高二数学寒假作业圆锥曲线与方程(1)理新人教A版
高二数学寒假作业第15天圆锥曲线综合理
第15天 圆锥曲线综合【课标导航】A .掌握直线和圆锥曲线的位置关系,B .理解圆锥曲线之间的位置关系; 3.会用向量知识解决圆锥曲线有关问题. 一、选择题1.给定四条曲线:①2252x y②22194x y ③2214y x④2214x y 其中与直线50x y 仅有一个公共点的曲线的是( )A. ①②③B.②③④C. ①②④D. ①③④2.设直线1:2l yx ,直线2l 经过(2,1)A 点,抛物线2:4C y x ,已知1l 、2l 与C 共有三个交点,那么满足条件的直线2l 共有( )A. 1条B. 2条C.3条D. 4条3.过双曲线小2212y x 的右焦点作直线l 交双曲线于A 、B 两点,若4AB ,则这样的直线l 有A. 1条B. 2条C. 3条D. 4条( )4.已知k<4,则曲线14922=+y x 和14922=-+-ky k x 有( )A. 相同的准线B. 相同的焦点C. 相同的离心率D. 相同的长轴5.已知椭圆2222135x y m n +=和双曲线2222123x y m n -=有公共焦点,那么双曲线的渐近线方程为 ( )A .x y =B .y =C .x y =D .y x = 6.已知抛物线22(0)y px p =>的焦点F 恰好是椭圆12222=+by a x 的右焦点,且两条曲线的公共点的连线过F ,则该椭圆的离心率为( )A. 12-B.213- C.13- D.212-7.过双曲线22221(0,0)x y a b a b-=>>的左焦点F 作直线交双曲线的两条渐近线与A,B 两点,若 2,FA FB = 2()OA OB OB ⋅=,则双曲线的离心率为( )A.2B. 3C. 2D. 58. 如图,在底面半径和高均为2的圆锥中,AB CD 、是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点.已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离为 ( )A. 2B. 3C. 6D.102二、填空题9.若椭圆221369x y +=的弦被点(4,2)平分,则此弦所在直线方程为______________.10.以抛物线28y x =的顶点为中心,焦点为右焦点,且以3y x =±为渐近线的双曲线方程是_________11.已知F 是椭圆1C :1422=+y x 与双曲线2C 的一个公共焦点,A ,B 分别是1C ,2C 在第二、四象限的公共点.若0=⋅BF AF ,则2C 的离心率是 .12.如右图,抛物线C 1:y 2=2px 和圆C 2: 222()24p p x y -+=,其中p >0,直线l 经过C 1的焦点,依次交C 1,C 2于A ,B ,C ,D 四点,则AB CD •的值为 . 三、解答题13.设,x y R ∈,向量(1,)a x y =+,(1,)b x y =-,且4a b +=. (Ⅰ)求点(,)M x y 的轨迹C 的方程;(Ⅱ)过点(3,0)P -作直线l 与曲线C 交于,A B 两点, O 是坐标原点,若1OA OB ⋅=,求直线l 的方程.14. 已知双曲线222:1(0)x C y a a-=>与直线:1l x y +=相较于两个不同的点,.A B(Ⅰ)求双曲线C 的离心率的取值范围;(Ⅱ)设直线l 与y 轴交点为P ,且512PA PB =,求a 的值.15. 在平面直角坐标系xOy中,经过点(0且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P 和Q . (Ⅰ)求k 的取值范围;(Ⅱ)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B ,,是否存在常数k ,使得向量OP OQ +与AB 共线?如果存在,求k 值;如果不存在,请说明理由.16. 已知两定点E(-2,0),F(2,0),动点P 满足0PE PF ⋅=,由点P 向x 轴作垂线段PQ ,垂足为Q ,点M 满足PM MQ =,点M 的轨迹为C. (Ⅰ)求曲线C 的方程;(Ⅱ)过点D (0,-2)作直线l 与曲线C 交于A 、B 两点,点N 满足ON OA OB =+(O 为原点),求四边形OANB 面积的最大值,并求此时的直线l 的方程.【链接联赛】(2013一试)在平面直角坐标系xOy 中,点,A B 在抛物线24y x =上,满足4OA OB ⋅=-.F 是抛物线的焦点,则OFA OFB S S ∆∆⋅=_____________.第15天 圆锥曲线综合1—8;D C CB A ACD 9.082=-+y x 10.2213y x -= 11. 26; 12.24p 13.(1)4a b +=,4=,由椭圆的定义知22,24c a ==.即2,1,a c b ===所以椭圆方程为22143x y +=.(2)由题设l 的方程为(yk x =,联立方程组:22222234120(34)12120(x y k x x k y k x ⎧+-=⎪⇒⇒+++-=⎨=+⎪⎩, 所以2122212234121234x x k k x x k ⎧-+=⎪⎪+⎨-⎪⋅=⎪+⎩.2122334k y y k -∴⋅=+12121,1OA OB x x y y ⋅=∴⋅+⋅=,22912134k k-∴=+,解得:k =,所以直线l的方程333y x y =+=-或.14. (1215(1)由已知条件,直线l 的方程为y kx =代入椭圆方程得22(12x kx ++=.整理得221102k x ⎛⎫+++= ⎪⎝⎭① 直线l 与椭圆有两个不同的交点P 和Q 等价于2221844202k k k ⎛⎫∆=-+=->⎪⎝⎭,解得2k <-或2k >.即k 的取值范围为222⎛⎫⎛⎫--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,∞∞. (2)设1122()()P x y Q x y ,,,,则1212()OP OQ x x y y +=++,,由方程①,12212x x k +=-+. ② 又1212()y y k x x +=++ ③而(01)(A B AB =-,,.所以OP OQ +与AB 共线等价于1212)x x y y +=+,将②③代入上式,解得2k =.由(1)知2k <-或2k >,故没有符合题意的常数k .16(1(2【链接联赛】2。
高中数学第三章圆锥曲线的方程 双曲线的几何性质课后提能训练新人教A版选择性必修第一册
第三章 3.2 3.2.2A 级——基础过关练1.双曲线x 216-y 233=1的焦点坐标是( )A .(±17,0)B .(0,±17)C .(±7,0)D .(0,±7)【答案】C【解析】由题意可知c 2=16+33=49,所以c =7.由双曲线方程可知焦点在x 轴上.故选C .2.与双曲线x 2-y 24=1有共同的渐近线,且过点(2,2)的双曲线的标准方程是( )A .x 23-y 212=1B .x 212-y 23=1C .x 24-y 216=1D .x 212-y 248=1【答案】A【解析】依题意设双曲线的方程为x 2-y 24=λ(λ≠0),将点(2,2)代入求得λ=3,所以所求双曲线的标准方程为x 23-y 212=1.3.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( ) A .-14B .-4C .4D .14【答案】A【解析】双曲线方程化为标准形式y 2-x 2-1m=1,则有a 2=1,b 2=-1m ,由题设条件知2=-1m ,所以m =-14. 4.设双曲线x 2a 2-y 29=1(a >0)的渐近线方程为3x ±2y =0,则a 的值为( )A .4B .3C .2D .1【答案】C【解析】双曲线x 2a 2-y 29=1的渐近线方程为3x ±ay =0,对比3x ±2y =0得a =2.5.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( )A .x 29-y 213=1B .x 213-y 29=1C .x 23-y 2=1D .x 2-y 23=1【答案】D【解析】由双曲线的渐近线bx ±ay =0与圆(x -2)2+y 2=3相切可知2ba 2+b 2=3,又因为c =a 2+b 2=2,所以有a =1,b =3,故双曲线的方程为x 2-y 23=1.6.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为14,则双曲线x 2a 2-y 2b2=1的渐近线方程为( )A .y =±32xB .y =±152x C .y =±154x D .y =±225x【答案】C【解析】因为e =c a =14,不妨设a =4,c =1,则b =15,所以对应双曲线的渐近线方程为y =±b a x =±154x .7.(多选)已知双曲线9y 2-4x 2=-36,则( ) A .该双曲线的实轴长为6 B .该双曲线的虚轴长为4 C .该双曲线的离心率为133D .该双曲线的渐近线方程为±23x【答案】ABCD【解析】将9y 2-4x 2=-36化为标准方程x 29-y 24=1,即x 232-y 222=1,所以a =3,b =2,c =13,所以实轴长2a =6,虚轴长2b =4,离心率e =c a=133,渐近线方程为y =±b a x =±23x .故选ABCD .8.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是__________.【答案】(-12,0)【解析】双曲线方程可变为x 24-y 2-k =1,则a 2=4,b 2=-k ,c 2=4-k ,e =c a =4-k 2,又因为e ∈(1,2),则1<4-k2<2,解得-12<k <0. 9.双曲线的离心率为2,则双曲线的两条渐近线的夹角为________. 【答案】90°【解析】因为e =c a =2,所以a 2+b 2a =2,即a =b ,所以双曲线的渐近线方程为y =±x .∴所以双曲线两条渐近线的夹角为90°.10.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点是F (2,0),离心率e =2.(1)求双曲线C 的方程;(2)若斜率为1的直线与双曲线C 交于两个不同的点M ,N ,线段MN 的垂直平分线与两坐标轴围成的三角形面积等于4,求直线l 的方程.解:(1)由已知得c =2,e =2,∴a =1,b =3. ∴双曲线C 方程为x 2-y 23=1.(2)设直线l 的方程为y =x +m ,点M (x 1y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧y =x +m ,x 2-y 23=1,得2x 2-2mx -m 2-3=0,①设MN 中点为(x 0,y 0),则x 0=x 1+x 22=m2,y 0=x 0+m =32m ,∴线段MN 的垂直平分线方程为 y -32m =-⎝ ⎛⎭⎪⎫x -m 2,即x +y -2m =0, 与坐标轴交点为(0,2m ),(2m,0),得12|2m |·|2m |=4,则m 2=2,即m =±2, 代入①得Δ>0,所以l 的方程为y =x ±2.B 级——能力提升练11.(多选)下列说法正确的是( )A .以直线2x ±3y =0为渐近线,过点(1,2)的双曲线的标准方程为y 2329-x 28=1B .与双曲线y 24-x 23=1具有相同的渐近线,且过点M (3,-2)的双曲线的标准方程为x 26-y 28=1C .过点(2,0),与双曲线y 264-x 216=1离心率相等的双曲线的标准方程为x 24-y 2=1D .与椭圆x 225+y 216=1有公共焦点,离心率为32的双曲线的标准方程为x 25-y24=1【答案】ABC【解析】对于A,设所求双曲线方程为4x 2-9y 2=λ(λ≠0),将点(1,2)的坐标代入方程,解得λ=-32,因此所求双曲线的标准方程为y 2329-x 28=1,A 正确.对于B,设所求双曲线方程为y 24-x 23=λ(λ≠0),由点M (3,-2)在双曲线上,得44-93=λ,λ=-2,故所求双曲线的标准方程为x 26-y 28=1,B 正确.对于C,当所求双曲线的焦点在x 轴上时,可设其方程为x 264-y 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=116,故所求双曲线的标准方程为x24-y 2=1;当所求双曲线的焦点在y 轴上时,可设其方程为y 264-x 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=-14<0(舍去),所以所求双曲线的标准方程为x 24-y 2=1,C 正确.对于D,由椭圆方程可得焦点坐标为(-3,0),(3,0),即c =3且焦点在x 轴上,设双曲线的标准方程为x 2a 2-y 2b 2=1(a>0,b >0),因为e =c a =32,所以a =2,则b 2=c 2-a 2=5,故所求双曲线的标准方程为x 24-y 25=1,D 错误.故选ABC .12.已知双曲线x 22-y 2b2=1(b >0)的左、右焦点分别是F 1,F 2,其一条渐近线方程为y =x ,点P (3,y 0)在双曲线上,则PF 1→·PF 2→=( )A .0B .1C . 2D .2【答案】A【解析】由渐近线方程为y =x 知,b2=1,所以b =2.因为点P (3,y 0)在双曲线上,所以y 0=±1.y 0=1时,P (3,1),F 1(-2,0),F 2(2,0),所以PF 1→·PF 2→=0;y 0=-1时,P (3,-1),PF 1→·PF 2→=0.13.具有某种共同性质的所有曲线的集合,称为一个曲线系.已知双曲线C 1:x 29-y 23=1与双曲线C 2有共同的渐近线,双曲线C 2的渐近线方程是__________;若双曲线C 2还经过点M (3,4),则双曲线C 2的离心率为__________.【答案】y =±33x 2 【解析】C 1:x 29-y 23=1的渐近线方程为y =±33x ,双曲线C 1,C 2有共同的渐近线,所以双曲线C 2的渐近线方程是y =±33x .设双曲线C 2的方程为x 29-y23=k (k ≠0),将点M (3,4)代入得39-163=k ,解得k =-5,所以双曲线C 2的方程为y 215-x 245=1,离心率e =6015=2.14.如图,已知F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,E 是该双曲线的右顶点,过F且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是________.【答案】(1,2)【解析】△ABE 是等腰三角形,AE =BE ,所以只需∠AEB 为锐角,所以∠AEF <45°,所以b 2a=AF <FE =a +c ,所以e 2-e -2<0,所以-1<e <2.又因为e >1,所以1<e <2,所以e ∈(1,2).15.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点为A ,右焦点为F ,动点B 在C 上,当BF ⊥AF 时,|AF |=|BF |.(1)求双曲线C 的离心率;(2)若点B 在第一象限,求证:∠BFA =2∠BAF .(1)解:设双曲线的半焦距为c ,则F (c,0),B ⎝ ⎛⎭⎪⎫c ,±b 2a . ∵|AF |=|BF |,故b 2a=a +c ,故c 2-ac -2a 2=0,即e 2-e -2=0.∴e =2.(2)证明:设B (x 0,y 0),其中x 0>a ,y 0>0. ∵e =2,故c =2a ,b =3a . 故渐近线方程为y =±3x ,∴∠BAF ∈⎝ ⎛⎭⎪⎫0,π3,∠BFA ∈⎝⎛⎭⎪⎫0,2π3.又∵tan ∠BFA =-y 0x 0-c=-y 0x 0-2a,tan ∠BAF =y 0x 0+a, ∴tan2∠BAF =2y 0x 0+a1-⎝ ⎛⎭⎪⎫y 0x 0+a 2=2y 0x 0+ax 0+a 2-y 20=2y 0x 0+ax 0+a 2-b 2⎝ ⎛⎭⎪⎫x 2a 2-1=2y 0x 0+ax 0+a2-3a 2⎝ ⎛⎭⎪⎫x 20a 2-1=2y 0x 0+ax 0+a 2-3x 20-a 2=2y 0x 0+a -3x 0-a=-y 0x 0-2a=tan ∠BFA .而2∠BAF ∈⎝⎛⎭⎪⎫0,2π3,故∠BFA =2∠BAF .。
高中数学 第二章 圆锥曲线与方程 2.2 双曲线(1)练习 新人教A版高二选修1-1数学试题
