PCA4981B中文资料

合集下载

L4981A 1[1].5kW原理图

L4981A 1[1].5kW原理图
The ST logo is a registered trademark of STMicroelectronics © 2002 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
A switching frequency of 60kHz has been chosen as a good compromise between requirements of small size magnetics and low switching losses. For this application a full isolated ISOTOP(TM) STE30NA50-DK has been used. This module is especially intended for boost applications and consists off the integration of a low RDS/500V Mosfet with a TURBOSWITCH(TM) diode. The use of the module allows a compact and ef-

LME49811TB中文资料

LME49811TB中文资料

Positive Power Supply
3

元器件交易网
LME49811
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
The LME49811 includes thermal shut down circuitry that activates when the die temperature exceeds 150°C. The LME49811's shutdown function when activated, forces the LME49811 into shutdown state.
10
-VEE
Negative Power Supply
11
NC
No Connect, Pin electrically isolated
12
NC
No Connect, Pin electrically isolated
13
Sink
Output Sink
14
Source
Output Source
15
+VCC
±20V to ±100V 115dB (typ)
0.00035% (typ) 9mA
Applications
■ Powered subwoofers ■ Pro audio ■ Powered studio monitors ■ Audio video receivers ■ Guitar Amplifiers ■ High voltage industrial applications

EPICF10050547NS中文资料(PCA Electronics)中文数据手册「EasyDatasheet - 矽搜」

EPICF10050547NS中文资料(PCA Electronics)中文数据手册「EasyDatasheet - 矽搜」
5.6 6.8 8.2
10.0 12.0 15.0
18.0 22.0 27.0
33.0 39.0 47.0
56.0 68.0 82.0
100.0 1.5 1.8
2.2 2.7 3.3
3.9 4.7 5.6
6.8 8.2 10.0
12.0 15.0 18.0
22.0 27.0 33.0
39.0 47.0 56.0
68.0 82.0
Q
(最低)
100
8
11
8
11
8
11
8
11
8
10
8
10
8
10
8
10
8
10
8
10
8
10
8
10
8
10
8
11
8
11
8
11
8
11811来自8118
11
8
11
8
14
8
14
8
14
8
10
8
12
10
13
10
14
10
13
10
13
10
14
10
14
10
14
12
14
12
14
12
15
12
15
12
16
12
16
12
17
12
18
12
17
12
17
12
18
12
18
12
18
10
21
10
18
10
18
12

PCF8591中文手册讲义

PCF8591中文手册讲义

PCF8591中文手册讲义一、PCF8591概述1. 内置一个模拟电压比较器;2. 提供4个模拟输入通道;3. 具有1个模拟输出通道;4. 适用于I2C总线通信;5. 工作电压范围宽,可达2.5V至6V。

二、PCF8591内部结构及功能1. 内部结构(1)模拟输入多路选择器:可以选择4个模拟输入通道之一;(2)A/D转换器:将模拟信号转换为数字信号;(3)D/A转换器:将数字信号转换为模拟信号;(4)模拟电压比较器:对输入的模拟电压进行比较;(5)I2C总线接口:实现与外部设备的通信。

2. 功能介绍(1)模拟输入多路选择器:通过I2C总线接口发送控制字,可以选择4个模拟输入通道之一;(2)A/D转换器:将选定的模拟输入信号转换为8位数字信号;(3)D/A转换器:将8位数字信号转换为模拟信号,输出至模拟输出通道;(4)模拟电压比较器:对输入的模拟电压进行比较,可应用于阈值检测等场景;(5)I2C总线接口:实现与单片机、微处理器等设备的通信,便于数据传输和控制。

三、PCF8591应用电路及编程方法1. 应用电路(1)电源电路:确保电源稳定,满足PCF8591的工作电压范围;(2)模拟输入电路:根据实际需求选择合适的传感器或信号源,并进行滤波、放大等处理;(3)模拟输出电路:可根据实际应用场景,对输出信号进行放大、滤波等处理;(4)I2C总线接口电路:连接单片机或其他设备的I2C接口,实现数据传输和控制。

2. 编程方法(1)初始化I2C总线接口:设置I2C总线的时钟频率、设备地址等参数;(2)发送控制字:选择模拟输入通道、启动A/D转换等;(3)读取A/D转换结果:通过I2C总线读取转换后的数字信号;(4)写入D/A转换数据:通过I2C总线发送8位数字信号,实现模拟信号输出;(5)模拟电压比较器应用:设置比较阈值,实现阈值检测等功能。

四、PCF8591编程实例及注意事项1. 编程实例include <Wire.h> // 引入I2C库define PCF8591_ADDR 0x48 // 设置PCF8591的I2C地址void setup() {Wire.begin(); // 初始化I2C总线}void loop() {// 读取模拟输入通道0的值Wire.beginTransmission(PCF8591_ADDR);Wire.write(0x04); // 控制字:选择通道0,启动A/D转换 Wire.endTransmission();Wire.requestFrom(PCF8591_ADDR, 2); // 请求2个字节的数据if (Wire.available() >= 2) {te high = Wire.read(); // 读取高8位te low = Wire.read(); // 读取低8位int value = (high << 8) | low; // 合并高低8位// value即为模拟输入通道0的数字值}// 通过模拟输出通道输出固定电压值(例如1.25V)Wire.beginTransmission(PCF8591_ADDR);Wire.write(0x40); // 控制字:选择D/A转换Wire.write(outputValue); // 写入D/A转换数据Wire.endTransmission();}2. 注意事项(1)确保I2C总线的电源和地线连接正确,避免信号干扰;(2)在读取A/D转换结果时,注意数据的字节顺序,避免数据解析错误;(3)模拟输入信号的幅值应在PCF8591的输入范围内,以免损坏芯片;(4)模拟输出通道的负载应适当,避免影响输出电压的精度;(5)在使用模拟电压比较器时,注意设置合适的比较阈值,以提高检测准确性。

PCF8591中文数据手册

PCF8591中文数据手册

PCF8591 8位A/D和D/A转换器1、特性单电源供电工作电压:2.5 V ~ 6 V待机电流低✍ I2C总线串行输入/输出通过3个硬件地址引脚编址采样速率取决于I2C总线速度✍ 4个模拟输入可编程为单端或差分输入自动增量通道选择模拟电压范围:VSS~VDD片上跟踪与保持电路✍ 8位逐次逼近式A/D转换带一个模拟输出的乘法DAC 2、应用闭环控制系统用于远程数据采集的低功耗转换器电池供电设备在汽车、音响和TV应用方面的模拟数据采集3、概述PCF8591是单片、单电源低功耗8位CMOS数据采集器件,具有4个模拟输入、一个输出和一个串行I2C总线接口。

3个地址引脚A0、A1和A2用于编程硬件地址,允许将最多8个器件连接至I2C总线而不需要额外硬件。

器件的地址、控制和数据通过两线双向I2C总线传输。

器件功能包括多路复用模拟输入、片上跟踪和保持功能、8位模数转换和8位数模拟转换。

最大转换速率取决于I2C总线的最高速率。

4、订货信息5、内部框图图 1 内部框图6、引脚图2 引脚图(DIP16).7、功能描述7.1 地址I2C总线系统中的每一片PCF8591通过发送有效地址到该器件来激活。

