正余弦定理基础练习题
正弦定理和余弦定理基础习题大全
根本运算类1、ABC ∆中,45,60,10,A B a ===那么b 等于2、在△ABC 中,8=a ,B=060,C=075,那么b 等于3、ABC ∆中,c b a 、、分别是角C B A 、、的对边, 60,3,2===B b a ,那么A =4、在△ABC 中,a b c 、、分别是三角A B C 、、的对边, ︒=︒=45,75C A ,2b ,那么此三角形的最小边长为5、在ABC ∆中,B=30︒,C=45︒,c=1,那么最短边长为6、在ABC ∆中,假设边4a c ==,且角4A π=,那么角C=;7、在ABC ∆中,8a =,60B =︒,75C =︒,那么b 的值为 8、在ABC ∆中,15a =,10b =,60A =︒,那么cos B = 9、在ABC ∆中,045,1,2===B c b ,那么C =.10、在A B C △中,3A π∠=,3B C =,AB ,那么C ∠=11、在△ABC 中,0045,30,2A B b ===,那么a 边的值为 .12、在ABC ∆中, 假设21cos ,3-==A a ,那么ABC ∆的外接圆的半径为13、△ABC 中,30,8,A a b ===那么此三角形的面积为14、锐角ABC ∆的面积为4BC =,3CA =,那么角C 大小为 15、ABC ∆的角A,B,C 所对的边分别为a,b,c ,且54cos ,3,2===B b a ,那么A sin 的值为 16、ABC △中,假设537AB ===,AC ,BC ,那么A 的大小为17、在ABC ∆中,假设1b =,c =23C π=,那么a =. 18、在△ABC 中,假设222ca b ab =++,那么∠C=19、在ABC ∆中,222a c b ab -+=,那么C = 20、边长为5,7,8的三角形的最大角的余弦是.21、假设ABC ∆的角A 、B 、C 的对边分别为a 、b 、c ,且222a b c bc =+-,那么角A 的大小为 22、在ABC ∆中,A,B,C 的对边分别为a,b,c ,bc c b a ++=222,那么A 等于23、在ΔABC 中, 角A 、B 、C 的对边分别为a 、b 、c , A =3π, 3=a , 1=b ,那么=c24、在ABC △中,假设120c b B ===,那么a 等于 25、在ABC ∆中,2=a , 30=A , 120=C ,那么ABC ∆的面积为 26、在ABC ∆中,,,,23230===AC AB B 那么ABC ∆的面积是27、在ABC ∆中,5,7,8AB BC AC ===,那么ABC ∆的面积是;28、ABC ∆中,120,2,ABC A b S ∆===a 等于。
正余弦定理 15道经典基础例题
正余弦定理 15道经典基础例题例1、(共5分,2分钟)在∆ABC 中,若∠A =60°,∠B =45° ,BC =3√2 ,则AC=( )A .4√3B .2√3C .√3 D.√32解答:由正弦定理,可得AC sin45°=BCsin60° 所以AC =3√2√32×√22=2√3可得答案B考点: 考点:正弦定理, 难度:★☆☆☆☆☆例2、(共5分,2分钟)在∆ABC 中,角A,B,C 所对边长分别为a,b,c ,若a 2+b 2=2c 2,则sin C 的最小值为( )A. √32 B. √22 C. 12 D. −12 解答:cos C =a 2+b 2−c 22ab=2c 2−c 22ab≥c 2a 2+b 2=12可得答案C考点:余弦定理,基本不等式,难度:★☆☆☆☆☆ 例3、(共5分,3分钟)在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ). A.32B.332C.3+62D.3+394解答:设AB =c ,BC 边上的高为h .由余弦定理,得AC 2=c 2+BC 2-2BC ·c cos 60°,即7=c 2+4-4c cos 60°, 即c 2-2c -3=0,∴c =3(负值舍去).又h =c ·sin 60°=3×32=332,故选B.可得答案B考点:余弦定理,难度:★☆☆☆☆☆例4、(共5分,3分钟)在∆ABC 中,内角A ,B ,C 所对的边分别是a,b,c ,已知8b =5c,C =2B ,则cos C = ( ) A.725 B.−725 C.±725 D.2425 解答:由8b =5c,C =2B 及正弦定理得, 8sin B =5sin C,sin C =sin 2B ,又由正弦公式知sin 2B =2sin B cos B ,整理可得 8sin B =10sin B cos B ,cos B =45,sin B =35, cos C =cos 2B =cos 2B −sin 2B =725 可得答案A考点:正弦定理,二倍角公式,难度:★★☆☆☆☆例5、(共5分,2分钟)在∆ABC 中,AB =√6,∠A =75°,∠B =45°,则AC= .解答:由正弦定理可知:ABsin [180°−(75°+45°)]=ACsin 45°⇒√6sin 60°=ACsin 45°⇒AC =2可得答案:AC=2考点:正弦定理,难度:★☆☆☆☆☆例6、(共5分,2分钟)在∆ABC 中,a=4,b=5,c=6,则sin 2A sin C= .解答:sin2Asin C =2sin A cos Asin C=2ac∙b2+c2−a22bc=1可得答案sin2Asin C=1考点:正弦定理、余弦定理,难度:★☆☆☆☆☆例7、(共5分,3分钟)若锐角∆ABC的面积为10√3,且AB=5,AC=8,则BC 等于________.解答:由已知得的∆ABC面积为12AB∙AC sin A=20sin A=10√3,∴sin A=√32,A∈(0,π2),可知A=π3由余弦定理得AB2+AC2−2AB∙AC cos A=49,解得BC=7可得答案BC=7考点:三角形面积公式,余弦定理,难度:★☆☆☆☆☆例8、(共5分,2分钟)设∆ABC的内角A,B,C的对边分别为a,b,c若a=√3,sin B=12,C=π6,则b= .解答:由sin B=12且B∈(0,π)∴B=π6或5π6,又C=π6,则B=π6可得A=π−B−C=2π3,又a=√3由正弦定理asin A =bsin B,代入可得b=1可得答案b=1考点:正弦定理,难度:★☆☆☆☆☆例9、(共5分,2分钟)设∆ABC的内角A,B,C,所对的边分别是a,b,c,若(a+b−c)(a+b+c)=ab,则角C= .解答:由(a+b+c)(a+b−c)=a2+b2−c2+2ab=ab得a2+b2−c2=−ab由余弦定理cos C=a2+b2−c22ab =−ab2ab=−12,C=2π3可得答案C=2π3考点:余弦定理,难度:★☆☆☆☆☆例10、(共5分,2分钟)在∆ABC中,内角A,B,C所对的边分别是a,b,c..