2.2 双曲线(1)A 级 基础巩固一、选择题1.已知M (-2,0)、N (2,0),|PM |-|PN |=4,则动点P 的轨迹是导学号 03624438( C )A .双曲线B .双曲线左支C .一条射线D .双曲线右支[解析]∵|PM |-|PN |=|MN |=4,∴动点P 的轨迹是一条射线. 2.双曲线3x 2-4y 2=-12的焦点坐标为导学号 03624439( D ) A .(±5,0) B .(0,±5) C .(±7,0)D .(0,±7)[解析] 双曲线3x 2-4y 2=-12化为标准方程为y 23-x 24=1,∴a 2=3,b 2=4,c 2=a 2+b 2=7,∴c =7,又∵焦点在y 轴上,故选D .3.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值X 围是导学号 03624440( A )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-1[解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.4.(2016·某某某某高二检测)已知双曲线2mx 2-my =4的一个焦点为(0,6),则m 的值为导学号 03624441( B )A .1B .-1C .73D .-73[解析] 将双曲线方程化为x 22m-y 24m=1.因为一个焦点是(0,6),所以焦点在y 轴上,所以c =6,a 2=-4m ,b 2=-2m ,所以a 2+b 2=-4m -2m =-6k=c 2=6.所以m =-1.5.双曲线x 210-y 22=1的焦距为导学号 03624442( D )A .3 2B .4 2C .3 3D .4 3[解析] 由双曲线的标准方程,知a 2=10,b 2=2,则c 2=a 2+b 2=10+2=12,因此2c =43,故选D .6.(2015·某某理)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1、F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于导学号 03624443( B )A .11B .9C .5D .3[解析] 由题,|||PF 1|-|PF 2|=2a =6, 即||3-|PF 2|=2a =6,解得|PF 2|=9. 二、填空题7.已知双曲线C :x 29-y 216=1的左、右焦点分别为F 1、F 2,P 为C 右支上的一点,且|PF 2|=|F 1F 2|,则△PF 1F 2的面积等于__48__.导学号 03624444[解析] 依题意得|PF 2|=|F 1F 2|=10,由双曲线的定义得|PF 1|-|PF 2|=6,∴|PF 1|=16.∴S △PF 1F 2=12×16×102-1622=48.8.已知双曲线x 225-y 29=1的两个焦点分别为F 1、F 2,若双曲线上的点P 到点F 1的距离为12,则点P 到点F 2的距离为__2或22__.导学号 03624445[解析] 设F 1为左焦点,F 2为右焦点,当点P 在双曲线左支上时,|PF 2|-|PF 1|=10,|PF 2|=22;当点P 在双曲线右支上时, |PF 1|-|PF 2|=10,|PF 2|=2. 三、解答题9.求满足下列条件的双曲线的标准方程.导学号 03624446 (1)焦点在x 轴上,c =6且经过点(-5,2); (2)过P (3,154)和Q (-163,5)两点.[解析] (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由题意得⎩⎪⎨⎪⎧25a 2-4b2=1a 2+b 2=6,解之得a 2=5,b 2=1, 故所求双曲线方程为x 25-y 2=1.(2)设双曲线方程为Ax 2+By 2=1(AB <0),由题意得 ⎩⎪⎨⎪⎧9A +22516B =12569A +25B =1,解之得⎩⎪⎨⎪⎧A =-116B =19.∴所求双曲线方程为y 29-x 216=1.B 级 素养提升一、选择题1.已知双曲线中心在原点,一个焦点为F 1(-5,0),点P 在该双曲线上,线段PF 1的中点坐标为(0,2),则双曲线的方程是导学号 03624447( B )A .x 24-y 2=1B .x 2-y 24=1C .x 22-y 23=1D .x 23-y 22=1[解析] 由条件知P (5,4)在双曲线x 2a 2-y 2b2=1上,∴5a 2-16b2=1,又a2+b 2=5,∴⎩⎪⎨⎪⎧a 2=1b 2=4,故选B .2.(2017·全国Ⅰ文,5)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为导学号 03624448( D )A .13B .12C .23D .32[解析] 因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3,所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.故选D .3.已知m 、n 为两个不相等的非零实数,则方程mx -y +n =0与nx 2+my 2=mn 所表示的曲线可能是导学号 03624449( C )[解析] 把直线方程和曲线方程分别化为y =mx +n ,x 2m +y 2n=1.根据图形中直线的位置,判定斜率m 和截距n 的正负,从而断定曲线的形状.4.已知双曲线的左、右焦点分别为F 1、F 2,过F 1的直线与双曲线的左支交于A 、B 两点,线段AB 的长为5,若2a =8,那么△ABF 2的周长是导学号 03624450( D )A .16B .18C .21D .26[解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16, ∴|AF 2|+|BF 2|=16+5=21,∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26. 5.若方程x 2m -1+y 2m 2-4=3表示焦点在y 轴上的双曲线,则m 的取值X 围是导学号 03624451( C )A .(-∞,1)B .(2,+∞)C .(-∞,-2)D .(-2,1)[解析] 由题意,方程可化为y 2m 2-4-x 21-m=3,∴⎩⎪⎨⎪⎧m 2-4>01-m >0,解得m <-2.故选C .二、填空题6.(2016·某某某某高二检测)设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,有一个交点的坐标为(15,4),则此双曲线的方程为y 24-x 25=1 .导学号 03624452[解析] 解法一:椭圆x 227+y 236=1的焦点坐标是(0,±3),根据双曲线的定义,知2a=|152+12-152+72|=4,故a =2.又b 2=c 2-a 2=5,故所求双曲线的方程为y 24-x 25=1. 解法二:椭圆x 227+y 236=1的焦点坐标是(0,±3).设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则a 2+b 2=9,16a 2-15b 2=1,解得a 2=4,b 2=5.故所求双曲线的方程为y 24-x 25=1.解法三:设双曲线方程为x 227-λ+y 236-λ=1(27<λ<36),由于双曲线过点(15,4),故1527-λ+1636-λ=1,解得λ1=32,λ2=0(舍去).故所求双曲线方程为y 24-x 25=1. 7.已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于__4__.导学号 03624453[解析] 在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 即(22)2=22+|PF 1|·|PF 2|, 解得|PF 1|·|PF 2|=4. 三、解答题8.已知双曲线方程为2x 2-y 2=k ,焦距为6,求k 的值.导学号 03624454 [解析] 由题意知c =3,若焦点在x 轴上,则方程可化为x 2k 2-y 2k =1,∴k 2+k =32,即k =6.若焦点在y 轴上,则方程可化为y 2-k -x 2-k2=1.∴-k +(-k2)=32,即k =-6.综上,k 的值为6或-6.C 级 能力提高1.双曲线8kx 2-ky 2=8的一个焦点坐标为(0,3),则k 的值为__-1__.导学号 03624455[解析] 将双曲线的方程化为x 21k-y 28k=1,因为双曲线的一个焦点坐标是(0,3), 所以焦点在y 轴上,且c =3. 所以a 2=-8k ,b 2=-1k.所以-8k -1k=9,解得k =-1.2.当0°≤α≤180°时,方程x 2cos α+y 2sin α=1表示的曲线如何变化?导学号 03624456[解析] (1)当α=0°时,方程为x 2=1,它表示两条平行直线x =±1. (2)当0°<α<90°时,方程为x 21cos α+y 21sin α=1. ①当0°<α<45°时,0<1cos α<1sin α,它表示焦点在y 轴上的椭圆.②当α=45°时,它表示圆x 2+y 2= 2.③当45<α<90°时,1cos α>1sin α>0,它表示焦点在x 轴上的椭圆.(3)当α=90°时,方程为y 2=1,它表示两条平行直线y =±1. (4)当90°<α<180°时,方程为y 21sin α-x 21-cos α=1,它表示焦点在y 轴上的双曲线.(5)当α=180°时,方程为x 2=-1,它不表示任何曲线.。
2022高中数学第三章圆锥曲线的方程-双曲线的方程与性质的应用课后提能训练新人教A版选择性必修第一册
第三章 3.2 3.2.3A级——基础过关练1.直线l过点(,0)且与双曲线x2-y2=2仅有一个公共点,则这样的直线有( ) A.1条B.2条C.3条D.4条【答案】C【解析】点(,0)即为双曲线的右顶点,过该点有两条与双曲线渐近线平行的直线与双曲线仅有一个公共点,另过该点且与x轴垂直的直线也与双曲线只有一个公共点,故这样的直线只有3条.2.已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B 两点,且AB的中点为N(-12,-15),则双曲线E的方程为( )A.-=1B.-=1C.-=1D.-=1【答案】B【解析】由c=3,设双曲线方程为-=1,k AB==1,设A(x1,y1),B(x2,y2),则-=1①,-=1②,由①-②,得-=0.又因为N(-12,-15)为AB中点,所以x1+x2=-24,y1+y2=-30.所以=.所以==1.所以a2=4.所以双曲线方程为-=1.3.若直线y=kx与双曲线-=1相交,则k的取值范围为( )A.B.(-1,1)C.(-2,2)D. -,【答案】A【解析】双曲线-=1的渐近线方程为y=±x,若直线与双曲线相交,数形结合,得k∈.4.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则双曲线C的离心率为( )A.B.C.2D.3【答案】B【解析】由题意不妨设l:x=-c,则|AB|=,又因为|AB|=2×2a,故b2=2a2,所以e===.5.已知直线l:y=x与双曲线C:-=1(a>0,b>0)的右支交于点M,OM(O是坐标原点)的垂直平分线经过C的右焦点,则双曲线C的离心率为( )A.B.+1C.D.【答案】C【解析】如图,依题意可得∠MOF=∠OMF=30°,OF=MF=c,所以M,所以-=1,结合c2=a2+b2,可得9c4-16a2c2+4a4=0,所以9e4-16e2+4=0,解得e2=,则e=.6.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则双曲线的离心率e的最大值为( )A.B.C.D.2【答案】C【解析】由双曲线定义知|PF1|-|PF2|=2a,又已知|PF1|=4|PF2|,所以|PF1|=a,| PF2|=a,在△PF1F2中,由余弦定理,得cos∠F1PF2==-e2,要求e的最大值,即求cos∠F1PF2的最小值,因为cos∠F1PF2≥-1,所以cos∠F1PF2=-e2≥-1,解得e≤,即e的最大值为.7.(多选)已知双曲线-=1的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线斜率的值可以是( )A.-B.0C.D.1【答案】ABC【解析】由题意知,F(4,0),双曲线的两条渐近线方程为y=±x,当过点F的直线与渐近线平行时,满足与右支有且只有一个交点,画出图形(图略),通过图形可知直线斜率的取值范围是.故选ABC.8.已知直线l:x-y+m=0与双曲线x2-=1交于不同的两点A,B,若线段AB的中点在圆x2+y2=5上,则m的值是________.【答案】±1【解析】由消去y得x2-2mx-m2-2=0,Δ=4m2+4m2+8=8m2+8>0.设A(x1,y1),B(x2,y2),则x1+x2=2m,y1+y2=x1+x2+2m=4m,所以线段AB的中点坐标为(m,2m).又因为点(m,2m)在圆x2+y2=5上,所以5m2=5,所以m=±1.9.已知F是双曲线C:x2-=1的右焦点,P是C左支上一点,A(0,6),当△APF的周长最小时,该三角形的面积为________.【答案】12【解析】由已知a=1,b=2,c=3,所以F(3,0),F′(-3,0).又因为A(0,6),所以|AF|==15,△APF周长l=|PA|+|PF|+|AF|.又因为|PF|-|PF′|=2,所以|PF|=|PF ′|+2,所以l=|PA|+|PF′|+2+15≥|AF′|+17=32,当且仅当A,P,F′三点共线时,△APF周长最小,如图所示.设P(x,y),直线AF′的方程为+=1,联立得消去x得y2+36y-96=0,解得y=-8(舍去)或y=2,则P(x,2),所以S△APF=S△AF′F-S△PF′F=×6×6-×6×2=12.10.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且点(4,-),点M(3,m)都在双曲线上.(1)求双曲线的方程;(2)求证:MF1·MF2=0.(1)解:因为e=,则双曲线的实轴、虚轴相等,所以可设双曲线方程为x2-y2=λ.因为双曲线过点(4,-),所以16-10=λ,即λ=6.所以双曲线方程为x2-y2=6.(2)证明:设F1(-2,0),F2(2,0),则MF1=(-2-3,-m),MF2=(2-3,-m).所以MF1·MF2=(3+2)×(3-2)+m2=-3+m2.因为点M在双曲线上,所以9-m2=6,即m2-3=0,所以MF1·MF2=0.B级——能力提升练11.已知双曲线C:-=1(a>0,b>0)的右焦点为F,点B是虚轴的一个端点,线段BF与双曲线C的右支交于点A,若BA=2AF,且|BF|=4,则双曲线C的方程为( ) A.-=1B.-=1C.-=1D.-=1【答案】D【解析】不妨设B(0,b),由BA=2AF,F(c,0),可得A,代入双曲线C的方程可得×-=1,所以=①.又因为|BF|==4,c2=a2+b2,所以a2+2b2=16②.由①②可得a2=4,b2=6,所以双曲线C的方程为-=1.12.(多选)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-),点M(3,m)在双曲线上,则( )A.双曲线的方程为x2-y2=6B.m=3C.MF1·MF2=0D.△F1MF2的面积为6【答案】ACD【解析】∵e=,∴双曲线的实轴、虚轴相等,设双曲线方程为x2-y2=λ,∵双曲线过点(4,-),∴16-10=λ,即λ=6,∴双曲线方程为x2-y2=6,A正确.不妨设F1,F2分别为双曲线的左、右焦点,则MF1=(-2-3,-m),MF2=(2-3,-m),∴MF1·MF2=(3+2)×(3-2)+m2=-3+m2,∵点M在双曲线上,∴9-m2=6,即m2-3=0,∴MF1·MF2=0, m=±,B错误,C正确.△F1MF2的底边长|F1F2|=4,∴△F1MF2的高h=|m|=,∴△F1MF2的面积为×4×=6,D正确.故选ACD.13.设双曲线-=1的右顶点为A,右焦点为F.过点F且与双曲线的一条渐近线平行的直线与另一条渐近线交于点B,则△AFB的面积为________.【答案】【解析】根据题意,得a2=9,b2=16,所以c==5,且A(3,0),F(5,0).因为双曲线-=1的渐近线方程为y=±x,所以直线BF的方程为y=±(x-5).①若直线BF的方程为y=(x-5),与渐近线y=-x交于点B,此时S△AFB=|AF|·|y B|=×2×=;②若直线BF的方程为y=-(x-5),与渐近线y=x交于点B,此时S△AFB=|AF|·|y B|=×2×=.因此,△AFB的面积为.14.斜率为4的直线l与双曲线-=1(a>0,b>0)交于A,B两点.M为A,B的中点,且直线OM的斜率为,则双曲线的渐近线方程为________;若双曲线的一个焦点F到一条渐近线的距离为,则双曲线方程为________.【答案】y=±x x2-=1【解析】设A(x1,y1),B(x2,y2),M(x0,y0),则=4,且-=1①,-=1②,由①-②,得-=0,即·=,所以·=,即k OM·k AB=,所以=×4=2,=,所以渐近线方程为y=±x.焦点F(±c,0),渐近线方程为x±y=0,所以=,所以c=,由解得a=1,b =,所以双曲线方程为x2-=1.15.已知双曲线3x2-y2=3,直线l过其右焦点F2,且倾斜角为45°,与双曲线交于A,B两点,试问A,B两点是否位于双曲线的同一支上?并求弦AB的长.解:因为直线l过点F2且倾斜角为45°,所以直线l的方程为y=x-2.代入双曲线方程,得2x2+4x-7=0.设A(x1,y1),B(x2,y2),因为x1·x2=-<0,所以A,B两点分别位于双曲线的左、右两支上.因为x1+x2=-2,x1·x2=-,所以|AB|=|x1-x2|=·=·=6.。
人教A版高中数学选修一第三章《圆锥曲线的方程》提高训练 (1)(含答案解析)
14.(多选)已知椭圆 的左、右焦点分别为F1,F2,过F1的直线l1与过F2的直线l2交于点M,设M的坐标为(x0,y0),若l1⊥l2,则下列结论正确的有()
A. B.
C. D.
三、填空题
15.已知抛物线的顶点在坐标原点,焦点 与双曲线 的左焦点重合,若两曲线相交于 , 两点,且线段 的中点是点 ,则该双曲线的离心率等于______.
