河北省邢台市小学数学小学奥数系列8-2-1抽屉原理(一)
小学奥数系列8-2-1抽屉原理(三)D卷
小学奥数系列8-2-1抽屉原理(三)D卷
姓名:________ 班级:________ 成绩:________
亲爱的小朋友,经过一段时间的学习,你们掌握了多少知识呢?今天就让我们来检测一下吧!一定要仔细哦!
一、 (共48题;共246分)
1. (5分)一些孩子在沙滩上玩耍,他们把石子堆成许多堆,其中有一个孩子发现从石子堆中任意选出六堆,其中至少有两堆石子数之差是5的倍数,你能说一说他的结论对吗?为什么?
2. (5分)六(1)班40名学生到图书室借书,图书室有科技、历史和文艺三种书。要求:每种只能借1本,每人至少可借1本,最多可借3本。六(1)班至少有几人所借图书是相同的?
3. (5分)六(1)班有6名同学参加知识竞赛,满分100分。如果他们的成绩中最低分为96分,那么参赛的同学中至少有2人成绩相同。这种说法对吗?六(2)班有7名同学参加知识竞赛,他们的成绩中最低分也是96分,六(2)班参赛的学生中至少有几人成绩相同?(竞赛成绩的分数均为整数)
4. (5分)有5名同学参加科技比赛,团体总分为426分,则总有一名同学的得分不低于多少分?
(得分为整数)
5. (15分) (2018六下·云南月考) 把若干个苹果放进9个抽屉里。不管怎么放,要保证总有一个抽屉里至少放进4个苹果。那么至少应该有多少个苹果?
6. (5分)任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做和).
7. (5分)盒子里有大小相同的红、黄、蓝、白四种颜色的球各12个,要想摸出的球一定有2个是同色的,至少要摸出几个球?
小学数学小学奥数系列8-2-1抽屉原理(一)
小学数学小学奥数系列8-2-1抽屉原理(一)
姓名:________ 班级:________ 成绩:________
亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!
一、 (共34题;共175分)
1. (5分)海天小学五年级学生身高的厘米数都是整数,并且在厘米到厘米之间(包括厘米到厘米),那么,至少从多少个学生中保证能找到个人的身高相同?
2. (5分)五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同?
3. (5分)从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12.
4. (5分)时钟的表盘上按标准的方式标着1,2,3,…,11,12这12个数,在其上任意做n个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.
5. (5分)任意4个整数中,必存在两个数,它们被3整除的余数相同.你能说出其中的道理吗?
6. (5分)体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?
7. (5分)在1m长的线段上任意点7个点,不管怎样点,至少有两点之间的距离小于17cm.在纸上画一画,并和同桌同学说一说.
8. (5分)新兴镇上设置了3只信箱,现在有16封信要发出去,不管这些信怎样投法,必有一只信箱里至少要投进6封信.你知道为什么吗?
小学奥数-抽屉原理(教师版)
抽屉原理
如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。这样n个抽屉中所放物品的总数就不会超过n件。这与有多于n个物品的假设相矛盾。说明抽屉原理1成立。
抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+l。
假定这n个抽屉中,每一个抽屉中的物品都不到(m+l)件,即每个抽屉里的物品不多于m件,这样n个抽屉中可放物品的总数就不会超过m×n件。这与多于m×n件物品的假设相矛盾。说明原来的假设不成立。所以抽屉原理2成立。
运用抽屉原理解题的关键是选好“抽屉”,而构造“抽屉”的方法多种多样,会因题而异。运用原理1还是原理2要看题目的问题和哪一个更直观。抽屉原理2实际上是抽屉原理1的变形。
【例1】★某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?