该地址包括固定部分和可编程部分。

可编程部分必须根据地址引脚A0、A1和A2来设置。

在I2C总线协议中地址必须是起始条件后作为第一个字节发送。

地址字节的最后一位是用于设置以后数据传输方向的读/写位。

(见图4、16、17)图4 地址7.2 控制字发送到PCF8591的第二个字节将被存储在控制寄存器,用于控制器件功能。

控制寄存器的高半字节用于允许模拟输出,和将模拟输入编程为单端或差分输入。

低半字节选择一个由高半字节定义的模拟输入通道(见图5)。

如果自动增量(auto-increment)标志置1,每次A/D转换后通道号将自动增加。

如果自动增量(auto-increment)模式是使用内部振荡器的应用中所需要的,那么控制字中模拟输出允许标志应置1。

L4981AD中文翻译

L4981AD中文翻译

®L4981AL4981B 功率因数校正控制助力PWM高达0.99P.F.限制线电流失真< 5%通用输入主电源饲料前锋线上与负载调节TION平均电流模式的PWM最小的噪声敏感度大电流双极型和DMOS的TO -TEM柱输出低启动电流(0.3mA TYP.)根据与HYS-电压分离磁滞和可编程接通阈值过压,过流的PROTEC -TION精确的芯片参考2%的EX -TERNALLY可供软启动描述该L4981 I.C.提供了必要的功能实现了非常高的功率因数高达0.99.在BCD 60II技术实现这个功率因数(PFC)预调节校正包含所有con-框图MULTIPOWER BCD技术DIP20SO20订购号:L4981X (DIP20)L4981XD (SO20)设计一个高效率的模式trol功能正弦电源线电流con-消耗.该L4981可以很容易地在系统的使用85V电源电压之间没有任何265V行开关.这种新的PFC提供了可能性工作在固定频率或调制(L4981A)频率(L4981B)优化的大小,九月19981/17L4981A - L4981B把过滤器;两个工作频率模式使用平均电流模式PWM con-控制器,保持正弦线电流不斜率补偿.除了功率MOSFET栅极驱动器,精密电压年龄引用(外部可用),误差放大器的fier,欠压分离,电流检测和绝对最大额定值符号V CCI GDRVV GDRVV VA-OUTI ACV CA-OUT V ROSCI COSC I FREQ-MOD V SYNCV IPKP totT opT stg13451711, 181816162针1920.Gate driv. output voltage t = 0.1µs电压在pins 3, 14, 7, 6, 12, 15电压误差放大器AC输入电流引脚电压8, 9电压电流放大器. (Isource = -20mA; Isink = 20mA)电压引脚17引脚电压11, 18输入漏电流调频灌电流(L4981B)同步.电压(L4981A)电压引脚2电压引脚2 t = 1µs功率消耗在T amb= 70°C功率消耗在T amb= 70°C工作环境温度StorageTemperature(DIP20)(SO20)参数电源电压(I CC≤50mA) (*)Gate driv. output 峰值 current (t = 1µs)水槽消息来源价值selflimit21.5-1-0.3到9-0.3到8.55-0.5到7-0.3到8.5-0.3到3-0.3到7155-0.3到7-0.3到5.5-210.6-40到125-55到150单位VΑAVVVmAVVVVmAmAVVVWW°C°C软启动均包括在内.为了限制人数外部元件,该器件集成了亲tections如过压和过流保护.该过电流水平可以使用简单的电阻L4981A.对于一个更好的精度和L4981B外部分压器必须使用.(*)最大包装功耗限制必须得到遵守.引脚连接(顶视图)L4981A L4981B 2/17L4981A - L4981B热数据符号R th j-amb参数热阻结到环境拨2080苏20120单位°C / W各端子的功能N.12名称P-GND IPK电源地.L4981A 峰值电流限制.得到一个电流限制使用单个电阻连接引脚2之间的感应电阻.为了有一个更好的精度之间的另一个引脚电阻2和一个参考电压(管脚11)必须添加.L4981B 峰值电流限制.精确的电流限制为获得使用两个外部电阻只.这些电阻必须连接之间的感应电阻,引脚2和参考电压.3OVP过电压保护.在此输入进行比较精确的内部电压5.1V (typ)参考用的升压输出电压通过一个电阻分压器在获得样本为了限制最大输出电压峰值.为AC 输入电流.输入电流成正比的电压整流电源产生,通过乘数,当前放大器的电流参考.电流放大器的输出.外部RC 网络决定因子的闭环增益.负荷前馈;这个电压输入引脚允许修改乘法器的输出电流比例负载,为了给一个与负载瞬态响应速度.最好工作关 系得到控制1.5V 和5.3V.如果不使用此功能,连接该管脚到参考电压(引脚= 11).输入线电压成正比RMS. compesates 的VRMS 输入线电压的变化.低通之间的连接线与整流7,一DC 电压端子滤波器比例在输入电压线路RMS 得到.达到最佳的控制是使用输入电压之间1.5V 和5.5V.如果不使用此功能连接该引脚的电压基准(引脚= 11).乘法器的输出.该引脚共同的乘数输出和输入电流放大器N.I.像I 高阻抗输入SENSE .的MULT-OUT 引脚必须采取不低于-0.5V.电流放大器的反相输入.必须小心,以避免下来goes 针-0.5V.信号接地.输出参考电压(typ = 5.1V ).电压refence 在±2%外部可用的准确性,它的内部电流限制,并能提供一个输出电流高达10mA.连接到地的电容定义了软启动时间.内部电流产生程序提供100µA (typ)确定收费的外部软启动电容器的时间常数.一个内部MOS 放电时,无论是外部软启动电容电压和UVLO 条件.误差放大器输出,RC 网络修复电压环增益特性.电压误差放大器的反相输入.这种反馈输入是通过一个连接分压器升压输出电压.可编程阈值输入电压下了锁.供求之间分压器电压和GND 可以连接,以方案的阈值打开.这种同步输入/输出引脚CMOS 逻辑兼容.经营中,如一个SYNC矩形波必须适用于该引脚. Opearting 作为同步,一个长方形的时钟脉冲可用于同步其他设备.调频电流输入.一个外部电阻必须连接在引脚16而为了纠正线电压调节振荡器的频率.连接到引脚16地面固定频率R 施加OSC 和C OSC获得.外部电阻连接到地修复了C 恒定充电电流OSC.外部电容连接到GND 修复了开关频率.电源输入电压.输出门驱动器.双极晶体管和DMOS 图腾柱输出级可以提供峰值超过1A 有用的驱动电流MOSFET 或IGBT 功率级.说明456IAC CA-OUT LFF7VRMS89101112MULT-OUT I SENSE S-GND V REF SS13141516VA-OUT VFEED P-UVLO 同步(L4981A)FREQ-MOD (L4981B)17181920R OSC C OSC V CC GDRV3/17L4981A - L4981B电气特性(除另有注明外V CC= 18V, C OSC= 1nF,R OSC= 24KΩ, C SS= 1µF, V CA-OUT= 3.5V, V ISENSE= 0V, V LFF= V号, I AC= 100µA, V RMS= 1V, V饲料= GND, V IPK= 1V, V OVP= 1V, T J= 25°C符号V IOI IB V13HV13L-I13I13V ref∆Vref∆Vref I ref scf oscPrameter输入失调电压电流输入偏置开环增益输出高电压输出低电压输出源电流输出灌电流参考输出电压负载调整线路调整短路电流初始精度频率稳定度V svp I18C I18D V18t W I16-I16V16L V16H 兰普谷峰值充电电流放电电流峰谷电压斜坡输出脉冲宽度灌电流输出低电压源电流输出高电压低输入电压高输入电压 3.580085100747611550%振幅V SYNC= 0.4VV COSC= 0VV SYNC= 4.5VV COSC= 6.7VV COSC= 3.5VV COSC= 3.5V0.90.30.41V FEED= 4.7VI VA-OUT= -0.5mAV FEED= 5.5VI VA-OUT= 0.5mAV FEED= 4.7V; V VA-OUT= 3.5VV FEED= 5.5V; V VA-OUT= 3.5V–25°C < T J< 85°CT j= 25°C I ref= 01mA≤I ref≤10mA–25°C < T J< 85°C12V≤V CC≤19V–25°C < T J< 85°CV ref= 0VT j= 25°C12V≤V CC≤19V–25°C < T J< 85°C244.975.01测试条件–25°C < T J< 85°CV FEED= 0V-500705.5-501006.50.410205.15.1332085804.70.453010010050.5511.51.150.80.860.91.45.235.191510501151205.30.657.51最小.Typ.最大.±8500单位mVnAdBVVmAmAVVmVmVmA千赫千赫VmAmAVµsmAmAVVns千赫千赫千赫误差放大器部分参考部分振荡器部分同步部分(仅适用于L4981A)脉冲同步t d调频功能(仅适用于L4981B)f18max f18min 最大振荡频率振荡器频率最低V FREQ-MOD= 0V(销16) I freq= 0I FREQ-MOD= 360µA(销16)V VRMS= 4V(销7)I FREQ-MOD= 180µA(销16)V VRMS= 2V(销7)软启动第I SS V12sat 软启动电流源输出饱和电压V SS= 3VV3= 6V, I SS= 2mA601000.11400.25µAV4/17L4981中文数据手册第L4981A - L4981B电气特性(续)符号电源电压V CCV thr V 3HysI 3t dV th t d I ipk 工作电源电压阈值电压上升迟滞电流输入偏置传播延迟到输出阈值电压传播延迟到输出电流源产生程序V OCP = Vthr-0.2VV IPK = -0.1V V IPK = -0.1V只有L4981A 只有L4981B650.485V OVP = Vthr+100mV V ref -20mV 1805.12500.05119.5V ref +20mV 32012±300.91055±2-50070686.20.92210100.511.512.5503013160.38122014.59Pin 15到V CC = 220K Pin15到GND = 33KV 6= 1.6V V 6= 5.3VV I输入电压范围1.610.62515.51012150100190.512163016.51113.40.85010090500VV mV µA µsmV µs µA µAmV nA dB dB VV mA mAV Vns ns VmA mA mA VV V V过电压保护比较器参数测试条件最小.Typ.最大.单位过电流保护比较器泄漏电流I L电流放大器部分V offset I 9biasSVR V 5H V 5L -I 5I 5V 20L V 20H t r t f V GDRV I 19start I 19on I 19V CC V th ON V th OFF输入失调电压电流输入偏置开环增益电源电压抑制输出高电压输出低电压输出源电流输出灌电流输出电压低输出电压高输出电压上升时间输出电压下降时间电压钳电源电流启动前打开后,电源电流工作电源电流齐纳电压打开门限关闭阈值可编程启动阈值负荷前馈I LFF偏置电流V MULT OUT = VSENSE= 3.5VV SENSE = 0V 1.1V ≤V CA OUT≤6V12V ≤V CC ≤19V V MULT OUT = 3.5V V SENSE= 3.5VV MULT OUT = 200mV I CA OUT = -0.5mA, VIAC= 0VV MULT OUT = -200mVI CA OUT = 0.5mA, V IAC = 0V V MULT OUT = 200mV,V IAC = 0V, V CA-OUT = 3.5VI SINK = 250mA I SOURCE = 250mA V CC = 15V C OUT = 1nF C OUT = 1nF I SOURCE= 0mAV CC = 14V V IAC = 0V, V COSC= 0,Pin17 =开放Pin20 = 1nF (*)输出部分总待机当前节第欠压分离702001403005.3µA µA V(*)最大包装功耗限制必须得到遵守.5/17L4981A - L4981B电气特性(续)符号乘第Multipler输出电流V VA-OUT= 4V, V RMS= 2V,V MULTOUT= 0, V LFF= 5.1VI AC= 50µA, C OSC= 0VV VA-OUT= 4V, V RMS= 2V,V MULTOUT= 0, V LFF= 5.1VI AC= 200µA, C OSC= 0VV VA-OUT= 2V, V RMS= 2V,V MULTOUT= 0, V LFF= 5.1VI AC= 100µA, C OSC= 0VV VA-OUT= 2V, V RMS= 4V,V MULTOUT= 0, V LFF= 5.1VI AC= 100µA, C OSC= 0VV VA-OUT= 4V, V RMS= 4V,V MULTOUT= 0, V LFF= 5.1VI AC= 100µA, C OSC= 0VV VA-OUT= 4V, V RMS= 2V,V MULTOUT= 0, V LFF= 2.5VC OSC= 0V, I AC= 200µAV VA-OUT= 4V, V RMS= 4VV MULTOUT= 0, V LFF= 5.1VI AC= 200µA, C OSC= 0VV VA-OUT= 2V, V RMS= 4V,V MULTOUT= 0, V LFF= 5.1VI AC= 0, C OSC= 0VK乘法器增益203552µAµAµAµAµAµAµAµAPrameter测试条件最小.Typ.最大.单位1001351701020302 5.511102234203754203954-2020.37I MULT−OUT=K I AC (VVA−OUT−1.28) (0.8VLFF−1.28)(VVRMS)2(VVA−OUT−1.28)(V VRMS)2如果V LFF= V REF;其中:K1 = 1VI MULT−OUT=I AC K1图1:多输出主场迎战I AC(V RMS= 1.7V;V LFFD= 5.1V)图2:多输出主场迎战I AC(V RMS= 2.2V;V LFFD= 5.1V)6/17L4981A - L4981B图3:多输出主场迎战I AC(V RMS= 4.4V;V LFFD= 5.1V)图4:多输出主场迎战I AC(V RMS= 5.3V;V LFFD= 5.1V)图5:多输出主场迎战I AC(V RMS= 1.7V;V LFFD= 2.5V)图6:多输出主场迎战I AC(V RMS= 2.2V;V LFFD= 2.5V)图7:多输出主场迎战I AC(V RMS= 4.4V;V LFFD= 2.5V)图8:多输出主场迎战I AC(V RMS= 5.3V;V LFFD= 2.5V)7/17L4981A - L4981B图9A:L4981A功率因数校正(200W)TR6R14C8R7C12R15D3D4R1C5C9R9D1+Vo=400VC7FUSE Vi BRIDGER87411913R12143D2C11C285VAC-265VAC15C1L4981A1620612 11R13MOS285R21R5C3R4RS 9181017D5R17R2R10R11R3C4R16C6C10-D93IN029B零件列表R S R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R210.07(3 x .22)820kΩ10kΩ1.8kΩ1.8kΩ18kΩ1.2MΩ360kΩ33kΩ1.8MΩ21kΩ402Ω120kΩ27Ω1MΩ120kΩ30kΩ1.8kΩ5.1kΩ1/2W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/2W1/4W4W1/4W5%1%1%5%5%5%5%5%5%1%1%1%5%5%1%5%5%1%1%C1C2C3C4C5C6C7C8C9C10C11C12D1D2, D3D4D5MOS470nF100µF2.2nF1nF100µF1µF220nF220nF330nF1µF270pF8.2nFSTTA506D1N414818VBYT11-600STH/STW15NA50保险丝= 4A/250V1/2W16V400V100V25V16V63V63V400V450V 桥= 4 x P600MT= 初级:88的12 x 32 AWG (0.2mm)轮流次级:9化的# 27AWG (0.15mm)核心:B1ET3411A汤姆逊- CSFgap: 1,6mm for a total 初级 inductance of0.9mH8/17f SW= 80kHz P O= 200WV输出= 400V I rms 最大= 2.53A V OVP= 442V I PK 最大= 6.2AL4981A - L4981B图9B:L4981B 功率因数校正(200W)TR22C7R14R7C8D3C5C9R6C12R15D4R1R9D1+Vo=400VFUSE ViBRIDGER87411913R12143C11D2C285VAC-265VAC15C1L4981B16206285R21R5R11R3RSC3R4C4R16C6918101712 11R13MOSD5R17R2R10C10-D95IN220零件列表R S R1R2R3R4R5R6R7R8R9R10R11R12R13R14R15R16R17R21R220.07(3 x .22)820k Ω10k Ω1.8k Ω1.8k Ω18k Ω1.2M Ω360k Ω33k Ω1.8M Ω21k Ω402Ω120k Ω27Ω1M Ω120k Ω24k Ω1.8k Ω5.1k Ω1/2W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/2W 1/4W 4W 1/4W 5%1%1%5%5%5%5%5%5%1%1%1%5%5%1%5%5%1%1%1%C1C2C3C4C5C6C7C8C9C10C11C12D1D2, D3D4D5MOS470nF 100µF 2.2nF 1.1nF 100µF 1µF 220nF 220nF 330nF 1µF 270pF 8.2nF STTA506D 1N414818V BYT11-600STH/STW15NA50保险丝= 4A/250V1/2W 16V 400V 100V 25V 16V 63V 63V 400V 450V1.1M Ω1/4W桥= 4 x P600MT= 初级:88的12 x 32 AWG (0.2mm)轮流次级:9化的# 27AWG (0.15mm)核心:B1ET3411A 汤姆逊- CSFgap: 1,6mm for a total 初级 inductance of 0.9mHf SW = 80到92kHz P O = 200W V 输出= 400V I rms 最大= 2.53A V OVP = 442V I PK 最大= 6.2A9/17L4981A - L4981B图10:参考电压与参考源,ence电流图11:参考电压与电源电压图12:参考电压与结Tem-温度图13:开关频率与结温度图14:门驱动器上升和下降时间图15:工作电源电流与电源电压10/17L4981A - L4981B图16:可编程欠压锁定出阈值图17:在调制频率归电源电压的半周期1Vl fsw10.80.8R22 = R23 6.80.40.40.20.2R23 (Kohm)04590135180Electrical degrees表1:可编程欠压分离阈值.V CC ON 11V 12V 13V 14V 14.5V 15V V CC OFF10V10.1V10.5V10.8V10.9V11VR2282kΩ220kΩ430kΩ909kΩ1.36MΩ2.7MΩR2312kΩ33kΩ62kΩ133kΩ200kΩ390kΩ图18:振荡器图11/17L4981A - L4981B图19:200W评估板电路.T= 初级:75的litz线20 x 32 AWG (0.2mm)轮流次级:8化的# 27AWG (0.15mm)核心:B1ET3411A汤姆逊- CSF差距:1.4mm,总初级电感的0.7mHf sw= 100kHz; V O= 400V; P O= 200W注意:启动电路通常V CC电容(C11图. 19)可以收取一个电阻借鉴整流电源电流.在评估板相反,启动电路组成的(Q2+R19+R15+Dz)被设计用来进行快速和有效供给的所有条件.一旦该L4981A / B已开始,参考引脚电压由6和R20 Q3,可确保Q2被打开关闭.可编程欠压分离该PCB允许插入一个电阻(R22, R23)夫妇修改输入电压的阈值.请参考图. 16和table1.12/17L4981A - L4981B 图20:P.C.板和组件的评估板电路(1:1规模布局).13/17L4981A - L4981B该评估板的设计采用了:一快不耗散启动电路,二极管(D2)加快跟进的MOS启动和关闭时间(即使一单个电阻可用于)外部分压器改善过流阈值精确老.此外有可能改变输入阈值电压使用外部分频器(R23和R22),如果出现问题的浪涌电流一NTC电阻器都可以使用.演出的PFC演示板已评估测试以下参数:PF(功率因数),A-THD(当前比例总谐波失真),H3..H9(百分比current’s n th谐波振幅),∆V o(输出电压纹波),V o(输出电压),η(效率).测试配置,设备和结果包括:AC电力消息来源LARCET /3KWPM1200AC电力分析仪EMI过滤器PFCL4981演示负荷D94IN057V i (V rms) 88 110 132 180 220 260f(Hz)606060505050P i(W)222220218217217216PF A-THD(%)H3(%)1.981.401.161.521.681.84H5(%)0.610.400.400.650.831.30H7(%)0.550.310.350.400.570.39H9(%)0.700.280.310.340.480.73V O(V)390392394396398400∆VO(V)888888PO(W)200201202203204205η(%)90.291.692.893.894.295.20.9990.9990.9990.9990.9970.9952.941.791.711.882.253.30EMI/RFI滤波器谐波含量的测定已通过使用一EMI/RFI过滤器之间的中间人在AC源和被测演示板,而没有被计算效率过滤器的贡献.T1线C1T2PFCC地球D94IN052其中:T1 = 1mH T2 = 27mH C1 = 0.33µF, 630V C2 = 2.2nF, 630V14/17L4981A - L4981B SO20 包装机械数据暗淡.最小.AA1BCDEeH h L K100.250.42.350.10.330.2312.67.41.2710.650.751.270.3940.0100.016mmTYP.最大.2.650.30.510.32137.6最小.0.0930.0040.0130.0090.4960.2910.0500.4190.0300.050寸TYP.最大.0.1040.0120.0200.0130.5120.2990(分)8(最大)Lh x 45°AB e KHDA1C2011E110SO20MEC15/17L4981A - L4981BDIP20 包装机械数据暗淡.最小.a1Bbb1DEee3FIL Z3.31.348.52.5422.867.13.930.1300.0530.2541.390.450.2525.40.3350.1000.9000.2800.1551.65mmTYP.最大.最小.0.0100.0550.0180.0101.0000.065寸TYP.最大.16/17L4981A - L4981B 提供的资料被认为是准确和可靠.然而,意法半导体的后果不承担任何责任这类信息也不对任何第三方的专利或可能导致其使用的其他权利的侵犯使用.没有许可证授予暗示或以其他方式意法半导体任何专利或专利的权利.规范本出版物中提到如有变更,恕不另行通知.本刊物并取代以前提供的所有信息.意法半导体产品不授权使用的关键部件寿命支持设备或系统的意法半导体未经明确的书面批准.ST的标志是意法半导体公司的注册商标©1998意法半导体在意大利––印刷版权所有意法半导体公司集团澳大利亚-巴西-加拿大-中国-法国-德国-意大利-日-韩国-马来西亚-马耳他-墨西哥-摩洛哥-荷兰-新加坡-西班牙-瑞典-瑞士-台湾-泰国-英国- U.S.A.17/17。