3.椭圆 的左、右焦点分别为 ,过焦点 的倾பைடு நூலகம்角为 直线交椭圆于 两点,弦长 ,若三角形 的内切圆的面积为 ,则椭圆的离心率为()
A. B. C. D.
4.已知直线 垂直于抛物线 的对称轴,与E交于点A,B(点A在第一象限),过点A且斜率为 的直线与E交于另一点C,若 ,则p=( )
A. B.
C. D.
5.已知方程 表示焦点在y轴上的椭圆,则m的取值范围是()
A. B.
C. D.
6.已知椭圆C: 的长轴长为4,若点P是椭圆C上任意一点,过原点的直线l与椭圆相交于M、N两点,记直线PM、PN的斜率分别为 ,当 时,则椭圆方程为( )
A. B.
C. D.
7.已知椭圆C:x2+ =1(b>0,且b≠1)与直线l:y=x+m交于M,N两点,B为上顶点.若BM=BN,则椭圆C的离心率的取值范围是()
33.设椭圆 的的焦点为 是C上的动点,直线 经过椭圆的一个焦点, 的周长为 .
(1)求椭圆的标准方程;
(2)求 的最小值和最大值.
34.写出适合下列条件的椭圆的标准方程:
(1)两个焦点在坐标轴上,且经过 和 两点;
(2)过点 ,且与椭圆 有相同的焦点.
35.已知动点 到直线 的距离与到定点 的距离的差为 .动点 的轨迹设为曲线 .
2021_2022学年高中数学第2章圆锥曲线与方程测评含解析新人教A版选修2_1
第二章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.方程x 2+2y 2=4所表示的曲线是()A.焦点在x 轴的椭圆B.焦点在y 轴的椭圆C.抛物线D.圆 方程化为x 24+y 22=1,因此其表示焦点在x 轴的椭圆.2.已知椭圆x 2a 2+y 2b 2=1(a>b>0)分别过点A (2,0)和B (0,-1),则该椭圆的焦距为() A.√3 B.2√3 C.√5 D.2√5a=2,b=1,所以a 2=4,b 2=1,所以c=√a 2-b 2=√4-1=√3,所以2c=2√3.故选B .3.已知双曲线x 2a 2−y 2b 2=1(a>0,b>0)的渐近线方程为y=±2√33x ,则此双曲线的离心率为()A.√72B.√133C.53D.√213x 轴上,所以ba=2√33,于是e=ca=√1+(b a)2=√73=√213.4.已知抛物线C :y 2=8x 焦点为F ,点P 是C 上一点,O 为坐标原点,若△POF 的面积为2,则|PF|等于() A.5B.3C.72D.4F (2,0),设P (x 0,y 0),则12·2·|y 0|=2,所以|y 0|=2,于是x 0=12,于是|PF|=x 0+p2=52.5.已知一个动圆P 与圆O :x 2+y 2=1外切,而与圆C :x 2+y 2-6x+8=0内切,则动圆圆心P 的轨迹是() A.双曲线的一支 B.椭圆 C.抛物线D.圆R ,依题意有|PO|=R+1,|PC|=R-1,因此|PO|-|PC|=2,而|OC|=3,由双曲线定义知点P 的轨迹为双曲线的右支.6.已知点A 是抛物线y 2=2px (p>0)上一点,点F 是抛物线的焦点,O 为坐标原点,当|AF|=4时,∠OFA=120°,则抛物线的准线方程是()A.x=-1B.x=-3C.x=-1或x=-3D.y=-1∠BFA=∠OFA-90°=30°,过点A 作准线的垂线AC ,过点F 作AC 的垂线,垂足分别为C ,B.如图,A 点到准线的距离为d=|AB|+|BC|=p+2=4,解得p=2,则抛物线的准线方程是x=-1. 故选A.7.双曲线C :x 2-y 23=1的一条渐近线与抛物线M :y 2=4x 的一个交点为P (异于坐标原点O ),抛物线M 的焦点为F ,则△OFP 的面积为() A.2√33B.4√33C.23D.43解析双曲线C :x 2-y 23=1的一条渐近线方程为y=√3x ,将y=√3x 代入抛物线方程,可得3x 2=4x ,解得x=0(舍)或x=43,所以P 43,4√33,又抛物线y 2=4x 的焦点F (1,0),则△OFP 的面积为S=12×1×4√33=2√33.故选A .8.已知双曲线的中心在坐标原点,对称轴为坐标轴,若双曲线的一个焦点坐标为(0,√5),且圆x 2+(y-√5)2=1与双曲线的渐近线相切,则双曲线的方程是() A.x 24-y 2=1B.y 24-x 2=1C.x 26-y 2=1D.y 26-x 2=1(0,√5),则c=√5.由题意可知焦点在y 轴上, 设双曲线为y 2a2−x 2b 2=1,渐近线为by ±ax=0.焦点到渐近线的距离为1=√a 2+b 2=b ,即b=1,a=√c 2-b 2=2,则双曲线的方程是y 24-x 2=1,故选B.9.已知点P (x 0,y 0)在椭圆x 212+y 23=1上,其左、右焦点分别是F 1,F 2,若∠F 1PF 2为钝角,则x 0的取值X 围是() A.(-3,3)B.(-∞,-2√2)∪(2√2,+∞)C.(-∞,-3)∪(3,+∞)D.(-2√2,2√2)F 1(-3,0),F 2(3,0),所以PF 1⃗⃗⃗⃗⃗⃗⃗ =(-3-x 0,-y 0),PF 2⃗⃗⃗⃗⃗⃗⃗ =(3-x 0,-y 0),则PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =x 02+y 02-9,而y 02=3-14x 02, 所以PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =34x 02-6.又∠F 1PF 2为钝角,所以34x 02-6<0,解得-2√2<x 0<2√2.10.椭圆x 2a2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,上顶点为A ,若△AF 1F 2的面积为√3,且∠F 1AF 2=4∠AF 1F 2,则椭圆方程为() A.x 23+y 2=1B.x 23+y 22=1 C.x 24+y 2=1D.x 24+y 23=1△AF 1F 2中,AF 1=AF 2,∠F 1AF 2=4∠AF 1F 2,则∠AF 1F 2=30°,所以bc =√33. 又△AF 1F 2面积为√3, 即S=12×2c×b=√3,解得b=1,c=√3,则a=√b 2+c 2=2, 所以椭圆方程为x 24+y 2=1.11.直线y=k (x-1)与椭圆C :x 24+y 22=1交于不同的两点M ,N ,椭圆x 24+y 22=1的一个顶点为A (2,0),当△AMN 的面积为√103时,则k 的值为()A.±√2B.±√3C.±1D.±√5y=k (x-1)与椭圆C 联立{y =k (x -1),x 24+y 22=1消元可得(1+2k 2)x 2-4k 2x+2k 2-4=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,∴|MN|=√1+k 2·√(x 1+x 2)2-4x 1x 2=2√(1+k 2)(4+6k 2)1+2k 2.∵A (2,0)到直线y=k (x-1)的距离为d=√1+k 2, ∴△AMN 的面积S=12|MN|d=|k |√4+6k 21+2k 2.∵△AMN 的面积为√103, ∴|k |√4+6k 21+2k 2=√103, ∴k=±1,故选C .12.如图所示,过抛物线y 2=2px (p>0)的焦点F 的直线l ,交抛物线于点A ,B.交其准线于点C ,若|BC|=√2|BF|,且|AF|=√2+1,则此抛物线的方程为()A.y 2=√2xB.y 2=2xC.y 2=√3xD.y 2=3x,过点A 作AD 垂直于抛物线的准线,垂足为D ,过点B 作BE 垂直于抛物线的准线,垂足为E ,点P 为准线与x 轴的交点,由抛物线的定义,|BF|=|BE|,|AF|=|AD|=√2+1,因为|BC|=√2|BF|,所以|BC|=√2|BE|,所以∠DCA=45°, |AC|=√2|AD|=2+√2,|CF|=2+√2−√2-1=1, 所以|PF|=√2=√22,即p=|PF|=√22,所以抛物线的方程为y 2=√2x ,故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知双曲线C :y 2a 2−x 2b 2=1的焦距为4,点P (1,√3)在双曲线C 的渐近线上,则C 的方程为.C :y 2a2−x 2b2=1的渐近线方程为y=±a bx ,∵双曲线C :y 2a 2−x 2b 2=1的焦距为4,点P (1,√3)在C 的渐近线上,可得a=√3b ,∴2c=4, ∵c 2=a 2+b 2,∴a 2=3,b 2=1, ∴双曲线C 的方程为y 23-x 2=1.故答案为y 23-x 2=1.2=114.若直线x-my+m=0经过抛物线x 2=2py (p>0)的焦点,则p=.直线x-my+m=0可化为x-m (y-1)=0,所以直线x-my+m=0过点(0,1), 即抛物线x 2=2py (p>0)的焦点F 为(0,1),∴p2=1,则p=2,故答案为2.15.已知双曲线E :x 2a2−y 2b 2=1(a>0,b>0)与抛物线C :y 2=2px (p>0)有共同的一个焦点,过双曲线E 的左焦点且与抛物线C 相切的直线恰与双曲线E 的一条渐近线平行,则E 的离心率为.,所以c=p2,p=2c ,抛物线方程为y 2=4cx ,设双曲线的左焦点为F 1,F 1(-c ,0),过F 1与一条渐近线y=ba x 平行的直线方程为y=ba (x+c ), 由{y 2=4cx ,y =ba(x +c )得by 2-4acy+4bc 2=0, 所以Δ=16a 2c 2-16b 2c 2=0,所以a=b ,从而c=√a 2+b 2=√2a ,离心率为e=ca =√2. √216.已知椭圆方程为x 2a2+y 2b2=1(a>b>0),双曲线方程为x 2m2−y 2n 2=1(m>0,n>0),若该双曲线的两条渐近线与椭圆的四个交点以及椭圆的两个焦点恰为一个正六边形的六个顶点,则椭圆的离心率与双曲线的离心率之和为.椭圆方程为x 2a 2+y 2b 2=1(a>b>0),双曲线方程为x 2m 2−y 2n 2=1(m>0,n>0),若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,可得椭圆的焦点坐标F 2(c ,0),F 1(-c ,0),正六边形的一个顶点Ac 2,√32c .|AF 1|+|AF 2|=(c2(√3c 2)(c2-c) (√3c 2)=2a , 因为√3c+c=2a ,所以椭圆离心率e 1=ca =√3-1,因为双曲线的渐近线的斜率为√3,即nm =√3,可得双曲线的离心率为e 2=√1+n 2m 2=2.所以e 1+e 2=√3-1+2=√3+1. 故答案为√3+1. √3+1三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知双曲线C 的一个焦点与抛物线C 1:y 2=-16x 的焦点重合,且其离心率为2. (1)求双曲线C 的方程;(2)求双曲线C 的渐近线与抛物线C 1的准线所围成三角形的面积.抛物线C 1:y 2=-16x 的焦点坐标为(-4,0),因此可设双曲线方程为x 2a2−y 2b 2=1(a>0,b>0),则依题意有{c =4,c a =2,解得a 2=4,b 2=12, 故双曲线C 的方程为x 24−y 212=1.(2)抛物线C 1的准线方程为x=4,双曲线C 的渐近线方程为y=±√3x , 于是双曲线C 的渐近线与抛物线C 1的准线的两个交点为(4,4√3),(4,-4√3), 所围成三角形的面积S=12×8√3×4=16√3.18.(本小题满分12分)已知抛物线x 2=-2py (p>0)上纵坐标为-p 的点到其焦点F 的距离为3. (1)求抛物线的方程;(2)若直线l 与抛物线以及圆x 2+(y-1)2=1都相切,求直线l 的方程.由已知得抛物线的准线方程为y=p2,则由抛物线的定义知p+p2=3,则p=2,所以抛物线的方程为x 2=-4y.(2)由题意知直线l 的斜率存在,设其方程为y=kx+b ,则有{y =kx +b ,x 2=-4y ,消去y 得x 2+4kx+4b=0,则有Δ=16k 2-16b=0,即k 2=b.又直线l 与圆x 2+(y-1)2=1都相切,所以√k 2+1=1.解方程组{√k 2+1=1,k 2=b ,得{k =0,b =0或{k =√3,b =3或{k =-√3,b =3,故所求直线l 的方程为y=0或y=√3x+3或y=-√3x+3. 19.(本小题满分12分)已知F 1,F 2是椭圆M :y 2a2+x 2b 2=1(a>b>0)的两个焦点,椭圆M 的离心率为√63,P (x 0,y 0)是M 上异于上下顶点的任意一点,且△PF 1F 2面积的最大值为2√2.(1)求椭圆M 的方程;(2)若过点C (0,1)的直线l 与椭圆C 交于A ,B 两点,AC ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ ,求直线l 的方程.据题意,得{ ca =√63,12×2c ×b =2√2,c 2=a 2-b 2,∴a 2=6,b 2=2.∴椭圆M 的方程为y 26+x 22=1.(2)据题设知,直线AB 的斜率存在,设直线l 的方程为y=kx+1. 据{y =kx +1,y 26+x 22=1,得(3+k 2)x 2+2kx-5=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2k3+k 2,x 1x 2=-53+k 2. ∵AC⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ , ∴(-x 1,1-y 1)=2(x 2,y 2-1). ∴x 1=-2x 2.∴x 1+x 2=-x 2=-2k3+k 2,则x 2=2k3+k 2.又x 1x 2=-2x 22=-53+k 2,∴(2k3+k 2)2=53+k 2×12, ∴k=±√5.故直线l 的方程为y=-√5x+1或y=√5x+1.20.(本小题满分12分)已知点F 是抛物线C :x 2=2py (p>0)的焦点,点M 是抛物线上的定点,且MF ⃗⃗⃗⃗⃗⃗ =(4,0). (1)求抛物线C 的方程;(2)直线AB 与抛物线C 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l 与AB 平行,且与抛物线C 相切,切点为N ,试问△ABN 的面积是否是定值.若是,求出这个定值;若不是,请说明理由. 设M (x 0,y 0),由题知F (0,p2),所以MF ⃗⃗⃗⃗⃗⃗ =(-x 0,p 2-y 0)=(4,0).所以{-x 0=4,p 2-y 0=0,即{x 0=-4,y 0=p 2. 代入x 2=2py (p>0)中,得16=p 2,解得p=4. 所以抛物线C 的方程为x 2=8y.(2)由题意知,直线AB 的斜率存在,设其方程为y=kx+b. 由{y =kx +b ,x 2=8y ,消去y ,整理得x 2-8kx-8b=0, 则x 1+x 2=8k ,x 1x 2=-8b.∴y 1+y 2=k (x 1+x 2)+2b=8k 2+2b ,设AB 的中点为Q , 则点Q 的坐标为(4k ,4k 2+b ). 