【解析】平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。
【小试牛刀】某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?【解析】1992年共有366天,把它看成是366个抽屉,把370个人放入366个抽屉中,至少有一个抽屉里有两个人,因此其中至少有2个学生的生日是同一天的。
小学奥数抽屉原理
小学奥数抽屉原理
小学奥数是小学生学习数学的一项重要内容,其中抽屉原理是
一个非常有趣且实用的数学概念。抽屉原理是指如果有n+1个物品
放入n个抽屉中,那么至少有一个抽屉中至少有两个物品。这个简
单的原理在解决一些实际问题时非常有用,下面我们就来详细了解
一下小学奥数中的抽屉原理。
首先,我们来看一个简单的例子。假设有5个苹果和4个篮子,我们要把这些苹果放进篮子里,那么根据抽屉原理,至少有一个篮
子里会有至少两个苹果。这是因为5个苹果分别放入4个篮子,必
然会有至少一个篮子里有两个或以上的苹果。
抽屉原理在解决实际问题时非常有用。比如,在一个班级里,
学生们的生日是随机分布的,如果班级有31个学生,那么根据抽屉
原理,至少有两个学生会有相同的生日。这是因为一年有365天,
而学生的数量只有31个,必然会有至少两个学生生日在同一天。
除了生日问题,抽屉原理还可以应用在许多其它实际问题中。
比如在一副扑克牌中,如果抽出了5张牌,那么根据抽屉原理,至
少会有一种花色的牌有两张或以上。这是因为一副扑克牌只有4种
花色,而抽出的牌有5张,必然会有至少一种花色的牌有两张或以上。
在小学奥数中,抽屉原理可以帮助学生更好地理解和解决一些问题。通过抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力。同时,抽屉原理也可以帮助学生更好地理解数学知识,为他们打下坚实的数学基础。
总之,抽屉原理是小学奥数中非常重要的一个概念,它不仅能够帮助学生更好地理解数学知识,还能够在解决实际问题时发挥重要作用。通过学习抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力,为将来的学习打下坚实的基础。希望学生们能够认真学习抽屉原理,将其运用到实际生活中,发挥出更大的作用。
小学奥数专题—抽屉原理(一)
⼩学奥数专题—抽屉原理(⼀)
⼩学奥数专题—抽屉原理(⼀)
[专题介绍] 把4只苹果放到3个抽屉⾥去,共有4种放法(请⼩朋友们⾃⼰列举),不论如何放,必有⼀个抽屉⾥⾄少放进两个苹果。
同样,把5只苹果放到4个抽屉⾥去,必有⼀个抽屉⾥⾄少放进两个苹果。
……
更进⼀步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉⾥去,那么必定有⼀个抽屉⾥⾄少放进两个苹果。这个结论,通常被称为抽屉原理。
利⽤抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能⽤的,关键是要应⽤所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。
[经典例题]
【例1】⼀个⼩组共有13名同学,其中⾄少有2名同学同⼀个⽉过⽣⽇。为什么?
【分析与解答】每年⾥共有12个⽉,任何⼀个⼈的⽣⽇,⼀定在其中的某⼀个⽉。如果把这12个⽉看成12个“抽屉”,把13名同学的⽣⽇看成13只“苹果”,把13只苹果放进12个抽屉⾥,⼀定有⼀个抽屉⾥⾄少放2个苹果,也就是说,⾄少有2名同学在同⼀个⽉过⽣⽇。
【例 2】任意4个⾃然数,其中⾄少有两个数的差是3的倍数。这是为什么?【分析与解答】⾸先我们要弄清这样⼀条规律:如果两个⾃然数除以3的余数相同,那么这两个⾃然数的差是3的倍数。⽽任何⼀个⾃然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把⾃然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有⼀个抽屉⾥⾄少有2个数。换句话说,4个⾃然数分成3类,⾄少有两个是同⼀类。既然是同⼀类,那么这两个数被3除的余数就⼀定相同。所以,任意4个⾃然数,⾄少有2个⾃然数的差是3的倍数。
河北省邢台市小学数学小学奥数系列8-2-1抽屉原理(三)
河北省邢台市小学数学小学奥数系列8-2-1抽屉原理(三)
姓名:________ 班级:________ 成绩:________
亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!
一、 (共48题;共246分)
1. (5分)任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做和).
2. (5分)你能说说原因吗?
3. (5分)平面上给定6个点,没有3个点在一条直线上.证明:用这些点做顶点所组成的一切三角形中,一定有一个三角形,它的最大边同时是另外一个三角形的最小边.
4. (5分)有苹果、橘子、梨三种水果,每人任意拿两个,至少有几个人,才能保证到至少有两人选的水果一样.
5. (15分)袋子里有同样大小的红、白、黄、蓝颜色的球各5个,至少取出多少个球,可以保证取到两个颜色相同的球?
6. (5分)假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?
7. (5分)把7只小猫分别关进3个笼子里,不管怎么放,总有一个笼子里至少有多少只猫?