LME49810TBNOPB, 规格书,Datasheet 资料

LME49810TBNOPB, 规格书,Datasheet 资料

LME49810LME49810 200V Audio Power Amplifier Driver with Baker ClampLiterature Number: SNAS391B芯天下--/September 2007 LME49810200V Audio Power Amplifier Driver with Baker ClampGeneral DescriptionThe LME49810 is a high fidelity audio power amplifier driver designed for demanding consumer and pro-audio applica-tions. Amplifier output power may be scaled by changing the supply voltage and number of power transistors. The LME49810’s minimum output current is 50mA. When using a discrete output stage the LME49810 is capable of delivering in excess of 300 watts into a single-ended 8Ω load.Unique to the LME49810 is an internal Baker Clamp. This clamp insures that the amplifier output does not saturate when over driven. The resultant “soft clipping” of high level audio signals suppresses undesirable audio artifacts gener-ated when conventional solid state amplifiers are driven hard into clipping.The LME49810 includes thermal shutdown circuitry that ac-tivates when the die temperature exceeds 150°C. The LME49810’s mute function, when activated, mutes the input drive signal and forces the amplifier output to a quiescent state.Key Specifications■ Wide operating voltage range±20V to ±100V ■ Slew Rate50V/μs (typ)■ Output Drive Current60mA (typ)■ PSRR (f = DC)110dB (typ)■ THD+N (f = 1kHz)0.0007 (typ)Features■Very high voltage operation■Output clamp logic output■Thermal shutdown and mute■Customizable external compensation■Scalable output powerApplications■Guitar amplifiers■Powered studio monitors■Powered subwoofers■Pro audio■Audio video receivers■High voltage industrial applicationsBoomer® is a registered trademark of National Semiconductor Corporation.Tru-GND is a trademark of National Semiconductor Corporation.© 2007 National Semiconductor LME49810 200V Audio Power Amplifier Driver with Baker ClampTypical Application20216772FIGURE 1. LME49810 Audio Amplifier Schematic 2L M E 49810Connection DiagramTB Package20216702Top ViewOrder Number LME49810TBSee NS Package Number TB15AN = National LogoU = Fabrication plant codeZ = Assembly plant codeXY = 2 Digit date codeTT = Die traceabilityTB = Package codePin DescriptionsPin Pin Name Description1ClpFlag Baker Clamp Clip Flag Output2Mute Mute Control3GND Device Ground4IN+Non-Inverting Input5IN–Inverting Input6Comp External Compensation Connection7NC No Connect, Pin electrically isolated8Osense Output Sense9NC No Connect, Pin electrically isolated10–VEENegative Power Supply11BiasMNegative External Bias Control12BiasPPositive External Bias Control13Sink Output Sink14Source Output Source15+VCCPositive Power Supply LME498101894EML20216708FIGURE 2. LME49810 Simplified Schematic 4Absolute Maximum Ratings (Notes 1, 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Supply Voltage |V+| + |V-|200V Differential Input Voltage±6VCommon Mode Input Range0.4VEE to 0.4VCCPower Dissipation (Note 3)4W ESD Susceptibility (Note 4)1kV ESD Susceptibility (Note 5)200V Junction Temperature (TJMAX) (Note 9)150°C Soldering InformationT Package (10 seconds)260°C Storage Temperature–40°C to +150°C Thermal Resistance θJA73°C/W θJC4°C/WOperating RatingsTemperature RangeTMIN≤ TA≤ TMAX−40°C ≤ T A≤ +8 5°CSupply Voltage±20V ≤ VSUPPLY≤ ±100VElectrical Characteristics VCC = +100V, VEE= –100V (Notes 1, 2)The following specifications apply for IMUTE = 100μA, unless otherwise specified. Limits apply for T A = 25°C, C C = 10pF, and A V =29dB.Symbol Parameter ConditionsLME49810Units(Limits) Typical(Note 6)Limits(Notes 7, 8)ICCQuiescent Power Supply Current V CM = 0V, V O = 0V, I O = 0A1118mA (max)IEEQuiescent Power Supply Current V CM = 0V, V O = 0V, I O = 0A13mA (max)THD+N Total Harmonic Distortion + Noise No Load, BW = 30kHzVOUT= 30VRMS, f = 1kHz0.0007% (max)A V Open Loop Gainf = DCf = 1kHz, VIN= 1mVRMS12088dBdBVOMOutput Voltage Swing THD+N = 0.05%, f = 1kHz67.5V RMSV NOISE Output NoiseBW = 30kHz,A-weighted5034150μVμV (max)IOUTOutput Current Current from Source to Sink Pins6050mA (min)I MUTE Current into Mute Pin To activate the amplifier10050200μA (min)μA (max)SR Slew Rate VIN= 1VP-P,f = 10kHz square Wave50V/μs(min)V OS Input Offset Voltage VCM= 0V, IO= 0mA13mV (max)I B Input Bias Current VCM= 0V, IO= 0mA100200nA (max)PSRR Power Supply Rejection Ratio f = DC, Input Referred110105dB (min)V CLIP Baker Clamp Clipping VoltageClip OutputSource pinSink pin97.2–96.495.5–95.5V (max)V (min)VBCBaker Clamp Flag Output Voltage I FLAG = 4.7mA0.4VVBABias P&M Pin Open Voltage BiasP - BiasM10VIBIASBias Adjust Function Current 2.8mALME49810Note 1:All voltages are measured with respect to the GND pin unless otherwise specified.Note 2:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.Note 3:The maximum power dissipation must be derated at elevated temperatures and is dictated by T JMAX , θJC , and the ambient temperature, T A . The maximum allowable power dissipation is P DMAX = (T JMAX - T A ) / θJC or the number given in Absolute Maximum Ratings, whichever is lower. For the LME49810, T JMAX = 150°C and the typical θJC is 4°C/W. Refer to the Thermal Considerations section for more information.Note 4:Human body model, 100pF discharged through a 1.5k Ω resistor.Note 5:Machine Model, 220pF - 240pF discharged through all pins.Note 6:Typicals are measured at +25°C and represent the parametric norm.Note 7:Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).Note 8:Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.Note 9:The maximum operating junction temperature is 150°C.Note 10:Data taken with Bandwidth = 30kHz, A V = 29dB, C C = 10pF, and T A = 25°C except where specified. 6L M E 49810LME4981020216709FIGURE 3. LME49810 Test Circuit Schematic (DC Coupled)Typical Performance Characteristics(Note 10)THD+N vs Frequency +V CC = –V EE = 20V, V O = 5V20216744THD+N vs Frequency +V CC = –V EE = 20V, V O = 10V20216745THD+N vs Frequency +V CC = –V EE = 50V, V O = 14V 20216746THD+N vs Frequency +V CC = –V EE = 50V, V O = 20V20216747THD+N vs Frequency +V CC = –V EE = 100V, V O = 14V 20216748THD+N vs Frequency +V CC = –V EE = 50V, V O = 30V20216749 8L M E 49810THD+N vs Output Voltage +V CC = – V EE = 50V, f = 20Hz 20216757THD+N vs Output Voltage +V CC = –V EE = 100V, f = 20Hz20216755THD+N vs Output Voltage +V CC = –V EE = 50V, f = 1kHz 20216753THD+N vs Output Voltage +V CC = – V EE = 100V, f = 1kHz20216754THD+N vs Output Voltage +V CC = –V EE = 50V, f = 20kHz 20216758THD+N vs Output Voltage +V CC = –V EE = 100V, f = 20kHz20216756LME49810THD+N vs Output Voltage +V CC = –V EE = 20V, f = 20Hz 20216751THD+N vs Output Voltage +V CC = –V EE = 20V, f = 1kHz20216750THD+N vs Output Voltage +V CC = –V EE = 20V, f = 20kHz 20216752Closed Loop Frequency Response +V CC = –V EE = 50V, V IN = 1V RMS20216735Closed Loop Frequency Response +V CC = –V EE = 100V, V IN = 1V RMS20216736PSRR vs Frequency +V CC = –V EE = 100V,No Filters, Input referred, V RIPPLE = 1V RMS on V CC pin20216726L M E 49810PSRR vs Frequency +V CC = –V EE = 100V,No Filters, Input referred, V RIPPLE = 1V RMS on V EE pin20216727Mute Attenuation vs I MUTE+V CC = –V EE = 100V20216724Output Voltage vs Supply Voltage20216725Slew Rate vs Compensation Capacitor+V CC = –V EE = 100V, V IN = 1.2V P 10kHz squarewave20216728Supply Current vs Supply Voltage 20216741Input Offset Voltage vs Supply Voltage20216737LME49810Open Loop Gain and Phase Margin+V CC = –V EE = 100V 20216738CMRR vs Frequency +V CC = –V EE = 100V20216722Noise Floor+V CC = –V EE = 50V, V IN = 0V 20216742Noise Floor+V CC = –V EE = 100V, V IN = 0V20216743Baker Clamp Flag Output+V CC = –V EE = 100V, V IN = 4V RMS , f IN = 20kHzCh1: Output, Ch2: CLPFLAG Output20216734L M E 49810Application InformationMUTE FUNCTIONThe mute function of the LME49810 is controlled by the amount of current that flows into the MUTE pin. LME49810typically requires 50μA to 100μA of mute current flowing in order to be in “play” mode. This can be done by connecting a reference voltage (V MUTE ) to the MUTE pin through a resistor (R M ). The following formula can be used to calculate the mute current.I MUTE = (V MUTE -0.7V) / (R M +10k Ω) (A)(1)The 10k Ω resistor value in Equation 1 is internal. Please refer to Figure 2, LME49810 Simplified Schematic, for additional details. For example, if a 5V voltage is connected through a 33k Ω resistor to the MUTE pin, then the mute current will be 100μA, according to Equation 1. Consequently, R M can be changed to suit any other reference voltage requirement. The LME49810 will enter Mute mode if I MUTE is less than 1μA which can be accomplished by shorting the MUTE pin to ground or by floating the MUTE pin. It is not recommended that more than 200μA flow into the MUTE pin because dam-age to LME49810 may occur and device may not function properly.BAKER CLAMP AND CLAMP FLAG OUTPUTThe LME49810 features a Baker Clamp function with corre-sponding CLPFLAG output pin. The clamp function keeps all transistors in linear operation when the output goes into clip-ping. In addition, when the output goes into clipping, a logic low level appears at the CLPFLAG pin. The CLPFLGAG pin can be used to drive an LED or some other visual display as shown by Figure 1. The value of logic low voltage varies and depends on I FLAG . For example, if I FLAG is 4.7mA then a volt-age (V BC ) of 0.4V will appear at the CLPFLAG output pin. The smooth response of the Baker Clamp and the corresponding CLPFLAG logic output is shown in the scope photo below:20216740+V CC = -V EE = 100V, V IN = 4V RMS , f IN = 1kHz, R C = 1k ΩCh1: Output, Ch2: CLPFLAG Output The CLPFLAG pin can source up to 10mA, and since the CLPFLAG output is an open collector output as shown by Figure 2, LME49810 Simplified Schematic, it should never be left to float under normal operation. If CLPFLAG pin is not used, then it should be connected through a resistor to a ref-erence voltage so that I FLAG is below 10mA. For example, a resistor of 1k can be used with a 5V reference voltage. This will give the I FLAG of 4.7mA. In a typical LED setup, if +5Vreference voltage is not available, the following circuit using a Zener diode can be used to power the CLPFLAG pin from the higher supply voltage rails of the LME49810. The power dissipation rating of R Z will need to be at-least ½W if using a 5V Zener Diode. Alternately, the following basic formula can be used to find the proper power rating of R Z : P DZ = (V CC -V Z )2/R Z (W). This formula can also be used to meet the design requirements of any other reference voltage that the user de-sires.20216770THERMAL PROTECTIONThe LME49810 has a thermal protection scheme to prevent long-term thermal stress of the device. When the temperature on the die exceeds 150°C, the LME49810 goes into thermal shutdown. The LME49810 starts operating again when the die temperature drops to about 145°C, but if the temperature again begins to rise, shutdown will occur again above 150°C.Therefore, the device is allowed to heat up to a relatively high temperature if the fault condition is temporary, but a sustained fault will cause the device to cycle between the thermal shut-down temperature limits of 150°C and 145°C. This greatly reduces the stress imposed on the IC by thermal cycling,which in turn improves its reliability under sustained fault con-ditions. Since the die temperature is directly dependent upon the heat sink used, the heat sink should be chosen so that thermal shutdown is not activated during normal ing the best heat sink possible within the cost and space constraints of the system will improve the long-term reliability of any power semiconductor device, as discussed in the De-termining the Correct Heat Sink section.POWER DISSIPATIONWhen in “play” mode, the LME49810 draws a constant amount of current, regardless of the input signal amplitude.Consequently, the power dissipation is constant for a given supply voltage and can be computed with the equation P DMAX = I CC * (V CC – V EE ). For a quick calculation of P DMAX ,approximate the current to be 11mA and multiply it by the total supply voltage (the current varies slightly from this value over the operating range).DETERMINING THE CORRECT HEAT SINKThe choice of a heat sink for a high-power audio amplifier is made entirely to keep the die temperature at a level such that the thermal protection circuitry is not activated under normal circumstances.The thermal resistance from the die to the outside air, θJA (junction to ambient), is a combination of three thermal resis-tances, θJC (junction to case), θCS (case to sink), and θSA (sink to ambient). The thermal resistance, θJC (junction to case), of the LME49810 is 4°C/W. Using Thermalloy Thermacote ther-mal compound, the thermal resistance, θCS (case to sink), is about 0.2°C/W. Since convection heat flow (power dissipa-tion) is analogous to current flow, thermal resistance is anal-ogous to electrical resistance, and temperature drops areLME49810analogous to voltage drops, the power dissipation out of the LME49810 is equal to the following:P DMAX = (T JMAX −T AMB ) / θJA(2)where T JMAX = 150°C, T AMB is the system ambient tempera-ture and θJA = θJC + θCS + θSA .20216771Once the maximum package power dissipation has been cal-culated using Equation 2, the maximum thermal resistance,θSA , (heat sink to ambient) in °C/W for a heat sink can be calculated. This calculation is made using Equation 3 which is derived by solving for θSA from Equation 2.θSA = [(T JMAX −T AMB )−P DMAX (θJC +θCS )] / P DMAX(3)Again it must be noted that the value of θSA is dependent upon the system designer's amplifier requirements. If the ambient temperature that the audio amplifier is to be working under is higher than 25°C, then the thermal resistance for the heat sink, given all other things are equal, will need to be smaller.PROPER SELECTION OF EXTERNAL COMPONENTS Proper selection of external components is required to meet the design targets of an application. The choice of external component values that will affect gain and low frequency re-sponse are discussed below.The overall gain of the amplifier is set by resistors R F and R i for the non-inverting configuration shown in Figure 1. The gain is found by Equation 4 below given R i = R IN and R F = R S .A V = R F / R i (V/V)(4)For best Noise performance, lower values of resistors are used. A value of 243 is commonly used for R i and setting the value for R F for desired gain. For the LME49810 the gain should be set no lower than 10V/V. Gain settings below 10V/V may experience instability.The combination of R i and C i (see Figure 1) creates a high pass filter. The gain at low frequency and therefore the re-sponse is determined by these components. The -3dB point can be determined from Equation 5 shown below:f i = 1 / (2πR i C i ) (Hz)(5)If an input coupling capacitor (C IN ) is used to block DC from the inputs as shown in Figure 1, there will be another high pass filter created with the combination of C IN and R IN . The resulting -3dB frequency response due to the combination of C IN and R IN can be found from equation 6 shown below:f IN = 1 / (2πR IN C IN ) (Hz)(6)For best audio performance, the input capacitor should not be used. Without the input capacitor, any DC bias from the source will be transferred to the load. The feedback capacitor (C i ) is used to set the gain at DC to unity. Because a large value is required for a low frequency -3dB point, the capacitoris an electrolytic type. An additional small value, high quality film capacitor may be used in parallel with the feedback re-sistor to improve high frequency sonic performance. If DC offset in the output stage is acceptable without the feedback capacitor, it may be removed but DC gain will now be equal to AC gain.COMPENSATION CAPACITORThe compensation capacitor (C C ) is one of the most critical external components in value, placement and type. The ca-pacitor should be placed close to the LME49810 and a silver mica type will give good performance. The value of the ca-pacitor will affect slew rate and stability. The highest slew rate is possible while also maintaining stability through out the power and frequency range of operation results in the best audio performance. The value shown in Figure 1 should be considered a starting value with optimization done on the bench and in listening testing. Please refer to Slew Rate vs.C C Graph in Typical Performance Characteristics for de-termining the proper slew rate for your particular application.SUPPLY BYPASSINGThe LME49810 has excellent power supply rejection and does not require a regulated supply. However, to eliminate possible oscillations all op amps and power op amps should have their supply leads bypassed with low-inductance capac-itors having short leads and located close to the package terminals. Inadequate power supply bypassing will manifest itself by a low frequency oscillation known as “motorboating”or by high frequency instabilities. These instabilities can be eliminated through multiple bypassing utilizing a large elec-trolytic capacitor (10μF or larger) which is used to absorb low frequency variations and a small ceramic capacitor (0.1μF) to prevent any high frequency feedback through the power sup-ply lines. If adequate bypassing is not provided the current in the supply leads which is a rectified component of the load current may be fed back into internal circuitry. This signal causes low distortion at high frequencies requiring that the supplies be bypassed at the package terminals with an elec-trolytic capacitor of 470μF or more.OUTPUT STAGE USING BIPOLAR TRANSISTORSWith a properly designed output stage and supply voltage of ±100V, an output power up to 500W can be generated at 0.05% THD+N into an 8Ω speaker load. With an output cur-rent of several amperes, the output transistors need substan-tial base current drive because power transistors usually have quite low current gain—typical h fe of 50 or so. To increase the current gain, audio amplifiers commonly use Darlington style devices. Power transistors should be mounted together with the V BE multiplier transistor on the same heat sink to avoid thermal run away. Please see the section Biasing Tech-nique and Avoiding Thermal Runaway for additional infor-mation.BIASING TECHNIQUES AND AVOIDING THERMAL RUNAWAYA class AB amplifier has some amount of distortion called Crossover distortion. To effectively minimize the crossover distortion from the output, a V BE multiplier may be used in-stead of two biasing diodes. The LME49810 has two dedicat-ed pins (BIAS M and BIAS P ) for Bias setup and provide a constant current source of about 2.8mA. A V BE multiplier nor-mally consists of a bipolar transistor (Q MULT , see Figure 1) and two resistors (R B1 and R B2, see Figure 1). A trim pot can also be added in series with R B1 for optional bias adjustment. A properly designed output stage, combine with a V BE multiplier,L M E 49810can eliminate the trim pot and virtually eliminate crossover distortion. The V CE voltage of Q MULT (also called BIAS of the output stage) can be set by following formula:V BIAS = V BE (1+R B2/R B1) (V)(7)When using a bipolar output stage with the LME49810 (as in Figure 1), the designer must beware of thermal runaway.Thermal runaway is a result of the temperature dependence of V BE (an inherent property of the transistor). As temperature increases, V BE decreases. In practice, current flowing through a bipolar transistor heats up the transistor, which lowers the V BE . This in turn increases the current gain, and the cycle re-peats. If the system is not designed properly this positive feedback mechanism can destroy the bipolar transistors used in the output stage. One of the recommended methods of preventing thermal runaway is to use the same heat sink on the bipolar output stage transistor together with V BE multiplier transistor. When the V BE multiplier transistor is mounted to the same heat sink as the bipolar output stage transistors, it tem-perature will track that of the output transistors. Its V BE is dependent upon temperature as well, and so it will draw more current as the output transistors heat up, reducing the bias voltage to compensate. This will limit the base current into the output transistors, which counteracts thermal runaway. An-other widely popular method of preventing thermal runaway is to use low value emitter degeneration resistors (R E1 and R E2). As current increases, the voltage at the emitter also in-creases, which decreases the voltage across the base andemitter. This mechanism helps to limit the current and coun-teracts thermal runaway.LAYOUT CONSIDERATION AND AVOIDING GROUND LOOPSA proper layout is virtually essential for a high performance audio amplifier. It is very important to return the load ground,supply grounds of output transistors, and the low level (feed-back and input) grounds to the circuit board common ground point through separate paths. When ground is routed in this fashion, it is called a star ground or a single point ground. It is advisable to keep the supply decoupling capacitors of 0.1μF close as possible to LME49810 to reduce the effects of PCB trace resistance and inductance. Following the general rules will optimize the PCB layout and avoid ground loops problems:a) Make use of symmetrical placement of components.b) Make high current traces, such as output path traces, as wide as possible to accomodate output stage current require-ment.c) To reduce the PCB trace resistance and inductance, same ground returns paths should be as short as possible. If pos-sible, make the output traces short and equal in length.d) To reduce the PCB trace resistance and inductance,ground returns paths should be as short as possible.e) If possible, star ground or a single point ground should be observed. Advanced planning before starting the PCB can improve audio performance.LME49810Demo Board Schematic20216707FIGURE 4. LME49810 Test demo board schematicL M E 49810Demonstration Board Layout20216704Silkscreen Layer20216706Top Layer LME4981020216703Bottom LayerL M E 49810LME49810 Revision HistoryRev Date Description1.005/24/07Initial WEB release.1.0105/29/07Few text edits.1.0209/17/07Edited curve 20216724.Physical Dimensions inches (millimeters) unless otherwise notedTO–247 15–Lead Package Order Number LME49810TB NS Package Number TB15A 20L M E 49810LME49810 NotesNotesL M E 49810 200V A u d i o P o w e r A m p l i f i e r D r i v e r w i t h B a k e r C l a m pTHE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION (“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF TH E CONTENTS OF TH IS PUBLICATION AND RESERVES TH E RIGH T TO MAKE CH ANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITH OUT NOTICE. NO LICENSE, WH ETH ER EXPRESS,IMPLIED, ARISING BY ESTOPPEL OR OTH ERWISE, TO ANY INTELLECTUAL PROPERTY RIGH TS IS GRANTED BY TH IS DOCUMENT.TESTING AND OTH ER QUALITY CONTROLS ARE USED TO TH E EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL’S PRODUCT WARRANTY. EXCEPT WH ERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR TH EIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS TH AT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WH ATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO TH E SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCH ANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGH T OR OTH ER INTELLECTUAL PROPERTY RIGHT.LIFE SUPPORT POLICYNATIONAL ’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN L IFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.Copyright© 2007 National Semiconductor CorporationFor the most current product information visit us at National Semiconductor Americas Customer Support Center Email:new.feedback@ Tel: 1-800-272-9959National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86Email: europe.support@ Deutsch Tel: +49 (0) 69 9508 6208English Tel: +49 (0) 870 24 0 2171Français Tel: +33 (0) 1 41 91 8790National Semiconductor Asia Pacific Customer Support Center Email: ap.support@National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507Email: jpn.feedback@ Tel: 81-3-5639-7560IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements,improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right, or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use any non-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAudio /audio Communications and Telecom /communicationsAmplifiers Computers and Peripherals /computersData Converters Consumer Electronics /consumer-appsDLP®Products Energy and Lighting /energyDSP Industrial /industrialClocks and Timers /clocks Medical /medicalInterface Security /securityLogic Space,Avionics and Defense /space-avionics-defense Power Mgmt Transportation and Automotive /automotiveMicrocontrollers Video and Imaging /videoRFID OMAP Mobile Processors /omapWireless Connectivity /wirelessconnectivityTI E2E Community Home Page Mailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2011,Texas Instruments Incorporated。