由条件,设切线方程为y=kx+t , 由{y =kx +t ,x 2=8y ,消去y 整理得x 2-8kx-8t=0.∵直线与抛物线相切, ∴Δ=64k 2+32t=0. ∴t=-2k 2. ∴x 2-8kx+16k 2=0, ∴x=4k , ∴y=2k 2.∴切点N 的坐标为(4k ,2k 2). ∴NQ ⊥x 轴,∴|NQ|=(4k 2+b )-2k 2=2k 2+b. ∵x 2-x 1=m 2+1,又∵(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=64k 2+32b.∴2k 2+b=(m 2+1)232.∴S △ABN =12|NQ|·|x 2-x 1|=12·(2k 2+b )·|x 2-x 1|=(m 2+1)364.∵m 为常数,∴△ABN 的面积为定值,且定值为(m 2+1)364.21.(本小题满分12分)已知F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点,点P -1,√22在椭圆E 上,且抛物线y 2=4x 的焦点是椭圆E 的一个焦点. (1)求椭圆E 的标准方程;(2)过点F 2作不与x 轴重合的直线l ,设l 与圆x 2+y 2=a 2+b 2相交于A ,B 两点,且与椭圆E 相交于C ,D 两点,当F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B ⃗⃗⃗⃗⃗⃗⃗ =1时,求△F 1CD 的面积.y 2=4x 焦点为F (1,0),则椭圆E 的焦点F 1(-1,0),F 2(1,0). 2a=|PF 1|+|PF 2|=2√2. 解得a=√2,c=1,b=1,所以椭圆E 的标准方程为x 22+y 2=1.(2)由已知,可设直线l 方程为x=ty+1,A (x 1,y 1),B (x 2,y 2).联立{x =ty +1,x 2+y 2=3,得(t 2+1)y 2+2ty-2=0,易知Δ>0.则{y 1+y 2=-2tt 2+1,y 1y 2=-2t 2+1.F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B⃗⃗⃗⃗⃗⃗⃗ =(x 1+1)(x 2+1)+y 1y 2=(ty 1+2)(ty 2+2)+y 1y 2 =(t 2+1)y 1y 2+2t (y 1+y 2)+4=2-2t 2t 2+1.因为F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B ⃗⃗⃗⃗⃗⃗⃗ =1, 所以2-2t 2t 2+1=1,解得t 2=13.联立{x =ty +1,x 22+y 2=1,得(t 2+2)y 2+2ty-1=0,Δ=8(t 2+1)>0.设C (x 3,y 3),B (x 4,y 4), 则{y 3+y 4=-2tt 2+2,y 3y 4=-1t 2+2.S △F 1CD =12|F 1F 2|·|y 3-y 4|=√8(1+t 2)t 2+2=√8×4373=4√67. 22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的长轴长为2√2,离心率为√22.(1)求椭圆C 的方程;(2)过动点M (0,m )(m>0)的直线交x 轴于点N ,交椭圆C 于点A ,P (P 在第一象限),且点M 是线段PN 的中点.过点P 作x 轴的垂线交椭圆C 于另一点Q ,延长QM 交椭圆C 于点B.①设直线PM 、QM 的斜率分别为k ,k',证明kk '为定值;②求直线AB 斜率取最小值时,直线PA 的方程.由题意得2a=2√2,ca =√22, 所以a=√2,c=1,b=√a 2-c 2=√2-1=1. 故椭圆方程为x 22+y 2=1.(2)①设P (x 0,y 0)(x 0>0,y 0>0),由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ), 所以直线PM 的斜率k=2m -m x 0=m x 0,直线QM 的斜率k'=-2m -m x 0=-3mx 0.此时kk '=-13,所以kk '为定值-13.②设A (x 1,y 1),B (x 2,y 2),直线PA 的方程为y=kx+m ,直线QB 的方程为y=-3kx+m.联立{y =kx +m ,x 22+y 2=1,整理得(2k 2+1)x 2+4kmx+2m 2-2=0, 由{Δ=16k 2m 2-8(m 2-1)(2k 2+1)>0,x 0x 1=2m 2-22k 2+1, 可得x 1=2m 2-2(2k 2+1)x 0, y 1=kx 1+m=k 2m 2-2(2k 2+1)x 0+m ,同理x 2=2m 2-2(18k 2+1)x 0,y 2=-3kx 2+m=-3k2m 2-2(18k 2+1)x 0+m.所以x 1-x 2=32k 2(m 2-1)(2k 2+1)(18k 2+1)x 0, y 1-y 2=3k 2m 2-2(18k 2+1)x 0+k2m 2-2(2k 2+1)x 0,y 1-y 2=2k (m 2-1)24p 2+4(2k 2+1)(18k 2+1)x 0=8k (m 2-1)6k 2+1(2k 2+1)(18k 2+1)x 0,所以k AB =y 1-y 2x 1-x 2=6k 2+14k=146k+1k ,由m>0,x 0>0,可知k>0,所以6k+1k≥2√6,当且仅当k=√66时取等号.由P (x 0,2m ),m>0,x 0>0在椭圆C :x 22+y 2=1上,得x 0=√2-8m 2, k=m x 0=√2-8m 2,此时√2-8m2=√66,即m=√77,word11 / 11 由Δ>0得,m 2<2k 2+1,所以k=√66时,m=√77符合题意.所以直线AB 的斜率最小时,直线PA 的方程为y=√66x+√77.。
2021_2022学年高中数学第二章圆锥曲线与方程2.2.1双曲线及其标准方程练习(含解析)新人教A
2.2.1 双曲线及其标准方程[学生用书P105(单独成册)])[A 根底达标]1.平面内两定点A (-5,0),B (5,0),动点M 满足|MA |-|MB |=6,那么点M 的轨迹方程是( )A.x 216-y 29=1 B .x 216-y 29=1(x ≥4)C.x 29-y 216=1 D .x 29-y 216=1(x ≥3)解析:选D.由|MA |-|MB |=6,且6<|AB |=10,得a =3,c =5,b 2=c 2-a 2=16. 故其轨迹为以A ,B 为焦点的双曲线的右支. 所以方程为x 29-y 216=1(x ≥3).2.双曲线方程为x 2-2y 2=1,那么它的右焦点坐标为( ) A.⎝ ⎛⎭⎪⎫22,0 B .⎝⎛⎭⎪⎫52,0 C.⎝⎛⎭⎪⎫62,0 D .(3,0)解析:选C.将双曲线方程化成标准方程为x 21-y 212=1, 所以a 2=1,b 2=12,所以c =a 2+b 2=62,故右焦点坐标为⎝⎛⎭⎪⎫62,0. 3.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的方程是( )A.x 23-y 2=1 B .y 2-x 23=1C.x 23-y 24=1 D .y 23-x 24=1解析:选B.由题意知,双曲线的焦点在y 轴上,且a =1,c =2,所以b 2=3,所以双曲线的方程为y 2-x 23=1.4.(2021·绍兴高二检测)双曲线Γ:x 2λ-y 29=1上有一点M 到Γ的右焦点F 1(34,0)的距离为18,那么点M 到Γ的左焦点F 2的距离是( )A .8B .28C .12D .8或28解析:选D.因为双曲线Γ:x 2λ-y 29=1的右焦点F 1(34,0),所以λ=34-9=25,所以双曲线Γ:x 225-y 29,可知||MF 1|-|MF 2||=2a =10,又|MF 1|=18,那么|MF 2|D.5.(2021·邯郸高二检测)设F 1,F 2是双曲线x 24-y 2=1的左、右焦点,点P 在双曲线上,当△F 1PF 2的面积为1时,PF 1→·PF 2→的值为( )A .0B .1 C.12D .2解析:选A.易知F 1(-5,0),F 2(5,0). 不妨设P (x 0,y 0)(x 0,y 0>0), 由12×2c ×y 0=1,得y 0=55, 所以P ⎝ ⎛⎭⎪⎫2305,55,所以PF 1→=⎝ ⎛⎭⎪⎫-5-2305,-55,PF 2→=⎝⎛⎭⎪⎫5-2305,-55,所以PF 1→·PF 2→=0.6.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有一样的焦点,那么a 的值是________.解析:依题意得⎩⎪⎨⎪⎧a >0,0<a 2<4,4-a 2=a +2,解得a =1.答案:17.在平面直角坐标系xOy 中,双曲线x 24-y 212=1上一点M 的横坐标为3,那么点M 到此双曲线的右焦点的距离为________.解析:双曲线右焦点为(4,0), 将x =3代入x 24-y 212=1,得y =±15.所以点M 的坐标为(3,15)或(3,-15),所以点M 到双曲线右焦点的距离为〔4-3〕2+〔±15〕2=4.答案:48.双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,假设PF 1⊥PF 2,那么|PF 1|+|PF 2|的值为____________.解析:不妨设点P 在双曲线的右支上,因为PF 1⊥PF 2, 所以|F 1F 2|2=|PF 1|2+|PF 2|2=(22)2, 又|PF 1|-|PF 2|=2, 所以(|PF 1|-|PF 2|)2=4, 可得2|PF 1|·|PF 2|=4,那么(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=12,所以|PF 1|+|PF 2|=2 3. 答案:2 39.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.解:因为双曲线的焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),F 1(-c ,0),F 2(c ,0).因为双曲线过点P (42,-3),所以32a 2-9b2=1.①又因为点Q (0,5)与两焦点的连线互相垂直, 所以QF 1→·QF 2→=0,即-c 2+25=0. 解得c 2=25.② 又c 2=a 2+b 2,③所以由①②③可解得a 2=16或a 2=50(舍去). 所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1.10.如图,假设F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)假设双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)假设P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积.解:(1)由双曲线的定义得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,那么|16-x |=6,解得x =10或x =22. 由于c -a =5-3=2,10>2,22>2,故点M 到另一个焦点的距离为10或22.(2)将||PF 2|-|PF 1||=2a =6两边平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, 所以|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100. 在△F 1PF 2中,由余弦定理得cos ∠F 1PF 2= |PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,所以∠F 1PF 2=90°,所以S △F 1PF 2=12×32=16.[B 能力提升]11.(2021·保定检测)双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A ,B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,那么m 的值为( )A .8B .9C .16D .20解析:选B.由,|AB |+|AF 2|+|BF 2|=20.又|AB |=4,那么|AF 2|+|BF 2|,2a =|AF 2|-|AF 1|=|BF 2|-|BF 1|,所以4a =|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16-4=12,即a =3,所以m =a 2=9.12.(2021·西安高二检测)如图,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 与双曲线C 的焦点不重合,点M 关于F 1,F 2的对称点分别为点A ,B ,线段MN 的中点Q 在双曲线的右支上,假设|AN |-|BN |=12,那么a =( )A .3B .4C .5D .6解析:选A.连接QF 1,QF 2.因为线段MN 的中点为Q ,点F 2为MB 的中点,所以|QF 2|=12|BN |,同理可得|QF 1|=12|AN |.因为点Q 在双曲线C 的右支上,所以|QF 1|-|QF 2|=2a ,所以12(|AN |-|BN |)=2a ,所以12×12=2a ,解得a A.13.求与椭圆x 2+4y 2=8有公共焦点的双曲线的方程,使得以此双曲线与椭圆的四个交点为顶点的四边形的面积最大.解:椭圆的方程可化为x 28+y 22=1,①所以c 2=8-2=6.因为椭圆与双曲线有公共焦点,所以在双曲线中,a 2+b 2=c 2=6,即b 2=6-a 2.设双曲线的方程为x 2a 2-y 26-a2=1(0<a 2<6).②由①②解得⎩⎪⎨⎪⎧x 2=4a 23,y 2=6-a 23.由椭圆与双曲线的对称性可知四个交点构成一个矩形, 其面积S =4|xy |=4·4a 23·6-a 23=83 a 2〔6-a 2〕≤83·a 2+〔6-a 2〕2=8, 当且仅当a 2=6-a 2,即a 2=3,b 2=6-3=3时,取等号. 所以双曲线的方程是x 23-y 23=1. 14.(选做题)双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有一样的焦点. (1)求双曲线的标准方程;(2)假设点M 在双曲线上,F 1,F 2为左、右焦点,且|MF 1|+|MF 2|=63,试判断△MF 1F 2的形状.解:(1)椭圆方程可化为x 29+y 24=1,焦点在x 轴上,且c =9-4=5,故可设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).依题意得⎩⎪⎨⎪⎧9a 2-4b 2=1,a 2+b 2=5,解得a 2=3,b 2=2,所以双曲线的标准方程为x 23-y 22=1.(2)不妨设点M 在双曲线的右支上,那么有|MF 1|-|MF 2|=23,因为|MF 1|+|MF 2|=63,所以|MF 1|=43,|MF 2|=2 3.又|F 1F 2|=25,因此在△MF 1F 2中,边MF 1最长,而cos ∠MF 2F 1=|MF 2|2+|F 1F 2|2-|MF 1|22|MF 2|·|F 1F 2|<0,所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.。