已知b−c=14a,2sin B=3sin C,则cos A的值为 .解答:由正弦定理知2b=3c,解得b=3c2,a=2c.则由余弦定理知cos A=b2+c2−a22bc =−14可得答案cos A=−14考点:三角形面积公式,余弦定理,难度:★☆☆☆☆☆例11、(共5分,3分钟)在∆ABC中,内角A,B,C所对的边分别为a,b,c,已知∆ABC的面积为3√15,b−c=2,cos A=−14,则a的值为 .解答:因为0<A<π,所以sin A=√1−cos2A=√154,又S∆ABC=12bc sin A=√158bc=3√15,∴bc=24解方程组{b−c=2bc−−24得b=6,c=4由余弦定理得a2=b2+c2−2bc cos A=64, 所以a=8可得答案a=8考点:同角三角函数关系,三角形面积公式,余弦定理,难度:★☆☆☆☆☆例12、(共5分,3分钟)在∆ABC中,B=120°,AB=√2,A的角平分线AD=√3,则AC=_______.解答:由正弦定理得ABsin∠ADB =ADsin B,即√2sin∠ADB=√3sin120°,解得sin∠ADB=√22,∠ADB=45°,从而∠BAD=15°=∠DAC , 即C=30° ,|AC|=2|AB|cos30°=√6.可得答案AC=√6考点:正弦定理, 难度:★☆☆☆☆☆例13、(共12分,8分钟)∆ABC的内角A,B,C所对的边分别为a,b,c,向量m⃗⃗⃗ =(a,√3b)与n⃗=(cos A,sin B)平行,(I)求A;(II)若a=√7,b=2,求∆ABC的面积.解答:(I)由m⃗⃗⃗ 与n⃗平行,则a sin B−√3b cos A=0,由正弦定理,得sin A sin B−√3sin B cos A=0又sin B≠0 ,从而tan A=√3由于0<A<π ,所以A=π3(II)由余弦定理,得a2=b2+c2−2bc cos A,而a=√7,b=2,A=π3, 得7=4+c2−2c因为c>0所以c=3故∆ABC的面积为12bc sin A=3√32可得答案(I)π3;(II)3√32.考点:平行向量的坐标运算,正弦定理,3、余弦定理,4、三角形的面积公式,难度:★☆☆☆☆☆例14、(共12分,8分钟)在△ABC中,角A,B,C的对边分别为a,b,c,点(a,b)在直线x(sin A-sin B)+y sin B=c sin C上.(1)求角C 的值;(2)若a 2+b 2=6(a +b )-18,求△ABC 的面积.解答:(1)由题意得a (sin A -sin B )+b sin B =c sin C , 由正弦定理,得a (a -b )+b 2=c 2, 即a 2+b 2-c 2=ab , 由余弦定理,得cos C =a 2+b 2-c 22ab=12, 结合0<C <π,得C =π3.(2)由a 2+b 2=6(a +b )-18,得(a -3)2+(b -3)2=0, 从而得a =b =3, 所以△ABC 的面积S =12×32×sinπ3=934.可得答案(1) C =π3,(2)S ∆ABC =9√34.考点:正弦定理,余弦定理,三角形面积公式, 难度:★☆☆☆☆☆例15、(共12分,8分钟)在△ABC 中,内角A ,B ,C 的对边分别为,,a b c 。
正弦定理和余弦定理专题试题及答案
正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12 B .1 C.3 D .24.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π25.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19B .13C .1D .726.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1B . 2C . 3D .37.在△ABC 中,若A=,B=,BC=3,则AC=( )A. B. C.2D.48.在△ABC 中,若a 2+b 2<c 2,则△ABC 的形状是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.已知△ABC 的内角A,B,C 的对边分别为a,b,c,且=,则B= ( ) A.B. C. D.10.在△ABC 中,角A,B,C 所对的边长分别为a,b,c.若C=120°,c=a,则 ( )A.a>bB.a<bC.a=bD.a 与b 的大小关系不能确定11.在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC =的面积为________.12.若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.13.△ABC 中,点D 是BC 上的点,AD 平分∠BAC,BD=2DC. (1)求.(2)若∠BAC=60°,求B.14.在△ABC 中,角A,B,C 的对边分别为a,b,c,且bcosC=3acosB-ccosB. (1)求cosB 的值. (2)若·=2,且b=2,求a 和c 的值.15.如图,在△ABC 中,点P 在BC 边上,∠PAC =60°,PC =2,AP +AC =4.(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .16.在△ABC 中,角A ,B ,C 的对边分别是ɑ,b ,c ,且b 2=ɑc =ɑ2-c 2+bc. (1)求bsin Bc的值; (2)试判断△ABC 的形状,并说明理由.正弦定理和余弦定理专题试题及答案1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形答案:C2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解 D .有解但解的个数不确定 解析:由正弦定理得b sin B =csin C,∴sin B =bsin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在. 答案:C3.已知△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,若ɑ2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( ) A.12B .1 C. 3 D .2 解析:∵ɑ2=b 2+c 2-bc ,∴cos A =12,∴A =π3,又bc =4,∴△ABC 的面积为12bcsin A =3,故选C.答案:C4.在△ABC 中,内角A ,B ,C 的对边分别为ɑ,b ,c ,且bsin A =3ɑcos B .则B =( ) A.π6 B.π4 C.π3 D.π2解析:根据题意结合正弦定理, 得sin Bsin A =3sin Acos B. 因为sin A ≠0,所以sin B =3cos B , 即sin B cos B =tan B =3,所以B =π3. 答案:C5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2A sin 2A的值为( )A .-19B .13C .1D .72解析:由正弦定理可得2sin 2B -sin 2A sin 2A =2⎝ ⎛⎭⎪⎫sinB sin A 2-1=2⎝ ⎛⎭⎪⎫b a 2-1,因为3a =2b ,所以b a =32,所以2sin 2B -sin 2A sin 2A =2×⎝ ⎛⎭⎪⎫322-1=72。
