12-13第一学期离散数学A卷新
离散数学试题(A卷答案)
离散数学试题(A卷答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。
解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。
则根据题意应有:A→C⊕D,⌝(B ∧C),C→⌝D必须同时成立。
因此(A→C⊕D)∧⌝(B∧C)∧(C→⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧(⌝B∨⌝C)∧(⌝C∨⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧((⌝B∧⌝C)∨(⌝B∧⌝D)∨⌝C∨(⌝C∧⌝D))⇔(⌝A∧⌝B∧⌝C)∨(⌝A∧⌝B∧⌝D)∨(⌝A∧⌝C)∨(⌝A∧⌝C∧⌝D)∨(C∧⌝ D∧⌝B∧⌝C)∨(C∧⌝ D∧⌝B∧⌝D)∨(C∧⌝ D∧⌝C)∨(C∧⌝ D∧⌝C∧⌝D)∨(⌝C∧D∧⌝B∧⌝C)∨(⌝C∧D∧⌝B∧⌝D)∨(⌝C∧D∧⌝C)∨(⌝C∧D∧⌝C∧⌝D)⇔F∨F∨(⌝A∧⌝C)∨F∨F∨(C∧⌝ D∧⌝B)∨F∨F∨(⌝C∧D∧⌝B)∨F∨(⌝C∧D)∨F⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D∧⌝B)∨(⌝C∧D)⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D)⇔T故有三种派法:B∧D,A∧C,A∧D。
二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。
解:论域:所有人的集合。
S(x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:∀x(S(x)∧W(x)),∃x Y(x)∃x(S(x)∧Y(x))下面给出证明:(1)∃x Y(x) P(2)Y(c) T(1),ES(3)∀x(S(x)∧W(x)) P(4)S( c)∧W( c) T(3),US(5)S( c) T(4),I(6)S( c)∧Y(c) T(2)(5),I(7)∃x(S(x)∧Y(x)) T(6) ,EG三、(10分)设A、B和C是三个集合,则A⊂B⇒⌝(B⊂A)。
离散数学A卷
一、逻辑学(每小题 6 分,共 18 分)
1.(6 分)把下列语句翻译为谓词演算公式
(1)有些人喜欢微信; 但并非所有人均喜欢微信。
(2)所有作家均写过作品。
2.(6 分)用假设推理证明下面的公式为定理
(������ → ������) → ((������ ∧ ������) → ((������ → ������) → (������ ∧ ������)))
1.(6 分)
(1)画一个有偶数条边的简单图,它是欧拉图,但非哈密尔顿图。
(2)画一个有奇数条边的简单图,它是哈密尔顿图,但非欧拉图。 2.(6 分) G 是一个无向图,它有n 个顶点, 5n 条边,且存在 1 个度数为 9 的顶点,1 个 度数为 10 的顶点,证明: G 中至少有一个顶点的度数大于等于 11。 3.(8 分)有520个人围成一圆圈,边开会边交流乒乓球技术。已知这520个人中,每
顿圈围成一圈,能使每个人左、右邻人打过球。
4.(8 分)
第3页
共5页
证明:设V1中没有树叶,则V1中所有顶点的度数均大于等于 2 根据握手定理、二部图 的定义及树的性质知,
2|E| = ∑ ������(������) ≥ 2|������1| + 2|������1| ≥ 2|������1| + 2|������2| = 2|������1| + 2|������2| − 2 + 2 = 2|������| + 2
3.(6 分) 答:ℎ(������1, ������2, ������3, ������5) = ������(������1(������44, ������3������������41), ������4������41, ������43, ������2(������41, ������42))(������1, ������2, ������3, ������5) 二、集合与关系(共 28 分) 1.(8 分)
离散数学试题(A卷答案)
