《角平分线的性质》 优秀课件1
合集下载
角平分线的性质教学课件
三角形中的角平分线与相对边 成比例,这是三角形中一个重 要的性质。
利用这个性质,可以解决与三 角形相关的问题,例如求边长 、角度等。
此外,三角形中的角平分线还 是三角形内切圆和外接圆的半 径的角平分线。
在日常生活中的应用
角平分线在日常生活中也有广泛的应用,例如在建筑设计、机械制造等领域。
在建筑设计方面,可以利用角平分线来设计建筑物的外观和结构,使其更加美观和 稳固。
THANK YOU
角平分线的性质教学课件
• 角平分线的定义 • 角平分线的性质定理 • 角平分线的应用 • 角平分线的相关定理 • 习题与解答
01
角平分线的定义
什么是角平分线
01
角平分线是从一个角的顶点出发 ,将该角分为两个相等的部分的 一条射线。
02
角平分线将相对边分为两等份, 形成的两个小角相等。
角平分线的作法
通过角的顶点,作一条射线,使得该 射线和角的两边相交形成的两个小角 相等。
使用量角器或三角板等工具辅助作图 。
角平分线的性质
角平分线上的点到角的两边距离 相等。
角平分线将相对边分为两等份。
角平分线上的任意一点到角的两 边的距离之和等于从角的顶点到
该点的距离。
02
角平分线的性质定理
定理内容
01
02
答案: $AB = AC$
解析:由于$AD$是$angle BAC$的角平分线,且$BD = CD$,根据等 腰三角形的性质,我们可以得出$triangle ABD cong triangle ACD$( SAS),所以$AB = AC$。
习题答案与解析
01
答案与解析3:
02
答案: AC是$angle BCD$的角平分线。
《角的平分线的性质》PPT优质课件
E B
∴∠AOP=∠BOP (全等三角形的对应角相等).
∴点P在∠AOB的平分线上.
探究新知
判定定理:
角的内部到角的两边的距离相等的点在角的平分线上.
应用所具备的条件:
(1)位置关系:点在角的内部;
(2)数量关系:该点到角两边的距离相等.
定理的作用:判断点是否在角平分线上.
应用格式: ∵ PD⊥OA,PE⊥OB,PD=PE. O ∴点P 在∠AOB的平分线上.
O
这个点应该在角的平分线
S
探究新知
知识点 1 角平分线的判定
叙述角平分线的性质定理.
角的平分线上的点到角的两边的距离相等.
回 几何语言描述:∵ OC平分∠AOB,且PD⊥OA, PE⊥OB.
顾 旧 知
∴ PD= PE. 不必再证全等
A D
P到OA的距离PD
C P
P是角平分线上的点
O
E
B P到OB的距离PE.
证明:∵OD平分∠AOB,∠1=∠2, 又∵OA=OB,OD=OD, ∴△AOD≌△BOD,∴∠3=∠4, 又∵PM⊥DB,PN⊥DA, ∴PM=PN.(角平分线上的点到角两边 的距离相等)
探究新知
素养考点 2 利用角平分线的性质求线段的长度
例2 如图,AM是∠BAC的平分线,点P在AM上,PD⊥AB, PE⊥AC,垂足分别是D,E,PD=4cm,则PE=___4___cm.
探究新知
猜想证明
已知:如图,PD⊥OA,PE⊥OB,垂足分别是D,E,
PD=PE. 求证:点P在∠AOB的平分线上.
证明:作射线OP,∵PD⊥OA,PE⊥OB. ∴∠PDO=∠PEO=90°,
D
A
在Rt△PDO和Rt△PEO 中,
《角平分线的性质》课件
在解决பைடு நூலகம்际问题中的应用
实际应用
在建筑设计、工程绘图等领域, 角平分线性质可以帮助确定物体 的位置和方向,从而保证设计的 准确性和施工的顺利进行。
案例分析
在设计桥梁、建筑或管道时,可 以利用角平分线性质来确定结构 的支撑点或固定点,以确保结构 的稳定性和安全性。
在数学竞赛中的应用
竞赛题特点
数学竞赛中常常出现与角平分线性质相关的题目,这类题目 通常涉及多个知识点,需要学生具备较高的逻辑思维和推理 能力。
角平分线的表示方法
在几何图形中,通常用符号“∟”表 示角平分线。
例如,若射线OA是∠AOB的角平分线 ,则标记为“OA∟∠AOB”。
角平分线的性质
角平分线上的点到这个角的两边的距 离相等。
角平分线定理:对于三角形中的角平分线 ,它所对的边与该角的对边之比等于其他 两边之比。即,在△ABC中,若AD是 ∠BAC的角平分线,则BD/DC=AB/AC。
在其他领域的应用
农业灌溉
在农田灌溉中,可以利用 角平分线性质优化灌溉管 道和水渠的布局,提高灌 溉效率。
航空导航
在航空导航中,可以利用 角平分线性质确定航向和 飞行高度,确保航行安全 。
军事战略部署
在军事战略部署中,可以 利用角平分线性质优化部 队的驻扎和部署,提高作 战效率。
THANKS
感谢观看
在道路规划中的应用
01
02
03
道路交叉口设计
利用角平分线性质,合理 规划道路交叉口的位置和 形状,提高交通流畅度和 安全性。
道路指示牌设置
根据角平分线性质,合理 设置道路指示牌的位置, 确保驾驶员能够清晰地获 取指示信息。
道路排水设计
在道路规划中,可以利用 角平分线性质优化排水系 统的布局,提高道路的排 水性能。
角的平分线的性质公开课一等奖课件省赛课获奖课件
三角形的三条角平分线交于一点。 4、角的平分线的辅助线作法:
见角平分线就作两边垂线段。
9月15日 1次 P22 -P23 习题11.3 第3、5题
按照折纸的次序画出一种角的三条折痕,并度量所画PD、PE与否等长?
