学过程重视学生探究知识的过程,突出了以教师为主导,学生为主体的教学理念.教师通过提供一些可供学生研究的素材,引导学生自己去研究问题,探究问题的结论.●教学流程创设问题情境引出问题⇒引导学生结合初中学过的众数、中位数、平均数的概念感受这三个数字特征⇒教师通过多媒体展示这三个数字特征,通过分组讨论总结求法⇒通过例1的展示及变式训练的强化使学生进一步体会这三个数字特征通过例2及变式训练使学生掌握求方差及标准差的方法,体会方差的应用⇒引导学生探究方差及标准差的特征及求法,分组讨论说明方差的实际意义⇒归纳整理进行课堂小结,整体把握本节知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正课标解读 1.会求样本的众数、中位数、平均数、标准差、方差.(重点) 2.理解用样本的数字特征来估计总体数字特征的方法.(重点) 3.会应用相关知识解决统计实际问题.(难点)众数、中位数、平均数的概念1.众数:一组数据中重复出现次数最多的数叫做这组数的众数.2.中位数:把一组数据按从小到大的顺序排列,把处于最中间位置的那个数称为这组数据的中位数.当数据个数为奇数时,中位数是按从小到大的顺序排列的最中间的那个数;当数据个数为偶数时,中位数是按从小到大的顺序排列的最中间两个数的平均数.3.平均数:如果有n 个数x 1,x 2,x 3,…,x n ,那么x =1n (x 1+x 2+…+x n )叫这n 个数的平均数.标准差、方差【问题导思】甲、乙两名战士在相同条件下各射靶两次,每次命中的环数分别是: 甲:8,6,7,8,6,5,9,10,4,7 乙:6,7,7,8,6,7,8,7,9,51.甲、乙两战士命中环数的平均数x 甲、x 乙各是多少? 【提示】 x 甲=7环;x 乙=7环. 2.由x 甲,x 乙能否判断两人的射击水平? 【提示】 由于x 甲=x 乙,故无法判断.3.观察上述两组数据,你认为哪个人的射击水平更稳定?【提示】 从数字分布来看,甲命中的环数较分散,乙命中的环数较集中,故乙的射击水平更稳定.1.标准差的计算公式标准差是样本数据到平均数的一种平均距离,一般用s 表示,s = 1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 2.方差的计算公式 标准差的平方s 2叫做方差.s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].其中,x i(i=1,2,…,n)是样本数据,n是样本容量,x是样本平均数.众数、中位数、平均数的应用某公司的33名人员的月工资如下:职务董事长副董事长董事总经理经理管理员职员人数11215320工资5 500 5 000 3 500 3 000 2 500 2 000 1 500(元)(1)求该公司人员月工资的平均数、中位数、众数(精确到元);(2)假设副董事长的工资从5 000元提升到20 000元;董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司人员的工资水平?结合此问题谈一谈你的看法.【思路探究】由平均数定义→计算平均数→将数据从小到大排列→得中位数、平均数→结论【自主解答】(1)平均数是x=(5 500+5 000+3 500×2+3 000+2 500×5+2 000×3+1 500×20)÷33≈2 091(元),中位数是1 500元,众数是1 500元.(2)平均数是x′=(30 000+20 000+3 500×2+3 000+2 500×5+2 000×3+1 500×20)÷33≈3 288(元),中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数和众数均能反映该公司人员的工资水平.因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司人员的工资水平.1.深刻理解和把握平均数、中位数、众数在反映样本数据上的特点,并结合实际情况,灵活应用.2.如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.在实际应用中,如果同时知道样本中位数和样本平均数,可以使我们了解样本数据中极端数据的信息,帮助我们作出决策.3.平均数对极端值敏感,而中位数对极端值不敏感.因此两者结合,可较好地分析总体的情况.高一(3)班有男同学27名,女同学21名,在一次语文测验中,男同学的平均分是82分,中位数是75分,女同学的平均分是80分,中位数是80分.(1)求这次测验全班平均分(精确到0.01);(2)估计全班成绩在80分以下(含80分)的同学至少有多少人?(3)分析男同学的平均分与中位数相差较大的主要原因是什么?【解】(1)利用平均数计算公式得x=148(82×27+80×21)≈81.13(分).(2)∵男同学的中位数是75,∴至少有14名男同学得分不超过75分.又∵女同学的中位数是80,∴至少有11名女同学得分不超过80分.∴全班至少有25人得分低于80分(含80分).(3)男同学的平均分与中位数的差别较大,说明男同学中两极分化现象严重,得分高的和低的相差较大.用频率分布表或直方图求数字特征已知一组数据:125121123125 127129125128130129126124125127126122124125126128(1)填写下面的频率分布表:分组频数累计频数频率[120.5,122.5)[122.5,124.5)[124.5,126.5)[126.5,128.5)[128.5,130.5]合计(2)作出频率分布直方图;(3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数.【思路探究】将数据分组后依次填写分布表.然后画出直方图,最后根据数字特征在直方图中的求法求解.【自主解答】(1)分组频数累计频数频率[120.5,122.5)20.1 [122.5,124.5)30.15 [124.5,126.5)80.4 [126.5,128.5)40.2[128.5,130.5]3 0.15合计201(2)(3)在[124.5,126.5)中的数据最多,取这个区间的中点值作为众数的近似值,得众数为125.5,事实上,众数的精确值为125.图中虚线对应的数据是124.5+2×58=125.75,事实上中位数为125.5.使用“组中值”求平均数:x -=121.5×0.1+123.5×0.15+125.5×0.4+127.5×0.2+129.5×0.15=125.8,事实上平均数的精确值为x -=125.75.1.利用频率分布直方图求数字特征:(1)众数是最高的矩形的底边的中点.(2)中位数左右两侧直方图的面积相等.(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.2.利用直方图求众数、中位数、平均数均为近似值,往往与实际数据得出的不一致,但它们能粗略估计其众数、中位数和平均数.下表是某校学生的睡眠时间抽样的频率分布表(单位:h),试估计该校学生的日平均睡眠时间.睡眠时间[6,6.5)[6.5,7)[7,7.5)[7.5,8)[8,8.5)[8.5,9]合计频数517333762100频率0.050.170.330.370.060.02 1 【解】法一日平均睡眠时间为x=1100×(6.25×5+6.75×17+7.25×33+7.75×37+8.25×6+8.75×2)=1100×739=7.39(h).法二求组中值与对应频率之积的和:x=6.25×0.05+6.75×0.17+7.25×0.33+7.75×0.37+8.25×0.06+8.75×0.02=7.39(h).所以,估计该校学生的日平均睡眠时间约为7.39 h.标准差与方差的应用甲、乙两机床同时加工直径为100 cm 的零件,为检验质量,从中抽取6件测量数据为:甲:9910098100100103乙:9910010299100100(1)分别计算两组数据的平均数及方差;(2)根据计算说明哪台机床加工零件的质量更稳定.【思路探究】着眼点—错误!)【自主解答】 (1)x 甲=16[99+100+98+100+100+103]=100,x 乙=16[99+100+102+99+100+100]=100,s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73, s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)由(1)知x 甲=x 乙,比较它们的方差,∵s 2甲>s 2乙,故乙机床加工零件的质量更稳定.1.在实际问题中,仅靠平均数不能完全反映问题,还要研究其偏离平均值的离散程度(即方差或标准差):方差大说明取值分散性大,方差小说明取值分散性小或者取值集中、稳定.2.关于统计的有关性质及规律:(1)若x 1,x 2,…,x n 的平均数为x ,那么mx 1+a ,mx 2+a ,…,mx n +a 的平均数是m x +a .(2)数据x 1,x 2,…,x n 与数据x 1+a ,x 2+a ,…,x n +a 的方差相等. (3)若x 1,x 2,…,x n 的方差为s 2,那么ax 1,ax 2,…,ax n 的方差为a 2s 2.对划艇运动员甲、乙在相同的条件下进行了6次测试,测得他们每次的最大速度(m/s)如下:甲:27,38,30,37,35,31 乙:33,29,38,34,28,36根据以上数据,试判断他们谁更优秀.【解】 x 甲=16×(27+38+30+37+35+31)=33,s 2甲=16×[(27-33)2+(38-33)2+…+(31-33)2]=16×94≈15.7, x 乙=16×(33+29+38+34+28+36)=1986=33,s 2乙=16×[(33-33)2+(29-33)2+…+(36-33)2]=16×76≈12.7. 所以x 甲=x 乙,s 2甲>s 2乙.这说明甲、乙两运动员的最大速度的平均值相同,但乙比甲更稳定,故乙比甲更优秀.巧用分类讨论思想求数字特征(12分)某班4个小组的人数为10,10,x,8,已知该组数据的中位数与平均数相等,求这组数据的中位数.【思路点拨】 x 的大小未知,可根据x 的取值不同分别求中位数.【规范解答】 该组数据的平均数为14(x +28),中位数一定是其中两个数的平均数,由于x 不知是多少,所以要分几种情况讨论.(1)当x ≤8时,原数据按从小到大的顺序排列为x,8,10,10,其中位数为12×(10+8)=9.若14(x +28)=9,则x =8,此时中位数为9.4分 (2)当8<x ≤10时,原数据按从小到大的顺序排列为8,x,10,10,其中位数为12(x +10).若14(x +28)=12(x +10),则x =8,而8不在8<x ≤10的范围内,所以舍去.8分 (3)当x >10时,原数据按从小到大的顺序排列为8,10,10,x ,其中位数为12×(10+10)=10.若14(x +28)=10,则x =12,此时中位数为10.综上所述,这组数据的中位数为9或10.12分当在数据中含有未知数x ,求该组数据的中位数时,由于x 的取值不同,所以数据由小到大(或由大到小)排列的顺序不同,由于条件的变化,问题的结果有多种情况,不能用同一标准或同一种方法解决,故需分情况讨论,讨论时要做到全面合理,不重不漏.1.一组数据的中位数是唯一的,求中位数时,必须先将这组数据按从小到大(或从大到小)的顺序排列,如果数据的个数为奇数,那么,最中间的一个数据是这组数据的中位数,如果数据的个数为偶数,那么,最中间两个数据的平均数是这组数据的中位数.2.利用直方图求数字特征:①众数是最高的矩形的底边的中点.②中位数左右两边直方图的面积应相等.③平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.样本标准差反映了各样本数据聚集于样本平均值周围的程度,标准差越小,表明各个样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散.1.一组观察值4,3,5,6出现的次数分别为3,2,4,2,则样本平均值为()A .4.55B .4.5C .12.5D .1.64【解析】 x =4×3+3×2+5×4+6×23+2+4+2≈4.55.【答案】 A2.一个样本数据按从小到大的顺序排列为:13,14,19,x,23,27,28,31,中位数为22,则x =________.【解析】 由题意知x +232=22,则x =21.【答案】 213.五个数1,2,3,4,a 的平均数是3,则a =________,这组数据的标准差是________. 【解析】 由平均数公式得1+2+3+4+a 5=3,则a =5,s 2=15[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2.∴s = 2.【答案】 524.2012年青年歌手大奖赛民族唱法组中,6位评委现场给每位歌手打分,去掉一个最高分和一个最低分后,其余分数的平均数作为歌手的成绩,已知6位评委给某位歌手的打分是:9.2 9.5 9.4 9.6 9.8 9.5求这位歌手的得分及6位评委打分的众数和中位数.【解】这位歌手的得分为x=14(9.5+9.4+9.6+9.5)=9.5分.在这组数据中,9.5出现了2次,出现的次数最多,所以6位评委打分的众数是9.5分,将这组数据按照从小到大的顺序排列后,位于最中间的两个数都是9.5,所以6位评委打分的中位数是9.5分.一、选择题1.(2013·济南高一检测)某学习小组在某次数学测验中,得100分的有1人,95分的有1人,90分的有2人,85分的有4人,80分和75分的各1人,则该小组成绩的平均数、众数、中位数分别是()A.85,85,85B.87,85,86C.87,85,85 D.87,90,85【解析】从小到大排列为75,80,85,85,85,85,90,90,95,100观察可知,众数、中位数分别为85、85,计算得平均数为87.【答案】 C2.甲、乙、丙、丁四名射手在选拔赛中所得的平均环数x及其方差s2如下表所示,则选送决赛的最佳人选应是()甲乙丙丁x7887s2 6.3 6.378.7A.甲B.乙C.丙D.丁【解析】∵x乙=x丙>x甲=x丁,且s2甲=s2乙<s2丙<s2丁,∴应选择乙进入决赛. 【答案】 B3.(2012·山东高考)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差【解析】 对样本中每个数据都加上一个非零常数时不改变样本的方差和标准差,众数、中位数、平均数都发生改变.【答案】 D4.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,则由此求出的平均数与实际平均数的差是( )A .3.5B .-3C .3D .-0.5【解析】 少输入90,9030=3,平均数少3,求出的平均数减去实际平均数等于-3.【答案】 B5.(2012·安徽高考)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图2-2-9所示,则( )图2-2-9A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差【解析】 由条形统计图得到相关数据,然后利用平均数、中位数、方差、极差的概念求解.由条形统计图知:甲射靶5次的成绩分别为:4,5,6,7,8; 乙射靶5次的成绩分别为:5,5,5,6,9,所以x 甲=4+5+6+7+85=6;x 乙=5+5+5+6+95=6.所以x 甲=x乙.故A 不正确.甲的成绩的中位数为6,乙的成绩的中位数为5,故B 不正确.s 2甲=15[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=15×10=2,s 2乙=15[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=15×12=125,因为2<125,所以s 2甲<s 2乙.故C 正确.甲的成绩的极差为:8-4=4,乙的成绩的极差为:9-5=4,故D 不正确.故选C.【答案】 C 二、填空题6.(2013·深圳高一检测)已知样本9,10,11,x ,y 的平均数是10,标准差为2,则xy =________.【解析】 由平均数得9+10+11+x +y =50,∴x +y =20.又由(9-10)2+(10-10)2+(11-10)2+(x -10)2+(y -10)2=(2)2×5=10,得x 2+y 2-20(x +y )=-192,(x +y )2-2xy -20(x +y )=-192,∴xy =96. 【答案】 967.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为________.分数 5 4 3 2 1 人数2010303010【解析】 平均成绩为5×20+4×10+3×30+2×30+1×10100=3,s 2=1100×[20×(5-3)2+10×(4-3)2+30×(3-3)2+30×(2-3)2+10×(1-3)2]=160100. ∴s =2105【答案】21058.(2012·广东高考)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)【解析】 利用平均数、中位数、标准差公式分类讨论求解. 假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4, 则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4.又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(4-x 2-2)2+(4-x 1-2)2 =122[(x 1-2)2+(x 2-2)2] =1,∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.【答案】 1,1,3,3 三、解答题9.某公司销售部有销售人员15人,为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1 800 510 250 210 150 120 人数113532(1)求这15位销售人员该月销售量的平均数、中位数及众数;(2)假设销售部负责人把每位销售人员的月销售定额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额.【解】 (1)平均数x =115×(1 800×1+510×1+250×3+210×5+150×3+120×2)=320(件),中位数为210件,众数为210件.(2)不合理,因为15人中就有13人的销售额达不到320件,也就是说320虽是这一组数据的平均数但它却不能反映销售人员的一般水平.销售额定为210件要合理些.由于210既是中位数,又是众数,是绝大部分人都能达到的销售额.10.某篮球队教练要从甲、乙两名运动员中挑选一名运动员,甲、乙两人进行10轮投篮比赛,每轮每人投10次,甲每轮投中的次数分别为9,7,8,7,8,10,7,9,8,7,乙每轮投中的次数分别为7,8,9,8,7,8,9,8,9,7,请你给教练一个人选的建议.【解】 由已知x 甲=110×(9+7+8+7+8+10+7+9+8+7)=8,x 乙=110×(7+8+9+8+7+9+8+9+8+7)=8,s 2甲=110×[(9-8)2+(7-8)2+(8-8)2+(7-8)2+(8-8)2+(10-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2]=1.s 2乙=110×[(7-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2]=35.∵x 甲=x 乙,s 2甲>s 2乙,∴乙运动员发挥稳定,应选乙.11.为了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图2-2-10,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.图2-2-10(1)求第四小组的频率;(2)问参加这次测试的学生人数是多少?(3)问在这次测试中学生跳绳次数的中位数落在第几小组内? 【解】 (1)第四小组的频率为1-0.1-0.3-0.4=0.2.(2)参加这次测试的学生人数为50.1=50.(3)由于中位数是所有数据中的中间值,故在频率分布直方图中体现的是中位数的左右两边频数应相等,即频率也相等,从而就是小矩形的面积和相等.因此在频率分布直方图中将频率分布直方图中所有小矩形的面积一分为二的直线所对应的成绩即为所求.∵0.1+0.3=0.4<0.5,0.1+0.3+0.4=0.8>0.5,故这次测试中学生跳绳次数的中位数落在第三小组内.(教师用书独具)某学校高一A班和高一B班各有49名学生,两班在一次数学测验中的成绩统计如下:班级平均分众数中位数标准差A班79708719.8B班797079 5.2(1)请你对下面的一段话给予简要分析:A班的小刚回家对妈妈说:“昨天的数学测验,全班平均分为79分,得70分的人最多,我得了85分,在班里算是上游了!”(2)请你根据表中的数据,对这两个班的数学测验情况进行简要分析,并提出建议.【思路探究】综合考虑四个数字特征对小刚成绩情况进行判断,同时对班级成绩作出分析.【自主解答】(1)由于A班49名学生数学测验成绩的中位数是87,则85分排在全班第25名之后,所以从位次上看,不能说85分是上游,成绩应该属于中游.但也不能以位次来判断学习的好坏,小刚得了85分,说明他对这段的学习内容掌握得较好,从掌握学习的内容上讲,也可以说属于上游.(2)A班成绩的中位数是87分,说明高于87分(含87)的人数占一半以上,而平均分为79分,标准差又很大,说明低分也多,两极分化严重,建议加强对学习困难的学生的帮助.B班的中位数和平均数都是79分,标准差又小,说明学生之间差别较小,学习很差的学生少,但学习优异的也很少,建议采取措施提高优秀率.某校在一次考试中,甲、乙两班学生的数学成绩统计如下:分数5060708090100人数甲班16121115 5乙班351531311选用平均数、众数和中位数评估这两个班的成绩?【解】甲班平均数79.6分,乙班平均数80.2分,从平均分看成绩较好的是乙班;甲班众数为90分,乙班众数为70分,从众数看成绩较好的是甲班;甲班的第25个和第26个数据都是80,所以中位数是80分,同理乙班中位数也是80分,但是甲班成绩在中位数以上(含中位数)的学生有31人,占全班学生的62%,同理乙班27人,占全班学生的54%,所以从中位数看成绩较好的是甲班.如果记90分以上(含90分)为优秀,甲班有20人,优秀率为40%,乙班有24人,优秀率为48%,从优秀率来看成绩较好的是乙班.可见,一个班学生成绩的评估方法很多,需视要求而定.如果不考虑优秀率的话,显然以中位数去评估比较合适.。