离散数学试题(A 卷答案)一、(10分)求(P ↓Q )→(P ∧⌝(Q ∨⌝R ))的主析取范式 解:(P ↓Q )→(P ∧⌝(Q ∨⌝R ))⇔⌝(⌝( P ∨Q ))∨(P ∧⌝Q ∧R ))⇔(P ∨Q )∨(P ∧⌝Q ∧R ))⇔(P ∨Q ∨P )∧(P ∨Q ∨⌝Q )∧(P ∨Q ∨R ) ⇔(P ∨Q )∧(P ∨Q ∨R )⇔(P ∨Q ∨(R ∧⌝R ))∧(P ∨Q ∨R ) ⇔(P ∨Q ∨R )∧(P ∨Q ∨⌝R )∧(P ∨Q ∨R ) ⇔0M ∧1M⇔2m ∨3m ∨4m ∨5m ∨6m ∨7m二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。
乙说:王教授不是上海人,是苏州人。
丙说:王教授既不是上海人,也不是杭州人。
王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。
试判断王教授是哪里人?解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。
则根据题意应有: 甲:⌝P ∧Q 乙:⌝Q ∧P 丙:⌝Q ∧⌝R王教授只可能是其中一个城市的人或者3个城市都不是。
所以,丙至少说对了一半。
因此,可得甲或乙必有一人全错了。
又因为,若甲全错了,则有⌝Q ∧P ,因此,乙全对。
同理,乙全错则甲全对。
所以丙必是一对一错。
故王教授的话符号化为:((⌝P ∧Q )∧((Q ∧⌝R )∨(⌝Q ∧R )))∨((⌝Q ∧P )∧(⌝Q ∧R ))⇔(⌝P ∧Q ∧Q ∧⌝R )∨(⌝P ∧Q ∧⌝Q ∧R )∨(⌝Q ∧P ∧⌝Q ∧R ) ⇔(⌝P ∧Q ∧⌝R )∨(P ∧⌝Q ∧R ) ⇔⌝P ∧Q ∧⌝R ⇔T因此,王教授是上海人。
三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。
证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。
离散数学试题(A卷答案)
离散数学试题(A卷答案)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2)∃x(A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E, ⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S证明:(1) (C∨D)→⌝E(2) ⌝E→(A∧⌝B)(3) (C∨D)→(A∧⌝B)(4) (A∧⌝B)→(R∨S)(5) (C∨D)→(R∨S)(6) C∨D(7) R∨S2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x)(2)P(a)(3)∀x(P(x)→Q(y)∧R(x))(4)P(a)→Q(y)∧R(a)(5)Q(y)∧R(a)(6)Q(y)(7)R(a)(8)P(a)(9)P(a)∧R(a)(10)∃x(P(x)∧R(x)) (11)Q(y)∧∃x(P(x)∧R(x))四、设m 是一个取定的正整数,证明:在任取m +1个整数中,至少有两个整数,它们的差是m 的整数倍(10分)。
离散数学试题及答案
离散数学试题及答案离散数学试题及答案⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是_______________________________________, 其中双射的是__________________________.4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.5.设G是完全⼆叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B =_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________,________________________, _______________________________.8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则 R1?R2 =________________________,R2?R1 =____________________________, R12=________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B =__________________________ , B-A = __________________________ ,A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设⼀阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是_______________________________.15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。