能否用符号语言来翻译“角平分线上的点到角的两边的距 离相等”这句话.请填下表:
已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足. 由已知事项推出的事项:PD=PE.
性质:在角的平分线上的点到角的两边的距离相等.
互逆性!
1、掌握角的平分线的性质. 2、会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”. 3、能应用这两个性质解决某些简朴的实际问题.
重点:角平分线的性质及其应用. 难点:灵活应用两个性质解决问题.
【画一画】哪个是点P到∠AOB两边的垂线段?
P 【 20 探究】折出如图所示的折痕PD、PE.
问题:根据下表中的图形和已知事项,猜想由已知事项可
推出的事项,并用符号语言填写下表:
由已知推出的事项:点P在∠AOB的平分线上. 鉴定:到角的两边距离相等的点在角的平分线上.
如图所示,要在S区建一种集贸市场,使它到公路、铁路距离相等, 离公路与 铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为 1:20000)?
1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一种性质能够解决这个问题? 2.比例尺为1:20000是什么意思?
成果展示: 1.应当是用第二个性质. 这个集贸市场应当建在公路与铁路 形成的角的平分线上,并且规定离角的顶点500米处. 2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以 米为单位, 这就涉及一种单位换算问题了.1m=100cm,因此比 例尺为1:20000,其实就是图中1cm•表达实际距离200m的意 思.作图以下:
见角平分线就作两边垂线段。
9月15日 1次 P22 -P23 习题11.3 第3、5题
按照折纸的次序画出一种角的三条折痕,并度量所画PD、PE与否等长?
能否用符号语言来翻译“角平分线上的点到角的两边的距 离相等”这句话.请填下表:
已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足. 由已知事项推出的事项:PD=PE.
性质:在角的平分线上的点到角的两边的距离相等.
互逆性!
1、掌握角的平分线的性质. 2、会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”. 3、能应用这两个性质解决某些简朴的实际问题.
重点:角平分线的性质及其应用. 难点:灵活应用两个性质解决问题.
【画一画】哪个是点P到∠AOB两边的垂线段?
P 【 20 探究】折出如图所示的折痕PD、PE.
问题:根据下表中的图形和已知事项,猜想由已知事项可
推出的事项,并用符号语言填写下表:
由已知推出的事项:点P在∠AOB的平分线上. 鉴定:到角的两边距离相等的点在角的平分线上.
如图所示,要在S区建一种集贸市场,使它到公路、铁路距离相等, 离公路与 铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为 1:20000)?
1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一种性质能够解决这个问题? 2.比例尺为1:20000是什么意思?