人教A版数学必修3第二章2.2.2 用样本的数字特征估计总体的数字特征(标准差)教学设计

人教A版数学必修3第二章2.2.2 用样本的数字特征估计总体的数字特征(标准差)教学设计

2.2.2标准差教材设计课例简析当我们进行一个内容的教学时,需要对一个内容进行一个整体的思考,这将有助于老师进行每一节课的教学。

可以从以下几个方面对这部分内容进行整体思考。

1.统计与日常生活中有着广泛的应用,生活先于课程把统计推到了学生面前。

2.统计提供了一种不确定的(随机的)思维方式。

3.有助于学生解决问题能力、情感态度价值观等方面的发展。

统计用数据说话,使学生体会用数据进行推断的思维方式。

方法简述1.把学生不熟悉的问题,不容易理解的问题,换成学生熟悉的问题,容易理解的问题。

2.把一个复杂的问题,拆分成若干个简单的问题,容易理解的问题。

达到循序渐进,环环相扣,水到渠成的目的。

目标定位1.在教学中注重培养学生提出问题、分析问题和解决问题的能力,发展学生的创新意识和应用意识。

2.在作业中提高学生数学探究能力、数学建模能力和数学交流能力,进一步发展学生的数学实践能力。

课堂设计对模块3(必修3)第74页关于方差的讲解,基于对新大纲的理解我做了如下精心的设计:首先看课本的引入:平均数向我们提供了样本数据的重要信息,但是,平均数有时也会使我们作出对总体的片面判断。

某地区的统计报表显示,此地区的年平均家庭收入是10万元,给人的印象是这个地区的家庭收入普遍较高。

但是,如果这个平均数是从200户贫困家庭和20户极富有的家庭年收入计算出来的。

那么,它就不能代表贫困家庭的收入,也不能代表富有家庭的年收入。

因为这个平均数掩盖了一些极端的情况,而这些极端情况显然是不能忽视的,因此,只有平均数还难以概括样本的实际状态。

对于这个情景引入,我觉得对于大部分15或者16岁的孩子来讲,其实比较抽象,难以理解问题的所在,而且重点在平均数上,他们也不能很好的理解什么是极端的情况。

因此我就用孩子们的语言,把它换成了下面两个问题。

1.上次考试,假设数学平均85,语文平均95。

我们的问题是,数学成绩“拉分”厉害,还是语文成绩“拉分”厉害。

高中数学人教A版必修三教学案第二章 第2节 第2课时 用样本的数字特征估计总体的数字特征 Word版含答案

高中数学人教A版必修三教学案第二章 第2节 第2课时 用样本的数字特征估计总体的数字特征 Word版含答案

第课时用样本的数字特征估计总体的数字特征[核心必知].预习教材,问题导入根据以下提纲,预习教材~,回答下列问题.()众数、中位数、平均数各是什么样的数?提示:见本课时[归纳总结,核心必记]().()你能说出教材思考中样本的中位数与样本中位数估计值为什么不一样吗?提示:频率分布直方图已经损失了一些基本的信息,因而通过频率分布直方图只能估计样本的中位数,而不能得到样本的准确的中位数.()标准差和方差各指什么?提示:见本课时[归纳总结,核心必记]()..归纳总结,核心必记()众数、中位数、平均数①众数:在一组数据中,出现次数最多的数叫做众数.②中位数:把一组数据按从小到大的顺序排列,处在中间位置(或中间两个数的平均数)的数叫做这组数据的中位数.③平均数:一组数据的总和除以这组数据的个数取得的商叫做这组数据的平均数,一般记为=(++…+).()标准差、方差①标准差:标准差是样本数据到平均数的一种平均距离,一般用表示.假设样本数据是,,…,,表示这组数据的平均数,则=.②方差:标准差的平方即为方差,则=[(-)+(-)+…+(-)].[问题思考]()一组数据的众数可以有多个吗?中位数是否也有相同的结论?提示:一组数据的众数可能有一个,也可能有多个,但中位数有且只有一个.()在频率分布直方图中如何求众数、中位数、平均数?提示:①在频率分布直方图中,众数是最高矩形中点的横坐标;②中位数左边和右边的直方图的面积应该相等;③平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.[课前反思]通过以上预习,必须掌握的几个知识点:()众数、中位数、平均数的概念:;()标准差、方差的公式:.现从甲、乙、丙三个厂家生产的同一种产品中,各抽取件产品,对其使用寿命进行跟踪调查,其结果如下(单位:年)甲:, , , , , , ,乙:, , , , , , ,丙:, , , , , , ,[思考]三家广告中都称其产品使用寿命为年,你能说明为什么吗?名师指津:三个厂家从不同的角度进行了说明,以宣传自己的产品.其中甲:众数为年,乙:平均数为年,丙:中位数为年.[思考]众数、中位数、平均数各有什么优缺点?名师指津:三种数字特征的比较:众数:优点是体现了样本数据的最大集中点,容易计算;缺点是只能表达样本数据中很少的一部分信息,无法客观地反映总体的特征.中位数:优点是不受少数几个极端数据(即排序靠前或靠后的数据)的影响,容易计算,便于利用中间数据的信息;缺点是对极端值不敏感.平均数:优点是代表性较好,是反映数据集中趋势的量,一般情况下可以反映出更多的关于样本数据全体的信息;缺点是任何一个数据的改变都会引起平均数的改变,数据越“离群”对平均值的影响越大.讲一讲.某工厂人员及月工资构成如下:。

人教版高中数学 A版 必修三 第二章 《2.2.2用样本的数字特征估计总体的数字特征》

人教版高中数学 A版 必修三 第二章 《2.2.2用样本的数字特征估计总体的数字特征》

知识点三 平均数 定义 如果有 n 个数
x1,x2,x3,…,xn,那么
x

1n(x1+x2+…+xn)
叫做
这 n 个数的平均数.
特点 (1)一组数据有且仅有一个平均数.(2)平均数是频率分布直方图的
“重心”,是直方图的平衡点,因此,每个小矩形的面积与小矩形底边中
点的横坐标的乘积之和为平均数.(3)由于平均数与每一个样本的数据有关,
度.
3.现实中的总体所包含的个体数往往是很多的,虽然总体的平均数与标准
差客观存在,但是我们无从知道.所以通常的做法随是机用样本的平均数和标准
差去估计总体的平均数与标准差.虽然样本具有
性,不代同表的性样本测
得的数据不一样,与总体的数字特征也可能不同,但只要样本的
答案
返回
题型探究
重点难点 个个击破
类型一 感受数据的离散程度
3.利用直方图求数字特征:①众数是最高的矩形的底边的中点.②中位数 左右两边直方图的面积应相等.③平均数等于每个小矩形的面积乘以小矩 形底边中点的横坐标之和.
返回
第二章 § 2.2 用样本估计总体
2.2.2 用样本的数字特征估计总体的数字 特征(二)
学习目标
1.理解样本数据方差、标准差的意义,会计算方差、标准差; 2.会用样本的基本数字特征(平均数、标准差)估计总体的基本数字特征; 3.体会用样本估计总体的思想.
知识点二 用样本的基本数字特征估计总体的基本数字特征
1.样本的基本数字特征包括众数 、中位数 平、均数 标、准差
.
2.平均数向我们提供了样本数据的重要信息,但是平均数有时也会使我们
作出对总体的片面判断,因为这个平均数掩盖了一些极端的情况,而这些

