AO8810L中文资料

合集下载

ADN8810 12位高输出电流源数据手册(版本C)说明书

ADN8810 12位高输出电流源数据手册(版本C)说明书

12-Bit High Output Current Source Data Sheet ADN8810Rev. C Document FeedbackInformation furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners. O ne Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2004–2017 Analog Devices, Inc. All rights reserved. Technical Support FEATURESHigh precision 12-bit current sourceLow noiseLong term stabilityCurrent output from 0 mA to 300 mA Output fault indicationLow driftProgrammable maximum current24-lead, 4 mm × 4 mm LFCSP3-wire serial interface APPLICATIONSTunable laser current source Programmable high output current source Automatic test equipmentFUNCTIONAL BLOCK DIAGRAM3195-0 RESET4.096VSERIALINTERF ACEADDRESSSBF AULTINDICA TIONFigure 1.GENERAL DESCRIPTIONThe ADN8810 is a 12-bit current source with an adjustable full-scale output current of up to 300 mA. The full-scale output current is set with two external sense resistors. The output compliance voltage is 2.5 V, even at output currents up to 300 mA.The device is particularly suited for tunable laser control and can drive tunable laser front mirror, back mirror, phase, gain, and amplification sections. A host CPU or microcontroller controls the operation of the ADN8810 over a 3-wire serial peripheral interface (SPI). The 3-bit address allows up to eight devices to be independently controlled while attached to the same SPI bus.The ADN8810 is guaranteed with ±4 LSB integral nonlinearity (INL) and ±0.75 LSB differential nonlinearity (DNL). Noise and digital feedthrough are kept low to ensure low jitteroperation for laser diode applications. Full-scale and scaledoutput currents are given in Equation 1 and Equation 2,respectively.SNREFFS RVI⨯≈10(1)⎪⎪⎪⎪⎭⎫⎝⎛+Ω⨯⨯⨯=1.01514096kRRVCodeI SNSNREFOUT(2)ADN8810Data SheetRev. C | Page 2 of 14TABLE OF CONTENTSFeatures .............................................................................................. 1 Applications ....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3 Timing Characteristics ................................................................ 4 Absolute Maximum Ratings ............................................................ 5 ESD Caution .................................................................................. 5 Pin Configuration and Function Descriptions ............................. 6 Typical Performance Characteristics ............................................. 7 Terminology ...................................................................................... 9 Functional Description (10)Setting Full-Scale Output Current ........................................... 10 Power Supplies ............................................................................ 10 Serial Data Interface ................................................................... 10 Standby and Reset Modes ......................................................... 11 Power Dissipation....................................................................... 11 Using Multiple ADN8810 Devices for Additional Output Current ......................................................................................... 11 Adding Dither to the Output Current ..................................... 12 Driving Common-Anode Laser Diodes ................................. 12 PCB Layout Recommendations ............................................... 13 Suggested Pad Layout for CP-24 Package ............................... 13 Outline Dimensions ....................................................................... 14 Ordering Guide .. (14)REVISION HISTORY11/2017—Rev. B. to Rev. CChanged R S to R SN .......................................................... Throughout Change to Figure 1 ........................................................................... 1 Changes to Maximum Full-Scale Output Current Parameter and Power Supply Rejection Ratio Parameter, Table 1 ................ 3 Moved Timing Characteristics Section, Table 2, and Figure 2 ..... 4 Added Lead Temperature Range (Soldering 10 sec) Parameter, Table 3 ................................................................................................ 5 Changes to Figure 3 and Table 4 ..................................................... 6 Changes to Setting Full-Scale Output Current Section ............. 10 Changes to Adding Dither to the Output Current Section,Figure 20, and Figure 21 ................................................................ 12 Changes to PCB Layout Recommendations Section andFigure 25 .......................................................................................... 13 Updated to Outline Dimensions .................................................. 14 3/2016—Rev. A to Rev. BChanges to Figure 3 and Table 4 ...................................................... 7 Updated Outline Dimensions ....................................................... 15 Changes to Ordering Guide . (15)4/2009—Rev. 0 to Rev. A Changes to Table 3 ............................................................................. 6 Changes to Figure 25 ...................................................................... 14 Updated Outline Dimensions ....................................................... 15 Changes to Ordering Guide . (15)1/2004—Revision 0: Initial VersionData Sheet ADN8810 SPECIFICATIONSAVDD = DVDD = 5 V, PVDD = 3.3 V, AVSS = DVSS = DGND = 0 V, T A = 25°C, covering output current (I OUT) from 2% full-scale current (I FS) to 100% I FS, unless otherwise noted.Rev. C | Page 3 of 14ADN8810Data SheetRev. C | Page 4 of 141 With respect to AVSS. 2R SN = 20 Ω. 3See Table 2 for timing specifications.TIMING CHARACTERISTICS1, 21 Guaranteed by design. Not production tested.2Sample tested during initial release and after any redesign or process change that may affect these parameters. All input signals are measured with tr = tf = 5 ns (10% to 90% of DVDD) and timed from a voltage level of (V IL + V IH )/2.SCLKC SSDIRESET*ADDRESS BIT A3 MUST BE LOGIC LOW03195-0-002Figure 2. Timing DiagramData SheetADN8810Rev. C | Page 5 of 14ABSOLUTE MAXIMUM RATINGSTable 3.Parameter Rating Supply Voltage 6 VInput VoltageGND to V S + 0.3 V Output Short-Circuit Duration to GND IndefiniteStorage Temperature Range −65°C to +150°C Operating Temperature Range−40°C to +85°C Junction Temperature Range, CP Package −65°C to +150°C Lead Temperature Range (Soldering 10 sec)300°CStresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.ESD CAUTIONADN8810Data SheetRev. C | Page 6 of 14PIN CONFIGURATION AND FUNCTION DESCRIPTIONS03195-0-003FAULT ADDR0ADDR1FB RSN ADDR2NICVREF AVDD AVSS NIC DVSS117P V D D I O U T I O U T P V D D 1E N C O M P S B NOTES1. NIC = NOT INTERNALLY CONNECTED.2. EXPOSED PAD. CONNECT THE EXPOSED PAD TO DGND.Figure 3. Pin ConfigurationData SheetADN8810Rev. C | Page 7 of 14TYPICAL PERFORMANCE CHARACTERISTICSCODE1.2–0.84,500500I N L E R R O R (L S B )1,0001,5002,0002,5003,0003,5004,0001.00.2–0.2–0.4–0.60.80.600.403195-0-005Figure 4. Typical INL PlotCODE0.4–0.304,500500D N LE R R O R (L S B )1,0001,5002,0002,5003,0003,5004,0000.1–0.1–0.20.300.203195-0-006Figure 5. Typical DNL PlotTEMPERATURE (°C)0.200.15–0.20–4085–15∆I N L (L S B )1035600–0.05–0.10–0.150.100.0503195-0-007Figure 6. ∆INL vs. TemperatureTEMPERATURE (°C)0.200.15–0.20–4085–15∆D N L (L S B )1035600–0.05–0.10–0.150.100.0503195-0-008Figure 7. ∆DNL vs. TemperatureTEMPERATURE (°C)0.2580.2570.250–4085–15F U L L -S C A L E O U T P U T (A )1035600.2540.2530.2520.2510.2560.255R SN = 1.6Ω03195-0-009Figure 8. Full-Scale Output vs. TemperatureTEMPERATURE (°C)20.76520.75520.720–4085–15F U L L -S C A L E O U T P U T (m A )10356020.74020.73520.73020.72520.75020.745R SN = 20Ω20.76003195-0-010Figure 9. Full-Scale Output vs. TemperatureADN8810Data SheetRev. C | Page 8 of 14TEMPERATURE (°C)0.500.35I P V D D (m A )0.200.150.100.050.300.250.400.4503195-0-011Figure 10. PVDD Supply Current (I PVDD ) vs. Temperature120I D V D D (µA )864210TEMPERATURE (°C)03195-0-012Figure 11. DVDD Supply Current (I DVDD ) vs. Temperature1.51.0I A V D D (m A )1.41.31.21.1TEMPERATURE (°C)03195-0-013Figure 12. AVDD Supply Current (I AVDD ) vs. TemperatureFREQUENCY (Hz)100k1O U T P U T I M P E D A N C E (Ω)1k1001010k03195-0-014Figure 13. Output Impedance vs. FrequencyTIME (1µs/DIV)CSI OUTV O L T A GE (2.7V /D I V )03195-0-015Figure 14. Full-Scale Settling TimeTIME (200ns/DIV)CSI OUT03195-0-016Figure 15. 