成果展示: 1.应当是用第二个性质. 这个集贸市场应当建在公路与铁路 形成的角的平分线上,并且规定离角的顶点500米处. 2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以 米为单位, 这就涉及一种单位换算问题了.1m=100cm,因此比 例尺为1:20000,其实就是图中1cm•表达实际距离200m的意 思.作图以下:
角平分线的性质1PPT演示课件
方法二
利用角平分线性质和相似三角形,通过比例关系求解三角形 面积。
实例分析:利用角平分线求三角形面积
实例一
实例三
已知三角形ABC中,角A的平分线AD 交BC于点D,且BD=3,CD=2,求三 角形ABC的面积。
已知三角形ABC中,角C的平分线CF 交AB于点F,且AF=5,BF=4,求三 角形ABC的面积。
PART 03
角平分线与三角形面积关 系
REPORTING
WENKU DESIGN
三角形面积计算公式回顾
三角形面积公式
S = 1/2 * b * h,其中b为底边长度, h为高。
三角形面积公式推导
通过相似三角形和比例关系推导得出 。
利用角平分线求三角形面积方法介绍
方法一
利用角平分线定理,将三角形面积转化为两个小三角形面积 之和。
几何作图
利用角平分线的性质,可以进行几何作图,如作角的平分 线、作线段的垂直平分线等。
三角形中的角平分线
在三角形中,角平分线有特殊的性质,如三角形的三条角 平分线交于一点(内心),且这个点到三角形三边的距离 相等。
物理和工程应用
角平分线的性质在物理和工程领域也有应用,如在建筑设 计、机械设计和光学设计等领域中,可以利用角平分线的 性质进行精确的计算和设计。
角平分线与三角形外角关系探讨
三角形外角性质
三角形的一个外角等于与它不相邻的两个内角的和。
角平分线与三角形外角关系
角平分线将相邻的一个外角和一个内角平分为两个相等的小角。
角平分线与三角形外角的综合应用
利用角平分线的性质以及三角形内外角的关系,可以解决一些与角度、距离和面积相关的 问题。例如,通过作角平分线来构造等腰三角形或等边三角形,进而求解一些几何问题。
利用角平分线性质和相似三角形,通过比例关系求解三角形 面积。
实例分析:利用角平分线求三角形面积
实例一
实例三
已知三角形ABC中,角A的平分线AD 交BC于点D,且BD=3,CD=2,求三 角形ABC的面积。
已知三角形ABC中,角C的平分线CF 交AB于点F,且AF=5,BF=4,求三 角形ABC的面积。
PART 03
角平分线与三角形面积关 系
REPORTING
WENKU DESIGN
三角形面积计算公式回顾
三角形面积公式
S = 1/2 * b * h,其中b为底边长度, h为高。
三角形面积公式推导
通过相似三角形和比例关系推导得出 。
利用角平分线求三角形面积方法介绍
方法一
利用角平分线定理,将三角形面积转化为两个小三角形面积 之和。
几何作图
利用角平分线的性质,可以进行几何作图,如作角的平分 线、作线段的垂直平分线等。
三角形中的角平分线
在三角形中,角平分线有特殊的性质,如三角形的三条角 平分线交于一点(内心),且这个点到三角形三边的距离 相等。
物理和工程应用
角平分线的性质在物理和工程领域也有应用,如在建筑设 计、机械设计和光学设计等领域中,可以利用角平分线的 性质进行精确的计算和设计。
角平分线与三角形外角关系探讨
三角形外角性质
三角形的一个外角等于与它不相邻的两个内角的和。
角平分线与三角形外角关系
角平分线将相邻的一个外角和一个内角平分为两个相等的小角。
角平分线与三角形外角的综合应用
利用角平分线的性质以及三角形内外角的关系,可以解决一些与角度、距离和面积相关的 问题。例如,通过作角平分线来构造等腰三角形或等边三角形,进而求解一些几何问题。
角平分线的性质(1)课件
作法: 1.以O为圆心,适当长 为半径作弧,交OA于M, 交OB于N. 2.分别以M,N为圆心.
A
M
C
大于 1MN的长为半径作
弧.两弧在∠AOB的内部
2
交于C.
3.画射线OC.
B
N
O
射线OC即为所求.
动手折一折
• 发现规律:
角平分线上的点到角两边的 距离相等。 A
D O E
P ·
B
C
角平分线的性质: 角平分线上的点到角两边的距离相等。
角平分线的性质
第一课时
★ 什么是角的平分线?怎样画一 个角的平分线? 从一个角的顶点出发,把这个角分成相 等的两个角的射线,叫做这个角的平分线。
A
C
O B
A
·
B
·
C
· ·
如图,AB=AD,BC=DC, 沿着AC画一条射线AE, D AE就是∠BAC的角平分线, 你知道为什么吗?
E
如何用尺规作角的平分线?
几何语言:
∵OC是∠AOB的平分线,
A
D C
PD⊥OA,PE⊥OB
∴PD=
B
P
·
E
O
一起来证明这个性质:
已知: ∠AOC= ∠BOC,点P 在OC上, PD ⊥OA,PE ⊥OB, 求证: PD=PE
证明:
C
A D
证明一个几何命题的步骤: 1. 2. 3.
(课本21页)
P
·
E
O
B
1. 在Rt△ABC中, ∠C 为直角,BD平分 ∠ABC,DE⊥AB于E,则:
角平分线上的点到角两边 的距离相等。
从这节课中你 有哪些收获?
课堂小测
A
M
C
大于 1MN的长为半径作
弧.两弧在∠AOB的内部
2
交于C.
3.画射线OC.
B
N
O
射线OC即为所求.