离散数学期末考试试卷(A卷)
离散数学期末考试试卷(A卷)一、判断题:(每题2分,共10分)(1)(1)(2)对任意的命题公式, 若, 则(0)(3)设是集合上的等价关系, 是由诱导的上的等价关系,则。
(1)(4)任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等价。
(0)(5)设是上的关系,分别表示的对称和传递闭包,则(0)二、填空题:(每题2分,共10分)(1) 空集的幂集的幂集为()。
(2) 写出的对偶式()。
(3)设是我校本科生全体构成的集合,两位同学等价当且仅当他们在同一个班,则等价类的个数为(),同学小王所在的等价类为()。
(4)设是上的关系,则满足下列性质的哪几条:自反的,对称的,传递的,反自反的,反对称的。
()(5)写出命题公式的两种等价公式( )。
三、用命题公式符号化下列命题(1)(2)(3),用谓词公式符号化下列命题(4)(5)(6)。
(12分)(1)(1)仅当今晚有时间,我去看电影。
(2)(2)假如上午不下雨,我去看电影,否则就在家里读书。
(3)你能通你能通过考试,除非你不复习。
(4)(4)并非发光的都是金子。
(5)(5)有些男同志,既是教练员,又是国家选手。
(6)(6)有一个数比任何数都大。
四、设,给定上的两个关系和分别是(1)(1)写出和的关系矩阵。
(2)求及(12分)五、求的主析取范式和主合取范式。
(10分)六、设是到的关系,是到的关系,证明:(8分)七、设是一个等价关系,设对某一个,有,证明:也是一个等价关系。
(10分)八、(10分)用命题推理理论来论证 下述推证是否有效?甲、乙、丙、丁四人参加比赛,如果甲获胜,则乙失败;如果丙获胜,则乙也获胜,如果甲不获胜,则丁不失败。
所以,如果丙获胜,则丁不失败。
九、(10分) 用谓词推理理论来论证下述推证。
任何人如果他喜欢步行,他就不喜欢乘汽车,每一个人或喜欢乘汽车,或喜欢骑自行车(可能这两种都喜欢)。
有的人不爱骑自行车,因而有的人不爱步行 (论域是人)。
资料:离散数学试题 (1)
离散数学考试题库(A卷及答案)一、(10分)证明⌝(A∨B)→⌝(P∨Q),P,(B→A)∨⌝P A。
证明:(1)⌝(A∨B)→⌝(P∨Q)P(2)(P∨Q)→(A∨B) T(1),E(3)P P(4)A∨B T(2)(3),I(5)(B→A)∨⌝P P(6)B→A T(3)(5),I(7)A∨⌝B T(6),E(8)(A∨B)∧(A∨⌝B) T(4)(7),I(9)A∧(B∨⌝B) T(8),E(10)A T(9),E二、(10分)甲、乙、丙、丁4个人有且仅有2个人参加围棋优胜比赛。
关于谁参加竞赛,下列4种判断都是正确的:(1)甲和乙只有一人参加;(2)丙参加,丁必参加;(3)乙或丁至多参加一人;(4)丁不参加,甲也不会参加。
请推出哪两个人参加了围棋比赛。
解符号化命题,设A:甲参加了比赛;B:乙参加了比赛;C:丙参加了比赛;D:丁参加了比赛。
依题意有,(1)甲和乙只有一人参加,符号化为A⊕B⇔(⌝A∧B)∨(A∧⌝B);(2)丙参加,丁必参加,符号化为C→D;(3)乙或丁至多参加一人,符号化为⌝(B∧D);(4)丁不参加,甲也不会参加,符号化为⌝D→⌝A。
所以原命题为:(A⊕B)∧(C→D)∧(⌝(B∧D))∧(⌝D→⌝A)⇔((⌝A∧B)∨(A∧⌝B))∧(⌝C∨D)∧(⌝B∨⌝D)∧(D∨⌝A)⇔((⌝A∧B∧⌝C)∨(A∧⌝B∧⌝C)∨(⌝A∧B∧D)∨(A∧⌝B∧D))∧((⌝B∧D)∨(⌝B∧⌝A)∨(⌝D∧⌝A))⇔(A∧⌝B∧⌝C∧D)∨(A∧⌝B∧D)∨(⌝A∧B∧⌝C∧⌝D)⇔T但依据题意条件,有且仅有两人参加竞赛,故⌝A∧B∧⌝C∧⌝D为F。
所以只有:(A∧⌝B∧⌝C∧D)∨(A∧⌝B∧D)⇔T,即甲、丁参加了围棋比赛。
三、(10分)指出下列推理中,在哪些步骤上有错误?为什么?给出正确的推理形式。