1 LSB Settling TimeData SheetADN8810Rev. C | Page 9 of 14TERMINOLOGYRelative AccuracyRelative accuracy or integral nonlinearity (INL) is a measure of the maximum deviation, in least significant bits (LSBs), from an ideal line passing through the endpoints of the DAC transfer function. Figure 4 shows a typical INL vs. code plot. The ADN8810 INL is measured from 2% to 100% of the full-scale (FS) output.Differential NonlinearityDifferential nonlinearity (DNL) is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ± 1 LSB maximum ensures monotonicity. The ADN8810 is guaranteed monotonic by design. Figure 5 shows a typical DNL vs. code plot . Offset ErrorOffset error, or zero-code error, is an interpolation of the output voltage at code 0x000 as predicted by the line formed from the output voltages at code 0x040 (2% FS) and code 0xFFF (100% FS). Ideally, the offset error is 0 V . Offset error occurs from a combination of the offset voltage of the amplifier and offset errors in the DAC. It is expressed in LSBs.Offset DriftThis is a measure of the change in offset error with a change in temperature. It is expressed in (ppm of full-scale range)/°C. Gain ErrorGain error is a measure of the span error of the DAC. It is the deviation in slope of the output transfer characteristic from ideal. The transfer characteristic is the line formed from the output voltages at code 0x040 (2% FS) and code 0xFFF (100% FS). It is expressed as a percent of the full-scale range.Compliance VoltageThe maximum output voltage from the ADN8810 is a function of output current and supply voltage. Compliance voltage defines the maximum output voltage at a given current and supply voltage to guarantee the device operates within its INL, DNL, and gain error specifications.Output Current Change vs. Output Voltage ChangeThis is a measure of the ADN8810 output impedance and is similar to a load regulation spec in voltage references. For a given code, the output current changes slightly as output voltage increases. It is measured as an absolute value in (ppm of full-scale range)/V .O U T P U T V O L T A G E03195-0-004Figure 16. Output Transfer FunctionADN8810Data SheetRev. C | Page 10 of 14FUNCTIONAL DESCRIPTIONThe ADN8810 is a single 12-bit current output digital-to-analog converter (DAC) with a 3-wire SPI interface. Up to eight devices can be independently programmed from the same SPI bus. The full-scale output current is set with two external resistors. The maximum output current can reach 300 mA. Figure 17 shows the functional block diagram of the ADN8810.03195-0-017Figure 17. Functional Blocks, Pins, and Internal ConnectionsSETTING FULL-SCALE OUTPUT CURRENTTwo external resistors set the full-scale output current from the ADN8810. These resistors are equal in value and are labeled R SN in Figure 1. Use 1% or better tolerance resistors to achieve the most accurate output current and the highest output impedance.Equation 3 shows the approximate full-scale output current. The exact output current is determined by the data register code as shown in Equation 4. The variable code is an integer from 0 to 4095, representing the full 12-bit range of the ADN8810.SNFS R I ×≈10096.4(3)+Ω××=1.0151000,1k R R Code I SN SN OUT(4)The ADN8810 is designed to operate with a 4.096 V referencevoltage connected to VREF. The output current is directly proportional to this reference voltage. To achieve the bestperformance, use a low noise precision (the ADR292, ADR392, or REF198 is recommended).POWER SUPPLIESThere are three principal supply current paths through the ADN8810: •AVDD provides power to the analog front end of the ADN8810 including the DAC. Use this supply line topower the external voltage reference. For best performance, AVDD must be low noise.•DVDD provides power for the digital circuitry. Thisincludes the serial interface logic, the SB and RESET logic inputs, and the FAULT output. Tie DVDD to the same supply line used for other digital circuitry. It is not necessary for DVDD to be low noise.•PVDD is the power pin for the output amplifier. It canoperate from as low as 3.0 V to minimize power dissipation in the ADN8810. For best performance, PVDD must be low noise.Current is returned through the following three pins: •AVSS is the return path for both AVDD and PVDD. This pin is connected to the substrate of the die as well as the slug on the bottom of the lead frame chip scale package (LFCSP). For single-supply operation, connect this pin to a low noise ground plane.•DVSS returns current from the digital circuitry powered by DVDD. Connect DVSS to the same ground line or plane used for other digital devices in the application.•DGND is the ground reference for the digital circuitry. In a single-supply application, connect DGND to DVSS.For single-supply operation, set AVDD to 5 V , set PVDD from 3.0 V to 5 V , and connect AVSS, AGND, and DGND to ground.SERIAL DATA INTERFACEThe ADN8810 uses a serial peripheral interface (SPI) with three input signals: SDI, CLK, and CS . Figure 2 shows the timing diagram for these signals.Data applied to the SDI pin is clocked into the input shift register on the rising edge of CLK. After all 16 bits of the data-word have been clocked into the input shift register, a logic high on CS loads the shift register byte into the ADN8810. If more than 16 bits of data are clocked into the shift register before CS goes high, bits are pushed out of the register in first-in first-out (FIFO) fashion.The four MSB of the data byte are checked against the address of the device. If they match, the next 12 bits of the data byte are loaded into the DAC to set the output current. The first bit (MSB) of the data byte must be a logic zero, and the following three bits must correspond to the logic levels on pins ADDR2, ADDR1, and ADDR0, respectively, for the DAC to be updated. Up to eight ADN8810 devices with unique addresses can be driven from the same serial data bus.Table 5 shows how the 16-bit DATA input word is divided into an address byte and a data byte. The first four bits in the input word correspond to the address. Note that the first bit loaded (A3) must always be zero. The remaining bits set the 12-bit data byte for the DAC output. Three example inputs are demonstrated.•Example 1: This SDI input sets the device with an address of 111 to its minimum output current, 0 A. Connecting the ADN8810 pins ADDR2, ADDR1, and ADDR0 to VDD sets this address.• Example 2: This input sets the device with an address of 000 to a current equal to half of the full-scale output. •Example 3: The ADN8810 with an address of 100 is set to full-scale output.STANDBY AND RESET MODESApplying a logic low to the SB pin deactivates the ADN8810 and puts the output into a high impedance state. The device continues to draw 1.3 mA of typical supply current in standby. When logic high is reasserted on the SB pin, the output current returns to its previous value within 6 µs.Applying logic low to RESET sets the ADN8810 data register to all zeros, bringing the output current to 0 A. When RESET is deasserted, the data register can be reloaded. Data cannot be loaded into the device while it is in standby or reset mode.POWER DISSIPATIONThe power dissipation of the ADN8810 is equal to the output current multiplied by the voltage drop from PVDD to the output.