人教新课标版(A)高二选修1-1 第二章圆锥曲线与方程单元测试
人教新课标版(A )高二选修1-1 第二章 圆锥曲线与方程单元测试(时间:120分钟 分值:150分)一、选择题(每小题5分,共60分)1. 以112y 4x 22-=-的焦点为顶点,顶点为焦点的椭圆方程是A. 14y 16x 22=+B. 116y 4x 22=+C. 112y 16x 22=+D. 116y 12x 22=+2. 动圆的圆心在抛物线x 8y 2=上,且动圆恒与直线02x =+相切,则动圆必过点A. (4,0)B. (2,0)C. (0,2)D. (0,-2)3. AB 是抛物线x 18y 2=的一条过焦点的弦,20|AB |=,AD 、BC 垂直于y 轴,D 、C 分别为垂足,则梯形ABCD 的中位线长为A. 5B.211 C.29 D. 104. 方程2sin y 3sin 2x 22-θ++θ=1所表示的曲线是 A. 焦点在x 轴上的椭圆B. 焦点在y 轴上的椭圆C. 焦点在x 轴上的双曲线D. 焦点在y 轴上的双曲线5. 设P 为椭圆1by a x 2222=+上一点,1F 、2F 为焦点,如果∠75F PF 21=°,∠=12F PF 15°,则椭圆的离心率为A. 22B. 23C. 32D. 36 6. 以椭圆1144y 169x 22=+的右焦点为圆心,且与双曲线116y 9x 22=-的渐近线相切的圆的方程为A. 09x 10y x 22=+-+B. 09x 10y x 22=--+C. 09x 10y x 22=-++D. 09x 10y x 22=+++7. 椭圆11a 4y a 5x 222=++的焦点在x 轴上,而它的离心率的取值范围是A. ⎪⎭⎫ ⎝⎛51,0B. ⎪⎭⎫⎢⎣⎡1,51C. ⎥⎥⎦⎤ ⎝⎛55,0D. ⎪⎪⎭⎫⎢⎢⎣⎡1,55 8. 设双曲线1b y a x 2222=-与1by a x 2222=+-(0a >,0b >)的离心率分别为1e 、2e ,当a 、b 变化时,21e e +的最小值是A. 4B. 24C.2 D. 229. 设椭圆12y 6x 22=+和双曲线1y 3x 22=-的公共焦点分别为1F 、2F ,P 是两曲线的一个交点,则cos ∠21PF F 的值为A.41 B.31 C.32 D. 31-10. 过抛物线x 4y 2=的顶点O 作互相垂直的两弦OM 、ON ,则M 的横坐标1x 与N 的横坐标2x 之积为A. 64B. 32C. 16D. 411. 抛物线x y 2=和圆()1y 3x 22=+-上最近的两点之间的距离是A. 1B. 2C.1210- D.1211- 12. 已知圆的方程为4y x 22=+,若抛物线过点A (-1,0)、B (1,0),且以圆的切线为准线,则抛物线的焦点F 的轨迹方程是A. 14y 3x 22=+(0y ≠) B. 13y 4x 22=+(0y ≠) C. 14y 3x 22=+(0x ≠) D.13y 4x 22=+(0x ≠)二、填空题(每小题4分,共16分)13. (2004·湖南)1F 、2F 是椭圆C :14y 8x 22=+的焦点,在C 上满足1PF ⊥2PF 的点P的个数为__________。
高中数学人教a版高二选修2-1_第二章_圆锥曲线与方程_2.3.2 有答案
高中数学人教a版高二选修2-1_第二章_圆锥曲线与方程_2.3.2 有答案(建议用时:45分钟)[学业达标]一、选择题1.等轴双曲线的一个焦点是F1(-6,0),则它的标准方程是()A.y218-x218=1 B.x218-y218=1C.x28-y28=1 D.y28-x28=1【解析】设等轴双曲线方程为x2a2-y2a2=1(a>0),∴a2+a2=62,∴a2=18,故双曲线方程为x218-y218=1.【答案】 B2.已知双曲线方程为x2-y24=1,过P(1,0)的直线l与双曲线只有一个公共点,则共有l()A.4条B.3条C.2条D.1条【解析】因为双曲线方程为x2-y24=1,所以P(1,0)是双曲线的右顶点,所以过P(1,0)并且和x轴垂直的直线是双曲线的一条切线,与双曲线只有一个公共点,另外还有两条就是过点P(1,0)分别和两条渐近线平行的直线,所以符合要求的共有3条,故选B.【答案】 B3.双曲线C:x2a2-y2b2=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为3,则双曲线C的焦距等于()A.2B.2 2C.4D.4 2【解析】由已知得e=ca=2,所以a=12c,故b=c2-a2=32c,从而双曲线的渐近线方程为y=±ba x=±3x,由焦点到渐近线的距离为3,得32c=3,解得c=2,故2c=4,故选C.【答案】 C4.若实数k满足0<k<5,则曲线x216-y25-k=1与曲线x216-k-y25=1的()A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等【解析】若0<k<5,则5-k>0,16-k>0,故方程x216-y25-k=1表示焦点在x轴上的双曲线,且实半轴的长为4,虚半轴的长为5-k,焦距2c=221-k,离心率e=21-k4;同理方程x216-k-y25=1也表示焦点在x轴上的双曲线,实半轴的长为16-k,虚半轴的长为5,焦距2c=221-k,离心率e=21-k16-k.可知两曲线的焦距相等,故选D.【答案】 D5.双曲线两条渐近线互相垂直,那么它的离心率为() A.2 B. 3C. 2D.3 2【解析】双曲线为等轴双曲线,两条渐近线方程为y=±x,即ba=1,e=ca= 2.【答案】 C 二、填空题6.在平面直角坐标系xOy中,若双曲线x2m-y2m2+4=1的离心率为5,则m的值为________.【解析】∵c2=m+m2+4,∴e 2=c2a 2=m +m 2+4m=5,∴m 2-4m +4=0,∴m =2. 【答案】 27.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.【解析】 由双曲线方程知,b =4,a =3,c =5,则虚轴长为8,则|PQ |=16.由左焦点F (-5,0),且A (5,0)恰为右焦点,知线段PQ 过双曲线的右焦点,则P ,Q 都在双曲线的右支上.由双曲线的定义可知|PF |-|P A |=2a ,|QF |-|QA |=2a ,两式相加得,|PF |+|QF |-(|P A |+|QA |)=4a ,则|PF |+|QF |=4a +|PQ |=4×3+16=28,故△PQF 的周长为28+16=44.【答案】 448.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B ,若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是________.【解析】由⎩⎨⎧x -3y +m =0,y =b a x ,得点A 的坐标为: ⎝ ⎛⎭⎪⎫am 3b -a ,bm 3b -a , 由⎩⎨⎧x -3y +m =0,y =-b a x ,得点B 的坐标为⎝ ⎛⎭⎪⎫-am 3b +a ,bm 3b +a , 则AB 的中点C 的坐标为⎝ ⎛⎭⎪⎫a 2m 9b 2-a 2,3b 2m 9b 2-a 2,∵k AB =13,∴k CP =3b 2m 9b 2-a 2a 2m9b 2-a 2-m=-3,即3b 2a 2-(9b 2-a 2)=-3,化简得a 2=4b 2,即a2=4(c2-a2),∴4c2=5a2,∴e2=54,∴e=52.【答案】5 2三、解答题9.双曲线与椭圆x216+y264=1有相同的焦点,它的一条渐近线为y=x,求双曲线的标准方程和离心率.【解】由椭圆x216+y264=1,知c2=64-16=48,且焦点在y轴上,∵双曲线的一条渐近线为y=x,∴设双曲线方程为y2a2-x2a2=1.又c2=2a2=48,∴a2=24.∴所求双曲线的方程为y224-x224=1.由a2=24,c2=48,得e2=c2a2=2,又e>0,∴e= 2.10.已知双曲线x23-y2b2=1的右焦点为(2,0).(1)求双曲线的方程;(2)求双曲线的渐近线与直线x=-2围成的三角形的面积.【解】(1)∵双曲线的右焦点坐标为(2,0),且双曲线方程为x23-y2b2=1,∴c2=a2+b2=3+b2=4,∴b2=1,∴双曲线的方程为x23-y2=1.(2)∵a=3,b=1,∴双曲线的渐近线方程为y=±33x,令x =-2,则y =±233,设直线x =-2与双曲线的渐近线的交点为A ,B , 则|AB |=433,记双曲线的渐近线与直线x =-2围成的三角形的面积为S , 则S =12×433×2=433.[能力提升]1.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线均与曲线C :x 2+y 2-6x +5=0相切,则该双曲线的离心率等于( )A.355B.62C.32D.55【解析】 曲线C 的标准方程为(x -3)2+y 2=4,所以圆心坐标为C (3,0),半径r =2,双曲线的渐近线为y =±b a x ,不妨取y =ba x ,即bx -ay =0,因为渐近线与圆相切,所以圆心到直线的距离d =|3b |a 2+b2=2,即9b 2=4(a 2+b 2),所以5b 2=4a 2,b 2=45a 2=c 2-a 2,即95a 2=c 2,所以e 2=95,e =355,选A.【答案】 A2.设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点.若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A .3x ±4y =0B .3x +5y =0C .5x ±4y =0D .4x ±3y =0【解析】 由题意可知|PF 2|=|F 1F 2|=2c ,所以△PF 1F 2为等腰三角形,所以由F 2向直线PF 1作的垂线也是中线,因为F 2到直线PF 1的距离等于双曲线的实轴长2a ,所以|PF 1|=24c 2-4a 2=4b ,又|PF 1|-|PF 2|=2a ,所以4b -2c =2a ,所以2b -a =c ,两边平方可得4b 2-4ab +a 2=c 2=a 2+b 2,所以3b 2=4ab ,所以4a =3b ,从而b a =43,所以该双曲线的渐近线方程为4x ±3y =0,故选D.【答案】 D3.过双曲线x 2-y 23=1的左焦点F 1,作倾斜角为π6的直线AB ,其中A ,B 分别为直线与双曲线的交点,则|AB |的长为________.【解析】 双曲线的左焦点为F 1(-2,0), 将直线AB 的方程y =33(x +2)代入双曲线方程, 得8x 2-4x -13=0.显然Δ>0, 设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=12,x 1x 2=-138,∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+13×⎝ ⎛⎭⎪⎫122-4×⎝ ⎛⎭⎪⎫-138=3. 【答案】 34.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA →·OB →>2,其中O 为原点,求k 的取值范围.【解】 (1)设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),由已知得a =3,c =2.又因为a 2+b 2=c 2,所以b 2=1, 故双曲线C 的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1中,得(1-3k 2)x 2-62kx -9=0, 由直线l 与双曲线交于不同的两点得:⎩⎪⎨⎪⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)>0, 即k 2≠13且k 2<1.①设A (x A ,y A ),B (x B ,y B ), 则x A +x B =62k1-3k 2,x A x B =-91-3k 2, 由OA →·OB →>2得x A x B +y A y B>2, 而x A x B +y A y B =x A x B +(kx A +2)(kx B +2) =(k 2+1)x A x B +2k (x A +x B )+2=(k 2+1)·-91-3k 2+2k ·62k 1-3k 2+2=3k 2+73k 2-1,于是3k 2+73k 2-1>2,解此不等式得13<k 2<3.②由①②得13<k 2<1.故k 的取值范围是⎝⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1.。
2021_2022高中数学第二章圆锥曲线与方程1曲线与方程2求曲线的方程3课件新人教A版选修2
2.1 曲线与方程
2.1.2 求曲线的方程
【学习要求】 1.掌握求轨迹方程时建立坐标系的一般方法,熟悉求曲线方程
的四个步骤以及利用方程研究曲线五个方面的性质. 2.掌握求轨迹方程的几种常用方法. 【学法指导】
通过建立直角坐标系得到曲线的方程,从曲线方程研究曲线的 性质和位置关系,进一步感受坐标法的作用和数形结合思想.
因为曲线在 x 轴的上方,所以 y>0. 虽然原点 O 的坐标(0,0)是这个方程的解,但不属于已知曲线, 所以曲线的方程应是 y=18x2 (x≠0). 小结 (1)求曲线方程时,建立的坐标系不同,得到的方程也 不同.
(2)求曲线轨迹方程时,一定要注意检验方程的解与曲线上点 的坐标的对应关系,对于坐标适合方程但又不在曲线上的点 应注意剔除.
例 2 讨论方程 y2=1-x2x (x≥0)的曲线性质,并画出图形. 解 (1)范围:∵y2≥0,又 x2≥0,∴1-x>0. 解得 x<1,∴0≤x<1. 又当 x=0 时,y=0,∴曲线过原点. 当 x→1 时,y2→+∞,∴y2≥0. 综上可知,曲线分布在两平行直线 x=0 和 x=1 之间.
当堂检测
1.在△ABC 中,若 B、C 的坐标分别是(-2,0)、(2,0),BC
边上的中线的长度为 5,则 A 点的轨迹方程是 ( D )
AHale Waihona Puke x2+y2=5B.x2+y2=25
C.x2+y2=5 (y≠0) D.x2+y2=25 (y≠0)
解析 BC 的中点为原点,BC 边上的中线长为 5,即 OA =5.设 A(x,y),则有 x2+y2=25 (y≠0).
知识要点
1.解析几何研究的主要问题: (1)根据已知条件,求出__表__示___曲__线__的__方__程____; (2)通过曲线的方程,研究_曲__线__的___性__质______.