动手折一折
• 发现规律:
角平分线上的点到角两边的 距离相等。 A
D O E
P ·
B
C
角平分线的性质: 角平分线上的点到角两边的距离相等。
角平分线的性质
第一课时
★ 什么是角的平分线?怎样画一 个角的平分线? 从一个角的顶点出发,把这个角分成相 等的两个角的射线,叫做这个角的平分线。
A
C
O B
A
·
B
·
C
· ·
如图,AB=AD,BC=DC, 沿着AC画一条射线AE, D AE就是∠BAC的角平分线, 你知道为什么吗?
E
如何用尺规作角的平分线?
几何语言:
∵OC是∠AOB的平分线,
A
D C
PD⊥OA,PE⊥OB
∴PD=
B
P
·
E
O
一起来证明这个性质:
已知: ∠AOC= ∠BOC,点P 在OC上, PD ⊥OA,PE ⊥OB, 求证: PD=PE
证明:
C
A D
证明一个几何命题的步骤: 1. 2. 3.
(课本21页)
P
·
E
O
B
1. 在Rt△ABC中, ∠C 为直角,BD平分 ∠ABC,DE⊥AB于E,则:
角平分线上的点到角两边 的距离相等。
从这节课中你 有哪些收获?
课堂小测
人教版八年级上册数学课件角平分线的性质优秀课件
八年级 上册
12.3 角的平分线的性质 (第1课时)
课件说明
• 角的平分线的性质反映了角的平分线的基本特 征,常用来证明两条线段相等.角的平分线的性质 的研究过程为以后学习线段垂直平分线的性质提供 了思路和方法.
• 学习目标: 1.会用尺规作一个角的平分线,知道作法的合理 性. 2.探索并证明角的平分线的性质. 3.能用角的平分线的性质解决简单问题.
人教版八年级上册数数学学课件课角件平1分2.线3角的平性分质线优的秀性pp质t 课(共件16张PPT)
解决简单问题,巩固角的平分线的性质
练习: 如图,△ABC中,∠B =∠C,AD 是∠BAC
的平分线, DE⊥AB,DF⊥AC,垂足分别为E,F.求
证:EB =FC.
A
在此题的已知条件下, 你还能得到哪些结论?
D
B
DC=BC(已知)
CA=CA(公共边)
C
∴ △ACD≌ △ACB(SSS)
∴∠CAD=∠CAB(全等三角形的
E
对应边相等)
∴AC平分∠DAB(角平分线的定义)
人教版八年级上册数数学学课件课角件平1分2.线3角的平性分质线优的秀性pp质t 课(共件16张PPT)
人教版八年级上册数数学学课件课角件平1分2.线3角的平性分质线优的秀性pp质t 课(共件16张PPT)
经历实验过程,发现并证明角的平分线的性质
追问2 由角的平分线的性质的证明过程,你能概 括出证明几何命题的一般步骤吗?
(1)明确命题中的已知和求证; (2)根据题意,画出图形,并用数学符表示已知和
求证; (3)经过分析,找出由已知推出求证的途径,写出证
明过程.
人教版八年级上册数数学学课件课角件平1分2.线3角的平性分质线优的秀性pp质t 课(共件16张PPT)
12.3 角的平分线的性质 (第1课时)
课件说明
• 角的平分线的性质反映了角的平分线的基本特 征,常用来证明两条线段相等.角的平分线的性质 的研究过程为以后学习线段垂直平分线的性质提供 了思路和方法.
• 学习目标: 1.会用尺规作一个角的平分线,知道作法的合理 性. 2.探索并证明角的平分线的性质. 3.能用角的平分线的性质解决简单问题.
人教版八年级上册数数学学课件课角件平1分2.线3角的平性分质线优的秀性pp质t 课(共件16张PPT)
解决简单问题,巩固角的平分线的性质
练习: 如图,△ABC中,∠B =∠C,AD 是∠BAC
的平分线, DE⊥AB,DF⊥AC,垂足分别为E,F.求
证:EB =FC.
A
在此题的已知条件下, 你还能得到哪些结论?
D
B
DC=BC(已知)
CA=CA(公共边)
C
∴ △ACD≌ △ACB(SSS)
∴∠CAD=∠CAB(全等三角形的
E
对应边相等)
∴AC平分∠DAB(角平分线的定义)
人教版八年级上册数数学学课件课角件平1分2.线3角的平性分质线优的秀性pp质t 课(共件16张PPT)
人教版八年级上册数数学学课件课角件平1分2.线3角的平性分质线优的秀性pp质t 课(共件16张PPT)
经历实验过程,发现并证明角的平分线的性质
追问2 由角的平分线的性质的证明过程,你能概 括出证明几何命题的一般步骤吗?