人教A版高中数学必修3第二章2.2.2 用样本的数字特征估计总体的数字特征

人教A版高中数学必修3第二章2.2.2 用样本的数字特征估计总体的数字特征

§2.2.2用样本的数字特征估计总体的数字特征第1课时众数、中位数、平均数【学习目标】1、理解众数、中位数、平均数在样本数据中所代表的含义;2、会运用频率分布直方图估计众数、中位数、平均数;3、理解在利用众数、中位数、平均数估计总体的数字特征时各自的优缺点;【学习重点】如何从样本频率分布直方图中估计众数、中位数、平均数【学习难点】从样本频率分布直方图中估计中位数【学习过程】同学们好,通过前面的学习,我们知道从两方面用样本来估计总体,频率分布和数字特征。

但在日常生活中我们往往并不需要了解总体的分布形态,而是关心总体的某一数字特征,例如:居民月均用水量问题,我们关心的是数字,而不是总体的分布形态。

因此,我们要通过样本的数据对总体的数字特征进行研究。

这节课我们从三个的数字特征-- 众数、中位数、平均数来估计总体的情况。

一、复习回顾初中,我们学习了众数、中位数、平均数,现在回忆下他们的概念思考1:在初中我们学过众数、中位数和平均数的概念,这些数据都是反映样本信息的数字特征,对一组样本数据如何求众数、中位数和平均数?答:众数:在一组数据中,出现次数最多的数据叫做这组数据的众数中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.平均数:一组数据的算术平均数,即x=思考2:众数、中位数和平均数的特点是什么? 答:众数:可以有一个或多个;121()n x x x n++⋯+中位数:(1)排序后找中位数;(2)中位数只有一个;(3)中位数不一定是这组数据中的数平均数:一组数据有且仅有一个平均数脱口而出:1.求下列各组数据的众数(1)1,2,3,3,3,5,5,8,8,8,9,9(2)1,2,3,3,3,5,5,8,8,9,9(3)1,2,3,4,52、求下列各组数据的中位数(1)1,2,3,3,3,4,6,8,8,8,9,9(2)1,2,3,3,3,4,8,8,8,9,93、求下列各组数据的平均数(1)1,9,3,7,6,4,2,8,(2)1,1,3,7,6,4,2,8,(3)101,102,98,105,99这是从样本数据中根据众数、中位数、平均数的定义求的,那么从频率分布直方图中如何估计众数、中位数和平均数呢?现在请同学们以小组为单位再规范下自己的答案。

2020-2021学年人教A版数学必修3:第2章2.22.2.2用样本的数字特征估计总体的数字特征

2020-2021学年人教A版数学必修3:第2章2.22.2.2用样本的数字特征估计总体的数字特征

2.2.2用样本的数字特征估计总体的数字特征学习目标核心素养1.会求样本的众数、中位数、平均数、标准差、方差.(重点)2.理解用样本的数字特征来估计总体数字特征的方法.(重点)3.会应用相关知识解决实际统计问题.(难点)1.通过数字特征的计算,提升数学运算素养.2.借助实际统计问题的应用,培养数学建模素养.1.众数、中位数、平均数的概念(1)众数:一组数据中出现次数最多的数.(2)中位数:一组数据按大小顺序排列后,处于中间位置的数.如果个数是偶数,则取中间两个数据的平均数.(3)平均数:一组数据的和除以数据个数所得到的数.2.三种数字特征的比较名称优点缺点众数①体现了样本数据的最大集中点;②容易计算①它只能表达样本数据中很少的一部分信息;②无法客观地反映总体的特征中位数①不受少数几个极端数据(即排序靠前或靠后的数据)的影响;②容易计算,便于利用中间数据的信息对极端值不敏感平均代表性较好,是反映数据集中趋势的任何一个数据的改变都会引数量.一般情况下,可以反映出更多的关于样本数据全体的信息起平均数的改变.数据越“离群”,对平均数的影响越大(1)标准差:标准差是样本数据到平均数的一种平均距离,一般用s表示,s=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].(2)方差:标准差的平方s2叫做方差.s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].其中,x n是样本数据,n是样本容量,x是样本平均数.思考:在统计中,计算方差的目的是什么?[提示]方差与标准差描述了一组数据围绕平均数波动的大小,其值越大,数据离散程度越大,当其值为0时,说明样本各数据相等,没有离散性.1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数B[标准差能反映一组数据的稳定程度.]2.数据101,98,102,100,99的标准差为()A.2B.0C.1 D.2A[x=15(101+98+102+100+99)=100.∴s=15[(101-100)2+(98-100)2+(102-100)2+(100-100)2+(99-100)2]= 2.3.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>aC.c>a>b D.c>b>aD[将数据从小到大排列为10,12,14,14,15,15,16,17,17,17,则中位数b=15,众数c=17.平均数a=110(10+12+14×2+15×2+16+17×3)=14.7.显然a<b<c.]4.某高校有甲、乙两个数学建模兴趣班.其中甲班有40人,乙班有50人.现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是________分.85[由题意知,该校数学建模兴趣班的平均成绩是40×90+50×8140+50=85(分).]众数、中位数、平均数职务董事长副董事长董事总经理经理管理员职员人数 1 12 1 5 320工资 5 500 5 000 3 500 3 000 2 500 2 000 1 500(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.[解](1)平均数是:x=1 500+4 000+3 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+591=2 091(元),中位数是1 500元,众数是1 500元.(2)新的平均数是x′=1 500+28 500+18 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+1 788=3 288(元),新的中位数是1 500元,新的众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.对众数、中位数、平均数的几点说明(1)如果样本平均数大于样本中位数,说明数据中存在较大的极端值.在实际应用中,样本中位数和样本平均数可以使我们了解样本数据中的极端数据信息,帮助我们作出决策.(2)众数、中位数、平均数三者比较,平均数更能体现每个数据的特征,它是各个数据的重心.[跟进训练]1.某小区广场上有甲、乙两群市民正在进行晨练,两群市民的年龄如下(单位:岁):甲群:13,13,14,15,15,15,15,16,17,17;乙群:54,3,4,4,5,6,6,6,6,56.(1)甲群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映甲群市民的年龄特征?(2)乙群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映乙群市民的年龄特征?[解](1)甲群市民年龄的平均数为13+13+14+15+15+15+15+16+17+1710=15(岁),中位数为15岁,众数为15岁.平均数、中位数和众数相等,因此它们都能较好地反映甲群市民的年龄特征.(2)乙群市民年龄的平均数为54+3+4+4+5+6+6+6+6+5610=15(岁),中位数为6岁,众数为6岁.由于乙群市民大多数是儿童,所以中位数和众数能较好地反映乙群市民的年龄特征,而平均数的可靠性较差.方差与标准差面是甲、乙两名运动员的5次射击成绩.运动员第1次第2次第3次第4次第5次甲8791908993乙8990918892(2)根据计算说明哪名运动员的成绩更稳定.思路点拨:(1)直接利用求x与s2的公式求解.(2)先比较x的大小,再分析s2的大小并下结论.[解](1)由表中数据计算可得x甲=90,x乙=90,且s2甲=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2=4,s2乙=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.(2)由(1)知,x甲=x乙,比较它们的方差,因为s2甲>s2乙,故乙运动员的成绩更为稳定.]用样本的标准差、方差估计总体的方法(1)用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实际应用中,当所得数据的平均数不相等时,需先分析平均水平,再计算标准差(方差)分析稳定情况.(2)标准差、方差的取值范围是[0,+∞).(3)因为标准差与原始数据的单位相同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的离散程度上是一样的,但在解决实际问题时,一般多采用标准差.[跟进训练]2.甲、乙、丙、丁四名射手在选拔赛中所得的平均环数x及其方差s2如下表所示,则选送决赛的最佳人选应是()甲乙丙丁x7887s2 6.3 6.378.7A.甲B.乙C.丙D.丁B[∵x乙=x丙>x甲=x丁,且s2甲=s2乙<s2丙<s2丁,故应选择乙进入决赛.]频率分布直方图与数字特征的综合应用1.观察频率分布直方图,能获得样本数据的原始信息吗?[提示]把样本数据做成频率分布直方图后就失去了原始数据.2.给出样本数据的频率分布直方图,可以求出数据的众数,中位数和平均数吗?[提示]可以近似求出.【例3】统计局就某地居民的月收入(元)情况调查了10 000人,并根据所得数据画出了样本频率分布直方图(如图),每个分组包括左端点,不包括右端点,如第一组表示月收入在[500,1 000)内.(1)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样的方法抽出100人作进一步分析,则月收入在[2 000,2 500)内的应抽取多少人?(2)根据频率分布直方图估计样本数据的中位数;(3)根据频率分布直方图估计样本数据的平均数.思路点拨:结合频率分布直方图求解.[解](1)因为(0.000 2+0.000 4+0.000 3+0.000 1)×500=0.5,所以a=0.51 000=0.000 5,月收入在[2 000,2 500)内的频率为0.25,所以100人中月收入在[2 000,2 500)内的人数为0.25×100=25.(2)因为0.000 2×500=0.1,0.000 4×500=0.2.0.000 5×500=0.25.0.1+0.2+0.25=0.55>0.5,所以样本数据的中位数是1 500+0.5-(0.1+0.2)0.000 5=1 900(元).(3)样本平均数为(750×0.000 2+1 250×0.000 4+1 750×0.000 5+2 250×0.000 5+2 750×0.000 3+3 250×0.000 1)×500=1 900(元).1.(变条件)某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(1)求这次测试数学成绩的中位数.(2)求这次测试数学成绩的平均分.[解](1)由图知,设中位数为x,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x-70),所以x≈73.3.(2)由图知这次数学成绩的平均分为:40+502×0.005×10+50+602×0.015×10+60+702×0.02×10+70+802×0.03×10+80+902×0.025×10+90+1002×0.005×10=72.2.(变结论)本例条件不变.(1)若再从这10 000人中用分层抽样的方法抽出若干人,分析居民收入与幸福指数的关系,已知月收入在[2 000,2 500)内的抽取了40人.则月收入在[3 000,3 500]内的该抽多少人?(2)根据频率分布直方图估计样本数据的众数.[解](1)因为(0.000 2+0.000 4+0.000 3+0.000 1)×500=0.5.所以a=0.51 000=0.000 5.故月收入在[2 000,2 500)内的频率为0.000 5×500=0.25.∴新抽样本容量为400.25=160(人).∴月收入在[3 000,3 500]内的该抽:160×(0.000 1×500)=8(人).(2)由图知众数为2 000元.用频率分布直方图估计众数、中位数、平均数(1)众数:取最高小长方形底边中点的横坐标作为众数.(2)中位数:在频率分布直方图中,把频率分布直方图划分为左右两个面积相等的部分的分界线与x轴交点的横坐标称为中位数.(3)平均数:平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.1.一组数据中的众数可能不止一个,中位数是唯一的,求中位数时,必须先排序.2.利用频率分布直方图求数字特征(1)众数是最高的矩形的底边的中点.(2)中位数左右两边直方图的面积应相等.(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和. 3.标准差的平方s 2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.1.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)在一组样本数据中,众数一定是唯一的. ( ) (2)中位数是样本数据中最中间的那个数. ( ) (3)方差的值越小,数据的离散程度越小. ( )[答案] (1)× (2)× (3)√ 2.下列说法中,不正确的是( ) A .数据2,4,6,8的中位数是4,6 B .数据1,2,2,3,4,4的众数是2,4C .一组数据的平均数、众数、中位数有可能是同一个数据D .8个数据的平均数为5,另3个数据的平均数为7,则这11个数据的平均数是8×5+7×311A [数据2、4、6、8的中位数为4+62=5,A 错,B 、C 、D 都是正确的.] 3.一组样本数据a,3,5,7的平均数是b ,且a ,b 是方程x 2-5x +4=0的两根,则这个样本的方差是( )A .3B .4C .5D .6C [x 2-5x +4=0的两根为1,4,当a =1时,a,3,5,7的平均数是4;当a =4时,a,3,5,7的平均数不是1,所以a =1,b =4,s 2=5.]4.某校高二年级在一次数学选拔赛中,由于甲、乙两人的竞赛成绩相同,从而决定根据平时在相同条件下进行的六次测试确定出最佳人选,这六次测试的成绩数据如下:甲127138130137135131参加数学竞赛.[解]设甲、乙二人成绩的平均数分别为x甲、x乙,方差分别为s2甲、s2乙.则x甲=130+16(-3+8+0+7+5+1)=133,x乙=130+16(3-1+8+4-2+6)=133,s2甲=16[(-6)2+52+(-3)2+42+22+(-2)2]=473,s2乙=16[02+(-4)2+52+12+(-5)2+32]=383.因此,甲、乙的平均数相同,由于乙的方差较小,所以乙的成绩比甲的成绩稳定,应选乙参加竞赛较合适.莘莘学子,最重要的就是不要去看远方模糊的,而要做手边清楚的事。