正弦定理和余弦定理习题及答案
正弦定理和余弦定理 测试题一、选择题:1.在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223 B.223 C .-63D.632.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°3.E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ∠ECF =( )A.1627B.23C.33D.344.△ABC 中,若lg a -lg c =lgsin B =-lg 2且B ∈⎝⎛⎭⎪⎫0,π2,则△ABC的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形5.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+ 36.已知锐角A 是△ABC 的一个内角,a 、b 、c 是三角形中各内角的对应边,若sin 2A -cos 2A =12,则( )A .b +c =2aB .b +c <2ªC .b +c ≤2aD .b +c ≥2a7、若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=..53 D .53-8、如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形9、ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为(A)6π(B)3π (C) 2π (D) 23π10、已知等腰ABC △的腰为底的2倍,则顶角A 的正切值是( )A.2C.8D.711、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =A .14B .34C .4D12、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =3π,a =3,b =1,则c = (A)1 (B )2 (C )3—1 (D )3 二、填空题:13、在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是___________.14、在∆ABC 中,已知433=a ,b =4,A =30°,则sinB = .15、在△ABC 中,已知BC =12,A =60°,B =45°,则AC =16、已知△ABC 的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD 的长为 .三、解答题:17。
正余弦定理练习题(答案)
正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A. 6B. 2C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.3233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.146.在△ABC 中,若cos A cos B =ba,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或32 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c .19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .3 6D .4 6 2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( )A. 3B. 2C. 5 D .23.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( )A .60°B .45°C .120°D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( )A .2B .-2C .4D .-4 8.在△ABC 中,b =3,c =3,B =30°,则a 为( )A. 3 B .2 3 C.3或2 3 D .29.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________. 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________. 12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.14.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________.16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sinC ,求角C 的度数.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A. 6B. 2C. 3 D .2 6解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin Bsin A= 6.2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin Bsin A=4 6.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°.4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.14解析:选A.C =180°-105°-45°=30°,由bsin B =csin C得c =2×sin 30°sin45°=1.6.