人教新课标版(A)高二选修1-1 第二章圆锥曲线与方程综合例题
人教新课标版(A )高二选修1-1 第二章 圆锥曲线与方程综合例题例1. 设圆()25y 1x 22=++的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任意一点,AQ 的垂直平分线与直线CQ 交于M ,求M 点的轨迹方程。
分析:由M 在AQ 的中垂线上,知|MA ||MQ |=,于是发现CQ ||MQ ||MC ||MA ||MC |=+=+|=5,又C 、Q 为定点,可知轨迹为椭圆。
解:∵M 是AQ 的中垂线上的点, ∴|MA ||MQ |=,∴5|CQ ||MQ ||MC ||MA ||MC |==+=+。
∴点M 的轨迹是以C (-1,0),A (1,0)为焦点,以5为长轴长的椭圆。
∴5a 2=,2c 2=,25a =,1c =,4211425b 2=-=。
∴M 点的轨迹方程是121y 425x 422=+。
点拨:利用平面几何知识寻求轨迹的几何特征,再根据椭圆的定义求得轨迹方程,几何法、定义法都是求轨迹的重要方法。
例2. 如图,直线1l 和2l 相交于点M ,21l l ⊥,点1l N ∈,以A 、B 为端点的曲线段C 上的任一点到2l 的距离与到点N 的距离相等,若△AMN 为锐角三角形,|AM|=17,|AN|=3,|BN|=6,建立适当的坐标系,求曲线段C 的方程。
分析:根据曲线C 上的任一点到2l 的距离与到点N 的距离相等可知,该曲线段C 是在某条抛物线上的,以1l 为x 轴,MN 的中点O 为原点建立如图所示的坐标系,据题意可知,点N 是该抛物线的焦点,2l 是准线,所以可令抛物线方程为()0p px 2y 2>=。
解:设A (A x ,A y )、B (B x ,B y ),且B A x x <,B A y y 0<<。
∵点M ⎪⎭⎫ ⎝⎛-0,2p ,点N ⎪⎭⎫ ⎝⎛0,2p ,又17|AM |=,3|AN |=。
∴⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛+9y 2p x ,17y 2p x 2A 2A 2A 2A ,得p 4x A =,又A 2A px 2y =,∴8p4p 2y 2A =⋅=, ∴1782p p 42=+⎪⎪⎭⎫ ⎝⎛+, 解得⎩⎨⎧==2x ,2p A ,或⎩⎨⎧==1x 4p A。
新教材高中数学第三章圆锥曲线的方程章末复习练习含解析新人教A版选择性必修第一册
章末复习一、圆锥曲线的定义及标准方程 1.求圆锥曲线方程的常用方法(1)直接法:动点满足的几何条件本身就是几何量的等量关系,只需把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程.(2)定义法:动点满足已知曲线的定义,可先设定方程,再确定其中的基本量.(3)代入法:动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程.(4)待定系数法:根据条件能确定曲线的类型,可设出方程形式,再根据条件确定待定的系数. 2.求圆锥曲线方程体现了逻辑推理和数学运算、直观想象的数学素养.例1 (1)已知动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .以上都不对答案 C解析 把轨迹方程5x 2+y 2=|3x +4y -12|写成x 2+y 2=|3x +4y -12|5.∴动点M 到原点的距离与它到直线3x +4y -12=0的距离相等.∴点M 的轨迹是以原点为焦点,直线3x +4y -12=0为准线的抛物线.(2)在圆x 2+y 2=4上任取一点P ,设点P 在x 轴上的正投影为点D .当点P 在圆上运动时,动点M 满足PD →=2MD →,动点M 形成的轨迹为曲线C .求曲线C 的方程.解 方法一 由PD →=2MD →,知点M 为线段PD 的中点,设点M 的坐标为(x ,y ),则点P 的坐标为(x ,2y ).因为点P 在圆x 2+y 2=4上, 所以x 2+(2y )2=4,所以曲线C 的方程为x 24+y 2=1.方法二 设点M 的坐标为(x ,y ),点P 的坐标是(x 0,y 0), 由PD →=2MD →,得x 0=x ,y 0=2y , 因为点P (x 0,y 0)在圆x 2+y 2=4上, 所以x 20+y 20=4,(*)把x 0=x ,y 0=2y 代入(*)式,得x 2+4y 2=4, 所以曲线C 的方程为x 24+y 2=1.反思感悟 (1)应用定义解题时注意圆锥曲线定义中的限制条件.(2)涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决.(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.跟踪训练1 (1)已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________. 答案 x 2-y 23=1解析 由题意得⎩⎪⎨⎪⎧c =2,ca=2,解得⎩⎪⎨⎪⎧a =1,c =2,则b 2=c 2-a 2=3,因此双曲线方程为x 2-y 23=1.(2)点P 是抛物线y 2=8x 上的任意一点,F 是抛物线的焦点,点M 的坐标是(2,3),求|PM |+|PF |的最小值,并求出此时点P 的坐标.解 抛物线y 2=8x 的准线方程是x =-2,那么点P 到焦点F 的距离等于它到准线x =-2的距离,过点P 作PD 垂直于准线x =-2,垂足为D ,那么|PM |+|PF |=|PM |+|PD |.如图所示,根据平面几何知识,当M ,P ,D 三点共线时,|PM |+|PF |的值最小, 且最小值为|MD |=2-(-2)=4, 所以|PM |+|PF |的最小值是4.此时点P 的纵坐标为3,所以其横坐标为98,即点P 的坐标是⎝ ⎛⎭⎪⎫98,3. 二、圆锥曲线的几何性质1.本类问题主要有两种考查类型:(1)已知圆锥曲线的方程研究其几何性质,其中以求椭圆、双曲线的离心率为考查重点. (2)已知圆锥曲线的性质求其方程,基本方法是待定系数法,其步骤可以概括为“先定位、后定量”.2.圆锥曲线的性质的讨论和应用充分体现了直观想象和逻辑推理的数学素养.例2 (1)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62答案 D解析 由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4, 所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|=12-4=8, 所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3, 所以C 2的离心率e =c a =62.(2)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为________. 答案 x ±2y =0解析 设椭圆C 1和双曲线C 2的离心率分别为e 1和e 2,则e 1=a 2-b 2a ,e 2=a 2+b 2a.因为e 1·e 2=32,所以a 4-b 4a 2=32,即⎝ ⎛⎭⎪⎫b a 4=14,所以b a =22. 故双曲线的渐近线方程为y =±ba x =±22x , 即x ±2y =0.反思感悟 求解离心率的三种方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x 轴上还是y 轴上都有关系式a 2-b 2=c 2(a 2+b 2=c 2)以及e =c a,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a 与c 之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.跟踪训练2 (1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距是c ,A ,B 分别是长轴、短轴的一个端点,O 为原点,若△ABO 的面积是3c 2,则此椭圆的离心率是( ) A.12 B.32 C.22 D.33 答案 A解析 12ab =3c 2,即a 2(a 2-c 2)=12c 4,所以(a 2+3c 2)(a 2-4c 2)=0,所以a 2=4c 2,a =2c ,故e =c a =12.(2)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|FA |=c ,则双曲线的渐近线方程为_________.答案 x ±y =0 解析 c 2=a 2+b 2,①由双曲线截抛物线的准线所得线段长为2c 知, 双曲线过点⎝⎛⎭⎪⎫c ,-p 2,即c 2a 2-p 24b2=1.② 由|FA |=c ,得c 2=a 2+p 24,③由①③得p 2=4b 2.④将④代入②,得c 2a 2=2.∴a 2+b 2a 2=2,即ba=1,故双曲线的渐近线方程为y =±x ,即x ±y =0. 三、直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式.2.借用直线与圆锥曲线问题培养数学运算的数学核心素养.例 3 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 解 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1, ∴椭圆的方程为x 24+y 23=1. (2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心到直线l 的距离d =2|m |5, 由d <1得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0,由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-4m 2-3]=1524-m 2. 由|AB ||CD |=534,得 4-m25-4m2=1, 解得m =±33,满足(*). ∴直线l 的方程为y =-12x +33或y =-12x -33.反思感悟 (1)直线与圆锥曲线的位置关系可以通过代数法判断. (2)一元二次方程的判别式Δ、弦长公式是代数法解决问题的常用工具.跟踪训练3 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),其焦点为F 1,F 2,离心率为22,直线l :x +2y-2=0与x 轴,y 轴分别交于点A ,B .(1)若点A 是椭圆E 的一个顶点,求椭圆的方程;(2)若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,求a 的取值范围. 解 (1)由椭圆的离心率为22,得a =2c , 由A (2,0),得a =2, ∴c =2,b =2, ∴椭圆方程为x 24+y 22=1.(2)由e =22,设椭圆方程为x 2a 2+2y2a2=1,联立⎩⎪⎨⎪⎧x 2a 2+2y 2a2=1,x +2y -2=0,得6y 2-8y +4-a 2=0,若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,则线段AB 与椭圆E 有公共点,等价于方程6y 2-8y +4-a 2=0在y ∈[0,1]上有解. 设f (y )=6y 2-8y +4-a 2,∴⎩⎪⎨⎪⎧Δ≥0,f 0≥0,即⎩⎪⎨⎪⎧a 2≥43,4-a 2≥0,∴43≤a 2≤4, 故a 的取值范围是⎣⎢⎡⎦⎥⎤233,2. 四、圆锥曲线的综合问题1.圆锥曲线的综合问题包括位置关系证明及定值、最值问题,解决的基本思路是利用代数法,通过直线与圆锥曲线的方程求解.2.圆锥曲线的综合问题的解决培养学生的逻辑推理和数学运算素养.例4 已知抛物线C :y 2=2px (p >0)经过点P (2,2),A ,B 是抛物线C 上异于点O 的不同的两点,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)若OA ⊥OB ,求△AOB 面积的最小值.解 (1)由抛物线C :y 2=2px 经过点P (2,2)知4p =4,解得p =1. 则抛物线C 的方程为y 2=2x .抛物线C 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,准线方程为x =-12.(2)由题意知,直线AB 不与y 轴垂直,设直线AB :x =ty +a ,由⎩⎪⎨⎪⎧x =ty +a ,y 2=2x ,消去x ,得y 2-2ty -2a =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-2a . 因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,即y 21y 224+y 1y 2=0,解得y 1y 2=0(舍去)或y 1y 2=-4. 所以-2a =-4,解得a =2.所以直线AB :x =ty +2. 所以直线AB 过定点(2,0).S △AOB =12×2×||y 1-y 2=y 21+y 22-2y 1y 2=y 21+y 22+8≥2||y 1y 2+8=4. 当且仅当y 1=2,y 2=-2或y 1=-2,y 2=2时,等号成立. 所以△AOB 面积的最小值为4.反思感悟 (1)解决最值问题常见的题型,可用建立目标函数的方法求解.(2)圆锥曲线的综合问题可以从分析问题的数量关系入手,利用直线系或曲线系方程或函数方程思想,通过联想与类比,使问题获解.跟踪训练4 已知动圆P 与圆O 1:x 2-x +y 2=0内切,且与直线x =-1相切,设动圆圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过曲线C 上一点M (2,y 0)(y 0>0)作两条直线l 1,l 2与曲线C 分别交于不同的两点A ,B ,若直线l 1,l 2的斜率分别为k 1,k 2,且k 1k 2=1.证明:直线AB 过定点.(1)解 由题意可知,动圆圆心P 到点⎝ ⎛⎭⎪⎫12,0的距离与到直线x =-12的距离相等,所以点P 的轨迹是以⎝ ⎛⎭⎪⎫12,0为焦点,直线x =-12为准线的抛物线,所以曲线C 的方程为y 2=2x .(2)证明 易知M (2,2),设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my +b ,联立⎩⎪⎨⎪⎧x =my +b ,y 2=2x ,得y 2-2my -2b =0,所以⎩⎪⎨⎪⎧y 1+y 2=2m ,y 1y 2=-2b ,所以⎩⎪⎨⎪⎧x 1+x 2=2m 2+2b ,x 1x 2=b 2,因为k 1k 2=y 1-2x 1-2·y 2-2x 2-2=1, 即y 1y 2-2(y 1+y 2)=x 1x 2-2(x 1+x 2), 所以b 2-2b -4m 2+4m =0, 所以(b -1)2=(2m -1)2, 所以b =2m 或b =-2m +2.当b =-2m +2时,直线AB 的方程为x =my -2m +2过定点(2,2)与M 重合,舍去; 当b =2m 时,直线AB 的方程为x =my +2m 过定点(0,-2),所以直线AB 过定点(0,-2).1.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( ) A .2sin 40° B .2cos 40° C.1sin 50°D.1cos 50°答案 D解析 由题意可得-b a=tan 130°, 所以e =1+b 2a2=1+tan 2130° =1+sin 2130°cos 2130° =1|cos 130°|=1cos 50°.2.(2019·全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p 等于( )A .2B .3C .4D .8 答案 D解析 由题意知,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,椭圆的焦点坐标为(±2p ,0), 所以p2=2p ,解得p =8,故选D.3.(2019·全国Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 B解析 由题意设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),连接F 1A ,令|F 2B |=m ,则|AF 2|=2m ,|BF 1|=3m .由椭圆的定义知,4m =2a ,得m =a2,故|F 2A |=a =|F 1A |,则点A 为椭圆C 的上顶点或下顶点.令∠OAF 2=θ(O 为坐标原点),则sin θ=c a=1a.在等腰三角形ABF 1中,cos 2θ=2m2+3m 2-3m 22×2m ·3m=13,因为cos 2θ=1-2sin 2θ,所以13=1-2⎝ ⎛⎭⎪⎫1a 2,得a 2=3.又c 2=1,所以b 2=a 2-c 2=2,椭圆C 的方程为x 23+y 22=1,故选B.4.(2019·北京)已知椭圆C :x 2a 2+y 2b2=1的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点. (1)解 由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1.又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1=⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k t -1x 1+x 2+t -12=2⎪⎪⎪⎪⎪⎪1+t 1-t .又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0).。
高二数学(文)寒假作业 06(人教A版 选修1-1第二章 圆锥曲线与方程) Word版含解析
作业范围:选修第二章圆锥曲线与方程
姓名学校班级
时间: 分钟分值分
第Ⅰ卷
一、选择题(本题共小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的)
.已知椭圆上一点到椭圆的一个焦点的距离为,到另一个焦点距离为,则(). . . .
】学年陕西延川县中学高二下学期期末数学(理)试卷
【答案】.
考点:椭圆的定义.
【题型】选择题
【难度】较易
.抛物线:的焦点坐标是()
. . . .
】学年陕西延川县中学高二下学期期末数学(理)试卷
【答案】.
【解析】由题意可知,焦点在轴上,且,则焦点坐标是,
故选.
考点:抛物线性质.
【题型】选择题
【难度】较易
.双曲线的渐近线方程和离心率分别是()
.
.
】学年陕西延川县中学高二下学期期末数学(理)试卷
【答案】.
考点:双曲线的性质.
【题型】选择题
【难度】较易
.已知抛物线,过其焦点的直线交抛物线于点,若,则直线的斜率等于()
. . . .
】【百强校】届福建福州市高三上学期期末数学(理)试卷
【答案】
【解析】由题意得,设,在第一象限,∵,故
,∴,∴直线的斜率等于,同理在第四象限,直线的斜率等于,故选.
考点:抛物线的简单性质.