()SN OUT OUT OUT DISS R I V PVDD I P ×−−×=²(5)The power dissipated by the ADN8810 causes a temperature increase in the device. For this reason, PVDD must be as low as possible to minimize power dissipation.While in operation, the ADN8810 die temperature, also known as junction temperature, must remain below 150°C to prevent damage. The junction temperature is approximatelyDISS JA A J P T T ×θ+=(6)where:T A is the ambient temperature in °C,θJA is the thermal resistance of the package (32°C/W). •Example 4: A 300 mA full-scale output current is required to drive a laser diode within an 85°C environment. The laser diode has a 2 V drop and PVDD is 3.3 V .Using Equation 5, the power dissipation in the ADN8810 is found to be 267 mW . At T A = 85°C, this makes the junction temperature 93.5°C, which is well below the 150°C limit. Note that even with PVDD set to 5 V , the junction temperature increases to only 110°C.USING MULTIPLE ADN8810 DEVICES FOR ADDITIONAL OUTPUT CURRENTConnect multiple ADN8810 devices in parallel to increase the available output current. Each device can deliver up to 300 mA of current. To program all parallel devices simultaneously, set all device addresses to the same address byte and drive all CS , SDI, and CLK from the same serial data interface bus. The circuit in Figure 18 uses two ADN8810 devices and delivers 600 mA to the pump laser.SERIAL INTERFACE (FROM µC OR DSP)I 600mA03195-0-018Figure 18. Using Multiple Devices for Additional Output CurrentTable 5. Serial Data Input ExamplesAddress Byte Data Byte SDI Input A3 A2 A1 A0D11 D10 D9 D8 D7 D6 D5 D4D3 D2 D1 D0 Example 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Example 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Example 31 01111 11 11 1 1 1 1ADDING DITHER TO THE OUTPUT CURRENTSome tunable laser applications require the laser diode bias current to be modulated or dithered. This is accomplished by dithering the V REF voltage input to the ADN8810. Figure 19 demonstrates one method.DITHERR203195-0-019Figure 19. Adding Dither to the Reference VoltageSet the gain of the dither by adjusting the ratio of R2 to R1. Increase C to lower the cutoff frequency of the high-pass filter created by C and R1. The cutoff frequency of Figure 19 is approximately 98 Hz.The AD8605 is recommended as a low offset, rail-to-rail input amplifier for this circuit.DRIVING COMMON-ANODE LASER DIODESThe ADN8810 can power common-anode laser diodes. These are laser diodes whose anodes are fixed to the laser module case. The module case is typically tied to either VDD or ground. For common anode to ground applications, a −5 V supply must be provided.In Figure 20, R SN sets up the diode current by the following equation:40965.16111.1096.4Code k R I SN ×Ω+×=(7)where Code is an integer value from 0 to 4095.Using the values in Figure 20, the diode current is 300.7 mA at a code value of 2045 (0x7FF), or half full-scale. This effectively provides 11-bit current control from 0 mA to 300 mA of diode current.The maximum output current of this configuration is limited by the compliance voltage at the IOUT pin of the ADN8810. The voltage at IOUT cannot exceed 1 V below PVDD, in this case, 4 V. The IOUT voltage is equal to the voltage drop across R S N plus the gate-to-source voltage of the external FET. For this reason, select a FET with a low threshold voltage.In addition, the voltage across the R SN resistor cannot exceed the voltage at the cathode of the laser diode. Given a forward laser diode voltage drop of 2 V in Figure 20, the voltage at the RSN pin (I × R SN ) cannot exceed 3 V . This sets an upper limit to the value of code in Equation 5.Although the configuration for anode-to-ground diodes is similar, the supply voltages must be shifted down to 0 V and −5 V , as shown in Figure 21. The AVDD, DVDD, and PVDD pins are connected to ground with AVSS connected to −5 V .The 4.096 V reference must also be referred to the −5 V supply voltage. The diode current is still determined by Equation 7. All logic levels must be shifted down to 0 V and −5 V levels as well. This includes RESET , CS , SCLK, SDI, SB , and all ADDR pins. Figure 22 shows a simple method to level shift a standard TTL or CMOS (0 V to 5 V) signal down using external FETs.NOTE: LEAVE FB WITH NO CONNECTION03195-0-020Figure 20. Driving Common-Anode-to-VDD Laser DiodesNOTE: LEAVE FB WITH NO CONNECTION03195-0-021Figure 21. Driving Common-Anode-to-Ground Laser Diodes with a NegativeSupplyRESETCS SCLK SDI03195-0-022Figure 22. Level Shifting TTL/CMOS LogicPCB LAYOUT RECOMMENDATIONSAlthough they can be driven from the same power supply voltage, keep DVDD and AVDD current paths separate on the printed circuit board (PCB) to maintain the highest accuracy; likewise for AVSS and DGND. Tie common potentials together at a single point located near the power regulator. This technique is known as star grounding and is shown in Figure 23. This method reduces digital crosstalk into the laser diode or load.LOGIC GROUNDRETURN03195-0-023Figure 23. Star Supply and Ground TechniqueTo improve thermal dissipation, solder the slug on the bottom of the LFCSP package be soldered to the PCB with multiple vias into a low noise ground plane. Connecting these vias to a copper area on the bottom side of the board further improves thermal dissipation.Use identical trace width and lengths for the two output sense resistors. These lengths are shown as X and Y in Figure 24. Differences in trace lengths cause differences in parasitic seriesresistance. Because the sense resistors can be as low as 1.37 Ω, small parasitic differences can lower both the output current accuracy and the output impedance. See the AN-619 Application Note for a sample layout for these traces.03195-0-024Figure 24. Use Identical Trace Lengths for Sense ResistorsSUGGESTED PAD LAYOUT FOR CP-24 PACKAGEFigure 25 shows the dimensions for the PCB pad layout for the ADN8810. The package is a 4 mm × 4 mm, 24-lead LFCSP . The metallic slug underneath the package must be soldered to a copper pad connected to AVSS, the lowest supply voltage to the ADN8810. For single-supply applications, this is ground. Use multiple vias to this pad to improve the thermal dissipation of the package.0.0270.011(0.28)0.020(0.50)CONTROLLING DIMENSIONS ARE IN MILLIMETERS03195-0-025Figure 25. Suggested PCB Layout for the CP-24-10 Pad LandingOUTLINE DIMENSIONS0.300.250.200.800.750.700.25 MIN2.202.10 SQ 2.000.50BSC0.500.400.30COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8.BOTTOM VIEWTOP VIEWSIDE VIEW4.104.00 SQ 3.900.05 MAX 0.02 NOM0.203 REFCOPLANARITY0.08PIN 1INDICATORFOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONSSECTION OF THIS DATA SHEET.02-21-2017-AEXPOSED PAD00SEATING PLANEDETAIL A (JEDEC 95)Figure 26. 24-Lead Lead Frame Chip Scale Package [LFCSP]4 mm × 4 mm Body and 0.75 mm Package Height(CP-24-10)Dimensions shown in millimetersORDERING GUIDEModel 1Temperature Range Package DescriptionPackage Option ADN8810ACPZ–40°C to +85°C 24-Lead Lead Frame Chip Scale Package [LFCSP] CP-24-10 ADN8810ACPZ-REEL7–40°C to +85°C 24-Lead Lead Frame Chip Scale Package [LFCSP] CP-24-101Z = RoHS Compliant Part.©2004–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D03195-0-11/17(C)。