(1)∀x(P(x)→Q(x)) P(2)P(y)→Q(y) T(1),US(3)∃xP(x) P(4)P(y) T(3),ES(5)Q(y) T(2)(4),I(6)∃xQ(x) T(5),EG解(4)中ES错,因为对存在量词限制的变元x引用ES规则,只能将x换成某个个体常元c,而不能将其改为自由变元。
2012-2013年离散数学A卷
一、选择题(每小题 2 分,共 20分)1.下列命题为假.命题的是()A.如果2是偶数,那么雪是白的B.如果2是偶数,那么雪是黑的C.如果2是奇数,那么雪是白的D.如果2是奇数,那么雪是黑的2.谓词公式∀x(P(x)∨∃yR(y))→Q(x)中变元x是()A.自由变元B.约束变元C.既不是自由变元也不是约束变元D.既是自由变元也是约束变元3.若个体域为整数域,下列公式中值为真的是()A.∀x∃y(x+y=0)B.∃y∀x(x+y=0)C.∀x∀y(x+y=0)D.⎤∃x∃y(x+y=0)4.设P={x|(x+1)2≤4},Q={x|x2+16≥5x},则下列选项正确的是()A.P⊃QB.P⊇QC.Q⊃PD.Q=P5.设A, C, B, D为任意集合,以下命题一定为真的是()A. A∪B= A∪C =>B=CB. A×C= A×B =>B= CC. A∪(B×C) = (A∪B)×(A∪C)D. 存在集合A,使得A ⊆ A ×A6.半群、群及独异点的关系是()A.{群}⊂{独异点}⊂{半群}B.{独异点}⊂{半群}⊂{群}C.{独异点}⊂{群}⊂{半群}D.{半群}⊂{群}⊂{独异点}7.设集合A={1,2,3},下列关系R中不.是等价关系的是()A.R={<1,1>,<2,2>,<3,3>}B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>}C.R={<1,1>,<2,2>,<3,3>,<1,2>}D.R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>}8. 函数f:R→R,f(x)= x2-2x+1,则f(x)是()函数。
离散数学试卷(A)
离散数学试卷(A)一、单项选择题(每小题2分。
共20分)在每小题的四个备选答案中只有一个正确的答案。
请将正确答案的序号写在题干的括号内。
1.设集合A={2,{a},3,4},B = {{a},3,4,1},E 为全集,则下列命题正确的是( ).A.{2}∈AB.{a}⊆AC.∅⊆{{a}}⊆B ⊆ED.{{a},1,3,4}⊂ B.2.除非613≥ ,否则79≤。
令r: 613≥,s :79≤,可符号化为( ).A.s r →B. r s →⌝C. s r →⌝D. r s →3.使命题公式()p q q ∧→为假的赋值是( )A.10B.01C.00D.114. ()r q p ↔→的合取范式是( )A.()()()r q p r q r p ⌝∨∨⌝∧∨⌝∧∨;B. ()()()r q p r q q p ⌝∨∨⌝∧∨⌝∧∨C. ()()()r q p r q q p ⌝∨∨⌝∧∨∧∨;D. ()()()r q p r q r p ⌝∨∨⌝∧∨∧∨;5.判断下列各式中,不是合式公式的是 ( )A.S R Q ∧→B.()()S R P →↔C.()()()P Q Q P →→→⌝D.()K RS →6. 下列语句中是命题的只有( )A .1+1=10B .x+y=10C .sinx+siny<0D .x mod 3=2 7.设A={1,2,3,4,5},下面集合等于A 的是( )A .{1,2,3,4} B.{}252≤x x x 是整数,且C .{}5≤x x x 是正整数,且D .{}5≤x x x 是正有理数,且8.设f 和g 都是x 上的双射函数,则()1-g f ( ) A.11--g f B. ()1-f gC. 11--f gD. 1-g f9.下面等值式不正确的是:( C )A.A A A ⇔∨ ;B. ()B A B A ⌝∨⌝⇔∧⌝ ;C. ()B B A A ⇔∧∨;D. B A B A ∨⌝⇔→;10.R 代表实数集合,针对给定的函数集合f ,下面函数f: R R →属于双射的是:( )A. ()x x f 2=B. ()x x f sin =C. ()23x x x f -=D. ()x x f x +=2二、判断题(每题2分,共10分)11. A 是合式公式,但()B A ∨不一定就是合式公式( )12. q p →为真当且仅当p 与q 同时为真或同时为假( )13.设i i m M 与是命题变项1p ,2p ,。
2012~2013学年第一学期__离散数学__A卷_(2)