2019-2020学年数学高中人教A版必修3学案:2.2.2用样本的数字特征估计总体的数字特征 第2课时 Word版含解析

2019-2020学年数学高中人教A版必修3学案:2.2.2用样本的数字特征估计总体的数字特征 第2课时 Word版含解析

第二章统计2.2用样本估计总体2.2.2用样本的数字特征估计总体的数字特征(第2课时)学习目标正确理解样本数据标准差的意义和作用,学会计算数据的标准差;能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识.合作学习一、设计问题,创设情境问题1:平均数向我们提供了样本数据的重要信息,但是,平均数有时也会使我们作出对总体的片面判断.如某地区的统计报表显示,此地区的中学生的平均身高为176cm,给我们的印象是该地区的中学生生长发育好,身高较高.但是,如果这个平均数是从五十万名中学生中抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身高.因此,只有平均数还难以概括样本数据的实际状态.我们应该引入什么样的概念才能解决这个问题呢?问题2:(1)有甲、乙两种钢筋,现从中各抽取一个样本(如下表)检查它们的抗拉强度(单位:kg/mm2),哪种钢筋的质量较好?(2)某种子公司为了在当地推行两种新水稻品种,对甲、乙两种水稻进行了连续7年的种植对比实验,年亩产量分别如下:(千克)甲:600,880,880,620,960,570,900(平均773)乙:800,860,850,750,750,800,700(平均787)请你用所学统计学的知识,说明选择哪种品种推广更好?(3)全面建设小康社会是我们党和政府的工作重心,某市按当地物价水平计算,人均年收入达到1.5万元的家庭即达到小康生活水平.民政局对该市100户家庭进行调查统计,他们的人均收入达到了1.6万元,民政局即宣布该市生活水平已达到小康水平,你认为这样的结论是否符合实际?(4)如何考察样本数据的分散程度的大小呢?把数据在坐标系中刻画出来,是否能直观地判断数据的离散程度?二、信息交流,揭示规律讨论结果:标准差:方差:三、运用规律,解决问题【例题】甲、乙两人同时生产内径为25.40mm的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm): 甲25.4625.3225.4525.3925.3625.3425.4225.4525.3825.4225.3925.4325.3925.4025.4425.4025.4225.3525.4125.39乙25.4025.4325.4425.4825.4825.4725.4925.4925.3625.3425.3325.4325.4325.3225.4725.3125.3225.3225.3225.48从生产的零件内径的尺寸看,谁生产的质量较高?四、变式训练,深化提高某地区全体九年级的3000名学生参加了一次数学测试,为了估计学生的成绩,从不同学校的不同程度的学生中抽取了100名学生的成绩如下:100分12人,90分30人,80分18人,70分24人,60分12人,50分4人.请根据以上数据估计该地区3000名学生的平均分、合格率(60及60分以上均属合格).五、反思小结,观点提炼请同学们想一想1.本节课我们学习过哪些知识内容?2.你认为学习这些有什么意义?布置作业课本P82习题2.2A组第6,7题.课后巩固:1.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为.2.若给定一组数据x1,x2,…,x n的方差为s2,则ax1,ax2,…,ax n的方差是.3.在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:试判断选谁参加某项重大比赛更合适?4.某养鱼专业户在一个养鱼池放入一批鱼苗,一年以后准备出售,为了在出售以前估计卖掉鱼后有多少收入,这个专业户已经了解到市场的销售价是每千克15元,请问,这个专业户还应该了解什么?怎样去了解?请你为他设计一个方案.参考答案一、设计问题,创设情境问题1:标准差,方差二、信息交流,揭示规律问题2:讨论结果:(1)由上图可以看出,乙样本的最小值100低于甲样本的最小值110,乙样本的最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.我们把一组数据的最大值与最小值的差称为极差.由上图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定.运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论.(2)选择的依据应该是,产量高且稳产,所以选择乙更为合理.(3)不符合实际.样本太小,没有代表性.若样本里有个别高收入者与多数低收入者差别太大.在统计学里,对统计数据的分析,需要结合实际,侧重于考察总体的相关数据特征.比如,市民平均收入问题,都是考察数据的分散程度.(4)把问题(2)中的数据在坐标系中刻画出来.我们可以很直观地知道,乙组数据比甲组数据更集中在平均数的附近,即乙的分散程度小,如何用数字去刻画这种分散程度呢?考察样本数据的分散程度的大小,最常用的统计量是方差和标准差.标准差:考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s表示.所谓“平均距离”,其含义可作如下理解:假设样本数据是x1,x2,…,x n,表示这组数据的平均数.x i到的距离是|x i-|(i=1,2,…,n).于是,样本数据x1,x2,…,x n到的“平均距离”是s=---.由于上式含有绝对值,运算不太方便,因此,通常改用如下公式来计算标准差:s=---.意义:标准差用来表示稳定性,标准差越大,数据的离散程度就越大,也就越不稳定;标准差越小,数据的离散程度就越小,也就越稳定.从标准差的定义可以看出,标准差s≥0,当s=0时,意味着所有的样本数据都等于样本平均数.标准差还可以用于对样本数据的另外一种解释.例如,在关于居民月均用水量的例子中,平均数=1.973,标准差s=0.868,所以+s=2.841,+2s=3.709;-s=1.105,-2s=0.237.这100个数据中,在区间[-2s,+2s]=[0.237,3.709]外的只有4个,也就是说,[-2s,+2s]几乎包含了所有样本数据.从数学的角度考虑,人们有时用标准差的平方s2——方差来代替标准差,作为测量样本数据分散程度的工具:s2=[(x1-)2+(x2-)2+…+(x n-)2].显然,在刻画样本数据的离散程度上,方差与标准差是一样的.但在解决实际问题时,一般多采用标准差.需要指出的是,现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道的.如何求得总体的平均数和标准差呢?通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.三、运用规律,解决问题【例题】分析:每一个工人生产的所有零件的内径尺寸组成一个总体.由于零件的生产标准已经给出(内径25.40mm),生产质量可以从总体的平均数与标准差两个角度来衡量.总体的平均数与内径标准尺寸25.40mm的差异大时质量低,差异小时质量高;当总体的平均数与标准尺寸很接近时,总体的标准差小的时候质量高,标准差大的时候质量低.这样,比较两人的生产质量,只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数与标准差的大小即可.但是,这两个总体的平均数与标准差都是不知道的,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样本数据,然后比较这两个样本的平均数、标准差,以此作为两个总体之间差异的估计值.解:用计算器计算可得甲≈25.401,乙≈25.406;s甲≈0.037,s乙≈0.068.从样本平均数看,甲生产的零件内径比乙的更接近内径标准(25.40mm),但是差异很小;从样本标准差看,由于s甲<s乙,因此甲生产的零件内径比乙的稳定程度高得多.于是,可以作出判断,甲生产的零件的质量比乙的高一些.四、变式训练,深化提高解:运用计算器计算得:=79.40,(12+30+18+24+12)÷100=96%,所以样本的平均分是79.40分,合格率是96%,由此估计总体3000名学生的平均分是79.40分,合格率是96%.五、反思小结,观点提炼1.用样本的数字特征估计总体的数字特征分两类:(1)用样本平均数估计总体平均数,平均数对数据有“取齐”的作用,代表一组数据的平均水平.(2)用样本标准差估计总体标准差.样本容量越大,估计就越精确,标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度.2.用样本估计总体的两个手段(用样本的频率分布估计总体的分布;用样本的数字特征估计总体的数字特征),需要从总体中抽取一个质量较高的样本,才不会产生较大的估计偏差,且样本容量越大,估计的结果也就越精确.课后巩固:1.9.5,0.0162.a2s23.解:甲=33,乙=33,甲乙,乙的成绩比甲稳定,选乙参加比赛更合适.4.解:这个专业户应了解鱼的总重量,可以先捕出一些鱼(设有x条),做上标记后放回鱼塘,过一段时间再捕出一些鱼(设有a条),观察其中带有标记的鱼的条数,作为一个样本来估计总体,则条鱼中带有标记的条数鱼塘中所有带有标记的鱼的条数鱼塘中鱼的总条数这样就可以求得总条数,同时把第二次捕出的鱼的平均重量求出来,就可以估计鱼塘中鱼的平均重量,进而估计全部鱼的重量,最后估计出收入.。

2019-2020学年数学高中人教A版必修3学案:2.2.2用样本的数字特征估计总体的数字特征 第1课时 Word版含解析

2019-2020学年数学高中人教A版必修3学案:2.2.2用样本的数字特征估计总体的数字特征 第1课时 Word版含解析

第二章统计2.2用样本估计总体2.2.2用样本的数字特征估计总体的数字特征(第1课时)学习目标1.能利用频率分布直方图估计总体的众数、中位数、平均数;能用样本的众数、中位数、平均数估计总体的众数、中位数、平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法;初步体会、领悟“用数据说话”的统计思想方法;通过对有关数据的搜集、整理、分析、判断,培养“实事求是”的科学态度和严谨的学习态度.2.在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法;会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识与现实世界的联系.合作学习一、设计问题,创设情境问题1:在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员:7,8,6,8,6,5,8,10,7,4;乙运动员:9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥得更稳定吗?问题2:在日常生活中,我们往往并不需要了解总体的分布形态,关心的则是总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的使用寿命呢?二、信息交流,揭示规律问题3:(1)什么是众数、中位数、平均数?(2)如何从频率分布直方图中估计众数、中位数、平均数?请大家翻回到课本看看原来抽样的数据,有没有2.25这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)提问:那么,如何从频率分布直方图中估计中位数呢?怎样利用频率分布直方图估计众数、中位数、平均数?三、运用规律,解决问题【例1】(1)若M个数的平均数是X,N个数的平均数是Y,则这M+N个数的平均数是;(2)如果两组数x1,x2,…,x n和y1,y2,…,y n的平均数分别是x和y,那么数组x1+y1,x2+y2,…,x n+y n 的平均数是.活动:学生思考或交流,教师提示,根据平均数的定义得到结论.【例2】某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150分),试确定这次考试中,哪个班的语文成绩更好一些.甲班:1128610684100105981029410787112949499901209895119108100961151111049510811110510410711910793102981121129992102938494941009084114乙班:116951099610698108991101039498105101115104112101113961081001109810787108106103971071061111219710711412210110710711111410610410495111111110四、变式训练,深化提高下面是某校学生日睡眠时间抽样频率分布表(单位:h),试估计该校学生的日平均睡眠时间.五、反思小结,观点提炼学生自己总结,并且相互交流心得.布置作业课本P82习题2.2A组第5题.课后巩固:1.某单位年收入在10000到15000、15000到20000、20000到25000、25000到30000、30000到35000、35000到40000及40000到50000元之间的职工所占的比分别为10%,15%,20%,25%,15%,10%和5%,试估计该单位职工的平均年收入.2.从甲、乙两个公司各随机抽取50名员工的月工资数据:甲公司:800800800800800100010001000100010001000100010001000100012001200120012001200120012001200120012001200120012001200120012001200120012001200150015001500150015001500150020002000200020002000250025002500乙公司:700700700700700700700700700700700700700700700100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010006000800010000试计算这两个公司50名员工月工资的平均数、众数、中位数,并估计这两个企业员工的平均工资.参考答案一、设计问题,创设情境问题1:略问题2:通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征.二、信息交流,揭示规律问题3:(1)初中我们曾经学过众数(在一组数据中,出现次数最多的数称为众数)、中位数(在按大小顺序排列的一组数据中,居于中间的数或中间两个数的平均数称为中位数)、平均数(一般是一组数据和的算术平均数)等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息.(2)教材前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数的估计值是2.25t(最高的矩形的中点)(如图①),它告诉我们,该市月均用水量为2.25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们多多少.分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失了,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:分析:在样本中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计出中位数的值为2.02.利用频率分布直方图估计众数、中位数、平均数:估计众数:频率分布直方图面积最大的方条的横轴中点数字.(最高矩形的中点)估计中位数:频率分布直方图中中位数左右两边小矩形面积的和相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.总之,众数、中位数、平均数都是对数据中心位置的描述,可以作为总体相应特征的估计.样本众数易计算,但只能表达样本数据中很少一部分信息,不一定唯一;中位数仅利用了数据中排在中间数据的信息,与数据的排列位置有关;平均数受样本中每一个数据的影响,绝对值越大的数据,对平均数的影响也越大.三者相比,平均数代表了数据更多的信息,描述了数据的平均水平,是一组数据的“重心”.三、运用规律,解决问题【例1】解:(1);(2)x+y.【例2】分析:我们可用一组数据的平均数衡量这组数据的集中水平,因此,分别求出甲、乙两个班的平均分即可.解:用计算器分别求出甲班的平均分为101.1,乙班的平均分为105.4,故这次考试乙班成绩要好于甲班.四、变式训练,深化提高分析:要确定这100名学生的日平均睡眠时间,就必须计算其总睡眠时间,由于每组中的个体睡眠时间只是一个范围,可以用各组区间的组中值近似地表示各组学生的睡眠时间.解:方法一:总睡眠时间约为6.25×5+6.75×17+7.25×33+7.75×37+8.25×6+8.75×2=739(h),这100名学生的日平均睡眠时间约为=7.39(h).答:估计该校学生的日平均睡眠时间约为7.39h.方法二:求组中值与对应频率之积的和6.25×0.05+6.75×0.17+7.25×0.33+7.75×0.37+8.25×0.06+8.75×0.02=7.39(h).答:估计该校学生的日平均睡眠时间约为7.39h.五、反思小结,观点提炼1.能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(平均数),会用样本的基本数字特征估计总体的基本数字特征.2.平均数对数据有“取齐”的作用,代表一组数据的平均水平.3.形成对数据处理过程进行初步评价的意识.课后巩固:1.解:估计该单位职工的平均年收入为12500×10%+17500×15%+22500×20%+27500×25%+32500×15%+37500×10%+45 000×5%=26125(元).答:估计该单位人均年收入约为26125元.2.解:甲公司:员工月工资平均数1320,众数1200,中位数1200;乙公司:员工月工资平均数1330,众数1000,中位数1000.从总体上看乙公司员工月平均工资比甲公司多,原因是乙公司有几个收入较高的员工影响了工资平均数.。