1FSD08110 产品说明书

1FSD08110 产品说明书

1FSD08110产品说明书概述1FSD08110是为高压大功率IGBT开发的光纤接口的高性能数字驱动器,适用于两电平及多电平变流器,数字化控制可优化IGBT开关性能,同时集成了“智能故障管理系统”,为IGBT 提供最优化的保护,其良好的EMC特性,适用于恶劣的电磁场环境,已经在新能源、轨道交通、工业传动及智能电网等各个领域广泛使用。

1FSD08110是针对140×190mm 及140×130mm封装的模块,如Infineon IHM与ABB HiPak开发的即插即用型驱动器,适用于不同产商的相同封装IGBT。

图1 产品照片目录概述 (1)系统框架图 (3)使用步骤及注意事项 (4)机械尺寸图 (5)引脚定义 (7)状态指示灯说明 (8)驱动参数 (9)主要功能说明 (12)短路保护——didt (12)短路保护——电阻 (13)欠压保护 (13)软关断 (14)数控有源钳位 (15)分级关断 (16)脉冲异常保护 (17)不会坏的驱动 (18)智能故障管理系统 (19)故障编码返回 (21)光纤口告知信号 (21)环境过温保护 (23)门极电阻位置指示 (24)订购信息 (25)技术支持 (25)法律免责声明 (25)联系方式 (25)系统框架图图2 系统框架图原边电源输入直流电压15V,通过相关电路得到系统所需的供电电压,保证系统的能量来源;PWM信号经光纤传输直接到副边,经过相关单元电路的处理得到半导体器件IGBT的驱动信号。

当门极开通时,若没有发生短路故障,则主功率器件饱和导通,IGBT-CE两端电压接近于零,IGBT-CE检测被复位,相应的软关断电路不启动;若发生短路故障,门极开通的过程中,主功率器件退出饱和,IGBT-CE两端电压接近于母线电压,IGBT-CE检测被置位,相应的软关断电路被启动来保护主功率器件不被损坏,同时故障信号经光纤传到上位机;当没有PWM信号输入时,门极则一直处于负压关断状态。

AO8810中文资料

AO8810中文资料

SymbolTyp Max 648389120R θJL 5370Maximum Junction-to-Lead CSteady-State°C/WThermal Characteristics ParameterUnits Maximum Junction-to-Ambient A t ≤ 10s R θJA °C/W Maximum Junction-to-Ambient A Steady-State °C/W AO8810Common-Drain Dual N-Channel Enhancement Mode FieldAO8810SymbolMin TypMaxUnits BV DSS 20V 1T J =55°C5±1µA ±10µA V GS(th)0.40.61V I D(ON)30A 16.520T J =125°C23282024m Ω2432m Ωg FS 29S V SD 0.761V I S2.5A C iss 1160pF C oss 187pF C rss 146pF R g 1.5ΩQ g 16nC Q gs 0.8nC Q gd 3.8nC t D(on) 6.2ns t r 12.7ns t D(off)51.7ns t f 16ns t rr 17.7ns Q rr6.7nCTHIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE.Body Diode Reverse Recovery TimeBody Diode Reverse Recovery Charge I F =7A, dI/dt=100A/µsDrain-Source Breakdown Voltage On state drain currentI D =250µA, V GS =0V V GS =4.5V, V DS =5V V GS =4.5V, I D =7AReverse Transfer Capacitance I F =7A, dI/dt=100A/µs Electrical Characteristics (T J =25°C unless otherwise noted)STATIC PARAMETERS Parameter Conditions I DSS µA Gate Threshold VoltageV DS =V GS I D =250µA V DS =16V, V GS =0VZero Gate Voltage Drain Current I GSS Gate-Body leakage current V DS =0V, V GS =±4.5V R DS(ON)Static Drain-Source On-ResistanceForward Transconductance Diode Forward Voltage m ΩV GS =2.5V, I D =5.5A I S =1A,V GS =0V V DS =5V, I D =7A V GS =1.8V, I D =5ATurn-On Rise Time Turn-Off DelayTime V GS =5V, V DS =10V, R L =1.35Ω, R GEN =3ΩGate resistance V GS =0V, V DS =0V, f=1MHzTurn-Off Fall TimeSWITCHING PARAMETERS Total Gate Charge V GS =4.5V, V DS =10V, I D =7AGate Source Charge Turn-On DelayTime DYNAMIC PARAMETERS V GS =0V, V DS =10V, f=1MHz Gate Drain Charge V DS =0V, V GS =±8V Maximum Body-Diode Continuous CurrentInput Capacitance Output Capacitance A: The value of R θJA is measured with the device mounted on 1in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.B: Repetitive rating, pulse width limited by junction temperature.C. The R θJA is the sum of the thermal impedence from junction to lead R θJL and lead to ambient.D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 µs pulses, duty cycle 0.5% max.E. These tests are performed with the device mounted on 1 in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The SOA curve provides a single pulse rating. Rev 3 : June 2005AO8810AO8810TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS。