在△ABC 中,若cos A cos B =ba,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A,sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3 D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )C. 3D. 2解析:选D.由正弦定理得6sin120°=2sin C,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A =csin C,所以sin A =a ·sin C c =12.又∵a <c ,∴A <C =π3,∴A =π6.答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.解析:由正弦定理得a sin A =bsin B⇒sin B =b sin A a =4×12433=32.答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3. 答案:8 312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得 2R sin A =2·2R ·sin B ·cos C , 所以sin A =2sin B ·cos C , 即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6. 答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin Csin A -2sin B +sin C =2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43,解得b =2 3.答案:2 316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2,∴c <b sin C ,∴此三角形无解. 答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20,∠ABC =140°-110°=30°, ∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin ∠ABC sin A=20sin30°sin45°=102(km). 即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6.由sin B sin C =cos 2A2,得 sin B sin C =12[1-cos(B +C )],即2sin B sin C =1-cos(B +C ),cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3.由正弦定理a sin A =b sin B =csin C,得b =c =a sin Bsin A =23×1232=2.故A =2π3,B =π6,b =c =2.19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 解:(1)∵A 、B 为锐角,sin B =1010, ∴cos B =1-sin 2B =31010.又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255,∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =csin C得 5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°.又sin B =sin C ,故∠B =∠C . 当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =bsin B,∴b =215.当∠C =150°时,∠B =150°(舍去). 故边b 的长为215.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =1,那么AC 等于( )A .6B .2 6C .3 6D .4 6解析:选A.由余弦定理,得 AC =AB 2+BC 2-2AB ·BC cos B= 42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) A. 3 B. 2 C. 5 D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C =22+(3-1)2-2×2×(3-1)cos30° =2, ∴c = 2.3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150°解析:选D.cos ∠A =b 2+c 2-a 22bc =-3bc 2bc =-32,∵0°<∠A <180°,∴∠A =150°.4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( ) A.π6 B.π3 C.π6或5π6 D.π3或2π3 解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B.显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b C .c D .以上均不对解析:选C.a ·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c=c .6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4解析:选A.S △ABC =3=12|AB →|·|AC →|·sin A=12×4×1×sin A ,∴sin A =32,又∵△ABC 为锐角三角形, ∴cos A =12,∴AB →·AC →=4×1×12=2.8.在△ABC 中,b =3,c =3,B =30°,则a 为( ) A. 3 B .2 3 C.3或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3.9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3.在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×1×2×12= 3.答案: 310.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0), ∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12,又C ∈(0°,180°),∴C =120°. 