XR4981同步增压控制器说明书

XR4981同步增压控制器说明书

XR4981___________________________________________________________________________________________________________________ __XySemi Inc - 1 - SYNCHRONOUS BOOST CONTROLLER3V~36V Input 5V~36V Output , Extended NMOSGENERAL DESCRIPTIONXR4981 is a high efficiency synchronous boost controller that converts from 3V ~36V input range and up to 36V output voltage with an outside N-channel MOSFET for the synchronous switch. The XR4981 includes adjustable current limit, adjustable soft-start, adjustable compensation net and thermal shutdown preventing damage in the event of an output overload.For different application we can select suitable compensation net 、current limit 、soft start and select suitable MOSFET to obtain a high efficiency 。

FEATURES● 3V~36V input voltage range● Adjustable output voltage from 5V to36V● 1.21V VFB reference voltage ● Adjustable current limit ● Adjustable soft-start● Adjustable compensation net ● Input under voltage lockout● 400Khz fixed Switching Frequency ● Thermal Shutdown ● QFN3x3-16 Package● Rohs Compliant and Halogen FreeFigure 1. Typical Application Circuit1Figure 2. Typical Application Circuit2(Special for Single Li-Battery Input) APPLICATIONS●Power Bank●QC 2.0 Device●Type C USB Device●Power Amplify Device●Portable Class D Device●5V/9V/12V BUS Power SupplyTypical application for input and output:Input Voltage(V) Output Voltage(V) /Output Current(A) schematic3.3~4.35 5V/5A 9V/3A 12V/2A 14.8V/2A 20V/1.5A Circuit25 9V/4A 12V/3A 14.8V/2A 20V/1.5A Circuit16~8.4 9V/5A 12V/3A 14.8V/2.5A 20V/2A Circuit112~16.8 19V/4A 24V4A 20V/5.5A Circuit1ORDERING INFORMATIONPART NUMBER TEMP RANGESWICHINGFREQUENCYOUTPUTVOLTAGE (V)PACKAGE PINSXR4981 -40°C to 85°C 400KHZ ADJ QFN3x3 16 PIN CONFIGURATIONFigure 2. PIN Configuration (TOP View)PIN DESCRIPTIONPIN NUMBERPINNAMEPIN DESCRIPTION1 VCC Controller inside power logic Power Supply,inside LDO output pin,Must be closelydecoupled to GND with a 22uF MLCC capacitor.2 AVIN Controller Power Supply,inside LDO input pin., Connect this pin with input voltage.Must be closely decoupled to GND with a 1uF MLCC capacitor.3 VISP Input current sense pin1-Positive side4 VISN Input current sense pin1-Negative side5 COMP Loop compensation pin. Connect a RC network across this pin and ground to stabilize the control loop.6 PGOOD Power good indicator. Open drain output, pull low when the output < 90% or >110% of regulation voltage, high impendence otherwise.7 EN Enable Input. Pull high to turn on the IC. Do not let this pin float.8 FB Feedback pin. Connect to the center of resistor voltage divider to program the output voltage: VOUT=1.2V×(R1/R2+1), please place this network close to FB pin9 AGND Analog ground10 SS Soft-start setting pin, Select 10nF~100nF Css to set different soft-start time11 OC Input current setting pin. Connect a resistor Roc from this pin to AGND to program output current limitation threshold. For Example,10A~12A current limit by 100K12 BS Boot-Strap pin. Supply Rectified FET’s gate driver. Decouple this pin to LX with 0.1uFceramic cap .Please select Low VF schottky Diode.13 SW Switching Pin. Connect an inductor from power input to LX pin. Please select low Rdson & Big Enough Id & Isat inductor.14 SDRV High Side Power NMOS gate driver pin, Connect this pin to the gate of the high side synchronous rectifier N-channel MOSFET.15 PGND Power Ground16 MDRV LOW Side Power NMOS gate driver pin, Connect this pin to the gate of the low side N-channel MOSFETEPAD EPAD GND and Thermal Pad, Please connect with mass metal plane for good heat dissipationABSOLUTE MAXIMUM RATINGS(Note: Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)PARAMETER VALUE UNIT AVIN、VISP、VISN、BS、SW、EN 40V V SDRV SW+6 V Other Pins 6V V Operating Ambient Temperature -40 to 85 °C Maximum Junction Temperature 150 °C Storage Temperature -55 to 150 °C Lead Temperature (Soldering, 10 sec) 300 °CELECTRICAL CHARACTERISTICS(V IN = 3.6V, T A= 25 C unless otherwise specified)PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT Input Voltage Range V IN 3 36 V Inside LDO output VCC Vin>=5V 4.2 V Boost output voltage range Vout 5 40 V UVLO Threshold V UVLO V HYSTERESIS =100mV 2.7 VOperating Supply CurrentI SUPPLY V FB =1.5V,EN=Vin=3.6V, I Load =0 70µAShutdown Supply Current V EN =0V, V IN =3.6V 10 Regulated FeedbackVoltageV FB 1.18 1.21 1.24 V Peak inductor Current limit(N-MOSFET current limit)Ilim Roc=100K & Rs=3mohm 12.5 A Oscillator Frequency F OSC 0.32 0.4 0.48 MHz Enable Threshold V IN = 2.3V to 5.5V 0.3 1 1.5 V Enable Leakage Current -0.1 0.1 µA Soft Start Time Tss Css=100nF Io=2A 300 msFunctional Block DiagramControl Logic-+Soft StartvrefEA-Current Sesneslope++ICMP4.2V LDO OSCVCCVINVISP VISNVOCCOMPSSFBGNDMDRVSWSDRVBSENPower GoodPGENCONTROLLER CIRCUITThe XR4981 is a constant-frequency ,PWM control , current mode boost controller. In normal operation, the external Main MOSFET is turned on each cycle when the oscillator gives an on-state. and then turned off when the main comparator -ICMP give an off state. The peak inductor current is controlled by the “COMP ” pin, which is the output of the error amplifier EA. The EA compares the signal VFB pin which is the feedback of VOUT , with the internal bandgap reference voltage 1.21V.. Peak inductor current is sensed by a resistor which is connected series with inductor. The inductor current is determined by the output of EA. A slope compensation is added because of the PWM control method. When the load current increases, it causes decrease in VFB, which in turn causes the output of EA increases until the average inductor current matches the new load current.OUTPUT VOLTAGE PROGRAMMINGThe output voltage is set by a resistive divider according to the following equation:Typically we suggest R10=10K or 12K and then determine R9 from the above equation 。

PCA4981C资料

PCA4981C资料

* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".Manufactured ProductFor 80P6-B: PCA4981AFor 80P6N-A: PCA4981CFor 80D0: PCA4981B[Ordering Information] See Appendix H "Ordering Information".* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".Manufactured ProductFor 80D0: PCA7750G02[Ordering Information] See Appendix H "Ordering Information".Foot Pattern Reference Dimensions* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".Foot Pattern Reference Dimensions[Ordering Information] See Appendix H "Ordering Information".* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".。

a4982中文资料

a4982中文资料

基于A4982设计的DMOS微型步进马达驱动技术Allegro公司的A4982是集成了电平转换和过流保护的微型步进马达驱动器,适用于双极步进马达驱动,工作在全步进,半步进,1/4步进和1/6步进模式,输出驱动能力高达35V和±2 A. A4982包括固定的离线电流调节器,兼容3.3V和5V逻辑,睡眠模式电流小于10 μA.本文介绍了A4982主要特性和优势, 功能方框图, 典型应用框图以及LP和ET封装的应用电路和PCB布局框图.DMOS Microstepping Driver with Translator and Overcurrent ProtectionThe A4982 is a complete microstepping motor driver with built-in translator for easy operation. It is designed to operate bipolar stepper motors in full-,half-, quarter-, and sixteenth-step modes, with an output drive capacity of up to 35 V and ±2 A.The A4982 includes a fixed off-time current regulator which has the ability to operate in Slow or Mixed decay modes. The ET package meets customer requirements for no smoke no fire (NSNF) designs by adding no-connect pins between critical output, sense, and supply pins. So, in the case of a pin-to-adjacent-pin short, the device does not cause smoke or fire. Additionally, the device does not cause smoke or fire when any pin is shorted to ground or left open.The translator is the key to the easy implementation of the A4982. Simply inputting one pulse on the STEP input drives the motor one microstep. There are no phase sequence tables, high frequency control lines, or complex interfaces to program.The A4982 interface is an ideal fit for applications where a complex microprocessor is unavailable or is overburdened. During stepping operation, the chopping control in the A4982 automatically selects the current decay mode, Slow or Mixed. In Mixed decay mode, the device is set initially to a fast decay for a proportion of the fixed off-time, then to a slow decay for the remainder of the off-time. Mixed decay current control results in reduced audible motor noise, increased step accuracy, and reduced power dissipation.Internal synchronous rectification control circuitry is provided to improve power dissipation during PWM operation. Internal circuit protection includes: thermal shutdown with hysteresis, undervoltage lockout (UVLO), and crossover-current protection.Special power-on sequencing is not required. The A4982 is supplied in two surface mount package, the ET, a 5 mm × 5 mm, 0.90 mm nominal overall package height QFN package, and the LP package, a 24-pin TSSOP. Both packages have exposed pads for enhanced thermal dissipation, and are lead (Pb) free (suffix –T), with 100% matte tin plated leadframes.A4982主要特性和优势:▪ Low RDS(ON) outputs▪ Automatic current decay mode detection/selection▪ Mixed and Slow current decay modes▪ Synchronous rectification for low power dissipation ▪ Internal UVLO▪ Crossover-current protection▪ 3.3 and 5 V compatible logic supply▪ Thin profile QFN and TSSOP packages▪ Thermal shutdown circuitry▪ Short-to-ground protection▪ Shorted load protection▪ Low current Sleep mode, < 10 μA▪ No smoke no fire (NSNF) compliance (ET package)图1.A4982功能方框图图2.A4982典型应用框图图3.A4982 LP封装应用电路和PCB布局框图图4.A4982 ET封装应用电路和PCB布局框图A4982 是一款完全的微步电动机驱动器,带有内置转换器,易于操作。