无源器件资料

无源器件资料

2.1 无源器件基础知识 (3)工程常用无源器件 (3)无源器件的生产工艺要求 (6)光器件基本知识 (6)微带与腔体的区别 (8)2.2 常用器件分类介绍 (8)微带功率分配器 (8)器件特点 (8)器件用途 (8)器件型号及指标 (9)微带定向耦合器 (12)器件特点 (12)器件用途 (13)器件型号及指标 (13)腔体耦合器 (16)器件特点 (16)器件用途 (17)器件型号及指标 (17)基站耦合器 (40)器件特点 (40)器件用途 (41)器件型号及指标 (41)双频合路器 (48)器件特点 (48)器件用途 (49)器件型号及指标 (49)腔体功率分配器 (51)器件特点 (51)器件用途 (52)器件型号及指标 (52)电桥 (55)器件特点 (55)器件用途 (56)器件型号及指标 (56)腔体双工器 (58)器件特点 (58)器件用途 (59)器件型号及指标 (59)腔体滤波器 (68)器件特点 (68)器件用途 (69)器件型号及指标 (69)光器件 (85)固定光衰减器 (85)光环形器 (86)光隔离器 (87)光纤光缆跳线 (88)单/双窗口宽带耦合器(1*2、2*2 系列) (89)高隔离度波分复用器 (91)滤波片型波分复用器 (92)天线 ........................................................................................ 错误!未定义书签。

天线理论知识 ....................................................................... 错误!未定义书签。

天线的选择原则................................................................... 错误!未定义书签。

2-ADT-8860硬件说明书0603

2-ADT-8860硬件说明书0603

五、适用范围
� � � 点胶行业; 喷涂行业; 植毛制刷行业;
第二章:产品说明 产品结构 一、产品外形尺寸图
三章:电气连接
一、端子定义图
� 1 线号说明( 17 路输入,顺序请参考板上的丝印) IN IN1
IN1 INCOM1 IN0 IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 IN11 IN12 IN13 IN14 IN15 IN16 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 3.81mm
PUCOM E XT_V CC50B EXT_24V E XT_24V _GND A E CA + A E CA A E CB + A E CB -
A1 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 DB15 A A LA RM A DRA DR+ A P UA P U+
PUCOM E XT_V CC50B EXT_24V E XT_24V _GND B E CA + B E CA OUT21 B E CB + A E CC+ B E CB A E CC-
1200、2400、4800、9600、19200、38400、57600、 115200 CAN 总线通讯:标准 CAN 总线电气标准
四、应用环境
电源要求:DC12—24V; 功 耗:空载功耗<15W 工作温度: -10℃ —50℃ 储存温度: -20℃ —80℃ 工作湿度: 20% —95% 储存湿度: 0% —95%

, ) JDA1 线号说明 (两路模拟电压输出 两路模拟电压输出, 顺序请参考板上的丝印 顺序请参考板上的丝印)

巴氏硬度计使用说明书

巴氏硬度计使用说明书

巴氏硬度计简介:巴氏硬度计(巴克尔硬度计)是一种压痕硬度计,它以特定压头在标准弹簧力的作用下压入试样,以压痕的深度确定试样的硬度。

巴氏硬度计有100个刻度,每个刻度代表压入0.0076mm的深度。

可测量的材料:铝、铝合金、软金属、塑料、光纤、消防梯、复合材料、橡胶或皮革。

玻璃钢等。

用途巴氏硬度计主要用于测试铝及铝合金。

测试铝型材、板材、管材、棒材及铝合金铸件、锻件、机械加工零件,测试超厚铝合金材料及组装后的铝合金制品(例如铝合金门窗、幕墙、消防梯等)。

相关标准:ASTM B648《巴柯尔硬度计测量铝合金硬度的试验方法》。

巴氏硬度计的另一主要应用是用于测试玻璃钢(玻璃纤维增强塑料)和硬塑料。

大部分玻璃钢制品的产品标准中都要求测试巴氏硬度。

相关标准:GB/T3854—2005《增强塑料巴柯尔硬度试验方法》、ASTM D2583—07《巴氏硬度计测量硬塑料压痕硬度的试验方法》。

巴氏硬度计的改进型935—1、936—1可用于测试很软的金属、软塑料、皮革、橡胶、木材等。

工作原理巴氏硬度计(巴柯尔硬度计)是一种压痕式硬度计,它以特定压头在标准弹簧的压力作用下压入试样表面,以压痕的深浅表征试样硬度的高低。

巴氏硬度计有100个分度,每个分度单位代表压入0.0076mm的深度。

压入越深,读数越高,材料越软。

巴氏硬度公式为:HBa=100-L/0.0076式中:HBa—巴氏硬度符号; L —压痕深度(mm); 0.0076—单位硬度值代表的压痕深度(mm)目录一、概述 (1)二、原理与结构 (2)三、技术参数 (3)四、使用方法 (3)五、仪器校正 (4)六、压针 (5)七、硬度块 (7)八、测量次数 (7)九、型号选择 (8)十、配置 (8)十一、硬度换算表 (9)一、概述巴氏硬度计(巴柯尔硬度计)是一种压痕式硬度计,最早产自美国。

巴氏硬度计有三种型号,其中OU2800-1型巴氏硬度计是代表型产品,应用量最大,一般提到巴氏硬度计主要是指OU2800-1型。

八达10组合动力中心说明书201207L 2012.8.15新

八达10组合动力中心说明书201207L  2012.8.15新
主腔正面为长方形快开门,为止口型隔爆机构,灵活的铰链与操作机构,使门的开启、关闭操作 都非常简单、轻便,后面也设有螺栓紧固的铰链式门结构,可方便的对隔离换相开关、各回路的电源 和负荷进行接线及检修,同时,对发生故障的控制单元可快速整体更换,减少故障处理的工作量和时 间。
控制单元的主回路静触头座为多片状上下分体的扁形结构,杜绝了圆形多瓣状梅花触指结构的接 插座接触面积小、阻值大、可调性差、结构不合理、弹簧易受热退火、触指散架的故障隐患。
满足用户不同要求,编制不同程序,实现不同控制功能,满足各种负荷组合。
2、结构特征与工作原理
2.1 箱体结构
组合开关外壳为长方体框架结构,由 20 ㎜厚的 Q235A 钢板焊接而成,造型美观、坚固耐用。隔离 换相开关操纵手柄,全停按钮,闭锁按钮和机构及显示屏在箱体前面板上。
箱体主腔为抽屉式前、后开门的结构形式,每个回路设有滚轮及轨道的控制单元抽屉式小车,装 有真空接触器、中间继电器、时间继电器 、压敏电阻或阻容装置、电流互感器、二次回路熔断器、变 送器及操作过电压保护电路等元器件,组成各回路的控制单元。控制单元的真空接触器容量,可根据 用户要求,灵活的进行组合。
八达电气(昆山)有限公司 二 0 一二年八月
目录
一、概述………………………………………………………………………….2
二、设备的运输和存放………………………………………………………. 3
三、安装…………………………………………………………………………….4
四、注意…………………………………………………………………………….5
2.2.2.2 在出线侧对应于输出回路,设置有相应数量的三连或两连的三芯控制电缆连接器或者压紧螺母
式输出装置,127 上辅助电源及各路的本安起停控制等都从此引出,每个回路各有 1、2、3 三个接线端