8. (5分)叔叔参加飞镖比赛,投了5镖,成绩是42环.张叔叔至少有一镖不低于9环.为什么?
9. (5分)一个盒子中有红、黄、蓝三种颜色的球各20个.最少要拿几个球,就能保证有两对同色的球?最少要拿出几个球,就能保证有3对同色的球?解答了前两个问题,你发现有什么规律吗?你能根据规律迅速地写出要保证有4对同色的球,最少要拿出多少个球吗?(所谓“同色的球”指的是每对中的两个球同色,不是指所有取
河北省唐山市小学小学奥数系列8-2-1抽屉原理(三)
河北省唐山市小学小学奥数系列8-2-1抽屉原理(三)
姓名:________ 班级:________ 成绩:________
亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!
一、 (共48题;共246分)
1. (5分) 20道复习题,小明在两周内做完,每天至少做一道题.证明:小明一定在连续的若干天内恰好做了7道题目.
2. (5分)求证:对于任意的8个自然数,一定能从中找到6个数a,b,c,d,e,f,使得
是105的倍数.
3. (5分)证明:任取6个自然数,必有两个数的差是5的倍数。
4. (5分)袋子里有同样大小的红、白、黄、蓝颜色的球各5个,至少取出多少个球,可以保证取到两个颜色相同的球?
5. (15分) (2018六下·云南月考) 有26位小朋友,他们当中至少有3位小朋友属同一生肖,这个观点对吗?为什么?
6. (5分)任意给定一个正整数,一定可以将它乘以适当的整数,使得乘积是完全由0和7组成的数.
7. (5分)一个口袋里有红球、黄球、白球和花球四种颜色的球,小阳闭着眼睛,每次摸出一个球,他想摸出两个颜色相同的球,至少要摸多少次才能一定达到要求?
8. (5分)从42个鸽舍中飞出211只鸽子,总有一个鸽舍中至少飞出6只鸽子。为什么?
9. (5分)任给11个数,其中必有6个数,它们的和是6的倍数.
10. (5分)把黑、白、蓝、灰四种颜色的袜子各12只混在一起。如果让你闭上眼睛,每次最少拿出几只才能保证一定有一双同色的袜子?如果要保证有两双同色的袜子呢?
11. (5分)平面上给定6个点,没有3个点在一条直线上.证明:用这些点做顶点所组成的一切三角形中,一定有一个三角形,它的最大边同时是另外一个三角形的最小边.
小学六年级奥数抽屉原理(含答案)
抽屉原理
知识重点
1. 抽屉原理的一般表述
2 个苹果。它的一般表述为:
(1) 假定有 3 个苹果放入 2 个抽屉中,必然有一个抽屉中起码
有
n 个抽屉,此中必有一个抽屉中起码有(m+1) 个物体。
第一抽屉原理:(mn+ 1) 个物体放
入
(2)若把 3 个苹果放入 4 个抽屉中,则必然有一个抽屉空着。它的一般表述为:
第二抽屉原理:(mn- 1) 个物体放入n 个抽屉,此中必有一个抽屉中至多有(m-1) 个物体。
2.结构抽屉的方法
常有的结构抽屉的方法有:数的分组、染色分类、图形的切割、节余类等等。
例 1 自制的一副玩具牌合计 52 张 ( 含四种牌:红桃、红方、黑桃、黑梅,每种牌都有 1 点, 2 点, 13 点牌各一张 ) ,洗好后反面向上放。一次起码抽取张牌,才能保证此中必然有 2 张牌的点数和颜色都同样。假如要求一次抽出的牌中必然有 3 张牌的点数是相邻的 ( 不计颜色 ) ,那么起码要取张牌。
点拨关于第一问,最不利的状况是两种颜色都取了1~ 13 点各一张,此时再抽一张,这张牌必与已
抽
取的某张牌的颜色与点数都同样。
4 张,此时再取一张,点拨关于第二问,最不利的状况是:先抽取了1, 2, 4, 5,7, 8, 10, 11, 13
各
3 张的点数相邻。
这张牌的点数是3,6, 9, 12 中的一张,在已抽取的牌中必
有
解(1)13×2+1=27(张)(2)9×4+1=37(张)
例 2证明:37人中,(1)起码有4人属相同样;(2)要保证有 5 人属相同样,但不保证有 6 人属相同样,
那么人的总数应在什么范围内?