上海第二工业大学(试卷编号:)2012~2013学年第一学期离散数学A 卷姓名:学号:班级:成绩:一、判断题(每小题2分,本题共10分) 1、若A B A C =,则B C =。
( 错 ) 2、设1ρ和2ρ是集合A 上的等价关系,则12ρρ是A 上的等价关系( 对 )3、若函数:f A B →,:g B C →,则若f 与g 的复合gf 是双射,则函数f 是双射。
( 错 )4、在有界格中,必有最大元和最小元。
( 对 )5、存在13个结点,并且每个结点的度均为3的图。
( 错 )二、填空题(每空2分,本题30分) 1、设集合{,{}}A a b =,{,}B a b =,则22AB =_______{空,{a}}________________,B A ⨯=_________{(a,a),(b,a),(a,{b}),(b,{b}}________________。
2、若{1,2,3,4}A =,则A 上共有___11_______个不同的自反关系。
3、假设{0,1,2,3}A =,1{(,)|2}i j j i ρ==+和2{(,)|2}i j i j ρ==+是A 上的关系,则12ρρ=_____{(0,0),(1,1)}__;21ρρ=___{(2,2),(3,3)};关系1ρ的自反闭包是:__{(0,0),(1,1),(2,2),(3,3),(0,2),(1,3)}__;关系2ρ的对称闭包是:_{(1,3),(3,1),(2,0),(0,2)}_。
4、命题P :“小李喜欢跳舞”,命题Q :“小李不喜欢唱歌”,则复合命题P Q ⌝∧表示:____小李不喜欢跳舞且不喜欢唱歌_____________________。
5、设集合{1,2,3,4}A =,{,,,}B a b c d =,则A B ⨯有___16__个序偶,A 到B 有___256____个关系,其中有____24____个是双射函数。
《离散数学A》试题及答案
《离散数学A》试题及答案西南科技大学2010-2011-2学期《离散数学A》本科期末考试试卷(B卷)参考答案及评分细则一、判断题(本大题共10个小题,每小题2分,共20分)将每小题的判断结果写在答题纸上,正确的写“正确”,错误的写“错误”。
1. “3+3=6”,不是命题。
(错误)2. 命题公式(P Q Q)是偶然式。
(正确)3. 若B中不含有x,则x(A(x)B)xA(x)B。
(错误)4. 如果论述域是{a,b},则xR(x) R(a)R(b)。
(错误)5. 若集合A的基数|A|=5,则A的幂集的基数|(A)|=32。
(正确)6. 设A是一个集合,则A A=。
(错误)7. 设R是非空集合A上的二元关系,则R的传递闭包t(R)=R R0。
(错误)8. 所有欧拉图的顶点次(度)数一定是偶数。
(正确)9. 无向图G是二部图当且仅当G中所有回路的长度均为偶数。
(正确)10. K5、K3,3都是非平面图。
(正确)二、简单计算题(本大题共10个小题,每小题3分,共30分)将每小题的计算结果写在答题纸上。
1. 设P:我有时间;Q:我去镇上,用逻辑符合写出命题“只有我有时间,我才去镇上。
”。
答案:Q P2. 对命题公式:P(Q R)P Q化为仅含和的等价表达式。
答案:(P Q)3. 设S(x):x是火车,L(x):x是卡车,F(x,y):x比y快。
在谓词逻辑中符号化命题“所有火车都比所有卡车快”。
答案:?x(S(x)→?y(L(y) ∧F(x , y))4. 求谓词公式xP(x)xQ(x)的前束范式。
答案:x y(P(x)Q(x))5. 在一个班级50个学生中,有26人在第一次考试中得到A,21人在第二次考试中得到A,假如17人两次考试都没有得到A,问有多少学生在两次考试中都得到A?答案:14人。
6. 假设A是n个元素的有限集合,有多少个元素在A上的最小等价关系中?答案:n个。
7. 二元关系的关系图如下图所示,则R具有哪些特性(性质)?答案:R是反自反的、对称的。
上海海事大学2013年1月离散数学期末考试题