T912-B200K-001-05资料

T912-B200K-001-05资料
® resistance films to achieve the precise ratio performance Caddock Tetrinox® MG 650 Caddock Tetrinox resistance films to achieve thesource precise ratio performance ® resistance and stability required by highly accurate amplifier circuits, reference Caddock's Micronox films are the ofvoltage Preconditioning for Power and Voltage Ratings and stability required by highly accurate amplifier circuits, reference and stability required by highly accurate amplifier circuits,voltage voltage reference MG 655 Now with Extended Resistance Range to 10,000 Megohms and Additional Models circuits and precision bridge circuits. the Type MG Precision High Voltage Resistors' outstanding All power ratings and maximum operating voltage ratings circuits and precision bridge circuits. circuits and of precision br

L4981A_01中文资料

L4981A_01中文资料

proportionally to the load, in order to give a faster response versus load transient. The best
control is obtained working between 1.5V and 5.3V. If this function is not used, connect this pin
9
ISENSE Current amplifier inverting input. Care must be taken to avoid this pin goes down -0.5V.
10
S-GND Signal ground.
11
VREF
Output reference voltage (typ = 5.1V).Voltage refence at ± 2% of accuracy externally available,
20 Gate driv. output peak current (t = 1µs)
SINK
.
SOURCE
Gate driv. output voltage t = 0.1µs
Voltages at pins 3, 14, 7, 6, 12, 15
13 Error Amplifier Voltage
5
CA-OUT Current amplifier output. An external RC network determinates the loop gain.
6
LFF
Load feedforward; this voltage input pin allows to modify the multiplier output current

L4981 带中文翻译

L4981 带中文翻译

via a multiplier, the current referenc作e f电or 流the放cu大rr器ent的am基p准lifie。r.
5
CA-OUT Current amplifier output. An externa电l R流C 放ne大two器rk输de出te。rm一ina个tes外th部e RlooCp网ga络in决. 定环路增益。
BLOCK DIAGRAM
MULTIPOWER BCD TECHNOLOGY
DIP20
SO20
ORDERING NUMBERS: L4981X (DIP20) L4981XD (SO20)
trol functions for designing a high efficiency-mode power supply with sinusoidal line current consumption. The L4981 can be easily used in systems with mains voltages between 85V to 265V without any line switch. This new PFC offers the possibility to work at fixed frequency (L4981A) or modulated frequency (L4981B) optimizing the size of the in-
control is obtained working between状1态.5V。a若nd不5.3需V要. If此thi功s f能unc要tio将n i此s n引ot脚us接ed到, c电on压nec基t t准hisppinin11上
to the voltage refereB

基於L4981控制的无桥PFC控制器的设计

基於L4981控制的无桥PFC控制器的设计

基於L4981控制的無橋PFC控制器的設計L4981 PFC控制器L4981 PFC控制器的應用特性,這是一個高性能器件,它系以平均電流型模式,驅動輸出級可驅動1.5A,這對此應用至關重要.器件細節描述見AN628,功能方框圖見圖1.無整流橋PFC的拓扑描述傳統升壓式拓扑是PFC應用中最有效的,它用於整流橋之后,由整流橋將AC變為DC,然後加Boost拓扑,見圖2.這種結構對中,小功率電源是適宜的,隨著功率的加大,二管極橋的損耗已使散熱更困難.無橋電路拓扑解決了仍舊使用Boost拓扑而節省橋損耗的方法,其簡化電路如圖3所示.從功能點著眼,它很系兩個共地Boost變換器,傳統上電流會流過整流橋的兩支串聯二極管,而在無橋拓扑中,電流僅流過一個功率MOS的體二極管,作回程通路.為分析此電路的工作,將其分成兩個部分,第一部分工作在Boost級,而另一部分則工作在交流AC的返回通路,參見圖4.左邊,在AC正半周時為Boost變換器,右邊在負半周時為電流返回通路.正半周工作周期.當AC.輸入電壓為正時,M1的柵由控制器驅動.電流從輸入經過電感,儲能,M1關斷時,電感中能量通過D1進入電容及負載.而回程經過M2體二極管.回到AC源.(見圖4A) 在MOS關斷時,電感中電流經升壓二極管,至電容及負載.負半周期工作.在負半周.如圖4B所示,M2開啟,電流流經電感,儲存能量.在M2關斷時,能量通過D2釋放,然後經負載並经M1的體二極管返回.注意,兩個功率MOS是同時驅動的,沒有分哪部分為主動升壓,哪部分做電流回路.在每種情況下電流回程的功耗都降低了.電流檢測.PFC部分功能需控制主回路流過電流,它很象電壓波形.根據此需要,要檢測此電流,並將此信號送到控制電路.在平均電流型控制中,檢測此整流電流相當於檢測AC電流.於是可用檢測電阻完成.如圖5A.L4981. A/B的電流環的設計去掌握此信號.這很容易實現.但在大功率時,就必須用電流互感器,以便改善效率.如圖5B.在無橋PFC拓扑中,由於采用整流橋.電流連續變換方面,使電流檢測變得復雜,此外大功率應用時,功耗也大.因此,要用互感器.一個電流互感器磁芯典型為鐵氧體.初級僅1匝.次級一般為50T或100T.電流互感器在低頻下是不能工作的.因此,它必須加在高頻電流開關處,且磁芯還必須能復位.這通常用二極管來完成.為減小升壓拓扑中的電感電流.采用兩個電流互感器共同完成,如圖5b.當檢測變壓器加入無橋的PFC時,也可象圖5b一樣,不要長時間有效.比Boost情況更復雜.這里有一對MOS.(M1.M2)及一對二極管(D1.D2).我們將兩信號合成在一起.檢測二極管電流用互感器法可以簡化.在兩二極管後用一個電流互感器即可.每半周只有一支二極管工作.對於功率MOS部分.則必須用兩個.使用結構見圖6,不用太復雜即可完成.兩個合並在一起,二次側采用中心抽頭方式,加兩個二極管整流即可.由於偶合的兩繞組可不用L1的去磁.用一輔助晶體管Q1在其關斷期間使其開路,對L4981控制器.脫線可確保不少於周期的5%.Q1可以是一小信號晶體管,因為其開關電流很小,互感器二次匝數很多.為電流互感器,要用一高μ值磁芯.( μ≧5000).二次用50T.其它控制電路.輸入電壓檢測,在標準升壓拓扑中,整流輸入電壓波形的檢測采用電阻.並由一個內部電路將其鏡象後進入乘法器.無橋PFC之完整電路見圖7這是基於如下考慮.有用信號之頻率.遠低於開關頻率(KHz)升壓電感在低頻時,如同短路.由於功率MOS漏極開關接至地.(經體二極管)結果其等效電路如圖7B.其電壓關系電流關系如流入I ac端一樣,為代入之後,得:極點必須位於頻率的高端,而沒有使輸入波形畸變.在此同時,低端要濾掉開關頻率.在本應用中,等效電阻選作R eg=324KΩ.它剛好滿足電流放大器的設計.結果是R1為300KΩ,R2為12 KΩ.極點位於開關頻率前面的十倍進位處.實際上,在我們的測試中,2.7nf的標準值被選用.電壓前饋電壓前饋,在寬輸入電壓範圍時有用的功能.它需要與rm3成比例的DC電壓即主輸入電壓值.對於L4981.此值為1.5V~5.5V之間.為此可以鏡象出很寬的變化範圍.由於整流出的主頻率為100~120Hz.我們需要對此頻率有一個大的抑制.由於前饋作用時間正比於帶寬,我們介紹一個第二級的濾波器.它容許在基波頻率与響應時間的衰減之間有很好的折衷.圖8給出與圖7很相象的狀態.定義H LP(S)電感電壓和濾波輸出V LP之间的傳輸函數,我們有如下關系式:時間常數以簡單方式展示出來,極點的位置可以相從計算.常數K LP根據寬範圍定義.V_即88V至264V之間.選擇計算這個值在某中間點上.為滿足這一點,要選擇:對於電容我們設置基頻80db的衰減,使用商用值.此設計在3Hz及4Hz處有兩個極點並在100Hz處有80db衰減.實際例子.本篇應用注意中上述要點所描述的電路拓扑是獨特的,其餘要點對PFC設計都很象.標準模式的PFC升壓式應用采用L4981.從現在開始,我們可以參照設計實例.實際上,為了提升所描述的電路結構的轉換效率,采用了一對MOS,為了評估目的,用PCB板來實現它.讓我們設計一個800W的PFC.目標:1.寬輸入範圍電壓從110V rms到220V rms.2.輸出功率800W.3.輸出電壓400V DC.開關頻率為50KHz.此選擇為平衡磁芯尺寸及MOS開關損耗.升壓電感設計.升壓電感的設計,綜合電流紋波百分比及骨架成本,此部分設計與標準拓扑時相同.在本應用中,放置單一電感接到兩相之一,也可選擇采用兩個電感(兩繞組在同一磁芯上),如圖9所示.這種模式改善了共模抑制,並防止兩個功率MOS的漏電容之間的差異.為簡化模型假設接近1的耦合因子,導致電路示於圖9.電感量正比於匝數的平方,對兩個繞組有(整個)所需匝數,由給定的電感量,根據在同一磁心上,同樣的兩個繞組感量相同.其差別僅在於兩個繞組分成各自獨立的兩部分.為簡化,我們可以設計一個耦合電感,用同樣的準則同樣的匝數及同樣的導線制作的標準電感.對磁芯,要設計成一個有空氣隙的裝置.磁芯尺寸可選擇在最大I pk之下,對800W的目標參數可超過14A.(含I pk=15A)對於800W,正常電流紋波選擇25%,升壓電感為450μH.磁芯需要可選E66/33/27,它的關鍵參數如下:氣隙大小要防止其飽和,並將磁芯尺寸最佳化,選3mm使用方式如下:此結果確認此磁芯為最小尺寸.用下面公式求匝數,需設計整個的感量L.結果求出N=38T,在我們的方案中為19T+19T.為了減少高頻損耗,繞組采用多根導線並繞,可以估算出低頻電流的損耗.用下面的公式.此處用20根並聯,每根直徑0.4mm.輸出濾波電容對輸出的大電解電容,我們考慮100Hz可行的電壓紋波.此處f為輸入頻率.選用10Vac峰,電壓變化(在400V上疊加).Co值應為>318μF,選330μF.功率器件選擇的功率器件,取決於拓扑及應用環境的空間尺寸.工作在連續電流型帶快速恢復二極管的品種.在STM系列中600V電壓兩升壓二極管選為STTH8R06FP,為TO-220封裝,很易加裝散熱片.功率MOS需要500V擊穿電壓,為找到最佳方案.必須考慮全部影響功耗的參數及成本性能比.對比800W應用選擇STY34NB50F.共計用四支功率MOS,不用附加驅動器.L4981即可驅動.800W無整流橋評估電路如下(圖10)材料單如下:注:對於評估電路及外部耦合電感,EMC.此處使用共模電感30T+30T,導線0.8mm.(40×17×9mm.磁芯). 磁化電感.L m=8mH.漏感小於50μH.下面給出600W無橋PFC的目標參數.1.輸入電壓110V~220V rms2.P O=600W3.V O=400V.開關頻率75KHz.減小磁芯尺寸及功率MOS電流.升壓電感.L=440μH,電流紋波22%,磁芯E55/28/21.气隙2.5mm.N=42, 采用21T+21T . 仍用多根並聯.P cu≦3.8W. 14根並聯,導線0.4mm,直徑.輸出電容330μF/450V.功率器件.升壓二極管與800W同.STTH 8R06FP.功率MOSFET.改為2支.STW26NM50F. 600W無整流橋PFC電路如下(圖11).材料單如下:結論革命性的無整流橋PFC,電路拓扑成功地提升了效率.圖12給800W的效率曲線. 評估結果.(表格).。