【题型】选择题
【难度】一般
.双曲线的左右焦点分别为,为右支上一点,
且,,则双曲线的渐近线方程是()。
人教A版高中数学选修2-1第二章 圆锥曲线与方程-圆锥曲线基本题型总结习题
圆锥曲线基本题型总结:提纲:一、定义的应用:1、定义法求标准方程:2、涉及到曲线上的点到焦点距离的问题:3、焦点三角形问题:二、圆锥曲线的标准方程:1、对方程的理解2、求圆锥曲线方程(已经性质求方程)3、各种圆锥曲线系的应用:三、圆锥曲线的性质:1、已知方程求性质:2、求离心率的取值或取值范围3、涉及性质的问题:四、直线与圆锥曲线的关系:1、位置关系的判定:2、弦长公式的应用:3、弦的中点问题:4、韦达定理的应用:一、定义的应用:1.定义法求标准方程:(1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段【注:2a>|F1 F2|是椭圆,2a=|F1 F2|是线段】A.x 225+y 29=1 (y ≠0) B.y 225+x 29=1 (y ≠0) C.x 216+y 216=1 (y ≠0) D.y 216+x 29=1 (y ≠0) 【注:检验去点】3.已知A (0,-5)、B (0,5),|P A |-|PB |=2a ,当a =3或5时,P 点的轨迹为( ) A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线D.双曲线一支或一条射线 【注:2a<|F 1 F 2|是双曲线,2a=|F 1 F 2|是射线,注意一支与两支的判断】4.已知两定点F 1(-3,0),F 2(3,0),在满足下列条件的平面内动点P 的轨迹中,是双曲线的是( ) A.||PF 1|-|PF 2||=5 B.||PF 1|-|PF 2||=6 C.||PF 1|-|PF 2||=7D.||PF 1|-|PF 2||=0 【注:2a<|F 1 F 2|是双曲线】5.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( ) A.x 216-y 29=1(x ≤-4)B.x 29-y 216=1(x ≤-3) C.x 216-y 29=1(x ≥4)D.x 29-y 216=1(x ≥3) 【注:双曲线的一支】 6.如图,P 为圆B :(x +2)2+y 2=36上一动点,点A 坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.7.已知点A(0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM|=|PA|,求动点P 的轨迹方程.(2)涉及圆的相切问题中的圆锥曲线:8.已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),圆P 过B 且与圆A 内切,求圆心P 的轨迹方程. 已知动圆M 过定点B (-4,0),且和定圆(x -4)2+y 2=16相切,则动圆圆心M 的轨迹方程为( ) A.x 24-y 212=1 (x >0)B.x 24-y 212=1 (x <0) C.x 24-y 212=1D.y 24-x 212=1 【注:由题目判断是双曲线的一支还是两支】 9.若动圆P 过点N (-2,0),且与另一圆M :(x -2)2+y 2=8相外切,求动圆P 的圆心的轨迹方程. 【注:双曲线的一支,注意与上题区分】10.如图,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:x 2+y 2-10x +9=0,动圆M 与定圆F 1、F 2都外切,求动圆圆心M 的轨迹方程.11.若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是( ) A.椭圆 B.双曲线 C.双曲线的一支 D.抛物线12.已知动圆M 经过点A (3,0),且与直线l :x =-3相切,求动圆圆心M 的轨迹方程. 【注:同上题做比较,说法不一样,本质相同】13.已知点A (3,2),点M 到F ⎝⎛⎭⎫12,0的距离比它到y 轴的距离大12.(M 的横坐标非负) (1)求点M 的轨迹方程; 【注:体现抛物线定义的灵活应用】(2)是否存在M ,使|MA |+|MF |取得最小值?若存在,求此时点M 的坐标;若不存在,请说明理由. 【注:抛物线定义的应用,涉及抛物线上的点到焦点的距离转化成到准线的距离】(3)其他问题中的圆锥曲线:14.已知A ,B 两地相距2 000 m ,在A 地听到炮弹爆炸声比在B 地晚4 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程. 【注:双曲线的一支】2.15.如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C . 双曲线D .抛物线【注:体现抛物线定义的灵活应用】2.涉及到曲线上的点到焦点距离的问题:16.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )A.22 B.12 C.2-12 D.3417.椭圆x 216+y 27=1的左右焦点为F 1,F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( )A .32B .16C .8D .418.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m19.若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若|AB |=5,则△AF 1B 的周长为________.20.设F 1、F 2是椭圆x 216+y 212=1的两个焦点,P 是椭圆上一点,且P 到两个焦点的距离之差为2,则△PF 1F 2是( )A .钝角三角形B .锐角三角形C .斜三角形D .直角三角形21.椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.【注:椭圆上的点到焦点的距离,最小是a -c ,最大是a+c 】22.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为________.【注:注意结果的取舍,双曲线上的点到焦点的距离最小为c -a 】23.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点). 【注:O 是两焦点的中点,注意中位线的体现】24.设F 1、F 2分别是双曲线x 25-y 24=1的左、右焦点.若点P 在双曲线上,且1PF u u u u r ·2PF u u u u r =0,则|1PF u u u u r +2PF u u u u r |等于( ) A .3 B .6 C .1 D .225.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值是( ) A.172B.3C. 5D.92【注:抛物线定义的应用,将抛物线上的点到焦点的距离转化成到准线的距离】26.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( ) A.125 B.65 C .2 D.55【注:抛物线定义的应用,将抛物线上的点到准线的距离转化成到焦点的距离】27.设点A 为抛物线y2=4x 上一点,点B(1,0),且|AB|=1,则A 的横坐标的值为( )A .-2B .0C .-2或0D .-2或2 【注:抛物线的焦半径,即定义的应用】3.焦点三角形问题:椭圆的焦点三角形周长2c 2a 2C PF PF C 21F PF 21+∆=++= 椭圆的焦点三角形面积:推导过程:2tan sin cos 121sin 21cos 1 -)cos (12 (1)-(2)(2)2a (1)COS 2-2 1 b 2b PFPF S 2bPFPF 4c 4a PFPF PF PF 4c PF PF PF PF 2221F PF 22122212212212221θθθθθθθ=+==+==+⎪⎩⎪⎨⎧=+=+∆得双曲线的焦点三角形面积:2tanbS 2F PF 21θ=∆28.设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.【注:小题中可以直接套用公式。
高中数学第2章圆锥曲线与方程习题课_双曲线的综合问题及应用课件新人教A版选修2_1
思路分析直线方程与双曲线方程联立方程组⇒判断“Δ”与“0”的
关系⇒直线与双曲线的位置关系.
探究一
探究二
当堂检测
= -1,
2 - 2 = 1,
消去 y 并整理,得(1-k2)x2+2kx-2=0.
∵直线与双曲线有两个不同的交点,
1- 2 ≠ 0,
则
= 4 2 + 8(1- 2 ) > 0,
(1)定义:|r1-r2|=2a.
(2)余弦公式:4c2=12 + 22 -2r1r2cos θ.
1
(3)面积公式:△ 1 2 = 2r1r2sin θ.
一般地,在△PF1F2中,通过以上三个等式,所求问题就会顺利解决.
【思考】直线与圆(椭圆)有且只有一个公共点,则直线与圆(椭圆)
相切,那么,直线与双曲线相切,能用这个方法判断吗?
1
有唯一公共点,由于双曲线的渐近线为 y=±2x,
1
1
故直线 l 的方程为 y=2(x-2)或 y=-2(x-2),
1
1
即 y=2x-1 或 y=-2x+1.故选 C.
答案C
2
【做一做4】 双曲线x2- 3=1的左、右顶点分别为A,B,右支上有一
点M,且kMA=1,则△MAB的面积为
.
2
解析因为kMA=1,A(-1,0),故直线MA的方程为y=x+1,代入x2- 3 =1,整
习题课——双曲线的综合问题及应用
课标阐释
思维脉络
1.掌握利用双曲线的定义解决 双曲线的综合问题及应用
有关问题的方法.
双曲线定义的应用
2.理解直线与双曲线的位置关
人教A版高二寒假作业3:圆锥曲线的方程
人教A 版高二寒假作业3:圆锥曲线的方程【基础巩固】1.(2022·云南省昆明市·期中考试)椭圆的焦距为8,且210a =,则该椭圆的标准方程是()A.221259x y += B.221259x y +=或221259y x +=C.22110036x y += D.22110036x y +=或22110036y x +=2.(2022·山东省泰安市·期末考试)若双曲线22221(0,0)x y a b a b-=>>的焦距为过点(1,2)-,则此双曲线的方程为()A.2214x y -= B.2214y x -= C.221416x y -= D.221164x y -=3.(2022·广东省·单元测试)抛物线24y x =的焦点到准线的距离是.()A.18B.14C.116D.24.(2022·辽宁省沈阳市·期中考试)已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,若椭圆上一点(,)P x y 到焦点1F 的最大距离为7,最小距离为3,则椭圆C 的离心率为()A.12B.25C.23D.525.(多选)(2021·江苏省南通市·期中考试)已知方程22141x y t t +=--表示的曲线为C,下列说法正确的有.()A.当14t <<时,曲线C 为椭圆B.当1t <或4t >时,曲线C 为双曲线C.若曲线C 为焦点在x 轴上的椭圆,则512t <<D.若曲线C 为焦点在y 轴上的双曲线,则4t >6.(多选)(2022·江西省·入学测验)设抛物线22(0)y px p =>的焦点为F ,点M 在y 轴上,若线段FM 的中点B 在抛物线上,且点B 到抛物线准线的距离为324,则点M 的坐标为()A.(0,1)-B.(0,2)-C.(0,2)D.(0,1)7.(2022·湖北省·模拟题)已知圆C :和点,P 是圆上一点,线段BP 的垂直平分线交CP 于M 点,则M 点的轨迹方程是__________.8.(2022·江西省·单元测试)如图,某河流上有一座抛物线形的拱桥,已知桥的跨度10AB =米,高度5h =米(即桥拱顶到基座AB 所在的直线的距离).由于河流上游降雨,导致河水从桥的基座A 处开始上涨了1米,则此时桥洞中水面的宽度为__________米.9.(2022·浙江省·单元测试)已知双曲线C :22221(0,0)x y a b a b-=>>,虚轴长为4,(1)求双曲线C 的标准方程;(2)若过点(0,1),倾斜角为45︒的直线l 与双曲线交于A ,B 两点,O 为坐标原点,求AOB ∆的面积.10.(2022·湖南省·期末考试)已知椭圆2222:1(0)y x M a b a b +=>>的离心率为3,且短轴长为2.(1)求M 的方程;(2)若直线l 与M 交于A ,B 两点,且弦AB 的中点为1(,1)3P --,求l 的倾斜角.【拓展提升】11.(多选)(2021·福建省福州市·期中考试)已知F 为椭圆C :22142x y +=的左焦点,直线l :(0)y kx k =≠与椭圆C 交于A 、B 两点,AE x ⊥轴,垂足为E ,BE 与椭圆C 的另一个交点为P ,则()A.14||||AF BF +的最小值为2 B.ABE 面积的最大值为2C.直线BE 的斜率为12kD.PAB ∠为钝角12.(2022·浙江省·期中考试)直线20mx y m --=与曲线2||1x y y +=恰有两个交点,则实数m 的取值范围为__________.13.(2022·安徽省滁州市·模拟题)分别过椭圆E :22221(0)x y a b a b+=>>左、右焦点1F 、2F 的动直线1l 、2l 相交于P 点,与椭圆E 分别交于A 、B 与C 、D 不同四点,直线OA 、OB 、OC 、OD 的斜率分别为1k 、2k 、3k 、4k ,且满足1234k k k k +=+,已知当1l 与x 轴重合时,||23AB =,43||.3CD =(1)求椭圆E 的方程;(2)是否存在定点M ,N ,使得||||PM PN +为定值?若存在,求出M 、N 点坐标,若不存在,说明理由.14.(2021·湖南省·历年真题)在平面直角坐标系xOy 中,已知点1(17,0)F -,2(17,0)F ,点M 满足12|||| 2.MF MF -=记M 的轨迹为.C (1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.1.【答案】B【解析】【分析】本题考查椭圆的简单性质,椭圆方程的求法,是基础题.求出a ,c ,得到b ,判断选项的正误即可.【解答】解:椭圆的焦距为8,且210a =,可得,5a =,4c =,则3b ==,所以椭圆方程为:221259x y +=或221.259y x +=故选:.B 2.【答案】B【解析】【分析】本题考查了双曲线的标准方程,属于基础题.根据题意得到2c =,2ba-=-,解得答案.【解答】解:双曲线22221(0,0)x y a b a b-=>>的焦距为2c =,c =且渐近线经过点(1,2)-,故2ba-=-,结合222c a b =+,可得1a =,2b =,双曲线方程为:221.4y x -=故选.B 3.【答案】A【解析】【分析】本题考查抛物线的简单几何性质,属于基础题.求得抛物线焦点坐标及准线方程,则焦点到准线的距离111(.16168d =--=【解答】解:抛物线的标准方程:214x y =,则抛物线214x y =的焦点1(0,16F ,准线方程116y =-,则焦点到准线的距离111(16168d =--=,所以抛物线214x y =的焦点到准线的距离1.8故选:.A 4.【答案】B【解析】【分析】根据椭圆的简单几何性质及方程思想即可求解.本题考查椭圆的简单几何性质,属基础题.【解答】解:根据题意及椭圆的简单几何性质可得:73a c a c +=⎧⎨-=⎩,52a c =⎧∴⎨=⎩,2.5c e a ∴==故选:.B 5.【答案】BCD【解析】【分析】本题考查了双曲线和椭圆的标准方程的定义及其运用,属于基础题.根据双曲线和椭圆的标准方程的定义结合选项进行分析即可得到答案.【解答】解:令41t t -=-,得52t =,此时14t <<,方程22141x y t t +=--表示圆,故A 选项错误;由双曲线的定义可知(4)(1)0t t --<时,即1t <或4t >时,方程22141x y t t +=--表示双曲线,故B 选项正确;由椭圆的定义可知,当椭圆焦点在x 轴上时,满足410t t ->->,解得512t <<,故C 选项正确;当曲线C 表示焦点在y 轴上的双曲线,则,解得4t >,故D 选项正确.综上所述,正确的选项为.BCD 故选.BCD 6.【答案】BC【解析】【分析】本题考查了抛物线的几何性质【解答】解:设0(0,)M y ,易知,则,过点B 作准线的垂线,垂足为1B ,如图所示.则,解得p =∴抛物线方程为2.y =又B 在抛物线上,20144y ∴=,因此204y =,解得0 2.y =±∴点M 的坐标为(0,2)或(0,2).-7.【答案】221.916x y -=【解析】【分析】根据线段中垂线的性质可得,||||MB MP =,又||||6||MC MB BC -=<,根据双曲线的定义判断轨迹为双曲线,求出a 、b 值,即得双曲线的标准方程.本题考查双曲线的定义、双曲线的标准方程,得出||||6||MC MB BC -=<,是解题的关键和难点.【解答】解:由圆的方程可知,圆心(5,0)C -,半径等于6,设点M 的坐标为(,)x y ,BP 的垂直平分线交CP 于点M ,||||.MB MP ∴=又||||||6MC PM -=,||||||6||.MC MB BC ∴-=<依据双曲线的定义可得,点M 的轨迹是以B 、C 为焦点的双曲线,且26a =,5c =,4b ∴=,故双曲线方程为221.916x y -=故答案为:221.916x y -=8.【答案】45【解析】【分析】本题考查了抛物线的性质和应用,属基础题.建立适当的平面直角坐标系,设抛物线方程为22x py =-,0p >,根据题意求出p ,进而可得水上涨一米后的水面宽度.【解答】解:建立如图所示的平面直角坐标系,设抛物线方程为22x py =-,0p >,由已知抛物线过点(5,5)B -,则252(5)p =-⨯-,所以52p =,所以抛物线方程为25x y =-,当4y =-时,得220x =,所以25x =±,所以水面宽度为45(米).故答案为:4 5.9.【答案】解:(1)依题意可得22224ca b c a b ⎧=⎪⎪=⎨⎪=+⎪⎩,解得1,2,a b c ===∴双曲线的标准方程为2214y x -=;(2)直线l 的方程为1y x =+,设11(,)A x y 、22(,)B x y ,由22144y x x y =+⎧⎨-=⎩,可得23250x x --=,460640∆=+=>,1223x x +=,1253x x =-,即||AB =3==,原点到直线l 的距离为22d =,于是118224||22323OAB S AB d ∆=⋅⋅=⨯=,OAB ∴∆的面积为4.3【解析】本题考查双曲线的方程、双曲线的简单几何性质及直线与双曲线的位置关系,考查了学生的计算能力,培养了学生分析问题与解决问题的能力,属于基础题.(1)根据已知条件及222c a b =+可得关于,,a b c 的方程组,从而可求得,,a b c ;(2)由点斜式可得直线l 方程,与双曲线联立消去y 可得关于x 的一元二次方程.可得两根之和,两根之积.由弦长公式可得||AB ,根据点到面的距离公式可得原点到直线l 的距离,从而可求得OAB ∆的面积.10.【答案】解:(1)依题意可得,322,b ==⎩解得1b =,23a =,故M 的方程为221.3y x +=(2)设A ,B 两点的坐标分别为11(,)x y ,22(,)x y ,则221122221,31,3y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得12121212()()()()03y y y y x x x x -+-++=,依题意可得12122,32,x x y y ⎧+=-⎪⎨⎪+=-⎩所以12121l y y k x x -==--,故l 的倾斜角为3.4π【解析】本题主要考查根据椭圆的几何性质求标准方程,利用点差法求解椭圆的中点弦问题,属于中档题.11.【答案】BC【解析】【分析】本题考查直线与椭圆的位置关系,椭圆的几何性质,基本不等式,考查分析问题、解决问题的能力,属于较难题.对于A ,根据椭圆的定义得到||||AF BF +为定值,从而借助基本不等式求得结果;对于B ,将直线l 与椭圆C 的方程联立,得到点A ,B 的坐标关于k 的表达式,从而建立ABE 的面积关于k 的表达式,最后借助基本不等式得到结果;对于C ,利用直线的斜率公式化简求解即可;对于D ,探究直线PA ,AB 斜率之间的等量关系,从而得到结果.