2020年数学必修3人教A全册--2.2.2 用样本的数字特征估计总体的数字特征(教、学案)

2020年数学必修3人教A全册--2.2.2 用样本的数字特征估计总体的数字特征(教、学案)

2. 2.2 用样本的数字特征估计总体的数字特征〖教学目标〗1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释;3. 会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识。

〖教学重难点〗教学重点用样本平均数和标准差估计总体的平均数与标准差。

教学难点能应用相关知识解决简单的实际问题。

〖教学过程〗一、复习回顾作频率分布直方图分几个步骤?各步骤需要注意哪些问题?二、创设情境在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?上节课我们学习了用图表的方法来研究,为了从整体上更好地把握总体的规律,我们这节课要通过样本的数据对总体的数字特。

三、新知探究众数、中位数、平均数众数—一组数中出现次数最多的数;在频率分布直方图中,我们取最高的那个小长方形横坐标的中点。

中位数——当一组数有奇数个时等于中间的数,当有偶数个时等于中间两数的平均数;在频率分布直方图中,是使图形左右两边面积相等的线所在的横坐标。

平均数——将所有数相加再除以这组数的个数;在频率分布直方图中,等于每个小长方形的面积乘以其底边中点的横坐标的和。

思考探究:分别利用原始数据和频率分布直方图求出众数、中位数、平均数,观察所得的数据,你发现了什么问题?为什么会这样呢?你能说说这几个数据在描述样本信息时有什么特点吗?由此你有什么样的体会?答:(1)从频率分布直方图得到的众数和中位数与从数据中得到的不一样,因为频率分布直方图损失了一部分样本信息,所以不如原始数据准确。

(2)众数和中位数不受极端值的影响,平均数反应样本总体的信息,容易受极端值的影响。

2020版数学人教A版必修3学案:第二章 2.2.2 用样本的数字特征估计总体的数字特征 Word版含解析

2020版数学人教A版必修3学案:第二章 2.2.2 用样本的数字特征估计总体的数字特征 Word版含解析

2.2.2 用样本的数字特征估计总体的数字特征学习目标 1.理解样本数据标准差的意义和作用,学会计算数据的标准差.2.会用样本的基本数字特征来估计总体的基本数字特征.知识点一 众数、中位数、平均数众数、中位数、平均数定义(1)众数:一组数据中出现次数最多的数.(2)中位数:把一组数据按从小到大(或从大到小)的顺序排列,处在中间位置的数(或中间两个数的平均数)叫做这组数据的中位数.(3)平均数:如果n 个数x 1,x 2,…,x n ,那么=(x 1+x 2+…+x n )叫做这n 个数的平均数.x 1n 思考 平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点?答案 平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但是平均数受数据中极端值的影响较大.知识点二 方差、标准差标准差、方差的概念及计算公式(1)标准差是样本数据到平均数的一种平均距离,一般用s 表示.s =.1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2](2)标准差的平方s 2叫做方差.s 2=[(x 1-)2+(x 2-)2+…+(x n -)2](x n 是样本数据,n 是样本容量,是样本平均数).1n x x x x (3)标准差(或方差)越小,数据越稳定在平均数附近.s =0时,每一组样本数据均为.x 知识拓展:平均数、方差公式的推广(1)若数据x 1,x 2,…,x n 的平均数为,那么mx 1+a ,x mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m +a .x (2)设数据x 1,x 2,…,x n 的平均数为,方差为s 2,则x ①s 2=[(x +x +…+x )-n 2];1n2122n x②数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2;③数据ax 1,ax 2,…,ax n 的方差为a 2s 2;④数据ax 1+b ,ax 2+b ,…,ax n +b 的方差也为a 2s 2,标准差为as .1.中位数是一组数据中间的数.( × )2.众数是一组数据中出现次数最多的数.( √ )3.一组数据的标准差越小,数据越稳定,且稳定在平均数附近.( √ )4.一组数据的标准差不大于极差.( √ )题型一 众数、中位数、平均数的计算例1 (1)某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数、众数、中位数分别为( )A .85,85,85 B .87,85,86C .87,85,85D .87,85,90(2)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5 B .5,5 C .5,8 D .8,8答案 (1)C (2)C解析 (1)平均数为=87,众数为85,中位数为85.100+95+90×2+85×4+80+7510(2)结合茎叶图上的原始数据,根据中位数和平均数的概念列出方程进行求解.由于甲组数据的中位数为15=10+x ,所以x =5.又乙组数据的平均数为=16.8,所以y =8,所以x ,y 的值分别为5,8.9+15+(10+y )+18+245反思感悟 平均数、众数、中位数的计算方法平均数一般是根据公式来计算的;计算众数、中位数时,可先将这组数据按从小到大或从大到小的顺序排列,再根据各自的定义计算.跟踪训练1 在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:成绩(单位:m)1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90人数23234111分别求这些运动员成绩的众数、中位数与平均数.解 在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是1.70.这组数据的平均数是=(1.50×2+1.60×3+…+1.90×1)x 117=≈1.69(m).28.7517故17名运动员成绩的众数、中位数、平均数依次为1.75 m ,1.70 m,1.69 m.题型二 标准差、方差的计算及应用例2 甲、乙两名战士在相同条件下各打靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算以上两组数据的平均数;(2)分别求出两组数据的方差;(3)根据计算结果,估计两名战士的射击情况.若要从这两人中选一人参加射击比赛,选谁去合适?解 (1)甲=×(8+6+7+8+6+5+9+10+4+7)=7(环),x 110乙=×(6+7+7+8+6+7+8+7+9+5)=7(环).x 110(2)由方差公式s 2=[(x 1-)2+(x 2-)2+…+(x n -)2],得s =3,s =1.2.1n x x x 2甲2乙(3)甲=乙,说明甲、乙两战士的平均水平相当.x x 又s >s 说明甲战士射击情况波动比乙大.2甲2乙因此,乙战士比甲战士射击情况稳定,从成绩的稳定性考虑,应选择乙参加比赛.反思感悟 (1)方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.(2)样本标准差反映了各样本数据围绕样本平均数波动的大小,标准差越小,表明各样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散.(3)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数据分布情况,而样本数据的离散程度是由标准差来衡量的.跟踪训练2 某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其质量,分别记录抽查数据如下(单位:kg):甲:102 101 99 98 103 98 99乙:110 115 90 85 75 115 110(1)这种抽样方法是哪一种方法?(2)试计算甲、乙两个车间产品质量的平均数与方差,并说明哪个车间产品比较稳定.解 (1)采用的抽样方法是:系统抽样.(2)甲=(102+101+99+98+103+98+99)=100;x 17乙=(110+115+90+85+75+115+110)=100;x 17s =[(102-100)2+(101-100)2+(99-100)2+(98-100)2+(103-100)2+(98-100)2+(99-2甲17100)2]=(4+1+1+4+9+4+1)≈3.43;17s =[(110-100)2+(115-100)2+(90-100)2+(85-100)2+(75-100)2+(115-100)2+(1102乙17-100)2]=(100+225+100+225+625+225+100)17≈228.57.所以s <s ,故甲车间产品较稳定.2甲2乙频率分布直方图与数字特征的综合应用典例 某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(1)求这次测试数学成绩的众数;(2)求这次测试数学成绩的中位数.解 (1)知众数为=75.70+802(2)设中位数为x ,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x -70),所以x ≈73.3.引申探究1.若本例条件不变,求数学成绩的平均分.解 由题干图知这次数学成绩的平均分为×0.005×10+×0.015×10+40+50250+60260+702×0.02×10+×0.03×10+×0.025×10+×0.005×10=72.70+80280+90290+10022.本例条件不变,求80分以上(含80分)的学生人数.解 [80,90)分的频率为0.025×10=0.25,频数为0.25×80=20.[90,100]分的频率为0.005×10=0.05,频数为0.05×80=4.所以80分以上的学生人数为20+4=24.[素养评析] (1)利用频率分布直方图估计总体数字特征①众数是最高的矩形的底边中点的横坐标;②中位数左右两侧直方图的面积相等;③平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.(2)利用直方图求众数、中位数、平均数均为估计值,与实际数据可能不一致.(3)在解决本题时,需要选择运算方法,掌握运算法则,求得运算结果,并根据结果进行合理推断,获得结论.这些都是数学核心素养的内含所在.1.某市2017年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是( )A.19 B.20C.21.5 D.23答案 B解析 由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有5个月,恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数为20.故选B.2.下列关于平均数、中位数、众数的说法中正确的一个是( )A.中位数可以准确地反映出总体的情况B.平均数可以准确地反映出总体的情况C.众数可以准确地反映出总体的情况D.平均数、中位数、众数都有局限性,都不能准确地反映出总体的情况答案 D3.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得的数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数 B .平均数 C .中位数 D .标准差答案 D4.某校开展“爱我母校,爱我家乡”摄影比赛,七位评委为甲,乙两名选手的作品打出的分数的茎叶图如图所示(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲,乙两名选手得分的平均数分别为a 1,a 2,则一定有( )A .a 1>a 2B .a 2>a 1C .a 1=a 2D .a 1,a 2的大小与m 的值有关答案 B解析 由茎叶图知,a 1=80+=84,1+5+5+4+55a 2=80+=85,故选B.4+4+6+4+755.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________.答案 16解析 设样本数据x 1,x 2,…,x 10的标准差为s ,则s =8,可知数据2x 1-1,2x 2-1,…,2x 10-1的标准差为2s =16.1.标准差的平方s2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性,用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.一、选择题1.如图是某样本数据的茎叶图,则该样本的中位数、众数、极差分别是( )A.32 34 32 B.33 45 35C.34 45 32 D.33 36 35答案 B解析 从茎叶图中知共16个数据,按照从小到大排序后中间的两个数据为32,34,所以这组数据的中位数为33;45出现的次数最多,所以这组数据的众数为45;最大值是47,最小值是12,故极差是35.2.某台机床加工的五批同数量的产品中次品数的频率分布如表:次品数01234频率0.50.20.050.20.05则次品数的平均数为( )A .1.1 B .3 C .1.5 D .2答案 A解析 设数据x i 出现的频率为p i (i =1,2,…,n ),则x 1,x 2,…,x n 的平均数为x 1p 1+x 2p 2+…+x n p n =0×0.5+1×0.2+2×0.05+3×0.2+4×0.05=1.1,故选A.3.样本中共有5个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本的标准差为( )A.B.6565C .2 D.2答案 D解析 ∵样本a,0,1,2,3的平均数为1,∴=1,解得a =-1.a +65则样本的方差s 2=×[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2,15故标准差为.故选D.24.设样本数据x 1,x 2,…,x 10的平均数和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的平均数和方差分别为( )A .1+a,4 B .1+a,4+a C .1,4 D .1,4+a答案 A解析 ∵x 1,x 2,…,x 10的平均数=1,方差s =4,x 21且y i =x i +a (i =1,2,…,10),∴y 1,y 2,…,y 10的平均数=·(y 1+y 2+…+y 10)=·(x 1+x 2+…+x 10+10a )=·(x 1+x 2+…+x 10)+a =+a =1+a ,y 110110110x其方差s =·[(y 1-)2+(y 2-)2+…+(y 10-)2]=[(x 1-1)2+(x 2-1)2+…+(x 10-1)2]2110y y y 110=s =4.故选A.215.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速的众数、中位数的估计值为( )A .62,62.5B .65,62C .65,62.5D .62.5,62.5答案 C解析 ∵最高的矩形为第三个矩形,∴时速的众数的估计值为65.前两个矩形的面积为(0.01+0.03)×10=0.4.∵0.5-0.4=0.1,×10=2.5,0.10.4∴中位数的估计值为60+2.5=62.5.故选C.6.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a答案 D解析 由已知得a =×(15+17+14+10+15+17+17+16+14+12)=14.7,110b =×(15+15)=15,c =17,12∴c >b >a .故选D.7.高三学生李丽在一年的五次数学模拟考试中的成绩(单位:分)为:x ,y,105,109,110.已知该同学五次数学成绩数据的平均数为108,方差为35.2,则|x -y |的值为( )A .15B .16C .17D .18答案 D解析 由题意得,=108,①x +y +105+109+1105=35.2,②(x -108)2+(y -108)2+9+1+45由①②解得Error!或Error!所以|x -y |=18.故选D.8.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A .57.2,3.6B .57.2,56.4C .62.8,63.6D .62.8,3.6答案 D解析 每一个数据都加上60,所得新数据的平均数增加60,而方差保持不变.9.甲、乙两名同学在5次体育测试中的成绩统计的茎叶图如图所示.若甲、乙两人的平均成绩分别是甲,乙,则下列结论正确的是( )x xA.甲<乙;乙比甲成绩稳定x x B.甲>乙;甲比乙成绩稳定x x C.甲>乙;乙比甲成绩稳定x x D.甲<乙;甲比乙成绩稳定x x 答案 A解析 甲同学的成绩为78,77,72,86,92,乙同学的成绩为78,82,88,91,95,所以甲=×(78+77+72+86+92)=81,x 15乙=×(78+82+88+91+95)=86.8.x 15所以甲<乙,从叶在茎上的分布情况来看,乙同学的成绩更集中于平均值附近,这说明乙比x x 甲成绩稳定.二、填空题10.一组数据2,x,4,6,10的平均数是5,则此组数据的标准差是________.答案 22解析 ∵一组数据2,x,4,6,10的平均数是5,∴2+x +4+6+10=5×5,解得x =3,∴此组数据的方差s 2=×[(2-5)2+(3-5)2+(4-5)2+(6-5)2+(10-5)2]=8,15∴此组数据的标准差s =2.211.如图所示的茎叶图是甲、乙两组各5名学生的数学竞赛成绩(70分~99分),若甲、乙两组学生的平均成绩一样,则a =________;甲、乙两组学生的成绩相对稳定的是________.答案 5 甲组解析 由题意可知=75+88+89+98+90+a 5=89,解得a =5.76+85+89+98+975因为s =×[(-14)2+(-1)2+0+92+62]=,s =×[(-13)2+(-4)2+0+92+82]=,2甲1531452乙153305所以s <s ,故成绩相对稳定的是甲组.2甲2乙12.已知一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,则这组数据的平均数为________,方差为________.答案 5 743解析 ∵-1,0,4,x,7,14的中位数为5,∴=5,∴x =6.4+x 2∴这组数据的平均数是=5,-1+0+4+6+7+146这组数据的方差是×(36+25+1+1+4+81)=.16743三、解答题13.现有某城市100户居民的月平均用电量(单位:度)的数据,根据这些数据,以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)内的用户中应抽取多少户?解 (1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1得x =0.007 5,故直方图中x 的值是0.007 5.(2)月平均用电量的众数为=230.220+2402∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5,得a =224,即月平均用电量的中位数为224.(3)月平均用电量在[220,240)内的有0.012 5×20×100=25(户),月平均用电量在[240,260)内的有0.007 5×20×100=15(户),月平均用电量在[260,280)内的有0.005×20×100=10(户),月平均用电量在[280,300]内的有0.002 5×20×100=5(户),抽取比例为=,1125+15+10+515∴月平均用电量在[220,240)内的用户中应抽取25×=5(户).1514.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A 和B ,样本x x 标准差分别为s A 和s B ,则( )A.A >B ,s A >s BB.A <B ,s A >s B x x x xC.A >B ,s A <s BD.A <B ,s A <s Bx x x x 答案 B 解析 由题图知,A 组的6个数分别为2.5,10,5,7.5,2.5,10;B 组的6个数分别为15,10,12.5,10,12.5,10,所以A ==,x 2.5+10+5+7.5+2.5+106254B ==.x 15+10+12.5+10+12.5+106353显然A <B .x x 又由图形可知,B 组数据的分布比A 组的均匀,变化幅度不大,故B 组数据比较稳定,方差较小,从而标准差较小,所以s A >s B .15.某企业三个分厂生产同一种电子产品,三个分厂的产量分布如图所示.现在用分层抽样方法从三个分厂生产的产品中共抽取100件进行使用寿命的测试,则第一分厂应抽取的件数为________;测试结果为第一、二、三分厂取出的产品的平均使用寿命分别为1 020小时,980小时,1 030小时,估计这个企业生产的产品的平均使用寿命为________小时.答案 50 1 015解析 由分层抽样可知,第一分厂应抽取100×50%=50(件).由样本的平均数估计总体的平均数,可知这批电子产品的平均使用寿命为1 020×50%+980×20%+1 030×30%=1 015(小时).。