L4981AD中文翻译

L4981AD中文翻译

®L4981AL4981B 功率因数校正控制助力PWM高达0.99P.F.限制线电流失真< 5%通用输入主电源饲料前锋线上与负载调节TION平均电流模式的PWM最小的噪声敏感度大电流双极型和DMOS的TO -TEM柱输出低启动电流(0.3mA TYP.)根据与HYS-电压分离磁滞和可编程接通阈值过压,过流的PROTEC -TION精确的芯片参考2%的EX -TERNALLY可供软启动描述该L4981 I.C.提供了必要的功能实现了非常高的功率因数高达0.99.在BCD 60II技术实现这个功率因数(PFC)预调节校正包含所有con-框图MULTIPOWER BCD技术DIP20SO20订购号:L4981X (DIP20)L4981XD (SO20)设计一个高效率的模式trol功能正弦电源线电流con-消耗.该L4981可以很容易地在系统的使用85V电源电压之间没有任何265V行开关.这种新的PFC提供了可能性工作在固定频率或调制(L4981A)频率(L4981B)优化的大小,九月19981/17L4981A - L4981B把过滤器;两个工作频率模式使用平均电流模式PWM con-控制器,保持正弦线电流不斜率补偿.除了功率MOSFET栅极驱动器,精密电压年龄引用(外部可用),误差放大器的fier,欠压分离,电流检测和绝对最大额定值符号V CCI GDRVV GDRVV VA-OUTI ACV CA-OUT V ROSCI COSC I FREQ-MOD V SYNCV IPKP totT opT stg13451711, 181816162针1920.Gate driv. output voltage t = 0.1µs电压在pins 3, 14, 7, 6, 12, 15电压误差放大器AC输入电流引脚电压8, 9电压电流放大器. (Isource = -20mA; Isink = 20mA)电压引脚17引脚电压11, 18输入漏电流调频灌电流(L4981B)同步.电压(L4981A)电压引脚2电压引脚2 t = 1µs功率消耗在T amb= 70°C功率消耗在T amb= 70°C工作环境温度StorageTemperature(DIP20)(SO20)参数电源电压(I CC≤50mA) (*)Gate driv. output 峰值 current (t = 1µs)水槽消息来源价值selflimit21.5-1-0.3到9-0.3到8.55-0.5到7-0.3到8.5-0.3到3-0.3到7155-0.3到7-0.3到5.5-210.6-40到125-55到150单位VΑAVVVmAVVVVmAmAVVVWW°C°C软启动均包括在内.为了限制人数外部元件,该器件集成了亲tections如过压和过流保护.该过电流水平可以使用简单的电阻L4981A.对于一个更好的精度和L4981B外部分压器必须使用.(*)最大包装功耗限制必须得到遵守.引脚连接(顶视图)L4981A L4981B 2/17L4981A - L4981B热数据符号R th j-amb参数热阻结到环境拨2080苏20120单位°C / W各端子的功能N.12名称P-GND IPK电源地.L4981A 峰值电流限制.得到一个电流限制使用单个电阻连接引脚2之间的感应电阻.为了有一个更好的精度之间的另一个引脚电阻2和一个参考电压(管脚11)必须添加.L4981B 峰值电流限制.精确的电流限制为获得使用两个外部电阻只.这些电阻必须连接之间的感应电阻,引脚2和参考电压.3OVP过电压保护.在此输入进行比较精确的内部电压5.1V (typ)参考用的升压输出电压通过一个电阻分压器在获得样本为了限制最大输出电压峰值.为AC 输入电流.输入电流成正比的电压整流电源产生,通过乘数,当前放大器的电流参考.电流放大器的输出.外部RC 网络决定因子的闭环增益.负荷前馈;这个电压输入引脚允许修改乘法器的输出电流比例负载,为了给一个与负载瞬态响应速度.最好工作关 系得到控制1.5V 和5.3V.如果不使用此功能,连接该管脚到参考电压(引脚= 11).输入线电压成正比RMS. compesates 的VRMS 输入线电压的变化.低通之间的连接线与整流7,一DC 电压端子滤波器比例在输入电压线路RMS 得到.达到最佳的控制是使用输入电压之间1.5V 和5.5V.如果不使用此功能连接该引脚的电压基准(引脚= 11).乘法器的输出.该引脚共同的乘数输出和输入电流放大器N.I.像I 高阻抗输入SENSE .的MULT-OUT 引脚必须采取不低于-0.5V.电流放大器的反相输入.必须小心,以避免下来goes 针-0.5V.信号接地.输出参考电压(typ = 5.1V ).电压refence 在±2%外部可用的准确性,它的内部电流限制,并能提供一个输出电流高达10mA.连接到地的电容定义了软启动时间.内部电流产生程序提供100µA (typ)确定收费的外部软启动电容器的时间常数.一个内部MOS 放电时,无论是外部软启动电容电压和UVLO 条件.误差放大器输出,RC 网络修复电压环增益特性.电压误差放大器的反相输入.这种反馈输入是通过一个连接分压器升压输出电压.可编程阈值输入电压下了锁.供求之间分压器电压和GND 可以连接,以方案的阈值打开.这种同步输入/输出引脚CMOS 逻辑兼容.经营中,如一个SYNC矩形波必须适用于该引脚. Opearting 作为同步,一个长方形的时钟脉冲可用于同步其他设备.调频电流输入.一个外部电阻必须连接在引脚16而为了纠正线电压调节振荡器的频率.连接到引脚16地面固定频率R 施加OSC 和C OSC获得.外部电阻连接到地修复了C 恒定充电电流OSC.外部电容连接到GND 修复了开关频率.电源输入电压.输出门驱动器.双极晶体管和DMOS 图腾柱输出级可以提供峰值超过1A 有用的驱动电流MOSFET 或IGBT 功率级.说明456IAC CA-OUT LFF7VRMS89101112MULT-OUT I SENSE S-GND V REF SS13141516VA-OUT VFEED P-UVLO 同步(L4981A)FREQ-MOD (L4981B)17181920R OSC C OSC V CC GDRV3/17L4981A - L4981B电气特性(除另有注明外V CC= 18V, C OSC= 1nF,R OSC= 24KΩ, C SS= 1µF, V CA-OUT= 3.5V, V ISENSE= 0V, V LFF= V号, I AC= 100µA, V RMS= 1V, V饲料= GND, V IPK= 1V, V OVP= 1V, T J= 25°C符号V IOI IB V13HV13L-I13I13V ref∆Vref∆Vref I ref scf oscPrameter输入失调电压电流输入偏置开环增益输出高电压输出低电压输出源电流输出灌电流参考输出电压负载调整线路调整短路电流初始精度频率稳定度V svp I18C I18D V18t W I16-I16V16L V16H 兰普谷峰值充电电流放电电流峰谷电压斜坡输出脉冲宽度灌电流输出低电压源电流输出高电压低输入电压高输入电压 3.580085100747611550%振幅V SYNC= 0.4VV COSC= 0VV SYNC= 4.5VV COSC= 6.7VV COSC= 3.5VV COSC= 3.5V0.90.30.41V FEED= 4.7VI VA-OUT= -0.5mAV FEED= 5.5VI VA-OUT= 0.5mAV FEED= 4.7V; V VA-OUT= 3.5VV FEED= 5.5V; V VA-OUT= 3.5V–25°C < T J< 85°CT j= 25°C I ref= 01mA≤I ref≤10mA–25°C < T J< 85°C12V≤V CC≤19V–25°C < T J< 85°CV ref= 0VT j= 25°C12V≤V CC≤19V–25°C < T J< 85°C244.975.01测试条件–25°C < T J< 85°CV FEED= 0V-500705.5-501006.50.410205.15.1332085804.70.453010010050.5511.51.150.80.860.91.45.235.191510501151205.30.657.51最小.Typ.最大.±8500单位mVnAdBVVmAmAVVmVmVmA千赫千赫VmAmAVµsmAmAVVns千赫千赫千赫误差放大器部分参考部分振荡器部分同步部分(仅适用于L4981A)脉冲同步t d调频功能(仅适用于L4981B)f18max f18min 最大振荡频率振荡器频率最低V FREQ-MOD= 0V(销16) I freq= 0I FREQ-MOD= 360µA(销16)V VRMS= 4V(销7)I FREQ-MOD= 180µA(销16)V VRMS= 2V(销7)软启动第I SS V12sat 软启动电流源输出饱和电压V SS= 3VV3= 6V, I SS= 2mA601000.11400.25µAV4/17L4981中文数据手册第L4981A - L4981B电气特性(续)符号电源电压V CCV thr V 3HysI 3t dV th t d I ipk 工作电源电压阈值电压上升迟滞电流输入偏置传播延迟到输出阈值电压传播延迟到输出电流源产生程序V OCP = Vthr-0.2VV IPK = -0.1V V IPK = -0.1V只有L4981A 只有L4981B650.485V OVP = Vthr+100mV V ref -20mV 1805.12500.05119.5V ref +20mV 32012±300.91055±2-50070686.20.92210100.511.512.5503013160.38122014.59Pin 15到V CC = 220K Pin15到GND = 33KV 6= 1.6V V 6= 5.3VV I输入电压范围1.610.62515.51012150100190.512163016.51113.40.85010090500VV mV µA µsmV µs µA µAmV nA dB dB VV mA mAV Vns ns VmA mA mA VV V V过电压保护比较器参数测试条件最小.Typ.最大.单位过电流保护比较器泄漏电流I L电流放大器部分V offset I 9biasSVR V 5H V 5L -I 5I 5V 20L V 20H t r t f V GDRV I 19start I 19on I 19V CC V th ON V th OFF输入失调电压电流输入偏置开环增益电源电压抑制输出高电压输出低电压输出源电流输出灌电流输出电压低输出电压高输出电压上升时间输出电压下降时间电压钳电源电流启动前打开后,电源电流工作电源电流齐纳电压打开门限关闭阈值可编程启动阈值负荷前馈I LFF偏置电流V MULT OUT = VSENSE= 3.5VV SENSE = 0V 1.1V ≤V CA OUT≤6V12V ≤V CC ≤19V V MULT OUT = 3.5V V SENSE= 3.5VV MULT OUT = 200mV I CA OUT = -0.5mA, VIAC= 0VV MULT OUT = -200mVI CA OUT = 0.5mA, V IAC = 0V V MULT OUT = 200mV,V IAC = 0V, V CA-OUT = 3.5VI SINK = 250mA I SOURCE = 250mA V CC = 15V C OUT = 1nF C OUT = 1nF I SOURCE= 0mAV CC = 14V V IAC = 0V, V COSC= 0,Pin17 =开放Pin20 = 1nF (*)输出部分总待机当前节第欠压分离702001403005.3µA µA V(*)最大包装功耗限制必须得到遵守.5/17L4981A - L4981B电气特性(续)符号乘第Multipler输出电流V VA-OUT= 4V, V RMS= 2V,V MULTOUT= 0, V LFF= 5.1VI AC= 50µA, C OSC= 0VV VA-OUT= 4V, V RMS= 2V,V MULTOUT= 0, V LFF= 5.1VI AC= 200µA, C OSC= 0VV VA-OUT= 2V, V RMS= 2V,V MULTOUT= 0, V LFF= 5.1VI AC= 100µA, C OSC= 0VV VA-OUT= 2V, V RMS= 4V,V MULTOUT= 0, V LFF= 5.1VI AC= 100µA, C OSC= 0VV VA-OUT= 4V, V RMS= 4V,V MULTOUT= 0, V LFF= 5.1VI AC= 100µA, C OSC= 0VV VA-OUT= 4V, V RMS= 2V,V MULTOUT= 0, V LFF= 2.5VC OSC= 0V, I AC= 200µAV VA-OUT= 4V, V RMS= 4VV MULTOUT= 0, V LFF= 5.1VI AC= 200µA, C OSC= 0VV VA-OUT= 2V, V RMS= 4V,V MULTOUT= 0, V LFF= 5.1VI AC= 0, C OSC= 0VK乘法器增益203552µAµAµAµAµAµAµAµAPrameter测试条件最小.Typ.最大.单位1001351701020302 5.511102234203754203954-2020.37I MULT−OUT=K I AC (VVA−OUT−1.28) (0.8VLFF−1.28)(VVRMS)2(VVA−OUT−1.28)(V VRMS)2如果V LFF= V REF;其中:K1 = 1VI MULT−OUT=I AC K1图1:多输出主场迎战I AC(V RMS= 1.7V;V LFFD= 5.1V)图2:多输出主场迎战I AC(V RMS= 2.2V;V LFFD= 5.1V)6/17L4981A - L4981B图3:多输出主场迎战I AC(V RMS= 4.4V;V LFFD= 5.1V)图4:多输出主场迎战I AC(V RMS= 5.3V;V LFFD= 5.1V)图5:多输出主场迎战I AC(V RMS= 1.7V;V LFFD= 2.5V)图6:多输出主场迎战I AC(V RMS= 2.2V;V LFFD= 2.5V)图7:多输出主场迎战I AC(V RMS= 4.4V;V LFFD= 2.5V)图8:多输出主场迎战I AC(V RMS= 5.3V;V LFFD= 2.5V)7/17L4981A - L4981B图9A:L4981A功率因数校正(200W)TR6R14C8R7C12R15D3D4R1C5C9R9D1+Vo=400VC7FUSE Vi BRIDGER87411913R12143D2C11C285VAC-265VAC15C1L4981A1620612 11R13MOS285R21R5C3R4RS 9181017D5R17R2R10R11R3C4R16C6C10-D93IN029B零件列表R S R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R210.07(3 x .22)820kΩ10kΩ1.8kΩ1.8kΩ18kΩ1.2MΩ360kΩ33kΩ1.8MΩ21kΩ402Ω120kΩ27Ω1MΩ120kΩ30kΩ1.8kΩ5.1kΩ1/2W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/4W1/2W1/4W4W1/4W5%1%1%5%5%5%5%5%5%1%1%1%5%5%1%5%5%1%1%C1C2C3C4C5C6C7C8C9C10C11C12D1D2, D3D4D5MOS470nF100µF2.2nF1nF100µF1µF220nF220nF330nF1µF270pF8.2nFSTTA506D1N414818VBYT11-600STH/STW15NA50保险丝= 4A/250V1/2W16V400V100V25V16V63V63V400V450V 桥= 4 x P600MT= 初级:88的12 x 32 AWG (0.2mm)轮流次级:9化的# 27AWG (0.15mm)核心:B1ET3411A汤姆逊- CSFgap: 1,6mm for a total 初级 inductance of0.9mH8/17f SW= 80kHz P O= 200WV输出= 400V I rms 最大= 2.53A V OVP= 442V I PK 最大= 6.2AL4981A - L4981B图9B:L4981B 功率因数校正(200W)TR22C7R14R7C8D3C5C9R6C12R15D4R1R9D1+Vo=400VFUSE ViBRIDGER87411913R12143C11D2C285VAC-265VAC15C1L4981B16206285R21R5R11R3RSC3R4C4R16C6918101712 11R13MOSD5R17R2R10C10-D95IN220零件列表R S R1R2R3R4R5R6R7R8R9R10R11R12R13R14R15R16R17R21R220.07(3 x .22)820k Ω10k Ω1.8k Ω1.8k Ω18k Ω1.2M Ω360k Ω33k Ω1.8M Ω21k Ω402Ω120k Ω27Ω1M Ω120k Ω24k Ω1.8k Ω5.1k Ω1/2W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/4W 1/2W 1/4W 4W 1/4W 5%1%1%5%5%5%5%5%5%1%1%1%5%5%1%5%5%1%1%1%C1C2C3C4C5C6C7C8C9C10C11C12D1D2, D3D4D5MOS470nF 100µF 2.2nF 1.1nF 100µF 1µF 220nF 220nF 330nF 1µF 270pF 8.2nF STTA506D 1N414818V BYT11-600STH/STW15NA50保险丝= 4A/250V1/2W 16V 400V 100V 25V 16V 63V 63V 400V 450V1.1M Ω1/4W桥= 4 x P600MT= 初级:88的12 x 32 AWG (0.2mm)轮流次级:9化的# 27AWG (0.15mm)核心:B1ET3411A 汤姆逊- CSFgap: 1,6mm for a total 初级 inductance of 0.9mHf SW = 80到92kHz P O = 200W V 输出= 400V I rms 最大= 2.53A V OVP = 442V I PK 最大= 6.2A9/17L4981A - L4981B图10:参考电压与参考源,ence电流图11:参考电压与电源电压图12:参考电压与结Tem-温度图13:开关频率与结温度图14:门驱动器上升和下降时间图15:工作电源电流与电源电压10/17L4981A - L4981B图16:可编程欠压锁定出阈值图17:在调制频率归电源电压的半周期1Vl fsw10.80.8R22 = R23 6.80.40.40.20.2R23 (Kohm)04590135180Electrical degrees表1:可编程欠压分离阈值.V CC ON 11V 12V 13V 14V 14.5V 15V V CC OFF10V10.1V10.5V10.8V10.9V11VR2282kΩ220kΩ430kΩ909kΩ1.36MΩ2.7MΩR2312kΩ33kΩ62kΩ133kΩ200kΩ390kΩ图18:振荡器图11/17L4981A - L4981B图19:200W评估板电路.T= 初级:75的litz线20 x 32 AWG (0.2mm)轮流次级:8化的# 27AWG (0.15mm)核心:B1ET3411A汤姆逊- CSF差距:1.4mm,总初级电感的0.7mHf sw= 100kHz; V O= 400V; P O= 200W注意:启动电路通常V CC电容(C11图. 19)可以收取一个电阻借鉴整流电源电流.在评估板相反,启动电路组成的(Q2+R19+R15+Dz)被设计用来进行快速和有效供给的所有条件.一旦该L4981A / B已开始,参考引脚电压由6和R20 Q3,可确保Q2被打开关闭.可编程欠压分离该PCB允许插入一个电阻(R22, R23)夫妇修改输入电压的阈值.请参考图. 16和table1.12/17L4981A - L4981B 图20:P.C.板和组件的评估板电路(1:1规模布局).13/17L4981A - L4981B该评估板的设计采用了:一快不耗散启动电路,二极管(D2)加快跟进的MOS启动和关闭时间(即使一单个电阻可用于)外部分压器改善过流阈值精确老.此外有可能改变输入阈值电压使用外部分频器(R23和R22),如果出现问题的浪涌电流一NTC电阻器都可以使用.演出的PFC演示板已评估测试以下参数:PF(功率因数),A-THD(当前比例总谐波失真),H3..H9(百分比current’s n th谐波振幅),∆V o(输出电压纹波),V o(输出电压),η(效率).测试配置,设备和结果包括:AC电力消息来源LARCET /3KWPM1200AC电力分析仪EMI过滤器PFCL4981演示负荷D94IN057V i (V rms) 88 110 132 180 220 260f(Hz)606060505050P i(W)222220218217217216PF A-THD(%)H3(%)1.981.401.161.521.681.84H5(%)0.610.400.400.650.831.30H7(%)0.550.310.350.400.570.39H9(%)0.700.280.310.340.480.73V O(V)390392394396398400∆VO(V)888888PO(W)200201202203204205η(%)90.291.692.893.894.295.20.9990.9990.9990.9990.9970.9952.941.791.711.882.253.30EMI/RFI滤波器谐波含量的测定已通过使用一EMI/RFI过滤器之间的中间人在AC源和被测演示板,而没有被计算效率过滤器的贡献.T1线C1T2PFCC地球D94IN052其中:T1 = 1mH T2 = 27mH C1 = 0.33µF, 630V C2 = 2.2nF, 630V14/17L4981A - L4981B SO20 包装机械数据暗淡.最小.AA1BCDEeH h L K100.250.42.350.10.330.2312.67.41.2710.650.751.270.3940.0100.016mmTYP.最大.2.650.30.510.32137.6最小.0.0930.0040.0130.0090.4960.2910.0500.4190.0300.050寸TYP.最大.0.1040.0120.0200.0130.5120.2990(分)8(最大)Lh x 45°AB e KHDA1C2011E110SO20MEC15/17L4981A - L4981BDIP20 包装机械数据暗淡.最小.a1Bbb1DEee3FIL Z3.31.348.52.5422.867.13.930.1300.0530.2541.390.450.2525.40.3350.1000.9000.2800.1551.65mmTYP.最大.最小.0.0100.0550.0180.0101.0000.065寸TYP.最大.16/17L4981A - L4981B 提供的资料被认为是准确和可靠.然而,意法半导体的后果不承担任何责任这类信息也不对任何第三方的专利或可能导致其使用的其他权利的侵犯使用.没有许可证授予暗示或以其他方式意法半导体任何专利或专利的权利.规范本出版物中提到如有变更,恕不另行通知.本刊物并取代以前提供的所有信息.意法半导体产品不授权使用的关键部件寿命支持设备或系统的意法半导体未经明确的书面批准.ST的标志是意法半导体公司的注册商标©1998意法半导体在意大利––印刷版权所有意法半导体公司集团澳大利亚-巴西-加拿大-中国-法国-德国-意大利-日-韩国-马来西亚-马耳他-墨西哥-摩洛哥-荷兰-新加坡-西班牙-瑞典-瑞士-台湾-泰国-英国- U.S.A.17/17。