乐泰各类胶粘剂型号及简介

乐泰各类胶粘剂型号及简介

产品分类Loctite 乐泰胶系列规格性能乐泰瞬干胶乐泰瞬干胶在工业上得到了最广泛的应用。

乐泰瞬干胶涵盖了各种粘度,不同固化速度。

充分适应各种充间隙及与被粘接材料。

乐泰系列瞬干胶包括增强型、低气味、无白化,对表面不敏感耐热型的产品。

380增强型橡胶增强型,可粘接金属,橡胶及塑料,优良的抗剥离,冲击及剪切强度。

403低气味,低白化型耐湿性好,用于非精确配合的零件的粘接,低气味,低白化(不需要复杂通风系统)。

401表面不敏感型通用型,中粘度,用于惰性表面,粘接多孔、酸性及吸收性的材料。

408通用型是一种通用的,对表面不敏感的胶可以用于难粘接的表面406表面不敏感型通用型,低粘度402用于惰性表面,粘接多孔,酸性及吸收性材料411增强型抗冲击性能好,抗剥离强度高,能填充间隙4201耐热型橡胶增加型,中等粘度,耐冲击,耐高温(120℃),热老化强度是普通的10倍414塑料粘接型耐湿性,耐候性好。

用于粘接塑料。

415金属粘接型高粘度,抗冲击性能好。

用于粘接金属。

454表面不敏感型通用型,高粘度。

用于惰性表面,粘接多孔、酸性及吸收性的材料。

460低气味,低白化型·无白化,低粘度,低气味。

粘接后零件洁净无玷污。

480橡胶增强型黑色中等粘度,耐冲击,耐振动,耐剥离及耐热性能优良。

495塑料粘接型通用型,中低粘度。

用于粘接橡胶、金属和塑料件。

能填充0.10mm的间隙。

496金属粘接型中粘度、初固迅速。

用于粘接金属。

泊洛沙姆188安全技术说明书

泊洛沙姆188安全技术说明书

安全技术说明书页: 1/10 巴斯夫安全技术说明书按照GB/T 16483编制日期 / 本次修订: 21.05.2023版本: 4.0日期/上次修订: 29.12.2021上次版本: 3.2日期 / 首次编制: 04.07.2013产品: 泊洛沙姆188Product: Lµtrol® micro 68(30241530/SDS_GEN_CN/ZH)印刷日期 13.11.20231. 化学品及企业标识泊洛沙姆188Lµtrol® micro 68推荐用途和限制用途: 药用辅料公司:巴斯夫(中国)有限公司中国上海浦东江心沙路300号邮政编码 200137电话: +86 21 20391000传真号: +86 21 20394800E-mail地址: **********************紧急联络信息:巴斯夫紧急热线中心(中国)+86 21 5861-1199巴斯夫紧急热线中心(国际):电话: +49 180 2273-112Company:BASF (China) Co., Ltd.300 Jiang Xin Sha RoadPu Dong Shanghai 200137, CHINA Telephone: +86 21 20391000Telefax number: +86 21 20394800E-mail address: ********************** Emergency information:Emergency Call Center (China):+86 21 5861-1199International emergency number: Telephone: +49 180 2273-1122. 危险性概述纯物质和混合物的分类:根据 GHS 标准,该产品不需要进行分类。

巴斯夫安全技术说明书日期 / 本次修订: 21.05.2023版本: 4.0产品: 泊洛沙姆188Product: Lµtrol® micro 68(30241530/SDS_GEN_CN/ZH)印刷日期 13.11.2023 标签要素和警示性说明:根据GHS标准,该产品不需要添加危险警示标签其它危害但是不至于归入分类:在一定条件下,产品可形成粉尘爆炸。

水龙头cn

水龙头cn
22
04-001-32-13
内摩擦片Ⅲ
2
SL001.32.13
23
04-001-32-14
内联结套
1
SL001.32.14
24
04-001-32-15
加力套
1
SL001.32.15
25
B8931-075-59
挡圈75
1
26
6009
轴承45×75×16
1
GB/T276-94
27
04-001-32-16
1
46
04-001-45
活接头Rc1 1/2"
1
47
04-001-28-00
管1 1/2"
1
SL001.28.00
48
B08
螺母M24×
1
GB812-88
49
04-001-29
接头
1
50
04-001-30-00
联结管(一)
1
SL001.30.00
51
04-001-31-00
联结管(二)
1
SL001.31.00
11
B1152-10-01
油杯M10×1
1
GB1152-89
12
04-001-05-10
下盘根盒
1
SL001.05.10
13
04-001-05-11
隔环
2
SL001.05.11
14
04-001-05-12
下O型密封压套
1
SL001.05.12
15
B3452
O型密封圈109×
1
GB/
16
B0075-10-012-74

ucc28810中文资料3

ucc28810中文资料3

LED照明电源控制器件器件特点:●一种应用于交流输入的低消耗的LED照明控制器。

●具备功率因素校正●利用电压转换速率比较器加强瞬态响应。

●接口支持传统的墙壁调光器●拥有精确的内部参考电压适应严格的输出要求●内含两个欠压锁存模块●拥有过压保护电路,开路反馈保护电路和使能电路●-750~+750毫安的栅极驱动电流峰值●低启动需求和低操作电流需求●无铅封装应用:●使用HB(蓝色)发光二极管达到交流输入通用照明的应用●工业、商业和住宅的照明设备●户外照明:街头、道路、停车场、施工和观赏LED照明设备产品描述:UCC28810 和UCC28811是一般照明能源控制器,应用于低或中等流明度的照明场合,并切含有功率因素校正和EMC(电磁兼容)能力。

它的用途是在精确控制反激变换器,巴克或升压转换器。

它的特点是通过一个跨导的电压放大器来反馈错误处理,一个简单的电流发生器产生与输入电压成正比的信号,通过电流采样比较器(PWM),PWM逻辑功能和推拉输出电路驱动外部场效应管FET.简化的应用图:Triac Dimming Detect三端双向可控硅开关元件调光检测Bias偏置电压产品描述(续):在控制临界导通模式上, TZE引脚控制PWM的自激振荡电流,同时通过比较采样电流控制开关通断状态。

此外,控制器提供的功能还有峰值电流限制,重启时间,过压保护和使能功能。

这系统能检测到零功率输出,也就是检测是否空载,以使得在空载情况下能自动关闭而不会出现过压情况。

该器件在检测大信号误差放大上有着创新性的高速。

其较低的启动和运行电流的要求不但低功耗,而且更容易使其启动工作。

无论在一般情况还是过压情况下,高精准度的内置参考系数都可以令器件更快地调节输出电压,从而提高了系统的可靠性。

使能比较器的作用在于令器件在输入很低和当反馈回路损坏的情况下处于关闭状态。

从而保护电路和器件。

UCC28810和UCC28811有两个关键参数的差异,那就是欠压锁存的触发临界值和gM电流源放大器(?gm意思不确)。

一种X波段芯片级多普勒雷达模块[实用新型专利]

一种X波段芯片级多普勒雷达模块[实用新型专利]