(1)明确命题中的已知和求证; (2)根据题意,画出图形,并用数学符表示已知和
求证; (3)经过分析,找出由已知推出求证的途径,写出证
明过程.
人教版八年级上册数数学学课件课角件平1分2.线3角的平性分质线优的秀性pp质t 课(共件16张PPT)
角平分线的性质课件
在数学竞赛和高考中,角平分线定理通常是必考内容,体现了它在数学 教育中的重要性。
角平分线定理也被广泛应用于实际生活中,如建筑设计、机械制造和测 量等领域。
角平分线定理的应用在其他学科领域中的体现
在经济学中,角平分线定理可以用于研究市场结构和 市场份额。
在物理学中,角平分线定理可以用于研究物体的运动 轨迹和受力分析。
CHAPTER
角平分线的历史背景和起源
角平分线的起源可以追溯到古代 数学和几何学的研究。
在古埃及和古希腊时期,角平分 线被用于解决几何问题,如土地
测量和建筑。
中世纪欧洲数学家进一步研究了 角平分线,将其与三角形的其他
性质联
角平分线是数学中的一个基本概念,是几何学中的重要定理之一。
02 角平分线的定义与性质
CHAPTER
角平分线的定义
角平分线是一条射线,它把一个角分 成两个相等的部分。
角平分线用符号“”表示,如“”表 示角平分线。
角平分线的性质定理
角平分线将角的两边分为等长 线段。
在角平分线上的点到角的两边 的距离相等。
在角的内部,到角的两边距离 相等的点一定在角平分线上。
角平分线的性质解决实际问题。
对后续学习的建议和展望
加强对角平分线性质的应用练习,通过更多的实际案例和应用实践提高自己的应用能力。 加强与角平分线相关的其他几何性质的学习和研究,为后续的学习和实践打下坚实的基础。
通过参加数学竞赛、学术交流等活动,提高自己的数学素养和应用能力。
谢谢
THANKS
面积等。
03
利用角平分线定理解决立体几何问题
在立体几何中,角平分线定理可以用来解决一些与角度、距离相关的问
题。
04 角平分线在三角函数中的应用
角平分线定理也被广泛应用于实际生活中,如建筑设计、机械制造和测 量等领域。
角平分线定理的应用在其他学科领域中的体现
在经济学中,角平分线定理可以用于研究市场结构和 市场份额。
在物理学中,角平分线定理可以用于研究物体的运动 轨迹和受力分析。
CHAPTER
角平分线的历史背景和起源
角平分线的起源可以追溯到古代 数学和几何学的研究。
在古埃及和古希腊时期,角平分 线被用于解决几何问题,如土地
测量和建筑。
中世纪欧洲数学家进一步研究了 角平分线,将其与三角形的其他
性质联
角平分线是数学中的一个基本概念,是几何学中的重要定理之一。
02 角平分线的定义与性质
CHAPTER
角平分线的定义
角平分线是一条射线,它把一个角分 成两个相等的部分。
角平分线用符号“”表示,如“”表 示角平分线。
角平分线的性质定理
角平分线将角的两边分为等长 线段。
在角平分线上的点到角的两边 的距离相等。
在角的内部,到角的两边距离 相等的点一定在角平分线上。
角平分线的性质解决实际问题。
对后续学习的建议和展望
加强对角平分线性质的应用练习,通过更多的实际案例和应用实践提高自己的应用能力。 加强与角平分线相关的其他几何性质的学习和研究,为后续的学习和实践打下坚实的基础。
通过参加数学竞赛、学术交流等活动,提高自己的数学素养和应用能力。
谢谢
THANKS
面积等。
03
利用角平分线定理解决立体几何问题
在立体几何中,角平分线定理可以用来解决一些与角度、距离相关的问
题。
04 角平分线在三角函数中的应用
八年级数学12.3《角平分线的性质》(共23张PPT)优秀课件
二、重点难点
学生学好数学的信心. 到角两边的距离的正确理解;
2、掌握角平分线性质定理的运用 。
关键:通过情景问题的设计,引导
活动1 给出一个纸片做的角,不利用工具,能不能找出
这个角的角平分线呢? 〔对折〕
再翻开纸片 ,看看折痕与这个角有何关系?
活动 2
如果前面活动中的纸片换成木板、 A 钢板等没法折的角,又该怎么办呢?