L4981

L4981

Value selflimit
2 1.5 -1 -0.3 to 9 -0.3 to 8.5 5 -0.5 to 7 -0.3 to 8.5 -0.3 to 3 -0.3 to 7 15 5 -0.3 to 7 -0.3 to 5.5 -2 1 0.6 -40 to 125 -55 to 150
Unit V Α A V V V mA V V V V mA mA V V V W W °C °C
proportionally to the load, in order to give a faster response versus load transient. The best
control is obtained working between 1.5V and 5.3V. If this function is not used, connect this pin
L4981A
L4981B
2/16
L4981A - L4981B
THERMAL DATA
Symbol
Parameter
Rth j-amb
Thermal Resistance Junction-ambient
PIN FUNCTIONS
DIP 20 80
SO 20 120
Unit °C/W
N.
Name
Description
20 Gate driv. output peak current (t = 1µs)
SINK
.
SOURCE
Gate driv. output voltage t = 0.1µs
Voltages at pins 3, 14, 7, 6, 12, 15
13 Error Amplifier Voltage

Crenova XPE498 用户手册说明书

Crenova XPE498 用户手册说明书

CrenovaXPE498User’s GuideThank you for purchasing XPE498. Please read this user’s guide carefully before operating the projector, and save this guide for future use.Whether you need further assistance, are looking for answers, or just want to share your reviews with us, you will find many ways to contact us right here.•Email:*******************•Facebook: https:///icrenova/•Official Homepage: ContentsPrecautions for UseImportant Safety InstructionsHelpful TipsWarrantyProjector FeaturesProduct Box ContentsProjector Part LocationsFront/TopLeftRearBaseControl PanelRemote ControlSetting Up the ProjectorProjector Placement and Installation Projection Distance and Screen Size Projector AdjustmentBasic Projector OperationsPower on/off the ProjectorPower on the ProjectorPower off the ProjectorProjector Menu SettingsProjector Picture SettingsProjector Sound SettingsProjector Time SettingsProjector Option SettingsProjector ConnectionsIntroduction to PortsConnecting to a USB Flash Drive Connecting to a SD CardConnecting to an AV Equipment Connecting to a HDMI Device Connecting to a VGA Device Connecting to an Audio DeviceProjector Cleaning and Maintenance Projector CleaningCleaning the Projector CaseCleaning the LensCleaning the VentsProjector MaintenanceBatteries Replacement of the Remote Control Technical Specifications TroubleshootingPrecautions for UseFollow these safety instructions and read these helpful tips before setting up and using the projector.Important Safety Instructions•Do not disassemble the projector. If needed, please contact your dealer f or repair/replacement. •Always use the indicated type of power source. Different power source may result in fire or electric shock.•Do not look into the lens when the projector is operating. The bright light may damage your eyes.•Do not use the projecto r near water or sources of heat.•Place the projector on an even surface or stable stand. If the projector is mounted on a ceiling, it should be installed by qualified mounting hardware which designed for use with this projector. •Unplug the projector after powering down.•Never subject the projector to heavy shocks and do not shake or drop it.Helpful Tips•For incredible clarity and optimum results, operating the projector in a dark environment is recommended.•You may adjust the focus ring and keystone simultaneously until to get crystal clear images. •Please understand that the cooling system makes noise to avoid overheating during working. Nevertheless, it will not affect watching experiences when connected to an audio device. •XPE498 projector is ideal for home entertainment, such as videos watching, photos viewing and games playing etc. Please be advised that the projector is not for business data presentation.•Maximum supported resolution of XPE498 projector is 1920x1080 pixels with its native resolution of 800x480 pixels.•The projector supports screen mirror with smartphone. The only accessory you need to prepare is a HDMI/WiFi dongle. The stability of mirror screen completely depends on the HDMI/WiFi dongle.•Please kindly note that XPE498 projector accepts 1920x1080 as maximum supported resolution, but the image will only be as good as the native resolution.•The operation, features and illustrations in this manual may differ from the actual product due to upgrade of product functions.•If the re is no sound when playing videos, you may check whether these videos are equipped with Dolby technologies. The projector cannot support Dolby Vision for the present, but you can connect XPE498 projector to a computer/laptop for videos watching instead.WarrantyYour projector comes with a free replacement or a full refund within 1 year that lets your product with confidence. However, this warranty does not cover the following:•Purchases from unauthorized resellers•Improperly operated devices•Purchase s made over 1 year ago (unless you get an extended warranty)•Free products•Lost or stolen productsProjector FeaturesCrenova XPE498 projector includes these special and outstanding features:Incredible watching experiences•Over 50 percent brighter than conventional projector•Maximum supported resolution of 1920×1080 pixels•Dual-fan system delivers effective cooling result with low noiseFlexible connectivity•Supported multimedia pla ying through VGA, HDMI or AV port respectively•Suppor ted USB storage device through USB port•Supported SD card through SD card slotEasy-to-use setup and operation features•User-friendly operating system•Innovative keystone corr ection slider for flexible projector placementProduct Box ContentsPlease save all the packaging in case you have further requirements (replacement or refund). Use the original packaging (or equivalent) when shipping. Ensure your projector box included all of these parts:1. XPE498 projector2. Remote control3. Power cord4. AV cable5. Adjustable foot6. Instruction manual7. HDMI cableProjector Part LocationsFront/Top1. Lens2. Focus/Zoom ring3. Front adjustable foot4. Control panelLeft1. HDMI port2. AV input port3. Audio jack4. USB port5. Air intake portRear1. IR receiver2. SD card slot3. VGA port4. Keystone slider5. AC input port6. Air exhaust portBase1. Front adjustable foot2. Front/Rear feet3. Mounting bracket holeControl Panel1. Up button (selects upward movement)2. Left/Volume Down button (selects leftward movement/adjusts speaker volume)3. Enter/OK/Play/Pause button (selects and confirms options/plays/stops playing audio or video)4. Down button (selects downward movement)5. Right/Volume Up button (selects rightward movement/adjusts speaker volume)6. Source button (selects the input source)7. Menu/Exit Button (accesses projector menu system/exits functions)8. Power button (turns the projector on or off)Remote Control1. Power button (turns the projector on or off)2. Mute button (turns off sound)3. VOL+ button (adjusts speaker volume)4. Fast backward button (fast backwards)5. Fast forward button (fast forwards)6. VOL- button (adjusts speaker volume)7. Play/Pause button (plays/pauses the playing content)8. Stop button (stops the playing content)9. SOURCE button (selects the input source)10. INFO button (operates the information function)11. ENTER button (selects and confirms options)12. Up (selects upward movement)13. Left (selects leftward movement)14. Right (selects rightward movement)15. Down (selects downward movement)16. MENU button (accesses projector menu system)17. EXIT button (exits functions)18. CH- button (changes channels)19. CH+ button (changes channels)20. Numeric buttons (enter numbers)Setting Up the ProjectorBefore projecting, please be familiar with the following suggestions of placement, installation and adjustment.Projector Placement and InstallationYou can place or install your projector in the following ways:Front/Rear/Front Ceiling/Rear CeilingFront/Rear/Front Ceiling/Rear CeilingWhether the way you choose to project your images or videos, please keep these suggestions in mind:1.Ensure the place you set the projector is sturdy and even;2.Do not block any ventilation openings which prevent the projector from overheating;3.If the way you project is from the ceiling or from the rear, please ensure to select the correctprojection option in the menu system.Projection Distance and Screen SizeThe throw distance, zoom factor, aspect ratio, and other settings determine the approximate size of the image. Please refer to the following graph for the relationship between projection distance and image size.16:9 Aspect RatioNote: The graph and measurements provided are for reference only.Projector AdjustmentExcept setting suitable throw distance, you can adjust keystone slider and focus/zoom ring manually before projecting your images or videos:1. Rotate the focus ring to adjust the clarity of the projected image until it is crystal clear;2. Adjust the keystone slider to correct keystone distortion.Basic Projector OperationsBasic operations provided help you to get started quickly.Power on/off the ProjectorPower on the projectorIndicator light will turn on after plugging in the power cord. Then press the Power button on the top of XPE498 or on the remote control, the multimedia interface appears within 2 to 5 seconds.Power off the projectorPress the Power button on the top of XPE498 or on the remote control, “Power to standby, Else to cancel” will appear on the screen. Press the Power button again to turn off the projector.Projector Menu SettingsPress the Menu button on the control panel or on the remote control to access to the menu interface. The menu interface allows you to set Picture, Sound, Time, and Option. Choose the feature you want to set by pressing the Left/Right button on the remote control or on the control panel.For detailed settings, press the UP/Down button to view options listed under Picture, Sound, Time, and Option. Then press the Enter/OK button to select options. (Some of these options have a submenu, press the Menu button to exit a submenu.)Projector Picture SettingsFor picture settings, you may adjust:Picture ModeColor TemperatureAspect RatioNoise ReductionScreenProjection DirectionHDMI ModeReduce Display SizeProjector Sound SettingsFor sound settings, you may adjust:Sound ModeBalanceAuto VolumeProjector Time SettingsFor time settings, you may adjust:Sleep TimerProjector Option SettingsFor option settings, you may adjust:OSD LanguageRestore Factory DefaultBlendingOsdDurationSoftware Update (USB)Projector ConnectionsYou can connect the projector to a USB flash drive, a SD card, an audio source, an AV equipment, a VGA device or a HDMI device to enjoy your presentations, images, or other videos, with premium sound.Introduction to PortsUSB port (connect to a USB flash drive)SD card slot (connects to a SD card)AV input port (connects to an AV equipment)HDMI port (connects to a HDMI device)VGA port (connects to a VGA device)Audio jack (connects to an audio device)Connecting to a USB Flash DriveInsert a USB drive into USB port, press the Source button and select USB/SD as input source.Press Left/Right to choose multimedia contents you want to display (Movie/Music/Photo/Text) on the multimedia interface. Press Enter/OK to confirm.Press Enter/OK to select and open your USB drive.Press Up/Down/Left/Right to select the content/file in your drive, then press Enter/OK to play/open it. Press the Play/Pause button to play or stop the content.Connecting to a SD CardInsert a SD card into SD card slot, press the Source button and select USB/SD as input source.Press Left/Right to choose multimedia contents you want to display (Movie/Music/Photo/Text) on the multimedia interface. Press Enter/OK to confirm.Press Enter/OK to select and open your SD card.Press Up/Down/Left/Right to select the content/file in your SD card, then press Enter/OK to play/open it. Press the Play/Pause button to play or stop the content.Connecting to an AV EquipmentWhen connecting to an AV equipment through AV input port using 3-in-1 AV cable, press the Source button and select AV as input source.Connecting to a HDMI DeviceWhen connecting to a HDMI device through HDMI port, press the Source button and select HDMI as input source.Connecting to a VGA DeviceWhen connecting to a VGA device through VGA port, press the Source button and select PC-RGB as input source.Connecting to an Audio DeviceConnect the projector to an audio device through 3.5mm audio jack.Note: Ensure format and resolution of Movie/Music/Photo/Text projected are supported by the projector.Projector Cleaning and MaintenanceFor optimum watching experiences and longer lifetime, please clean the projector periodically. For projector maintenance, please seek help from or under the guidance of specified persons. If it is necessary to replace any parts of the projector, please feel free to contact the dealer or qualified customer service team. Before cleaning and maintaining the projector, please turn offthe projector and unplug the power cord.Projector CleaningAlways keep the projector clean to avoid affecting image quality and ventilation system during working caused by dust, dirt and smudge.Cleaning the Projector CaseUse a piece of dry, soft and lint-free cloth to remove dust or dirt.Use a piece of moistened and soft cloth with a little water and mild soap to remove stubborn dirt.Cleaning the LensGently wipe the lens with a piece of dry and non-abrasive cloth or paper to remove dust or dirt. Gently wipe the lens by a piece of moistened (with a little water), non-abrasive and lint-free cloth to remove stubborn dirt.Cleaning the VentsUse a soft brush or a special designed small vacuum to remove the dust.Note: For cleaning process, do Not spray any liquid (included water) directly on any parts of the projector. Do Not use the chemical detergents to clean the projector which will damage the projector.Projector MaintenanceFor this part, we only offer the basic maintaining suggestions. If you have any further requirements (replacement or repair), please contact the dealer or qualified customer service team.Batteries Replacement of the Remote ControlIf batteries have run out, please replace the batteries by following steps:1.Open the battery cover of the remote control.2.Insert the batteries with the + and – ends facing as shown.3.Close the battery cover and press it down until it clicks into place.Technical SpecificationsTroubleshootingAs a high-tech product, the projector combined with optical, mechanical and electronic components and equipped with a protective and complicated circuit inside. To quickly solve your problems and to prevent improper using and settings, please follow operating instructions below. If your problems or enquiries cannot be eliminated after reading the table, please do not hesitate to contact us.。