新人教A版必修32020学年高中数学第2章统计2_2_2用样本的数字特征估计总体的数字特征学案

新人教A版必修32020学年高中数学第2章统计2_2_2用样本的数字特征估计总体的数字特征学案

2.2.2 用样本的数字特征估计总体的数字特征1.会求样本的众数、中位数、平均数.2.能从频率分布直方图中估算众数、中位数、平均数.3.能用样本的数字特征估计总体的数字特征,作出合理解释和决策.1.众数、中位数、平均数定义(1)众数:一组数据中重复出现次数最多的数.(2)中位数:把一组数据按从小到大的顺序排列,处在中间位置(或中间两个数的平均数)的数叫做这组数据的中位数.(3)平均数:如果n 个数x 1,x 2,…,x n ,那么x =1n(x 1+x 2+…+x n )叫做这n 个数的平均数.2.三种数字特征与频率分布直方图的关系3.标准差是样本数据到平均数的一种平均距离,一般用s 表示,即样本数据x 1,x 2,…,x n 的标准差为s =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]4.方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].1.一组数据的众数可以有多个吗?中位数是否也有相同的结论?[提示] 一组数据的众数可能有一个,也可能有多个,但中位数有且只有一个.2.判断正误.(正确的打“√”,错误的打“×”)(1)改变一组数据中的一个数,则这些数据的平均数一定会改变.( )(2)改变一组数据中的一个数,则其中位数也一定会改变.( )(3)在频率分布直方图中,众数是最高矩形中点的横坐标.( )[提示] (1)√ (2)× (3)√题型一众数、中位数、平均数的简单应用【典例1】 (1)某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个,命中个数的茎叶图如图,则下面结论中错误的是________(填序号).①甲的极差是29;②乙的众数是21;③甲罚球命中率比乙高;④甲的中位数是24.(2)某小区广场上有甲、乙两群市民正在进行晨练,两群市民的年龄如下(单位:岁): 甲群:13,13,14,15,15,15,15,16,17,17;乙群:54,3,4,4,5,5,6,6,6,57.①甲群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映甲群市民的年龄特征?②乙群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映乙群市民的年龄特征?[解析] (1)由茎叶图知,甲的最大值为37,最小值为8,所以甲的极差为29,故①正确;乙的数据中出现次数最多的是21,所以②正确,甲的命中个数集中在20,而乙的命中个数集中在10和20,所以甲罚球命中率大,故③正确;甲中间的两个数为22,24,所以甲的中位数为12(22+24)=23,故④不正确.故结论中错误的只有④. (2)①甲群市民年龄的平均数为13+13+14+15+15+15+15+16+17+1710=15(岁), 中位数为15岁,众数为15岁.平均数、中位数和众数相等,因此它们都能较好地反映甲群市民的年龄特征.②乙群市民年龄的平均数为54+3+4+4+5+5+6+6+6+5710=15(岁), 中位数为5.5岁,众数为6岁.由于乙群市民大多数是儿童,所以中位数和众数能较好地反映乙群市民的年龄特征,而平均数的可靠性较差.[答案] (1)④ (2)见解析众数、中位数、平均数的意义(1)样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息,平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.(2)当一组数据中有不少数据重复出现时,其众数往往更能反映问题,当一组数据中个别数据较大时,可用中位数描述其集中趋势.[针对训练1] 某校在一次考试中,甲、乙两班学生的数学成绩统计如下:选用平均数与众数、中位数评估这两个班的成绩.[解] 甲班平均数79.6分,乙班平均数80.2分,从平均分看成绩较好的是乙班; 甲班众数为90分,乙班众数为70分,从众数看成绩较好的是甲班;按从高到低(或从低到高)的顺序排列之后,甲班的第25个和第26个数据都是80,所以中位数是80分,同理乙班中位数也是80分,但是甲班成绩在中位数以上(含中位数)的学生有31人,占全班学生的62%,同理乙班有27人,占全班学生的54%,所以从中位数看成绩较好的是甲班.如果记90分以上(含90分)为优秀,甲班有20人,优秀率为40%,乙班有24人,优秀率为48%,从优秀率来看成绩较好的是乙班.可见,一个班学生成绩的评估方法很多,需视要求而定.如果不考虑优秀率的话,显然以中位数去评估比较合适.题型二标准差、方差的应用【典例2】 甲、乙两机床同时加工直径为100 cm 的零件,为检验质量,各从中抽取6件测量,数据为甲:99 100 98 100 100 103乙:99 100 102 99 100 100(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.[思路导引] 根据平均数及方差的计算公式及意义解题.[解] (1)x 甲=16(99+100+98+100+100+103)=100, x 乙=16(99+100+102+99+100+100)=100.s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73, s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均值相同,又s 2甲>s 2乙,所以乙机床加工零件的质量更稳定.标准差、方差的意义(1)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小,标准差的大小不会超过极差.(2)标准差、方差的取值范围:[0,+∞).(3)标准差、方差为0时,样本各数据相等,说明数据没有波动幅度,数据没有离散性.[针对训练2] 如图所示茎叶图是甲、乙两组各5名学生的数学竞赛成绩(70分~99分),若甲、乙两组的平均成绩一样,则a=________;甲、乙两组成绩中相对整齐的是________.[解析] 由茎叶图知75+88+89+98+(90+a)=76+85+89+98+97,解得a=5,平均成绩均为89,甲的方差为s2甲=62.8,乙的方差s2乙=66,由于s2甲<s2乙,因此甲相对整齐.[答案] 5 甲题型三频率分布与数字特征的综合应用【典例3】某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200, 220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?[思路导引] (1)由频率之和等于1可得x的值;(2)由最高矩形的横坐标中点可得众数,由频率之和等于0.5可得中位数;(3)先计算出月平均用电量为[220,240),[240,260),[260,280),[280,300]的用户的户数,再计算抽取比例,进而可得月平均用电量在[220,240)的用户中应抽取的户数.[解] (1)由(0.002+0.0095+0.011+0.0125+x +0.005+0.0025)×20=1得:x =0.0075,所以直方图中x 的值是0.0075.(2)月平均用电量的众数是220+2402=230. 因为(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002+0.0095+0.011)×20+0.0125×(a -220)=0.5得:a =224,所以月平均用电量的中位数是224.(3)月平均用电量为[220,240)的用户有0.0125×20×100=25户,月平均用电量为[240,260)的用户有0.0075×20×100=15户,月平均用电量为[260,280)的用户有0.005×20×100=10户,月平均用电量为[280,300]的用户有0.0025×20×100=5户,抽取比例=1125+15+10+5=15, 所以月平均用电量在[220,240)的用户中应抽取25×15=5户.用频率分布直方图估计众数、中位数、平均数(1)众数:取最高小长方形底边中点的横坐标作为众数.(2)中位数:在频率分布直方图中,把频率分布直方图划分为左右两个面积相等的部分的分界线与x 轴交点的横坐标称为中位数.(3)平均数:平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.[针对训练3] 为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量得到频率分布直方图如图,则:(1)这20名工人中一天生产该产品的数量在[55,75)的人数是________;(2)这20名工人中一天生产该产品的数量的中位数为________;(3)这20名工人中一天生产该产品的数量的平均数为________.[解析] (1)(0.04×10+0.025×10)×20=13.(2)设中位数为x,则0.2+(x-55)×0.04=0.5,x=62.5.(3)0.2×50+0.4×60+0.25×70+0.1×80+0.05×90=64.[答案] (1)13 (2)62.5 (3)64课堂归纳小结1.一组数据中的众数可能不止一个,中位数是唯一的,求中位数时,必须先排序.2.利用直方图求数字特征(1)众数是最高的矩形的底边的中点.(2)中位数左右两边直方图的面积应相等.(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.标准差的平方s2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.1.16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自己的成绩后,要判断能否进入决赛,则其他15位同学成绩的下列数据中,能使他得出结论的是( )A.平均数 B.极差C.中位数 D.方差[解析] 判断是不是能进入决赛,只要判断是不是前8位,所以只要知道其他15位同学的成绩中是不是有8位高于他,也就是把其他15位同学的成绩排列后看第8位的成绩即可,小刘的成绩高于这个成绩就能进入决赛,低于这个成绩就不能进入决赛,这个第8位的成绩就是这15位同学成绩的中位数.[答案] C2.某样本数据的茎叶图如图所示,若该组数据的中位数为85,平均数为85.5,则x+y=( )A.12 B.13 C.14 D.15[解析] 因为中位数为85,所以4+x=2×5,解得x=6.又平均数为85.5,所以73+79+3×84+86+87+88+93+90+y=855,所以y=7.故x+y=13.[答案] B3.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差[解析] 由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A错;甲、乙的成绩的中位数分别为6,5,B错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C对;甲、乙的成绩的极差均为4,D错.[答案] C4.一组数据中的每一个数据都乘2,再都减80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )A.40.6 1.1 B.48.8 4.4C .81.2 44.4D .78.8 75.6[解析] 解法一:设原来的数据为x 1,x 2,x 3,…,x n ,则新数据为2x 1-80,2x 2-80,2x 3-80,…,2x n -80,所以(2x 1-80)+(2x 2-80)+…+(2x n -80)n=1.2, 所以2(x 1+x 2+…+x n )-80n n=1.2, 即x 1+x 2+…x n n =40.6. 1n [(2x 1-80-1.2)2+(2x 2-80-1.2)2+…+(2x n -80-1.2)2]=4.4,即1n[(2x 1-81.2)2+(2x 2-81.2)2+…+(2x n -81.2)2]=4.4, 则1n [(x 1-40.6)2+(x 2-40.6)2+…+(x n -40.6)2]=14n [(2x 1-81.2)2+(2x 2-81.2)2+…+(2x n -81.2)2]=14×4.4=1.1. 解法二:设原数据的平均数为x ,方差为s 2,则数据中的每一个数都乘2,再都减80,得一组新数据后,新数据的平均数为2x -80,方差为22s 2,由题意得2x -80=1.2,22s 2=4.4,解得x =40.6,s 2=1.1[答案] A5.