小学奥数系列8-2-1抽屉原理(三)及参考答案
小学奥数系列8-2-1抽屉原理(三)
一、
1. 从1到20这20个数中,任取11个不同的数,必有两个数其中一个是另一个数的倍数.
2. 从1,3,5,7,…,97,99中最多可以选出多少个数,使得选出的数中,每一个数都不是另一个数的倍数?
3. 从整数1、2、3、…、199、200中任选101个数,求证在选出的这些自然数中至少有两个数,其中的一个是另一个的倍数.
4. 从1,2,3,……49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?
5. 从1,2,3,…,99,100这100个数中任意选出51个数.
证明:
(1)在这51个数中,一定有两个数互质;
(2)在这51个数中,一定有两个数的差等于50;
(3)在这51个数中,一定存在9个数,它们的最大公约数大于1.
6. 有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子?
7. 要把61个乒乓球分装在若干个乒乓球盒中,每个盒子最多可以装5个乒乓球,问:至少有多少个盒子中的乒乓球数目相同?
8. 将400本书随意分给若干同学,但是每个人不许超过11本,问:至少有多少个同学分到的书的本数相同?
9. 有苹果和桔子若干个,任意分成堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?
10. 在长度是厘米的线段上任意取个点,是否至少有两个点,它们之间的距离不大于厘米?
11. 在米长的直尺上任意点五个点,请你说明这五个点中至少有两个点的距离不大于厘米.
小学奥数-抽屉原理(教师版)
抽屉原理
如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。这样n个抽屉中所放物品的总数就不会超过n件。这与有多于n个物品的假设相矛盾。说明抽屉原理1成立。
抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+l。
假定这n个抽屉中,每一个抽屉中的物品都不到(m+l)件,即每个抽屉里的物品不多于m件,这样n个抽屉中可放物品的总数就不会超过m×n件。这与多于m×n件物品的假设相矛盾。说明原来的假设不成立。所以抽屉原理2成立。
运用抽屉原理解题的关键是选好“抽屉”,而构造“抽屉”的方法多种多样,会因题而异。运用原理1还是原理2要看题目的问题和哪一个更直观。抽屉原理2实际上是抽屉原理1的变形。
【例1】★某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?
【解析】平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。
【小试牛刀】某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?【解析】1992年共有366天,把它看成是366个抽屉,把370个人放入366个抽屉中,至少有一个抽屉里有两个人,因此其中至少有2个学生的生日是同一天的。
小学奥数-抽屉原理(教师版)
抽屉原理
如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。这样n个抽屉中所放物品的总数就不会超过n件。这与有多于n个物品的假设相矛盾。说明抽屉原理1成立。
抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件
数不少于m+l。
假定这n个抽屉中,每一个抽屉中的物品都不到(m+l)件,即每个抽屉里的物品不多于m件,这样n个抽屉中可放物品的总数就不会超过m×n件。这与多于m×n件物品的假设相矛盾。说明原来的假设不成立。所以抽屉原理2成立。
运用抽屉原理解题的关键是选好“抽屉”,而构造“抽屉”的方法多种多样,会因题而异。运
用原理1还是原理2要看题目的问题和哪一个更直观。抽屉原理2实际上是抽屉原理1
的变形。
【例1】★某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?
【解析】平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。
【小试牛刀】某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?【解析】1992年共有366天,把它看成是366个抽屉,把370个人放入366个抽屉中,至少有一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省邢台市小学数学小学奥数系列8-2-1抽屉原理(一)
姓名:________ 班级:________ 成绩:________
亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!
一、 (共34题;共175分)
1. (5分)一副扑克牌,共54张,问:至少从中摸出多少张牌才能保证:
(1)至少有5张牌的花色相同;
(2)四种花色的牌都有;
(3)至少有3张牌是红桃.
(4)至少有2张梅花和3张红桃.
2. (5分)幼儿园大班小朋友练习口算,他们每人都从1~6这六个数中任选两个来做加法,结果发现至少有7个小朋友所得的和是相等的,那么这个班至少有多少名小朋友?
3. (5分)任意10个正整数,每一个都用9来除,其中必有两个余数相同.请说明你的理由.
4. (5分) 8个学生解8道题目.
(1)若每道题至少被5人解出,请说明可以找到两个学生,每道题至少被过两个学生中的一个解出.(2)如果每道题只有4个学生解出,那么(1)的结论一般不成立.试构造一个例子说明这点.