【解答】解:对于A ,设椭圆C 的右焦点为F ',连接AF ',BF ',则四边形AF BF '为平行四边形,||||||||24AF BF AF AF a ∴+=+'==,141141||4||(||||)()(5||||4||||4||||BF AF AF BF AF BF AF BF AF BF ∴+=++=++94,当且仅当||2||BF AF =时等号成立,A 错误;对于B ,由22142x y y kx⎧+=⎪⎨⎪=⎩得x =||A B y y ∴-=,ABE ∴的面积214||4||||12122||||A AB k S x y y k k k =-==++,当且仅当22k =±时等号成立,B 正确;对于C ,设00(,)A x y ,则00(,)B x y --,0(,0)E x ,故直线BE 的斜率0000001122BE y y k k x x x +==⋅=+,C 正确;对于D ,设(,)P m n ,直线PA 的斜率为PA k ,直线PB 的斜率为PB k ,则2200022000.PA PB n y n y n y k k m x m x m x -+-⋅==-+-,又点P 和点A 在椭圆C 上,22142m n ∴+=①,2200142x y +=②,①-②得22022012n y m x -=--,由C 选项的解析知12PB BE k k k ==,则1122PA k k ⋅=-,得1PA k k=-,1(1PA AB k k k k∴⋅=-⋅=-,90PAB ∴∠=︒,D 错误.故选.BC 12.【答案】【解析】【分析】本题主要考查直线和曲线的位置关系,体现了数形结合的数学思想,属于中档题.画出直线与曲线的图象,结合直线与圆、直线与双曲线的位置关系可得答案.【解答】解:由曲线2||1x y y +=得,当0y 时221x y +=;当0y <时221x y -=;当0m =时,直线为0y =与曲线恰好有两个交点,符合题意;当0m ≠时,直线方程为(2)y m x =-,直线过定点(2,0),若0y ,则曲线为以(0,0)为圆心,1为半径的圆位于y 轴正半轴的部分,因为直线与曲线恰有两个交点,则d r <,0m <,即1d =<,解得03m -<<,若0y <,曲线为双曲线221x y -=位于y 轴负半轴的部分,因为直线与曲线恰有两个交点,又双曲线的渐近线为y x =±,则01m <<,综上:m 的取值范围是故答案为:13.【答案】解:(1)当1l 与x 轴重合时,12340k k k k +=+=,即34k k =-,2l ∴垂直于x轴,得||2AB a ==,2243||3b CD a ==,解得a =b =,∴椭圆E 的方程为221.32x y +=(2)焦点1F 、2F 坐标分别为(1,0)-,(1,0),当直线1l 或2l 斜率不存在时,P 点坐标为(1,0)-或(1,0),当直线1l ,2l 斜率存在时,设斜率分别为1m ,2m ,设11(,)A x y ,22(,)B x y ,由,得2222111(23)6360m x m x m +++-=,211221623m x x m ∴+=+,2112213623m x x m -=+,121212y y k k x x +=+1211211()x x m x x ++=+121121214(2)2x x m m x x m +-=+=-,同理2342242m k k m -+=-,1234k k k k +=+ ,1222124422m m m m --∴=--,即1221(2)()0m m m m +-=,由题意知12m m ≠,1220m m ∴+=,设(,)P x y ,则2011y y x x ⋅+=+-,即2212y x +=,1x ≠±,由当直线1l 或2l 斜率不存在时,P 点坐标为(1,0)-或(1,0)也满足,∴点(,)P x y 点在椭圆2212y x +=上,∴存在点M ,N 其坐标分别为(0,1)-、(0,1),使得||||PM PN +为定值【解析】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查定值问题,考查分类讨论的数学数学方法,属于拔高题.(1)当1l 与x 轴重合时,34k k =-,得到2l 垂直于x轴,求得||2AB a ==22||3b CD a ==,解得a ,b ,从而得到椭圆E 的方程.(2)当直线1l 或2l 斜率不存在时,P 点坐标为(1,0)-或(1,0),当直线1l ,2l 斜率存在时,设斜率分别为1m ,2m ,将直线与椭圆联立方程组,消掉未知数y ,得到关于x 的一元二次方程,由根与系数的关系,得到两根和与积,从而得到1221(2)()0m m m m +-=,得到1220m m +=,设(,)P x y ,则2011y y x x ⋅+=+-,即2212y x +=,1x ≠±,点(,)P x y 在椭圆2212y x +=上,可得结论.14.【答案】解:(1)由题意知点M 的轨迹C 是焦点在x 轴上的双曲线的右支,且1a =,c =,22216b c a ∴=-=,C ∴的方程为221(1).16y x x -=(2)设1(,)2T m ,设直线AB 的方程为,11(,)A x y ,22(,)B x y ,由,得,整理得,2111221216k m k x x k -∴+=-,22111221116416k m k m x x k ---=-,22221122111212(1)(1)1616m m k k k k --+=+⋅=+⋅--,设2PQ k k =,同理可得,由||||||||TA TB TP TQ ⋅=⋅,得,222221121616k k k k ∴-=-,2212=k k ∴,12k k ≠ ,12=k k ∴-,120.k k ∴+=【解析】本题考查双曲线的定义及标准方程,直线与双曲线的位置关系的应用,属于拔高题.(1)由题意知点M 的轨迹C 是焦点在x 轴上的双曲线的右支,且1a =,c =C 的方程;(2)设1(,)2T m ,设直线AB 的方程为,11(,)A x y ,22(,)B x y ,联立直线与双曲线方程,由根与系数的关系结合弦长公式可求出||||TA TB ⋅,设2PQ k k =,同理可表示出||||TP TQ ⋅,再结合||||||||TA TB TP TQ ⋅=⋅,可得出直线AB 的斜率与直线PQ 的斜率之和.。
2018_2019学年高二数学寒假作业(22)圆锥曲线与方程综合文新人教A版
(22)圆锥曲线与方程综合1、双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点为F 1,F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A .(1,3)B .(1,3]C .(3,+∞)D .[3,+∞) 2、已知P 为抛物线24y x =上一个动点, Q 为圆()2241x y +-=上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线的距离之和的最小值是( )A. 5B. 8123 已知椭圆与以为端点的线段没有公共点,则的取值范围是( ) A. B.或 C.或 D.4、经过抛物线22y px =焦点的弦的中点的轨迹是( )A.抛物线B.椭圆C.双曲线D.直线5、在ABC ∆中,已知()()1,0,1,0,A C -且,,BC CA AB 成等差数列,则顶点B 的轨迹方程是( )A. 22134x y +=B. (22134x y x +=≠ C. 22143x y += D. ()221243x y x +=≠± 6、若点P 到点()0,2F 的距离比它到直线40y +=的距离小2,则P 的轨迹方程为( )A. 28y x =B. 28y x =-C. 28x y =D. 28x y =- 7、已知抛物线22y x =上的两点()1122,,(,)A x y B x y 关于直线y x m =+对称,且121,2x x =-那么m 的值等于( ) A. 32B. 52C. 2D. 38、若椭圆()2210x y m n m n +=>>和双曲线()2210x y a b a b-=>>有相同的焦点12,,F F P 是两曲线的一个公共点,则12·PF PF 的值是( ) A. m a - B. ()12m a -。
甘肃省天水市高二数学寒假作业 圆锥曲线与方程 (1) 理
圆锥曲线与方程 1一、选择题(每小题5分,共20分)1.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( ) A .x 2+y 2=3 B .x 2+2xy =1(x ≠±1) C .y =1-x 2D .x 2+y 2=9(x ≠0)2.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|M N →|·|M P →|+M N →·N P →=0,则动点P (x ,y )的轨迹方程为( )A .y 2=-8x B .y 2=8x C .y 2=4xD .y 2=-4x3.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )A .πB .4πC .8πD .9π4.已知A (-1,0),B (1,0),且MA →·M B →=0,则动点M 的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=2C .x 2+y 2=1(x ≠±1)D .x 2+y 2=2(x ≠±2)二、填空题(每小题5分,共10分)5.已知点A (0,-1),当点B 在曲线y =2x 2+1上运动时,线段AB 的中点M 的轨迹方程是________.6.已知动圆P 与定圆C :(x +2)2+y 2=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是________.三、解答题(每小题10分,共20分)7.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若B P →=2P A →,且O Q →·A B →=1.求P 点的轨迹方程.8.过点P1(1,5)作一条直线交x轴于点A,过点P2(2,7)作直线P1A的垂线,交y轴于点B,点M在线段AB上,且BM∶MA=1∶2,求动点M的轨迹方程.尖子生题库☆☆☆9.(10分)已知圆C:x2+(y-3)2=9,过原点作圆C的弦OP,求OP中点Q的轨迹方程.(分别用直接法、定义法、代入法求解)。
甘肃省天水市2020高二数学寒假作业 圆锥曲线与方程质量检测 理 新人教A版.doc
圆锥曲线与方程质量检测(考试时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 2.设P 是椭圆x 2169+y 2144=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .133.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝ ⎛⎭⎪⎫22,0 B.⎝⎛⎭⎪⎫52,0 C.⎝⎛⎭⎪⎫62,0 D .(3,0)4.若抛物线x 2=2py 的焦点与椭圆x 23+y 24=1的下焦点重合,则p 的值为( )A .4B .2C .-4D .-25.若k ∈R ,则k >3是方程x 2k -3-y 2k +3=1表示双曲线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B.⎝ ⎛⎦⎥⎤0,12 C.⎝ ⎛⎭⎪⎫0,22 D.⎣⎢⎡⎭⎪⎫22,17.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35D .-458.F 1、F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.72 C.74D.7529.已知点M (-3,0)、N (3,0)、B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x >1)B .x 2-y 28=1(x <-1)C .x 2+y 28=1(x >0)D .x 2-y 210=1(x >1)10.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )A. 2B. 3 C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.若双曲线的渐近线方程为y =±13x ,它的一个焦点是(10,0),则双曲线的标准方程是________.12.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是________.13.如图,F 1,F 2分别为椭圆x 2a 2+y 2b2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是________.14.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,求双曲线方程.16.(本小题满分12分)设椭圆的中心在原点,焦点在x 轴上,离心率e =32.已知点P ⎝ ⎛⎭⎪⎫0,32到这个椭圆上的点的最远距离为7,求这个椭圆的方程.17.(本小题满分12分)设λ>0,点A 的坐标为(1,1),点B 在抛物线y =x 2上运动,点Q 满足BQ →=λQA →,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM →=λMP →,求点P 的轨迹方程.18.(本小题满分14分)已知椭圆的长轴长为2a ,焦点是F 1(-3,0)、F 2(3,0),点F 1到直线x =-a 23的距离为33,过点F 2且倾斜角为锐角的直线l 与椭圆交于A 、B 两点,使得|F 2B |=3|F 2A |.(1)求椭圆的方程; (2)求直线l 的方程.空间向量与立体几何质量检测 (考试时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a =(x,2y,3),b =(1,1,6),且a ∥b ,则x +y 等于( ) A.12 B.34 C.32D .22.若a =(0,1,-1),b =(1,1,0),且(a +λb )⊥a ,则实数λ的值是( ) A .-1 B .0 C .1D .-23.若向量(1,0,z )与向量(2,1,0)的夹角的余弦值为25,则z 等于( ) A .0 B .1 C .-1D .24.若a =e 1+e 2+e 3,b =e 1-e 2-e 3,c =e 1-e 2,d =3e 1+2e 2+e 3({e 1,e 2,e 3}为空间的一个基底),且d =x a +y b +z c ,则x ,y ,z 分别为( )A.52,32,-1 B.52,12,1 C .-52,12,1D.52,-12,1 5.若直线l 的方向向量为a =(1,-1,2),平面α的法向量为u =(-2,2,-4),则( ) A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交6.在平行六面休ABCD -A ′B ′C ′D ′中,若AC ′→=xAB →+2yBC →+3zC ′C →,则x +y +z 等于( )A .1 B.76 C.56D.237.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成的角的余弦值为( )A.1010B.15C.31010D.358.已知空间四个点A (1,1,1),B (-4,0,2),C (-3,-1,0),D (-1,0,4),则直线AD 与平面ABC 所成的角为( )A .60°B .45°C .30°D .90°9.在正方体ABCD -A 1B 1C 1D 1中,平面A 1BD 与平面C 1BD 所成二面角的余弦值为( ) A.12 B.13 C.32D.3310.如右图所示,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( )A. 3B.22C.23D.55二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.若a =(2,-3,5),b =(-3,1,-4),则|a -2b |=________.12.设a =(2,-3,1),b =(-1,-2,5),d =(1,2,-7),c ⊥a ,c ⊥b ,且c ·d =10,则c =________.13.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB的距离是________.14.平行六面体ABCD -A 1B 1C 1D 1中,AB =2,AA 1=2,AD =1,且AB ,AD ,AA 1的夹角都是60°,则AC 1→·BD 1→=________.三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图所示,已知ABCD -A 1B 1C 1D 1是平行六面体. (1)化简12AA 1→+BC →+23AB →,并在图上标出结果;(2)设M 是底面ABCD 的中心,N 是侧面BCC 1B 1对角线BC 1上的34分点,设MN →=αAB →+βAD →+γAA 1→,试求α、β、γ的值.16.(本小题满分12分)如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥平面ABCD ,PA =AB =2,BC =4.求点B 到平面PCD 的距离.17.(本小题满分12分)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成的角的正弦值;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.18.(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1.(1)求证:CD=C1D;(2)求二面角A-A1D-B的平面角的余弦值;(3)求点C到平面B1DP的距离.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线与方程 1
一、选择题(每小题5分,共20分)
1.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( ) A .x 2
+y 2
=3 B .x 2
+2xy =1(x ≠±1) C .y =1-x 2
D .x 2
+y 2
=9(x ≠0)
2.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|M N →|·|M P →
|+
M N →·N P →
=0,则动点P (x ,y )的轨迹方程为( )
A .y 2
=-8x B .y 2
=8x C .y 2=4x
D .y 2
=-4x
3.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )
A .π
B .4π
C .8π
D .9π
4.已知A (-1,0),B (1,0),且MA →·M B →
=0,则动点M 的轨迹方程是( ) A .x 2
+y 2
=1 B .x 2+y 2
=2
C .x 2
+y 2
=1(x ≠±1)
D .x 2
+y 2
=2(x ≠±2)
二、填空题(每小题5分,共10分)
5.已知点A (0,-1),当点B 在曲线y =2x 2
+1上运动时,线段AB 的中点M 的轨迹方程是________.
6.已知动圆P 与定圆C :(x +2)2
+y 2
=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是________.
三、解答题(每小题10分,共20分)
7.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若B P →=2P A →,且O Q →·A B →
=1.求P 点的轨迹方程.
8.过点P1(1,5)作一条直线交x轴于点A,过点P2(2,7)作直线P1A的垂线,交y轴于点B,点M在线段AB上,且BM∶MA=1∶2,求动点M的轨迹方程.
尖子生题库☆☆☆
9.(10分)已知圆C:x2+(y-3)2=9,过原点作圆C的弦OP,求OP中点Q的轨迹方程.(分别用直接法、定义法、代入法求解)。