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个[解析] 由图形可得各月的平均最低气温都在0℃以上,A正确;七月的平均温差约为10℃,而一月的平均温差约为5℃,故B正确;三月和十一月的平均最高气温都在10℃左右,基本相同,C正确;平均最高气温高于20℃时月份只有3个,D错误.[答案] D总体数字特征的实际应用在解决某些实际问题时,我们可以选用科学的抽样方法,从总体中抽取样本,得到样本数据,再根据研究实际问题的需要(是关注平均数的大小,还是注意数据稳定的程序),求出样本的有关数字特征,利用它估计总体数字特征,从而作出科学决策.【典例】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.满意度评分分分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度分为三个等级:[思路导引] 由频率分布表,先计算每段的频率值,再画图,然后从直方图的高度及分散程度下结论.[解] (1)通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(2)A地区的用户的满意度等级为不满意的概率大.记C A表示事件“A地区的用户的满意度等级为不满意”;C B表示事件“B地区的用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区的用户的满意度等级为不满意的概率大.明确样本数字特征所反映样本的特征,一般地,平均数反映的是样本个体的平均水平,众数和中位数则反映样本中个体的“重心”,而标准差则反映了样本的波动程度、离散程度,即均衡性、稳定性、差异性等.因此,我们可以根据问题的需要选择用样本的不同数字特征来分析问题.[针对训练] 某校收集该校学生从家到学校的时间后,制作成如图的频率分布直方图:(1)求a的值及该校学生从家到学校的平均时间;(2)若该校因学生寝室不足,只能容纳全校50%的学生住校,出于安全角度考虑,从家到学校时间较长的学生才住校,请问从家到学校时间多少分钟以上才能住校.[解] (1)由题有(0.009+0.020+0.011+a +0.003+0.002)×20=1,解得a =0.005. 平均到校时间x =(10×0.009+30×0.020+50×0.011+70×0.005+90×0.003+110×0.002)×20=41.6(分钟).(2)原问题等价于求到校时间的中位数,列式计算:x 0=40-0.009×20+0.020×20-0.50.020×20×20=36(分钟),所以,从家到学校时间36分钟以上才能住校.课后作业(十四)(时间45分钟)学业水平合格练(时间25分钟)1.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数 [解析] 标准差衡量样本的稳定程度,故选B. [答案] B2.如图,茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的平均数为17,乙组数据的中位数为17,则x ,y 的值分别为( )A .2,6B .2,7C .3,6D .3,7[解析] 由题可知9+12+24+27+10+x 5=17,所以x =3,由乙组数据的中位数为17可得y =7,选D.[答案] D3.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为19[解析] 由茎叶图可知,该同学的6次数学测试成绩分别是78,83,83,85,91,90,由这些数据可求得该同学数学成绩的众数为83,中位数为84,平均数为x =78+83+83+85+91+906=85,方差为s 2=16[(78-85)2+(83-85)2+(83-85)2+(85-85)2+(91-85)2+(90-85)2]≈19.7,故选C.[答案] C4.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )A. 3B.2105 C .3 D.85[解析] 因为x =100+40+90+60+10100=3.所以s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]=1100(20×22+10×12+30×12+10×22)=160100=85,所以s =2105.故选B.[答案] B5.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数是( )A .31.6岁B .32.6岁C .33.6岁D .36.6岁[解析] 根据所给的信息可知,在区间[25,30)上的数据的频率为1-(0.01+0.07+0.06+0.02)×5=0.2.故中位数在第3组,且中位数的估计为30+(35-30)×57=33.6(岁).[答案] C6.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:.(填“甲”“乙”“丙”“丁”中的一个)[解析] 分析表格数据可知,乙与丙的平均环数最多,又丙的方差比乙小,说明丙成绩发挥得较为稳定,所以最佳人选为丙.[答案] 丙7.若a 1,a 2,…,a 20,这20个数据的平均数为x ,方差为0.20,则数据a 1,a 2,…,a 20,x 这21个数据的方差约为________.[解析] 这21个数的平均数仍为x ,从而方差为121×[20×0.2+(x -x )2]≈0.19.[答案] 0.198.已知样本9,10,11,x ,y 的平均数是10,标准差是2,则xy =________.[解析] 由平均数是10,得x +y =20,由标准差是2,得15[(9-10)2+(10-10)2+(11-10)2+(x -10)2+(y -10)2] =2,所以(x -10)2+(y -10)2=8,所以xy =96. [答案] 969.甲、乙两种冬小麦实验品种连续5年的平均单位面积产量如下(单位:t /km 2):[解] 由题意得x 甲=x 乙=10.s 2甲=15×[(9.8-10)2+(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]=0.02,s 2乙=15×[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]=0.244,甲、乙两种冬小麦的平均产量都等于10,且s 2甲<s 2乙,所以产量比较稳定的为甲种冬小麦,推荐引进甲种冬小麦大量种植.10.为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1,x 2,估计x 1-x 2的值.[解] (1)设甲校高三年级学生总人数为n . 由题意知30n=0.05,解得n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级这次联考数学成绩的及格率为1-530=56.(2)设甲、乙两校样本平均数分别为x′1,x′2.根据样本茎叶图可知30(x′1-x′2)=30x′1-30x′2=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15.因此x′1-x′2=0.5.故x1-x2的估计值为0.5分.应试能力等级练(时间20分钟)11.若某同学连续三次考试的名次(第一名为1,第二名为2,以此类推且可以有名次并列的情况)均不超过3,则称该同学为班级尖子生.根据甲、乙、丙、丁四位同学过去连续三次考试的名次数据,推断一定不是尖子生的是( )A.甲同学:平均数为2,中位数为2B.乙同学:平均数为2,方差小于1C.丙同学:中位数为2,众数为2D.丁同学:众数为2,方差大于1[解析] 甲同学名次数据的平均数为2,说明名次之和为6,又中位数为2,得出三次考试名次均不超过3,断定甲是尖子生;乙同学名次数据的平均数为2,说明名次之和为6,又方差小于1,得出三次考试名次均不超过3,断定乙是尖子生;丙同学名次数据的中位数为2,众数为2,说明三次考试中至少有两次名次为2,故丙可能是尖子生;丁同学名次数据的众数为2,说明某两次名次为2,设另一次名次为x,经验证,当x=1,2,3时,方差均小于1,故x>3,断定丁一定不是尖子生.[答案] D12.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b 的值分别为( )A .0.27,78B .0.27,83C .2.7,78D .2.7,83[解析] 由题意,4.5到4.6之间的频率为0.09,4.6到4.7之间的频率为0.27,后6组的频数成等差数列,设公差为d ,则6×0.27+15d =1-0.01-0.03-0.09,所以d =-0.05.所以b =(0.27×4+6d )×100=78,a =0.27. 故选A. [答案] A13.样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数为z =a x -+(1-a )y ,其中0<a <12,则n ,m 的大小关系为________.[解析] x 1+x 2+…+x n =n x -,y 1+y 2+…+y m =m y -,x 1+x 2+…+x n +y 1+y 2+…+y m=(m +n )z=(m +n )[a x -+(1-a )y ]=(m +n )a x -+(m +n )(1-a )y , 所以n x -+m y -=(m +n )a x -+(m +n )(1-a )y , 所以{ n =(m +n )a ,m =(m +n )(1-a ), 故n -m =(m +n )[a -(1-a )]=(m +n )(2a -1). 因为0<a <12,所以2a -1<0.所以n -m <0,即n <m . [答案] n <m14.在一次区域统考中,为了了解各学科的成绩情况,从所有考生成绩中随机抽出20位考生的成绩进行统计分析,其中数学学科的频率分布直方图如图所示,据此估计,在本次考试中数学成绩的方差为________.[解析] 根据频率分布直方图,得该组数据的平均数是x=55×0.010×10+65×0.020×10+75×0.035×10+85×0.030×10+95×0.005×10=75;方差是s2=(55-75)2×0.1+(65-75)2×0.2+(75-75)2×0.35+(85-75)2×0.3+(95-75)2×0.05=110.[答案] 11015.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?[解] (1)频率分布直方图如图所示.(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(80-100)2×0.06+(90-100)2×0.26+(100-100)2×0.38+(110-100)2×0.22+(120-100)2×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.。

人教A版高中数学必修3第二章2.2.2 用样本的数字特征估计总体的数字特征(众数、中位数、平均数)导学案

人教A版高中数学必修3第二章2.2.2 用样本的数字特征估计总体的数字特征(众数、中位数、平均数)导学案

1.众数、中位数、平均数一.导入课题、明确目标;学法指导:阅读教材,认真分析,独立思考,总结规律方法,完成导学案。

学习目标:1.掌握众数、中位数、平均数的定义和特征;2.会求众数、中位数、平均数,并能用之解决有关问题。

二.研读教材、自主解标A 级问题 1、众数(1)定义:一组数据中出现次数___的数称为这组数据的众数。

(2)特征:一组数据中的众数可能不止一个,也可能没有,反映了该组数据的___。

2、中位数(1)定义:一组数据按从小到大的顺序排成一列,把处在__位置的一个数据(或中间两个数据的平均数)叫这组数据的中位数。

(2)特征:一组数据中的中位数是___的,反映了该组数据的___。

3、平均数(1)定义:一组数据的和与这组数据的个数的商。

即数据n x x x ,,,21 的平均数为 x ______。

(2)特征:平均数对数据有“取齐”的作用,代表该组数据的___。

4、众数、中位数、平均数与频率分布直方图的关系(1)众数:最高的矩形的___。

(2)中位数:中位数左边和右边的直方图的面积应该__。

(3)平均数:每个小矩形的___乘以小矩形底边___的横坐标之和。

三.合作探究、重点讲解 B 级问题1、某工厂人员及月工资构成如下:人员 经理 管理 人员 高级 技工工人 学徒 合计月工 资(元)22000 2500 2200 2000 1000人数 1 6 5 10 1 23合计 22000 15000 11000 20000 1000 69000指出这个问题中人员月工资的众数、中位数、平均数。