第 1 页 共 3 页上 海 海 事 大 学 试 卷2012 — 2013 学年第一学期期末考试《 离散数学 》(A 卷)班级 学号 姓名 总分1. (4分) 给定下列命题:P : 天下雪 Q : 我进城 R : 我有时间 使用逻辑联结词将下列命题符号化(1) 如果天不下雪且我有时间, 我就进城 (2) 我进城的必要条件是我有时间 (3) 天不在下雪(4) 我进城当且仅当我有时间且天不下雪2. (4分) 一个命题公式A (P ,Q ,R )的成真指派为FFF, FFT, FTF, TFF, TTF, 求该公式的主合取范式 3. (6分) 构造下面推理的证明:(1) 前提: ))()()((x H x F x ∧∃⌝, ))()()((x H x G x →∀ 结论: ))()()((x F x G x ⌝→∀(2) 前提: )))()(()()((x R x Q x P x ∧→∀, )()(x P x ∃ 结论: ))()()((x R x P x ∧∃ 4. (4分) 设解释I 如下:D ={a ,b }; P (a ,a )=1; P (a ,b )=0; P (b ,b )=1; P (b ,a )=0 确定下列公式在I 下的真值 (1) ),())((y x P y x ∃∀ (2) ),())((y x P y x ∀∀5. (5分) 一个体育团共25人, 其中14人会踢足球, 12人会打乒乓球, 6人既会踢足球又会打乒乓球, 5人既会打篮球又会踢足球, 还有2人这三种球都会打, 而6个会打篮球的人都会打另一种球. 求不会打球的人数.6. (4分) 设集合A ={1, 2, 3, 4}, R 和S 均为A 上的二元关系, 且 R ={<1,2>, <3,4>},S ={<2,3>, <4,1>}, 求S R , R S , R S R , S R S--------------------------------------------------------------------------------------装订线------------------------------------------------------------------------------------第 2 页 共 3 页7. (6分) 设A ={1, 2, 3, 4}, 在A 的幂集P (A )上定义二元关系R 如下:|}|||)(,|,{t s A P t s t s R =∈><=且证明: R 是P (A )上的等价关系并给出商集P (A )/R 8. (8分) 设A ={1, 2, …, 12}, R 是A 上的整除关系.(1) 给出该整除关系的哈斯图(2) 子集B ={2, 4, 6}, 给出B 的最大元、最小元、极大元、极小元、上界、下界、上确界、下确界9. (4分)如下给出四个函数, 判断哪些是入射?哪些是满射?哪些是双射?R R f →:1,21)(221++=x x x f R I f →+:2, x f ln 2=,其中,I +是正整数集合I R f →:3, []x f =3, 其中[]x 是不大于x 的最大整数 R R f →:4,14+=x f10. (4分) 区间[2, 3]的基数是什么?证明你的结论11. (6分) 代数系统>+=<331,N V , >+=<222,N V , 其中3+和2+分别为模3和模2加法。
最新离散数学考试试题A卷及答案
精品文档离散数学考试试题(A卷及答案)一、(10分)判断下列公式的类型(永真式、永假式、可满足式)?1)((P?Q)∧Q)?((Q∨R)∧Q) 2)?((Q?P)∨?P)∧(P∨R)3)((?P∨Q)?R)?((P∧Q)∨R)解:1)永真式;2)永假式;3)可满足式。
二、(8分)个体域为{1,2},求?x?y(x+y=4)的真值。
解:?x?y(x+y=4)??x((x+1=4)∨(x+2=4))?((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4))?(0∨0)∧(0∨1)?1∧1?0三、(8分)已知集合A和B且|A|=n,|B|=m,求A到B的二元关系数是多少?A到B的函数数是多少?解:因为|P(A×B)|=2|A×B|=2|A||B|=2mn,所以A到B的二元关系有2mn个。
因为|BA|=|B||A|=mn,所以A到B的函数mn个。
(10分)已知A={1,2,3,4,5}和R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R)和t(R)。
四、解:r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>}t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}五、(10分) 75个儿童到公园游乐场,他们在那里可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中20人这三种东西都乘过,其中55人至少乘坐过其中的两种。
离散数学试题(A卷答案)