专利名称:一种X波段芯片级多普勒雷达模块
专利类型:实用新型专利
发明人:李秀萍,张家奇,王皓,吴敏,陈德阳,谭韬,李昱冰,杨农军,李江涛,杨威
申请号:CN202020434658.4
申请日:20200330
公开号:CN212083651U
公开日:
20201204
专利内容由知识产权出版社提供
摘要:本实用新型涉及一种X波段芯片级多普勒雷达模块,其解决了现有多普勒雷达模块一致性差、加工复杂、成本高以及体积过大等技术问题,其设有介质基板,介质基板设有射频前端和电源转换电路,射频前端电路包括用于输出信号的X波段雷达芯片、用于发射、接收信号的收发天线以及芯片周边阻容元件,电源转换电路包括转换电压的LDO芯片以及电容元件,收发天线为天线阵列,天线阵列与雷达芯片连接,位于介质基板的正面。

本实用新型可广泛应于智慧照明、安防探测、自动驾驶以及智能家居等领域。

申请人:北京富奥星电子技术有限公司
地址:100088 北京市海淀区学院南路15号院7号楼10层1109
国籍:CN
代理机构:北京怡丰知识产权代理有限公司
代理人:于振强
更多信息请下载全文后查看。

傲胜按摩椅产品编号和制造编号识别

傲胜按摩椅产品编号和制造编号识别

傲胜按摩椅产品编号和制造编号识别
科技发展促进了人类社会的高速发展,不论是工业的进步、改善企业的高效运营,还是为生活带来极大的便利,也给我们带来了无尽的惊喜。

其中,最令人惊叹的一个方面,就是自动化技术发展的迅猛,以及它在医疗美容、家政保洁等行业中所发挥的作用。

自动控制技术是一种十分重要的技术手段,它可以改变我们的效率,同时还可以为我们提供更加安全可靠的操作环境。

此外,自动按摩椅也是一种利用自动控制技术实现自动操作的产品,由于其多种舒适功能及安全可靠的操作性也被大家所欣赏。

目前,在自动按摩椅中,傲胜按摩椅的产品编号和制造编号更是受到众多客户的关注,它们分布在欧洲市场上,并且得到了广泛的应用。

傲胜按摩椅的产品编号一般由S(series)+4位数字形成,客户可以直接提供此编号来获取信息,如产品型号、配置以及有关服务事宜。

此外,傲胜按摩椅的制造编号更是它与众不同之处,一般由4字母+4位数字组成,此编号可以作为客户获取详细产品记录的有效凭据,如果发现问题,客户可以基于此编号进行报修等操作,以获取最佳的售后服务。

傲胜按摩椅以其多功能、安全可靠及售后服务完善等特点获得日益改善,成为消费者们生活舒适便利的坚定后盾,让他们享受更安心更舒适的日常生活,把休息和娱乐交给傲胜按摩椅,为自己放松做一个有效的补充,让自己力量满满,让家人比以往更加惬意,由此也可见傲胜按摩椅的产品编号和制造编号的重要性。

N08810高温合金成分N08810对应牌号

N08810高温合金成分N08810对应牌号

一:牌号N08810奥氏体耐热合金
热推孔直径的方法。

灵活的产品规范变换经济耐用易维护低成本这种方法更灵活的使用和设备要求简单也可以产生不超过设备厚壁管的能力。

如大直径的制备需要槽管弯头和类似的产品。

薄壁厚度你只需要添加一些配件。

使用热推的扩展方法适用于生产大直径。

的优点越来越广泛的应用。

热穿孔轧制方法。

少站芯棒连轧轧制前者主要是有限的芯棒连轧轧制该方法以扩展为主扩展纵向滚动和斜轧后者的优势是低成本。

的控制系统良好的产品质量低金属消费三辊限制芯棒连轧轧制和浮动芯棒连轧轧制。

这些方法效率高短过程,适用于
批量小,品种多,多规格和精度高的厚壁合金管生产,所以它被广泛应用。

政策鼓励扩大高压合金管的应用领域。

目前我国合金管消费量占钢材总量的比重仅为发达的一半,合金管使用领域扩大为行业发展提供更广阔的空间。

根据中国特钢协会合金管分会专家组的研究。

有必要对焊缝进行机械打磨,整理焊缝外表渗碳,显露金属光泽,避免表层碳
化严峻形成裂纹。

外口焊接应一次焊完,再焊接里口的剩下有些。

Abode 系列热水龙头技术规格说明书

Abode 系列热水龙头技术规格说明书
Important Technical Data
Minimum operating pressure 0.75 bar Maximum operating pressure 5.0 bar*
Maximum hot water temperature 70°C* Recommended hot water temperature 46°C
All Abode taps are either WRAS approved or manufactured in accordance with recognised European standards. Please ensure that your Abode product is fitted in accordance with Local Water Byelaws. Where hot and cold water mix within any product, then suitable non return valves should be installed to the hot and cold supplies to prevent backflow.
Care Instructions for your Basin Mixer
To maintain the appearance of this tap, ensure that it is regularly cleaned only using a clean, soft damp cloth. A solution of warm water and a mild liquid detergent may be used where necessary, and then the fitting rinsed thoroughly and wiped dry. Any other cleaning action or cleaning products will invalidate your warranty. If the product has a removable spout diffuser it can be unscrewed and cleaned periodically in warm water to maintain flow.

8A60资料

8A60资料

FeaturesMechanical Data· The plastic package carries Underwrites Laboratory Flammability Classification 94V-0· High forward current capability · High surge current capability· Construction utilizes void-free molded plastic technique · High temperature soldering guaranteed : 250¡É/10 seconds, 0.375"(9.5mm) lead length, 5 lbs, (2.3kg) tensionMaximum Ratings And Electrical Characteristics· Case : P-6 molded plastic body· Terminals : Lead solderable per MIL-STD-750, method 2026· Polarity : Color band denotes cathode end · Mounting Position : Any· Weight : 0.07 ounce, 2.1 grams(Ratings at 25¡É ambient temperature unless otherwise specified, Single phase, half wave 60Hz, resistive or inductive load. For capacitive load, derate by 20%)Notes:(1) Measured at 1MHz and applied reverse voltage of 4.0V DC.(2) Thermal resistance from junction to ambient and from junction to lead at 0.375"(9.5mm) lead length, P.C.B. mounted with 1.1¡¿1.1"(30¡¿30mm) copper pads.Maximum recurrent peak reverse voltage Maximum RMS voltage Maximum DC blocking voltageVolts Peak forward surge current 8.3ms half sine wave superimposed on rated load (JEDEC method)V DC Maximum average forward rectified current 0.375"(9.5mm) lead length T A =60¡ÉMaximum instantaneous forward voltage at 8.0AV RRM Volts SymbolsUnits1.1V F V RMS 8.0Amps 400.0I FSM T J T STG100.0-50 to +175¡ÉVolts Amps Maximum reversecurrent at rated voltageTypical thermal resistance (Note 2)Typical junction capacitance (Note 1)Operating and storage temperature range508A05355010.020.04.0Volts ¥ìA ¡É/W pF I (AV)I R R¥èJL R¥èJA T A =25¡ÉT A =100¡É150C J 1008A10701002008A201402004008A402804006008A604206008008A8056080010008A1007001000Dimensions in inches and (millimeters)P-6元器件交易网。

【研究】Incoloy800H(N08810)成分、性能、参数...