C
∴∠CAD=∠CAB〔全等三角形的 E 对应边相等〕
∴AC平分∠DAB〔角平分线的定义〕
B C
根据角平分仪的制作原 理怎样作一个角∠EAF 的平分线?〔不用角平
分仪或量角器〕
A
D
E
B
作法:1.以A为圆心,适当长为半径作弧, AE于点B,交AF于点D;
2.分别以B、D为圆心,大于线段BD 一 半 的 长 为 半 径 作 弧 , 两 弧 在 ∠ EAF 的内部交于点C;
1、如图,是一个角平分仪,其中 AB=AD,BC=DC。将点A放在角的顶 D 点,AB和AD沿着角的两边放下, 过点A、C画一条射线AE,AE就是 角平分线,你能说明它的道理吗?
B C E
A
2、证明:
在△ACD和△ACB中
AD=AB〔〕
D
B
DC=BC〔〕
CA=CA〔公共边〕
∴ △ACD≌ △ACB〔SSS〕
3.作射线AC。
A
DF
二 角平分线的性质
实验:OC是∠AOB的平分线,点P是角平分线OC上 的任意一点
1.操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA , PE⊥OB,点D、E为垂足,测量PD、PE的长。将三次数据填入下表:
A
D
CD PE
人教版数学八年级上册1角的平分线的性质课件
12.3角的平分线的性质
第1课时 角平分线的性质
学习目标
1. 会用尺规作图画定角的角平分线,并能用 全等三角形的判定解释其原理。
2. 掌握角平分线的性质,会运用性质解决相 关问题。
1、怎样得到一个角的角平分线? 用量角器度量,也可用折纸的方法.
2、下图是一个平分角的仪器,你能说明它的道理吗?
A
D
PM,PN的大小关系是( B )
A.PM>PN B.PM=PN C.PM<PN D.无法确定
4、如图,在△ABC中E⊥AB于E,若AB = 6 cm,则△DBE的周长是( A ) A.6 cm B.7 cm C.8 cm D.9 cm
分析:在△ABC中,∠C=90°, ∴DC⊥AC. 又∵DE⊥AB,AD平分∠CAB, ∴DC=DE. 在Rt△ACD和Rt△AED中, AD=AD,
注意:(1)“点”是指角的平分线上任意位置的点;
(2)“点到角的两边的距离”是指点到角的两边的垂
线段的长度.
用处: 证明线段相等.
检测2:角平分线性质的应用
练习1 下列结论一定成立的是 (3).
(1)如图,OC 平分∠AOB,点P 在OC 上,D,E 分
别为OA,OB 上的点,则PD =PE.
(2)如图,点P 在OC 上,PD⊥OA,PE⊥OB,垂足
弧,两弧在∠AOB的内部交于点C
尺规法画角平分线
A M
C
O
NB
画射线OC,即为∠AOB的角平分线
作已知角的平分线的方法. 已知:∠AOB. 求作:∠AOB的平分线.
作法: (1)以点O为圆心,适当长为半径画弧,交OA于 点M,交OB于点N.
1
(2)分别以点M,N为圆心,大于 2 MN的长为半 径画弧,两弧在∠AOB的内部相交于点C. (3)画射线OC.射线OC即为所求(如图).
第1课时 角平分线的性质
学习目标
1. 会用尺规作图画定角的角平分线,并能用 全等三角形的判定解释其原理。
2. 掌握角平分线的性质,会运用性质解决相 关问题。
1、怎样得到一个角的角平分线? 用量角器度量,也可用折纸的方法.
2、下图是一个平分角的仪器,你能说明它的道理吗?
A
D
PM,PN的大小关系是( B )
A.PM>PN B.PM=PN C.PM<PN D.无法确定
4、如图,在△ABC中E⊥AB于E,若AB = 6 cm,则△DBE的周长是( A ) A.6 cm B.7 cm C.8 cm D.9 cm
分析:在△ABC中,∠C=90°, ∴DC⊥AC. 又∵DE⊥AB,AD平分∠CAB, ∴DC=DE. 在Rt△ACD和Rt△AED中, AD=AD,
注意:(1)“点”是指角的平分线上任意位置的点;
(2)“点到角的两边的距离”是指点到角的两边的垂
线段的长度.
用处: 证明线段相等.
检测2:角平分线性质的应用
练习1 下列结论一定成立的是 (3).
(1)如图,OC 平分∠AOB,点P 在OC 上,D,E 分
别为OA,OB 上的点,则PD =PE.
(2)如图,点P 在OC 上,PD⊥OA,PE⊥OB,垂足
弧,两弧在∠AOB的内部交于点C
尺规法画角平分线
A M
C
O
NB
画射线OC,即为∠AOB的角平分线
作已知角的平分线的方法. 已知:∠AOB. 求作:∠AOB的平分线.
作法: (1)以点O为圆心,适当长为半径画弧,交OA于 点M,交OB于点N.
1
(2)分别以点M,N为圆心,大于 2 MN的长为半 径画弧,两弧在∠AOB的内部相交于点C. (3)画射线OC.射线OC即为所求(如图).