离散数学试题(A卷答案)一、证明题(10分)1)((P∨Q)∧⌝(⌝P∧(⌝Q∨⌝R)))∨(⌝P∧⌝Q)∨(⌝P∧⌝R)⇔T证明: 左端⇔((P∨Q)∧(P∨(Q∧R)))∨⌝((P∨Q)∧(P∨R))(摩根律)⇔ ((P∨Q)∧(P∨Q)∧(P∨R))∨⌝((P∨Q)∧(P∨R))(分配律)⇔ ((P∨Q)∧(P∨R))∨⌝((P∨Q)∧(P∨R)) (等幂律)⇔T(代入)2)∀x(P(x)→Q(x))∧∀xP(x)⇔∀x(P(x)∧Q(x))证明:∀x(P(x)→Q(x))∧∀xP(x)⇔∀x((P(x)→Q(x)∧P(x))⇔∀x((⌝P(x)∨Q(x)∧P(x))⇔∀x(P(x)∧Q(x))⇔∀xP(x)∧∀xQ(x)⇔∀x(P(x)∧Q(x))二、求命题公式(⌝P→Q)→(P∨⌝Q) 的主析取范式和主合取范式(10分)。
解:(⌝P→Q)→(P∨⌝Q)⇔⌝(⌝P→Q)∨(P∨⌝Q)⇔⌝(P∨Q)∨(P∨⌝Q)⇔(⌝P∧⌝Q)∨(P∨⌝Q)⇔(⌝P∨P∨⌝Q)∧(⌝Q∨P∨⌝Q)⇔(P∨⌝Q)⇔M1⇔m0∨m2∨m3三、推理证明题(10分)1)(P→(Q→S))∧(⌝R∨P)∧Q⇒R→S证明:(1)R 附加前提(2)⌝R∨P P(3)P T(1)(2),I(4)P→(Q→S) P(5)Q→S T(3)(4),I(6)Q P(7)S T(5)(6),I(8)R→S CP2) ∀x(P(x)∨Q(x)),∀x⌝P(x)⇒∃x Q(x)证明:(1)∀x⌝P(x) P(2)⌝P(c) T(1),US(3)∀x(P(x)∨Q(x)) P(4)P(c)∨Q(c) T(3),US(5)Q(c) T(2)(4),I(6)∃x Q(x) T(5),EG四、在边长为1的正方形内任意放置九个点,证明其中必存在三个点,使得由它们组成的三角形(可能是退化的)面积不超过1/8(5分)。
证明:把边长为1的正方形分成四个全等的小正方形,则至少有一个小正方形内有三个点,它们组成的三角形(可能是退化的)面积不超过小正方形的一半,即1/8。
内蒙古大学离散数学12-13学年一学期期中试卷答案
计算机学院11级计算机科学与技术&软件工程专业12/13学年一学期离散数学 期中试卷(闭卷 120 分钟)一、试求下面公式的主析取范式. (共10分)① P ∧Q② P ∨Q① P ∧Q 本身即为主析取范式=m 3② 123 P Q ()()()()()P Q Q Q P P P Q P Q Q P m m m ∨=∧∨⌝∨∧∨⌝=∧∨∧⌝∨∨⌝=∨∨ 二、求解((P ∨Q)∧ ¬(¬ P ∧ (¬ Q ∨¬ R) ) ) ∨ (¬ P ∧ ¬ Q ) ∨ (¬ P ∧ ¬R ) 的公式类型?(永真、永假、可满足?) (共7分) ((P Q)( P ( Q R) ))( P Q )( P R )=((P Q)( P ( Q R) ))( P Q )( P R )=((P Q)( P R) )( P Q )( P R )P (Q )( P Q )( P R )P (Q )( P ( Q R ))(P (Q )) (P (Q ))R R R R ∨∧⌝⌝∧⌝∨⌝∨⌝∧⌝∨⌝∧⌝∨∧∨∧∨⌝∧⌝∨⌝∧⌝∨∧∨∨⌝∧⌝∨⌝∧⌝=∨∧∨⌝∧⌝∨⌝∧⌝=∨∧∨⌝∧⌝∨⌝=∨∧∨⌝∨∧1= 该式为永真式 三、证明:(P →Q) →Q ⇒P ∨Q (共8分)。
证明: (P Q)Q (P Q)(P Q)(P Q)(P )(Q Q)P QQQQ Q →→⇔⌝→∨⇔⌝⌝∨∨⇔∧⌝∨⇔∨∧⌝∨⇔∨装 订 线四、试求解下列公式的前束范式 (共10分)① (∀x)P(x)∧¬(∃x)Q(x)② (∃x)P(x)→(∀x)Q(x)解:(x)P(x)(x)Q(x)(x)P(x)(x)Q(x)(x)(P(x)Q(x))①∀∧⌝∃=∀∧∀⌝=∀∧⌝ ()()()()=()()()()=()()()()=()(()())x P x x Q x x P x x Q x x P x x Q x x P x Q x ∃→∀⌝∃∨∀∀⌝∨∀∀⌝∨ 五、设个体域为整数集合。
离散数学(A)卷讲解