5. (5分)如图,分别标有数字的滚珠两组,放在内外两个圆环上,开始时相对的滚珠所标的数字都不相同.当两个圆环按不同方向转动时,必有某一时刻,内外两环中至少有两对数字相同的滚珠相对.
6. (5分)小明参加飞镖比赛,投了5镖,成绩是36环,小明至少有一镖不低于8环,对吗?为什么?
7. (5分)有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子?
8. (5分)一副扑克牌有四种花色,每种花色13张,从中任意抽出多少张牌才能保证有4张是同一花色的?
9. (5分)平面上给定17个点,如果任意三个点中总有两个点之间的距离小于1,证明:在这17个点中必有9个点可以落在同一半径为1的圆内。
10. (5分)从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12.
11. (5分)幼儿园买来许多牛、马、羊、狗塑料玩具,每个小朋友任意选择两件,但不能是同样的,问:至少有多少个小朋友去拿,才能保证有两人所拿玩具相同?
12. (5分)从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.
13. (5分)在下面每个格子中任意写上“爸爸”或“妈妈”,至少有几列所写的字是完全一样的?
14. (5分)在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?
15. (5分)体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?
16. (5分)张老师说北京市的所有人中一定有两个人头发根数一样多.你觉得张老师说的话有道理吗?为什么?(人的头发约有十万根)
17. (10分)一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣 1分,不答不得分。问:要保证至少有4人得分相同,至少需要多少人参加竞赛?
18. (5分)在1,4,7,10,13,16,19,22,25,28,31,34中任选出7个不同的数,其中必有两个数的和为35.
19. (5分)从1到20这20个数中,任取11个不同的数,必有两个数其中一个是另一个数的倍数.
20. (5分)把4支铅笔放进3个文具盒里,不管怎么放总有一个文具盒里至少放进2支铅笔,为什么?
21. (5分)某小学即将开运动会,一共有十项比赛,每位同学可以任报两项,那么要有多少人报名参加运动会,才能保证有两名或两名以上的同学报名参加的比赛项目相同?
22. (5分)有5050张数字卡片,其中1张上面写着数字“1”,2张上面写着数字“2”,3张上面写着数字“3”…,99张上面写着数字“99”,100张上面写着数字“100”.现在要从中任意取出若干张,为了确保抽出的卡片中至少有10张完全相同的数字,至少要抽出多少张卡片?
23. (5分)一些孩子在沙滩上玩耍,他们把石子堆成许多堆,其中有一个孩子发现从石子堆中任意选出六堆,其中至少有两堆石子数之差是5的倍数,你能说一说他的结论对吗?为什么?
24. (5分)在边长为3的正三角形内,任意放入10个点,求证:必有两个点的距离不大于1.
25. (5分)两个布袋各有12个大小一样的小球,且都是红、白、蓝各4个。从第一袋中拿出尽可能少的球,但至少有两种颜色一样的放入第二袋中;再从第二袋中拿出尽可能少的球放入第一袋中,使第一袋中每种颜色的球不少于3个。这时,两袋中各有多少个球?
26. (5分)一个袋子中装有红、黄、蓝、绿四种颜色的小球若干,如果每次取3个,最后剩1个;如果每次取5个或7个,最后剩2个.这个袋中至少有多少个小球?一次至少取几个小球可以保证有两个是同色的?
27. (5分) 11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同。
28. (5分)一副扑克有4种花色,每种花色13张,从中任意抽牌,最少要抽多少张才能保证有4张牌是同一花色?为什么?
29. (5分)有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号,试说明在200个信号中至少有四个信号完全相同。
30. (5分)在一个直径为2厘米的圆内放入七个点,请证明一定有两个点的距离不大于1厘米。
31. (5分)在1m长的线段上任意点7个点,不管怎样点,至少有两点之间的距离小于17cm.在纸上画一画,并和同桌同学说一说.
32. (5分)在一个矩形内任意放五点,其中任意三点不在一条直线上。证明:在以这五点为顶点的三角形中,至少有一个的面积小于矩形面积的四分之一。
33. (5分)时钟的表盘上按标准的方式标着1,2,3,…,11,12这12个数,在其上任意做n个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.
34. (5分) 9条直线的每一条都把一个正方形分成两个梯形,而且它们的面积之比为2∶3。证明:这9 条直线中至少有3 条通过同一个点。