初中数学《角平分线的性质》优质课件
M
B
D P
N C
∴ △AMP ≌ △ANP(AAS) ∴PM=PN
角平分线的性质1
角的平分线上的点到角的两边的距离相等.
应用所具备的条件:
M
B
(1)AD为角的平分线; (2)点P在该平分线上; A
D P
(3)PM⊥AB PN⊥AC
符号语言:
N C
∵AD平分∠BAC ,PM⊥AB , PN⊥AC
∴PM=PN
作用:判断线段相等的依据.
练习一:判断正误,并说明理由:
1.如图,P是∠AOB的平分线OC上的一点,D、E分
别在OA、OB上,则PD=PE .
(×)
2.如图,P在射线OC上,PD⊥OA,PE⊥OB,
PE=PF.
A
D
O
O
PC
E B
(1题)
A D
PC
E B
(2题)
(× )
3.如图,在∠AOB的平分线OC上任取一点P,若P到 OA 的距离为3cm,则P到OB的距离边为3cm.( √ )
B
A
D
C
结论: 角是轴对称图形,角的平分线所在的
直线是它的对称轴.
活动二:探索角平分线的第一个性质
请同学们在刚才折出的角平分线AD上,任意取一点 P,
通过尺规作图,过点 P 作 PM⊥AB,PN⊥AC,垂足分
别是点 M,N,用圆规比较 PM 与 PN 的大小,你有什
么发现?说明你的理由.
M
B
D
A
P
N C
结论:角平分线上的点,到这个角的两边的距离相等.
已知:AD是∠BAC的角平分线,点P是AD上任意一点,
PM⊥AB,PN⊥AC.求证:PM=PN
《角平分线的性质》课件
这个结论可以判定角的平分线,而角的平分线的性 质可用来证明线段相等.
例题学习
例 如图,△ABC的角平分线BM、CN相交于点P. 求证:点P到三边AB、BC、CA的距离相等.
课堂小结
(1)本节课学习了哪些内容? (2)本节课的结论与角平分线的性质定理的区分和联
系是什么? (3)角的平分线的性质为我们提供了证明什么的方法?
求证; (3)经过分析,找出由已知推出求证的途径,写出证
明过程.
经历实验过程,发现并证明角的平分线的性质
角的平分线的性质的作用是什么?
主要是用于判断和证明两条线段相等,与以前的方 法相比,运用此性质不需要先证两个三角形全等.
思考
思考 如图,要在S 区建一个集贸市场,使它到 公路、铁路的距离相等,离两条公路交叉处500 m, 请你帮忙设计一下,这个集贸市场应建于何处(在图上 标出它的位置,比例尺为1:20 000)?
A
D C
P
O
E
B
经历实验过程,发现并证明角的平分线的性质
问题 利用尺规我们可以作一个角的平分线,那 么角的平分线有什么性质呢?
在OC 上再取几个点试一试. 通过以上测量,你发现了角 的平分线的什么性质?
O
A
D C
P
E
B
经历实验过程,发现并证明角的平分线的性质
追问 通过动手实验、视察比较,我们发现“角 的平分线上的点到角的两边的距离相等”,你能通过严 格的逻辑推理证明这个结论吗?
NBຫໍສະໝຸດ 感悟实践经验,用尺规作角的平分线
追问 你能说明为什么射线OC 是∠AOB 的平分线 吗?
A
M
C
O
N
B
经历实验过程,发现并证明角的平分线的性质
例题学习
例 如图,△ABC的角平分线BM、CN相交于点P. 求证:点P到三边AB、BC、CA的距离相等.
课堂小结
(1)本节课学习了哪些内容? (2)本节课的结论与角平分线的性质定理的区分和联
系是什么? (3)角的平分线的性质为我们提供了证明什么的方法?
求证; (3)经过分析,找出由已知推出求证的途径,写出证
明过程.
经历实验过程,发现并证明角的平分线的性质
角的平分线的性质的作用是什么?
主要是用于判断和证明两条线段相等,与以前的方 法相比,运用此性质不需要先证两个三角形全等.
思考
思考 如图,要在S 区建一个集贸市场,使它到 公路、铁路的距离相等,离两条公路交叉处500 m, 请你帮忙设计一下,这个集贸市场应建于何处(在图上 标出它的位置,比例尺为1:20 000)?
A
D C
P
O
E
B
经历实验过程,发现并证明角的平分线的性质
问题 利用尺规我们可以作一个角的平分线,那 么角的平分线有什么性质呢?
在OC 上再取几个点试一试. 通过以上测量,你发现了角 的平分线的什么性质?