离散数学(A)卷讲解一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,?是复数乘法运算,则G=<{1,-1,i,-i},?>是群,下列是G的子群是( )A.<{1},?>B.〈{-1},?〉C.〈{i},?〉D.〈{-i},?〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z,〉,Z是整数集,定义为∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪IAB.RC.R∪{〈c,a〉}D.R∩IA9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A. ∈∈11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<="" p="">A.( x)( y)( z)(A(x,y))→A(f(x,z),f(y,z))B.( x)A(f(a,x),a)C.( x)( y)(A(f(x,y),x))D.( x)( y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式( x)(A(x)→B)等价于( )A.( x)A(x)→BB.( x)A(x)→BC.A(x)→BD.( x)A(x)→( x)B13.谓词公式( x)(P(x,y))→( z)Q(x,z)∧( y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 4 页
4. 在如下各图中( )欧拉图。
5. Z 为整数集合,*是Z 上定义的二元运算,2*,,-+=∈∀y x y x Z y x ,则Z 关于*运算构成( )。
A. 代数系统,但不是半群
B. 半群,但不是独异点
C. 是独异点,但不是群
D. 群 二、填空题(每空1分,共13分)
1. 若P 表示“小李学习努力”,Q 表示“小李取得好成绩”,则“只要小李努力学习,他就能取得好成绩”以及“虽然小李努力学习,可他没能取得好成绩”的命题逻辑符号化表示分别为( )和( )。
2. 设A={1,2,3,5},B={2,4},则A-B=( )。
3. 设集合A={1,2},则A 的幂集为( )。
4. 集合A={a,b,c},A 上的二元关系R={<a,b>,<a,c>,<c,c>}。
则R 的自反闭包为( ),R 的对称闭包为( ), R 2
=( )。
5. 无向图G 是欧拉图当且仅当G 连通且( )。
6. 若无向树T 有8个结点,则T 有( )条边。
7. n 阶无向完全图Kn 的边数为( )。
第 2 页 共 4 页
8. 如果连通平面图G 有n 个顶点,m 条边,则G 有( )个面。
9. 设在有理数集合Q 上定义二元运算*,∀x,y ∈Q 有x*y=x+y-xy ,则2*(-5)=( ),关于*运算的单位元是( )。
三、计算题(共27分)
1. 求命题公式)()()(R P R Q Q P ∨⌝∧∨∧∨的主合取范式和主析取范式。
(8分)
2. 设A={a,b,c,d},R={<a,b>,<b,a>,<b,c>,<c,d>,<d,b>},请画出R 的关系图,并用warshall 算法求R 的传递闭包t(R)。
(7分)
3. (G ,*)是群,a ,b 是集合G 中的元素,求满足a*x=b 的x 的值及满足y*a=b 的y 的值。
(4分)
4. 设G=<a>是15阶循环群 (1)求G 的所有生成元 (2)求G 的所有子群。
(8分)
四、证明题(共35分)
1. 命题逻辑证明以下推理。
(8分)
(1)S Q S R Q P P →⇒∧→→))((, (2)R B R B C C A B A ⌝⇒→⌝→∨⌝→,,,
2. 将以下推理进行谓词逻辑符号化,并给出证明过程。
(8分) 鸟会飞,猴子不会飞。
所以,猴子不是鸟。
3. 设A 是某个班级所有学生构成的集合, R 是A 上的二元关系,R={<x,y>∣x,y ∈A 且x 与y 同性别},证明R 是等价关系,并写出R 的等价类。
(8分)
4. 已知[2,4]和[3,10]是两个实数闭区间,证明:[2,4]≈[3,10](即证明它们等势)。
(6分)
5. 证明右图是平面图。
(5分)
五、应用题(15分)
1. 现有8枚硬币,其中一枚是假币,假币稍轻,有一台天平可供使用,请问最少需称量几
次一定能找出假币,并用根数的形式画出相应的决策图。
(8分)
2.一家公司计划建立连接它的五个计算机中心的通信网络,可以用租来的电话线连接这些中心的任何一对。
应该建立哪些连接,保证任何两个计算机中心之间都有通路,并使得网络的总成本最小,并求出最少要租用的电话线的长度。
(7分)
22
22
13 62
28
34
50
55
50
48
第 3 页共4 页
三、计算题(8+7+4+8=27分,要有计算过程,无过程不得分!)
1.
2.
3.
4.
四、证明题(8+8+8+6+5=35分,要有过程,无过程不得分!)1.
2.
3.
4.
5.
五、应用题(8+7=15分,要有过程,无过程不得分!)
1.
2.
第 4 页共4 页。