2、在城市居民月均用水量样本数据的频率分布直方图中,你认为众数应在哪个小矩形内?由此估计总体的众数是什么?3、图中矩形的面积代表什么?每个小矩形的面积分别是多少?中位数两边的图形面积有什么关系?如何用频率分布直方图估计中位数?4、用上面的频率分布直方图,你能估算样本的平均数吗?5、为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量得到频率分布直方图如图,则这20名工人中一天生产该产品数量的众数、中位数、平均数分别是多少?6、若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是多少?四.练测拓展 、达成目标课后作业:《优化学案》8 99 73 1 64 0 2月均用水量/t0.5 1 1.5 2 2.5 3 3.5 4 4.5 O0.5 0.4 0.30.2 0.1 组距 0.08 0.160.30.44 0.5 0.280.120.08 0.04频率我的收获:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.2 用样本的数字特征估计总体的数字特征学习目标 1.理解样本数据标准差的意义和作用,学会计算数据的标准差.2.会用样本的基本数字特征来估计总体的基本数字特征.知识点一 众数、中位数、平均数 众数、中位数、平均数定义(1)众数:一组数据中出现次数最多的数.(2)中位数:把一组数据按从小到大(或从大到小)的顺序排列,处在中间位置的数(或中间两个数的平均数)叫做这组数据的中位数.(3)平均数:如果n 个数x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )叫做这n 个数的平均数.思考 平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点? 答案 平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但是平均数受数据中极端值的影响较大. 知识点二 方差、标准差 标准差、方差的概念及计算公式(1)标准差是样本数据到平均数的一种平均距离,一般用s 表示. s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. (2)标准差的平方s 2叫做方差.s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x 是样本平均数).(3)标准差(或方差)越小,数据越稳定在平均数附近.s =0时,每一组样本数据均为x . 知识拓展:平均数、方差公式的推广(1)若数据x 1,x 2,…,x n 的平均数为x ,那么mx 1+a , mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x +a . (2)设数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则 ①s 2=1n[(x 21+x 22+…+x 2n )-n x 2]; ②数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2; ③数据ax 1,ax 2,…,ax n 的方差为a 2s 2;④数据ax 1+b ,ax 2+b ,…,ax n +b 的方差也为a 2s 2,标准差为as .1.中位数是一组数据中间的数.( × ) 2.众数是一组数据中出现次数最多的数.( √ )3.一组数据的标准差越小,数据越稳定,且稳定在平均数附近.( √ ) 4.一组数据的标准差不大于极差.( √ )题型一 众数、中位数、平均数的计算例1 (1)某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数、众数、中位数分别为( ) A .85,85,85 B .87,85,86 C .87,85,85D .87,85,90(2)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5B .5,5C .5,8D .8,8 答案 (1)C (2)C解析 (1)平均数为100+95+90×2+85×4+80+7510=87,众数为85,中位数为85.(2)结合茎叶图上的原始数据,根据中位数和平均数的概念列出方程进行求解.由于甲组数据的中位数为15=10+x ,所以x =5.又乙组数据的平均数为9+15+(10+y )+18+245=16.8,所以y =8,所以x ,y 的值分别为5,8.反思感悟 平均数、众数、中位数的计算方法平均数一般是根据公式来计算的;计算众数、中位数时,可先将这组数据按从小到大或从大到小的顺序排列,再根据各自的定义计算.跟踪训练1 在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:分别求这些运动员成绩的众数、中位数与平均数.解 在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是1.70.这组数据的平均数是x =117(1.50×2+1.60×3+…+1.90×1)=28.7517≈1.69(m). 故17名运动员成绩的众数、中位数、平均数依次为1.75m ,1.70m,1.69m. 题型二 标准差、方差的计算及应用例2 甲、乙两名战士在相同条件下各打靶10次,每次命中的环数分别是: 甲:8,6,7,8,6,5,9,10,4,7; 乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算以上两组数据的平均数; (2)分别求出两组数据的方差;(3)根据计算结果,估计两名战士的射击情况.若要从这两人中选一人参加射击比赛,选谁去合适? 解 (1)x 甲=110×(8+6+7+8+6+5+9+10+4+7)=7(环), x乙=110×(6+7+7+8+6+7+8+7+9+5)=7(环). (2)由方差公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],得s 2甲=3,s 2乙=1.2. (3)x甲=x 乙,说明甲、乙两战士的平均水平相当.又s 2甲>s 2乙说明甲战士射击情况波动比乙大.因此,乙战士比甲战士射击情况稳定,从成绩的稳定性考虑,应选择乙参加比赛. 反思感悟 (1)方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.(2)样本标准差反映了各样本数据围绕样本平均数波动的大小,标准差越小,表明各样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散.(3)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数据分布情况,而样本数据的离散程度是由标准差来衡量的.跟踪训练2 某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其质量,分别记录抽查数据如下(单位:kg): 甲:102 101 99 98 103 98 99 乙:110 115 90 85 75 115 110 (1)这种抽样方法是哪一种方法?(2)试计算甲、乙两个车间产品质量的平均数与方差,并说明哪个车间产品比较稳定. 解 (1)采用的抽样方法是:系统抽样. (2)x 甲=17(102+101+99+98+103+98+99)=100; x乙=17(110+115+90+85+75+115+110)=100; s 2甲=17[(102-100)2+(101-100)2+(99-100)2+(98-100)2+(103-100)2+(98-100)2+(99-100)2]=17(4+1+1+4+9+4+1)≈3.43; s 2乙=17[(110-100)2+(115-100)2+(90-100)2+(85-100)2+(75-100)2+(115-100)2+(110-100)2]=17(100+225+100+225+625+225+100) ≈228.57.所以s 2甲<s 2乙,故甲车间产品较稳定.频率分布直方图与数字特征的综合应用典例 某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(1)求这次测试数学成绩的众数; (2)求这次测试数学成绩的中位数. 解 (1)知众数为70+802=75.(2)设中位数为x ,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x -70),所以x ≈73.3. 引申探究1.若本例条件不变,求数学成绩的平均分. 解 由题干图知这次数学成绩的平均分为40+502×0.005×10+50+602×0.015×10+60+702×0.02×10+70+802×0.03×10+80+902×0.025×10+90+1002×0.005×10=72.2.本例条件不变,求80分以上(含80分)的学生人数. 解 [80,90)分的频率为0.025×10=0.25, 频数为0.25×80=20.[90,100]分的频率为0.005×10=0.05, 频数为0.05×80=4.所以80分以上的学生人数为20+4=24.[素养评析] (1)利用频率分布直方图估计总体数字特征 ①众数是最高的矩形的底边中点的横坐标; ②中位数左右两侧直方图的面积相等;③平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.(2)利用直方图求众数、中位数、平均数均为估计值,与实际数据可能不一致.(3)在解决本题时,需要选择运算方法,掌握运算法则,求得运算结果,并根据结果进行合理推断,获得结论.这些都是数学核心素养的内含所在.1.某市2017年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是()A.19 B.20C.21.5 D.23答案 B解析由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有5个月,恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数为20.故选B.2.下列关于平均数、中位数、众数的说法中正确的一个是()A.中位数可以准确地反映出总体的情况B.平均数可以准确地反映出总体的情况C.众数可以准确地反映出总体的情况D.平均数、中位数、众数都有局限性,都不能准确地反映出总体的情况答案 D3.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得的数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数B .平均数C .中位数D .标准差 答案 D4.某校开展“爱我母校,爱我家乡”摄影比赛,七位评委为甲,乙两名选手的作品打出的分数的茎叶图如图所示(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲,乙两名选手得分的平均数分别为a 1,a 2,则一定有( )A .a 1>a 2B .a 2>a 1C .a 1=a 2D .a 1,a 2的大小与m 的值有关 答案 B解析 由茎叶图知,a 1=80+1+5+5+4+55=84,a 2=80+4+4+6+4+75=85,故选B.5.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________. 答案 16解析 设样本数据x 1,x 2,…,x 10的标准差为s ,则s =8, 可知数据2x 1-1,2x 2-1,…,2x 10-1的标准差为2s =16.1.标准差的平方s 2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性. 3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性,用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.一、选择题1.如图是某样本数据的茎叶图,则该样本的中位数、众数、极差分别是()A.323432 B.334535C.344532 D.333635答案 B解析从茎叶图中知共16个数据,按照从小到大排序后中间的两个数据为32,34,所以这组数据的中位数为33;45出现的次数最多,所以这组数据的众数为45;最大值是47,最小值是12,故极差是35.2.某台机床加工的五批同数量的产品中次品数的频率分布如表:则次品数的平均数为()A.1.1B.3C.1.5D.2答案 A解析设数据x i出现的频率为p i(i=1,2,…,n),则x1,x2,…,x n的平均数为x1p1+x2p2+…+x n p n=0×0.5+1×0.2+2×0.05+3×0.2+4×0.05=1.1,故选A.3.样本中共有5个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本的标准差为()A.65 B.65C.2 D. 2 答案 D解析∵样本a,0,1,2,3的平均数为1,∴a+65=1,解得a=-1.则样本的方差s2=15×[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2,故标准差为 2.故选D.4.设样本数据x1,x2,…,x10的平均数和方差分别为1和4,若y i=x i+a(a为非零常数,i =1,2,…,10),则y1,y2,…,y10的平均数和方差分别为()A.1+a,4 B.1+a,4+aC.1,4 D.1,4+a答案 A解析∵x1,x2,…,x10的平均数x=1,方差s21=4,且y i=x i+a(i=1,2,…,10),∴y1,y2,…,y10的平均数y=110·(y1+y2+…+y10)=110·(x1+x2+…+x10+10a)=110·(x1+x2+…+x10)+a=x+a=1+a,其方差s22=110·[(y1-y)2+(y2-y)2+…+(y10-y)2]=110[(x1-1)2+(x2-1)2+…+(x10-1)2]=s21=4.故选A.5.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速的众数、中位数的估计值为()A.62,62.5 B.65,62C.65,62.5 D.62.5,62.5答案 C解析∵最高的矩形为第三个矩形,∴时速的众数的估计值为65.前两个矩形的面积为(0.01+0.03)×10=0.4.∵0.5-0.4=0.1,0.10.4×10=2.5,∴中位数的估计值为60+2.5=62.5. 故选C.6.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( ) A .a >b >c B .b >c >a C .c >a >b D .c >b >a答案 D解析 由已知得a =110×(15+17+14+10+15+17+17+16+14+12)=14.7,b =12×(15+15)=15,c =17, ∴c >b >a .故选D.7.高三学生李丽在一年的五次数学模拟考试中的成绩(单位:分)为:x ,y,105,109,110.已知该同学五次数学成绩数据的平均数为108,方差为35.2,则|x -y |的值为( ) A .15 B .16 C .17 D .18 答案 D解析 由题意得,x +y +105+109+1105=108,①(x -108)2+(y -108)2+9+1+45=35.2,②由①②解得⎩⎪⎨⎪⎧ x =99,y =117,或⎩⎪⎨⎪⎧x =117,y =99,所以|x -y |=18.故选D.8.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( ) A .57.2,3.6 B .57.2,56.4 C .62.8,63.6 D .62.8,3.6答案 D解析 每一个数据都加上60,所得新数据的平均数增加60,而方差保持不变.9.甲、乙两名同学在5次体育测试中的成绩统计的茎叶图如图所示.若甲、乙两人的平均成绩分别是x 甲,x 乙,则下列结论正确的是( )A.x 甲<x 乙;乙比甲成绩稳定B.x 甲>x 乙;甲比乙成绩稳定C.x 甲>x 乙;乙比甲成绩稳定D.x 甲<x 乙;甲比乙成绩稳定答案 A解析 甲同学的成绩为78,77,72,86,92,乙同学的成绩为78,82,88,91,95,所以x甲=15×(78+77+72+86+92)=81, x 乙=15×(78+82+88+91+95)=86.8. 所以x 甲<x 乙,从叶在茎上的分布情况来看,乙同学的成绩更集中于平均值附近,这说明乙比甲成绩稳定.二、填空题10.一组数据2,x,4,6,10的平均数是5,则此组数据的标准差是________.答案 2 2解析 ∵一组数据2,x,4,6,10的平均数是5,∴2+x +4+6+10=5×5,解得x =3,∴此组数据的方差s 2=15×[(2-5)2+(3-5)2+(4-5)2+(6-5)2+(10-5)2]=8, ∴此组数据的标准差s =2 2.11.如图所示的茎叶图是甲、乙两组各5名学生的数学竞赛成绩(70分~99分),若甲、乙两组学生的平均成绩一样,则a =________;甲、乙两组学生的成绩相对稳定的是________.答案 5 甲组解析 由题意可知75+88+89+98+90+a 5= 76+85+89+98+975=89,解得a =5. 因为s 2甲=15×[(-14)2+(-1)2+0+92+62]=3145,s 2乙=15×[(-13)2+(-4)2+0+92+82]=3305, 所以s 2甲<s 2乙,故成绩相对稳定的是甲组.12.已知一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,则这组数据的平均数为________,方差为________.答案 5 743解析 ∵-1,0,4,x,7,14的中位数为5,∴4+x 2=5,∴x =6. ∴这组数据的平均数是-1+0+4+6+7+146=5, 这组数据的方差是16×(36+25+1+1+4+81)=743. 三、解答题13.现有某城市100户居民的月平均用电量(单位:度)的数据,根据这些数据,以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)内的用户中应抽取多少户?解 (1)由(0.002+0.0095+0.011+0.0125+x +0.005+0.0025)×20=1得x =0.0075,故直方图中x 的值是0.0075.(2)月平均用电量的众数为220+2402=230. ∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002+0.0095+0.011)×20+0.0125×(a -220)=0.5,得a =224,即月平均用电量的中位数为224.(3)月平均用电量在[220,240)内的有0.0125×20×100=25(户),月平均用电量在[240,260)内的有0.0075×20×100=15(户),月平均用电量在[260,280)内的有0.005×20×100=10(户),月平均用电量在[280,300]内的有0.0025×20×100=5(户),抽取比例为1125+15+10+5=15, ∴月平均用电量在[220,240)内的用户中应抽取25×15=5(户).14.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为x A 和x B ,样本标准差分别为s A 和s B ,则( )A.x A >x B ,s A >s BB.x A <x B ,s A >s BC.x A >x B ,s A <s BD.x A <x B ,s A <s B答案 B解析 由题图知,A 组的6个数分别为 2.5,10,5,7.5,2.5,10;B 组的6个数分别为15,10,12.5,10,12.5,10,所以x A =2.5+10+5+7.5+2.5+106=254, x B =15+10+12.5+10+12.5+106=353. 显然x A <x B .又由图形可知,B 组数据的分布比A 组的均匀,变化幅度不大,故B 组数据比较稳定,方差较小,从而标准差较小,所以s A >s B .15.某企业三个分厂生产同一种电子产品,三个分厂的产量分布如图所示.现在用分层抽样方法从三个分厂生产的产品中共抽取100件进行使用寿命的测试,则第一分厂应抽取的件数为________;测试结果为第一、二、三分厂取出的产品的平均使用寿命分别为1020小时,980小时,1030小时,估计这个企业生产的产品的平均使用寿命为________小时.答案 50 1015解析 由分层抽样可知,第一分厂应抽取100×50%=50(件).由样本的平均数估计总体的平均数,可知这批电子产品的平均使用寿命为1020×50%+980×20%+1030×30%=1015(小时).。

相关文档
最新文档