AMS4981G

AMS4981G

__________________________________________________________________________________________________________________________________________ SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.Copyright © 2013 SAE InternationalAll rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE. TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada) Tel: +1 724-776-4970 (outside USA) Fax: 724-776-0790Email: CustomerService@ SAE WEB ADDRESS:h ttp://SAE values your input. To provide feedbackon this Technical Report, please visit/technical/standards/AMS4981GAEROSPACE MATERIAL SPECIFICATIONAMS4981REV. GIssued 1972-11 Revised 2014-03Superseding AMS4981FTitanium Alloy Bars, Wire, and Forgings6.0Al - 2.0Sn - 4.0Zr - 6.0MoSolution and Precipitation Heat Treated(Composition similar to UNS R56260)RATIONALEAMS4981G results from an update of this specification that restricts material to the sizes of the mechanical property tables (1.1), requires vacuum in the first consumable electrode melt (3.2), requires agreement on mechanical property values for material outside specification ranges (3.5.1.1.5 and 8.6), adds AS6279 (3.8) and revises the report paragraph (4.4). 1. SCOPE 1.1FormThis specification covers a titanium alloy in the form of bars, wire, and forgings up through 4.000 inches (101.60 mm), inclusive, in diameter or least distance between parallel sides and forging stock of any size (See 8.6). 1.2ApplicationThis alloy has been used typically for parts requiring high strength up to 1000 °F (538 °C), but usage is not limited to such applications. 1.2.1Certain processing procedures and service conditions may cause these products to become subject to stress-corrosion cracking. ARP982 recommends practices to minimize such conditions.2. APPLICABLE DOCUMENTSThe issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply. 2.1SAE PublicationsAvailable from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), . AMS2241 Tolerances, Corrosion and Heat Resistant Steel, Iron Alloy, Titanium, and Titanium Alloy Bars and Wire AMS2249Chemical Check Analysis Limits, Titanium and Titanium AlloysAMS2368 Sampling and Testing of Wrought Titanium Raw Material Except Forgings and Forging StockAMS2750 PyrometryAMS2808 Identification, ForgingsAMS2809 Identification, Titanium and Titanium Alloy Wrought ProductsARP982 Minimizing Stress-Corrosion Cracking in Wrought Titanium Alloy ProductsAS6279Industry Standard Practices for Production, Distribution, and Procurement of Metal Stock2.2 ASTM PublicationsAvailable from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, .ASTM E 8 / E 8M Tension Testing of Metallic MaterialsASTM E 21 Elevated Temperature Tension Tests of Metallic MaterialsASTM E 139 Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic MaterialsASTM E 292 Conducting Time-for-Rupture Notch Tension Tests of MaterialsASTM E 1409 Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by the Inert Gas Fusion TechniqueASTM E 1447 Determination of Hydrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Thermal Conductivity/Infrared Detection MethodASTM E 1941 Determination of Carbon in Refractory and Reactive Metals and Their Alloys by Combustion Analysis ASTM E 2371 Analysis of Titanium and Titanium Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry3. TECHNICAL REQUIREMENTS3.1 CompositionShall conform to the percentages by weight shown in Table 1; carbon shall be determined in accordance with ASTM E 1941, hydrogen in accordance with ASTM E 1447, oxygen and nitrogen in accordance with ASTM E 1409, and other elements in accordance with ASTM E 2371. Other analytical methods may be used if acceptable to the purchaser.TABLE 1 - COMPOSITIONElement min maxAluminum 5.50 6.50Zirconium 3.50 4.50Tin 1.75 2.25Molybdenum 5.50 6.50Iron -- 0.15Oxygen -- 0.15Carbon -- 0.04Nitrogen -- 0.04 (400 ppm)Hydrogen (3.1.1) -- 0.0125 (125 ppm)Yttrium (3.1.2) -- 0.005 ( 50 ppm)Other Elements, each (3.1.2) -- 0.10Other Elements, total (3.1.2) -- 0.40Titanium remainder3.1.1 Hydrogen content of forgings may be as high as 0.0150 (150 ppm).3.1.2 Determination not required for routine acceptance.3.1.3 Check AnalysisComposition variations shall meet the applicable requirements of AMS2249.3.1.4 Sample size when using ASTM E 1447 for hydrogen may be as large as 0.35 gram.3.2 Melting PracticeAlloy shall be multiple melted. The first melt shall be made by vacuum consumable electrode, nonconsumable electrode, electron beam cold hearth, or plasma arc cold hearth melting practice. The subsequent melt or melts shall be made under vacuum using vacuum arc remelting (VAR) practice. Alloy additions are not permitted in the final VAR melt.3.2.1 The atmosphere for nonconsumable electrode melting shall be vacuum or shall be inert gas at a pressure nothigher than 1000 mm of mercury.3.2.2 The electrode tip for nonconsumable electrode melting shall be water-cooled copper.3.3 ConditionThe product shall be supplied in the following condition:3.3.1 BarsHot finished, solution and precipitation heat treated, and descaled. The product shall be produced using standard industry practices designed strictly for the production of bar stock to the procured size. Cut plate shall not be supplied in lieu of bar.3.3.1.1 Round bars shall be solution and precipitation heat treated and ground, turned, or machined.3.3.2 WireCold drawn, solution and precipitation heat treated, and descaled.3.3.3 ForgingsSolution and precipitation heat treated and descaled.3.3.4 Forging StockAs ordered by the forging manufacturer.3.4 Heat TreatmentBars and forgings 0.50 inch (12.7 mm) and over in nominal diameter or least distance between parallel sides shall be solution heat treated by heating in a suitable atmosphere to 1500 to 1675 °F (816 to 913 °C), holding at the selected temperature within ±25 °F (±14 °C) for not less than 1 hour, and cooling at a rate equivalent to an air cool or faster, and precipitation heat treated by heating to 1100 °F ± 15 (593 °C ± 8), holding at heat for 4 to 8 hours, and cooling in air. Heat treatment for product under 0.50 inch (12.7 mm) nominal diameter or least distance between parallel sides shall be as agreed upon by purchaser and vendor. Pyrometry shall be in accordance with AMS2750.3.4.1 Water-quenching from the solution heat treatment temperature is prohibited.3.5 PropertiesThe product shall conform to the following requirements:3.5.1 Bars, Wire, and ForgingsProduct 4.000 inches (101.60 mm) and under in nominal diameter or least distance between parallel sides shall have the following properties:3.5.1.1 Tensile Properties3.5.1.1.1 At Room TemperatureShall be as specified in Table 2, determined in accordance with ASTM E 8 / E 8M with the rate of strain set at 0.005 inch/inch/minute (0.005 mm/mm/minute) and maintained within a tolerance of ±0.002 inch/inch/minute (0.002 mm/mm/minute) through the 0.2% offset yield strain.TABLE 2A - MINIMUM TENSILE PROPERTIES, INCH/POUND UNITSFormNominal Diameter orLeast Distance BetweenParallel SidesinchesTensileStrengthksiYield Strengthat 0.2% OffsetksiElongationin 4D%Reductionof Area%L T L TWire Up to 0.500, incl 170 160 10 8 20 15 Bars Over 0.500 to 2.500, incl 170 160 10 8 20 15 Bars Over 2.500 to 3.000, incl 165 155 8 6 15 12 Forgings Up to 3.000, incl 170 160 10 8 20 15 Bars and Forgings Over 3.000 to 4.000, incl 160 150 8 6 15 12TABLE 2B - MINIMUM TENSILE PROPERTIES, SI UNITSFormNominal Diameter orLeast Distance BetweenParallel SidesMillimetersTensileStrengthMPaYield Strengthat 0.2% OffsetMPaElongationin 4D%Reductionof Area%L T L TWire Up to 12.70, incl 1172 1103 10 8 20 15 Bars Over 12.70 to 63.50, incl 1172 1103 10 8 20 15 Bars Over 63.50 to 76.20, incl 1138 1069 8 6 15 12 Forgings Up to 76.20, incl 1172 1103 10 8 20 15 Bars and Forgings Over 76.20 to 101.60, incl 1103 1034 8 6 15 123.5.1.1.2 At 800 °F (427 °C)Product shall meet the requirements shown in Table 3, determined in accordance with ASTM E 21 on specimens heated to 800 °F ± 5 (427 °C ± 3), held at heat for 20 to 30 minutes before testing, and tested at 800 °F ± 5 (427 °C ± 3) using strain rates as specified in 3.5.1.1.1:TABLE 3 - MINIMUM TENSILE PROPERTIES AT 800 °F (427 °C)Property ValueTensile Strength 135 ksi (931 MPa)Yield Strength at 0.2% Offset 105 ksi (724 MPa)Elongation in 4D 10%Reduction of Area 30%3.5.1.1.3 Yield strength and reduction of area requirements do not apply to wire under 0.125 inch (3.18 mm) in nominaldiameter.3.5.1.1.4 Tensile property requirements apply in both the longitudinal and transverse directions but tests in thetransverse direction need be made only on product that specimens not less than 2.50 inches (63.5 mm) inlength can be taken. Tests in the longitudinal direction are not required on product tested in the transversedirection.3.5.1.1.5 Mechanical property requirements for product outside the size range covered by 3.5.1 shall be agreed uponbetween purchaser and producer.3.5.1.2 Creep Test at 800 °F (427 °C)A smooth tensile specimen shall be maintained at 800 °F ± 5 (427 °C ± 3) under continuously applied axial stress of 95 ksi (655 MPa). Time to attain 0.2% plastic deformation shall be not less than 35 hours. If plastic deformation is less than 0.2% after 35 hours, the test may be discontinued; the amount of plastic deformation in 35 hours shall be reported. Gage dimensions of specimen and technique used to measure creep shall be as agreed upon by purchaser and vendor (See 8.6). Test shall be conducted in accordance with ASTM E 139.3.5.1.3 MicrostructureShall be that structure resulting from alpha-beta processing. Microstructure shall conform to any one of the following: 3.5.1.3.1, 3.5.1.3.2, or 3.5.1.3.3 (See 8.5).3.5.1.3.1 Equiaxed alpha in a transformed beta matrix.3.5.1.3.2 Equiaxed alpha and elongated alpha in a transformed beta matrix.3.5.1.3.3 Partially broken and distorted grain boundary alpha with plate-like alpha.3.5.1.3.4 A microstructure showing a continuous network of alpha in prior beta grain boundaries is not acceptable.3.5.1.4 Surface ContaminationExcept as specified in 3.5.1.4.1 and 3.5.1.4.2, product shall be free of any oxygen-enriched layer (See 8.2), such as alpha case, or other surface contamination, determined by microscopic examination at not lower than 400X magnification or by other method agreed upon by purchaser and vendor.3.5.1.4.1 An oxygen-rich layer not greater than 0.001 inch (0.025 mm) in depth will be permitted on bars other thanround.3.5.1.4.2 When permitted by purchaser, forgings to be machined all over may have an oxygen-rich layer provided suchlayer is removable within the machining allowance on the forgings.3.5.2 Forging StockWhen a sample of stock is forged to a test coupon and heat treated as in 3.4, specimens taken from the coupon shall conform to the requirements of 3.5.1.1.1. If specimens taken from the stock after heat treatment as in 3.4 conform to the requirements of 3.5.1.1.1, the tests shall be accepted as equivalent to tests of a forged coupon.3.6 QualityThe product, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from imperfections detrimental to usage of the product.3.7 TolerancesBars and wire shall conform to the applicable requirements of AMS2241.3.8 Production, distribution, and procurement of metal stock shall comply with AS6279. This requirement becomeseffective October 1, 2015.4. QUALITY ASSURANCE PROVISIONS4.1 Responsibility for InspectionThe vendor of the product shall supply all samples for vendor's tests and shall be responsible for the performance of all required tests. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the product conforms to specified requirements.4.2 Classification of Tests4.2.1 Acceptance TestsThe following requirements are acceptance tests and shall be performed on each heat or lot as applicable:4.2.1.1 Composition (3.1) of each heat.4.2.1.2 Hydrogen content (3.1), room-temperature tensile properties (3.5.1.1.1), microstructure (3.5.1.4), and surfacecontamination (3.5.1.5) of each lot of bars, wire, and forgings.4.2.1.3 Tolerances (3.6) of bars and wire.4.2.2 Periodic TestsThe following requirements are periodic tests and shall be performed at a frequency selected by the vendor unless frequency of testing is specified by purchaser:4.2.2.1 Tensile properties at 800 °F (427 °C) (3.5.1.1.2) and creep properties at 800 °F (427 °C) (3.5.1.2) of bars, wire,and forgings.4.2.2.2 Ability of forging stock to develop required properties (3.5.2).4.3 Sampling and TestingShall be in accordance with AMS2368 and the following; a lot shall be all product of the same nominal size from the same heat, processed at the same time and heat treated in the same batch:4.3.1 For Acceptance Tests4.3.1.1 CompositionOne sample from each heat, except that for hydrogen determinations one sample from each lot obtained after thermal and chemical processing is completed.4.3.1.2 Tensile PropertiesAt least one sample from each lot of bars and wire. One longitudinal specimen from each lot of forgings from a section having maximum thickness and from a section having minimum thickness.4.4 Reports4.4.1 The producer shall furnish with each shipment a report showing producer identity, country where the metal wasmelted (i.e., final melt in the case of metal processed by multiple melting operations) and the results of tests for composition of each heat and the results of tests on each lot to determine conformance to the hydrogen and tensile property requirements and, when performed, to the periodic test requirements, and stating that the product conforms to the other technical requirements of this specification. This report shall include the purchase order number, heat and lot numbers, AMS4981G, specific solution heat treatment temperature used, product form, size, and quantity. If forgings are supplied, the part number and the size and melt source of stock used to make the forgings shall also be included.4.4.2 Report the nominal metallurgically worked cross sectional size and the cut size, if different (See 3.3.1).4.4.3 Mechanical property requirements for product outside the size range covered by Table 2 shall be agreed uponbetween purchaser and producer.4.4.4 The producer of forging stock shall furnish with each shipment a report showing producer identity, country wherethe metal was melted (i.e., final melt in the case of metal processed by multiple melting operations and the results of tests for composition of each heat. This report shall include the purchase order number, heat number AMS4981G, size, and quantity.4.5 Resampling and RetestingIf any specimen used in the above tests fails to meet the specified requirements, disposition of the product may be based on the results of testing three additional specimens for each original nonconforming specimen. Failure of any retest specimen to meet the specified requirements shall be cause for rejection of the product represented and no additional testing shall be permitted. Results of all tests shall be reported.5. PREPARATION FOR DELIVERY5.1 Identification5.1.1 Bars and WireIn accordance with AMS2809.5.1.2 ForgingsIn accordance with AMS2808.5.1.3 Forging StockAs agreed upon by purchaser and vendor.5.2 PackagingThe product shall be prepared for shipment in accordance with commercial practice and in compliance with applicable rules and regulations pertaining to the handling, packaging, and transportation of the product to ensure carrier acceptance and safe delivery.6. ACKNOWLEDGMENTA vendor shall include this specification number and its revision letter in all quotations and when acknowledging purchase orders.7. REJECTIONSProduct not conforming to this specification, or to modifications authorized by purchaser, will be subject to rejection.8. NOTES8.1 A change bar (|) located in the left margin is for the convenience of the user in locating areas where technicalrevisions, not editorial changes, have been made to the previous issue of this document. An (R) symbol to the left of the document title indicates a complete revision of the document, including technical revision. Change bars and (R) are not used in original publications, nor in documents that contain editorial changes only.8.2 An oxygen-rich layer, such as alpha case, is hard and brittle and results in marked lowering of fatigue properties.8.3 Terms used in AMS are clarified in ARP1917.8.4 Dimensions and properties in inch/pound units and the Fahrenheit temperatures are primary; dimensions andproperties in SI units and the Celsius temperatures are shown as the approximate equivalents of the primary units and are presented only for information.8.5 Terminology relating to titanium microstructures is presented in AS1814.8.6 Purchase documents should specify not less than the following:AMS4981GProduct form and size or part number of product desiredGage dimensions for creep test (3.5.1.3)Quantity of product desiredProperty and acceptance requirements from the cognizant engineering organization applicable to sizes outside the size range listed in 1.1.8.7 Similar SpecificationsAMS-T-9047 and MIL-T-9047.PREPARED BY AMS COMMITTEE “G”。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".
* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".
* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".
* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".
Manufactured Product
For 80P6-B: PCA4981A
For 80P6N-A: PCA4981C
For 80D0: PCA4981B
[Ordering Information] See Appendix H "Ordering Information".
* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".
* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".
* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".
Manufactured Product
For 80D0: PCA7750G02
[Ordering Information] See Appendix H "Ordering Information".
Foot Pattern Reference Dimensions
* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".
Foot Pattern Reference Dimensions
[Ordering Information] See Appendix H "Ordering Information".
* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".
* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".
* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".
* Pins and other parts needed to connect the standard pitch converter are not included with the product. [Ordering Information] See Appendix H "Ordering Information".。

相关文档
最新文档