O
A
D C
P
E
B
经历实验过程,发现并证明角的平分线的性质
追问 通过动手实验、视察比较,我们发现“角 的平分线上的点到角的两边的距离相等”,你能通过严 格的逻辑推理证明这个结论吗?
NBຫໍສະໝຸດ 感悟实践经验,用尺规作角的平分线
追问 你能说明为什么射线OC 是∠AOB 的平分线 吗?
A
M
C
O
N
B
经历实验过程,发现并证明角的平分线的性质
角平分线性质1 课件
∵点P是∠AOB平分线上的一点 且PD⊥OA,PE⊥OB
∴ PD=PE (角平分线上的点到角的两边 的距离相等)
O
应用定理的前提条件是:
有角的平分线,有垂直距离
定理的作用: 证明线段相等
A D
P
EB
角平分线的性质的 证明:
已知:OC是∠AOB的平分线,点P在OC上,PD ⊥OA ,PE ⊥OB,垂足分别是D、E. 求证:PD=PE
回味无穷
定理: 角平分线上的点到这 个角的两边的距离相等.
• ∵点P是∠AOB平分线上的一点
• 且PD⊥OA,PE⊥OB
• ∴ PD=PE
O
• (角平分线上的点到角的两边的距
离相等)
用尺规作角的平分线.
A D
P
EB
作业: 1、教材50页练习第1题. 2、教材51-52习题12.3第2、4、5题。
每 个 人 心 中 都 有 那 么 一 片 海
下课!
证明:过点P作PD 、PE、PF分别垂直于AB、BC、CA,
垂足为D、E、F
∵BM是△ABC的角平分线,点P在BM上
且PE ⊥BC ,PD⊥AB
∴PD=PE
(角平分线上的点到角的两边的距离相等) A
同理 PE=PF.
∴ PD=PE=PF.
D F
即点P到边AB、BC、CA的距离相等 N P M
B
E
C
总结反思
O
即:OC平分∠AOB
画一画
按照做一做的顺序画∠AOB的折痕 OC ,在折痕(即平分线)上任意找一 点P。过P点作PD垂直于OA,垂足为D。 作PE垂直于OB、垂足为E ,并度量所 画垂线段PD、PE是否等长?
同学甲、乙谁的画法是正确的?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
B
自学二 角的平分线及证明
根据角平分仪的制作原理怎样作一个角 的平分线?(不用角平分仪或量角器)
A Eห้องสมุดไป่ตู้C N
N
C
E
O
M
O
B M
探究角平分线的性质
(1)实验:将∠AOB对折,再折出一个直角三角形 (使第一条折痕为斜边),然后展开,观察两次折叠形 成的三条折痕,你能得出什么结论?
(2) 猜想 : 角的平分线上的点到角的 两边的距离相等.
1 2
E
P
C
B
4、证明角平分线的性质 已知:如图,OC平分∠AOB,点P在OC 上,PD⊥OA于点D,PE⊥OB于点E 求证: PD=PE
证明:∵OC平分∠ AOB (已知)
A
D O
1 2
P
C
E
B
∴ ∠1= ∠2(角平分线的定义) ∵PD ⊥ OA,PE ⊥ OB(已知) ∴ ∠PDO= ∠PEO(垂直的定义) 在△PDO和△PEO中 ∠PDO= ∠PEO(已证) ∠1= ∠2 (已证) OP=OP (公共边) ∴ △PDO ≌ △PEO(AAS) ∴PD=PE(全等三角形的对应边相等)
(3)验证猜想
角平分线上 的点到角两 边的距离相 等。
利用此性质 怎样书写推理过 A 程? D ∵ ∠1= ∠2, PD ⊥ OA, PE ⊥ OB(已知) ∴PD=PE(全等三 角形的对应边相等)
O
1 2
P
E
C B
A
如 图 : 在 △ ABC 中 , ∠ C=90° AD 是∠ BAC 的平分 线, DE⊥AB 于 E , F 在 AC 上, BD=DF; 求证:CF=EB
F
E D B
C
试试自己写 证明。你一 定行!
小结
拓展
定理 角平分线上的点到这个角的两边距离相 等. ∵OC是∠AOB的平分线, P是OC上任意一点PD⊥OA,PE⊥OB,垂足分别是 D,E(已知) ∴PD=PE(角平分线上的点到这个角的两边距离相 等). 用尺规作角的平分线.
A D O
A
人教版八年级数学(上)
角平分线的性质
D
B C E
A B C
D
学习目标
理解并掌握角的平分线的性质及证明方法。
预习导学
自学教材P48至P49的内容,解决下列问题 自学一 角的平分线的作法 1、在纸上任意画出一个角,用剪刀剪下,用折纸方法如何得到角 的平分线? 2、已知∠AOB,求作:∠AOB的平分线 A