【研究】Incoloy800H(N08810)成分、性能、参数...

上海钢研-张工:158–O185-9914INCOLOY800H/HT是一种广泛应用于高温承压结构件的奥氏体耐热合金.800H/HT的高强度主要是由于添加了碳,铝,钛元素,并且在最低1149℃温度下退火以达到晶粒度ASTM5等级或者更粗。

介绍编辑对于800 H/HT在787℃以下使用,焊接使用 82(ER NiCr-3)的焊丝.R A 330-04(N08334)焊丝具有相匹配的热膨胀系数,更高的强度.如果希望获得最大的力学强度,最好使用焊丝617(ERNiCrCoMo-1)或者焊条117(ENiCrCoMo-1).为了避免800H/HT焊接部件在 538℃以上可能发生的应力松弛而导致晶界开裂, 需要在899℃进行焊后热处理,保温时间根据材料厚度每25毫米保温一小时(至少半小时/25毫米厚度),然后空冷.材料标准UNS 美标: N08811, N08810 W. Nr./EN 欧标: 1.4958, 1.4959 ASTM: B 409, B 408, B 407 ASME: SB-409, SB-408, SB-407 Code Case 1325应用领域1.硝酸冷凝器——耐硝酸腐蚀2.蒸汽加热管——很好的机械性能3.加热元件管——很好的机械性能对于应用于高达500℃的环境,合金供货态为退火态。

高温合金分为三类材料:760℃高温材料、1200℃高温材料和1500℃高温材料,抗拉强度800MPa。

或者说是指在760--1500℃以上及一定应力条件下长期工作的高温金属材料,具有优异的高温强度,良好的抗氧化和抗热腐蚀性能,良好的疲劳性能、断裂韧性等综合性能,已成为军民用燃气涡轮发动机热端部件不可替代的关键材料。

按照现有的理论,760℃高温材料按基体元素主要可分为铁基高温合金、镍基高温合金和钴基高温合金。

按制备工艺可分为变形高温合金、铸造高温合金和粉末冶金高温合金。

按强化方式有固溶强化型、沉淀强化型、氧化物弥散强化型和纤维强化型等。

1A降压恒流LED驱动芯片AT8860特点、应用

1A降压恒流LED驱动芯片AT8860特点、应用

1A降压恒流LED驱动芯片AT8860特点、应用
AT8860 是一款驱动高亮度LED 的降压恒流驱动芯片,AT8860 外部采用极少的元器件,为MR16 LED 灯杯、LED 舞台灯、车载LED 灯、太阳能LED 灯和LED 路灯提供一个极高性价比的解决方案。

AT8860 输入电压范围从5 伏到40 伏,输出电流通过采样电阻设定,单颗LED 最大输出电流可达1000 毫安。

AT8860 采用的恒流控制方法使得LED 电流精度高达±3%。

AT8860 通过ADJ 引脚接受0.5-2.5V 的模拟调光以及频率范围很宽的PWM 调光。

当DIM 的电压低于0.3V 时,功率开关关断,AT8860 进入极低工作电流的待机状态。

AT8860 内置功率开关,根据不同的输入电压,AT8860 可以驱动多颗1 瓦或单颗3 瓦的LED。

AT8860 包含过温保护、LED 短路和开路保护功能。

AT8860 采用SOT89-5、ESOP8、SOP8 三种封装。

管脚定义
主要参数特点:
●高达40V 的工作电压,更加安全,适应性更广;
●电流驱动能力1A,可以负载1W 或者3W 的LED;
●恒流效果稳定,不受电压波动影响;
●外围器件简单,效率极高,高达95%;
●过温保护和过流保护,让系统更安全;
●工作温度:-40℃---+125℃,温度容限高出同类方案25%;
●封装SOT89-5、SOP8
典型应用电路:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Symbol
Typ Max 648389120R θJL 5370Maximum Junction-to-Lead C
Steady-State
°C/W
Thermal Characteristics Parameter
Units Maximum Junction-to-Ambient A t ≤ 10s R θJA °C/W Maximum Junction-to-Ambient A Steady-State °C/W AO8810
Common-Drain Dual N-Channel Enhancement Mode Field
AO8810
Symbol
Min Typ
Max
Units BV DSS 20
V 1T J =55°C
5±1µA ±10µA V GS(th)0.40.6
1
V I D(ON)30
A 16.520T J =125°C
23282024m Ω2432m Ωg FS 29S V SD 0.76
1V I S
2.5
A C iss 1160pF C oss 187pF C rss 146pF R g 1.5ΩQ g 16nC Q gs 0.8nC Q gd 3.8nC t D(on) 6.2ns t r 12.7ns t D(off)51.7ns t f 16ns t rr 17.7ns Q rr
6.7
nC
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Body Diode Reverse Recovery Time
Body Diode Reverse Recovery Charge I F =7A, dI/dt=100A/µs
Drain-Source Breakdown Voltage On state drain current
I D =250µA, V GS =0V V GS =4.5V, V DS =5V V GS =4.5V, I D =7A
Reverse Transfer Capacitance I F =7A, dI/dt=100A/µs Electrical Characteristics (T J =25°C unless otherwise noted)STATIC PARAMETERS Parameter Conditions I DSS µA Gate Threshold Voltage
V DS =V GS I D =250µA V DS =16V, V GS =0V
Zero Gate Voltage Drain Current I GSS Gate-Body leakage current V DS =0V, V GS =±4.5V R DS(ON)
Static Drain-Source On-Resistance
Forward Transconductance Diode Forward Voltage m ΩV GS =2.5V, I D =5.5A I S =1A,V GS =0V V DS =5V, I D =7A V GS =1.8V, I D =5A
Turn-On Rise Time Turn-Off DelayTime V GS =5V, V DS =10V, R L =1.35Ω, R GEN =3Ω
Gate resistance V GS =0V, V DS =0V, f=1MHz
Turn-Off Fall Time
SWITCHING PARAMETERS Total Gate Charge V GS =4.5V, V DS =10V, I D =7A
Gate Source Charge Turn-On DelayTime DYNAMIC PARAMETERS V GS =0V, V DS =10V, f=1MHz Gate Drain Charge V DS =0V, V GS =±8V Maximum Body-Diode Continuous Current
Input Capacitance Output Capacitance A: The value of R θJA is measured with the device mounted on 1in 2
FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.
B: Repetitive rating, pulse width limited by junction temperature.
C. The R θJA is the sum of the thermal impedence from junction to lead R θJL and lead to ambient.
D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 µs pulses, duty cycle 0.5% max.
E. These tests are performed with the device mounted on 1 in 2
FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The SOA curve provides a single pulse rating. Rev 3 : June 2005
AO8810
AO8810
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS。

相关文档
最新文档