11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C ,∴c 2=21或61,∴c =21或61. 答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4, 设a =2k (k >0),则b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =2k 2+4k 2-3k 22×2k ×4k =1116,同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4). 答案:14∶11∶(-4)13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.解析:∵cos C =13,∴sin C =223.又S △ABC =12ab sin C =43,即12·b ·32·223=43, ∴b =2 3. 答案:2 314.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.解析:在△ABC 中,cos B =AB 2+BC 2-AC22AB ·BC=49+25-362×7×5=1935, ∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×(-1935)=-19. 答案:-1915.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________.解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2=12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°. 答案:45°16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),则⎩⎪⎨⎪⎧k 2+k -12-k +12<0k +k -1>k +1⇒2<k <4,∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12.又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2.∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12)=a 2+b 2+ab =(a +b )2-ab=(23)2-2=10, ∴AB =10.18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(2)若△ABC 的面积为16sin C ,求角C 的度数.解:(1)由题意及正弦定理得AB +BC +AC =2+1,BC +AC =2AB , 两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13,由余弦定理得cos C =AC 2+BC 2-AB22AC ·BC=AC +BC 2-2AC ·BC -AB 22AC ·BC =12,所以C =60°. 19.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值;(2)求sin(2A -π4)的值.解:(1)在△ABC 中,由正弦定理AB sin C =BCsin A,得AB =sin Csin ABC =2BC =2 5.(2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255,于是sin A =1-cos 2A =55. 从而sin 2A =2sin A cos A =45,cos 2A =cos 2 A -sin 2A =35.所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =cb.由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b.又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc ,即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2, 所以b =c ,所以a =b =c , 因此△ABC 为等边三角形.。
正弦定理余弦定理练习题
正弦定理余弦定理练习题在平面几何中,正弦定理和余弦定理是解决三角形相关问题的重要定理。
熟练掌握这两个定理的使用方法,对于解题非常有帮助。
本文将通过一些练习题,进一步巩固并应用正弦定理和余弦定理。
一. 练习题一已知三角形ABC,∠BAC = 35°,BC = 10cm,AC = 8cm。
1. 求∠ABC和∠ACB的度数。
2. 求∠BAC的正弦值和余弦值。
3. 求∠BAC的弧度值。
解答:1. 由三角形内角和定理可知∠ABC + ∠BAC + ∠ACB = 180°,故∠ABC + 35° + ∠ACB = 180°。
化简可得∠ABC + ∠ACB = 145°。
又因为∠ABC和∠ACB为三角形内角,故它们的度数之和小于180°,可知∠ABC和∠ACB的度数为(0, 145°)。
2. 根据正弦定理可得 sin(∠BAC) = BC/AC = 10/8 = 1.25。
因为∠BAC是锐角,故其正弦值为1.25。
根据余弦定理可得 cos(∠BAC) = (AB² + AC² - BC²) / (2 * AB * AC) = (AB² + 8² - 10²) / (2 * AB * 8) = (AB² + 64 - 100) / (16 * AB) = (AB² - 36) / (16 * AB)。
因为∠BAC是锐角,所以其余弦值小于1,得到 AB² - 36 < 16 * AB。
将 AB 换成 x,得到 x² - 16x - 36 < 0。
解这个不等式可得 4 < x < 9,所以 AB 的长度为 (4, 9)。
3. 弧度值可以通过将度数除以180°,再乘以π来计算。
所以∠BAC 的弧度值为35° * (π /180°) ≈ 0.6109。
正弦定理和余弦定理习题及答案
正弦定理和余弦定理测试题一、选择题:1.在△ABC^, a=15, b=10, A= 60 ,则 cosB=()2. 在△ABC\内角A, B, C 的对边分别是a, b, c .若a 2—b 2=3bc, sin C= 2 3sin B,则 A=()A. 30B. 60 C . 120D. 1503. E, F 是等腰直角AABCM 边AB 上的三等分点,则tan / ECF=()4. △ABOt\ 若 lg a —lg c=lgsin B= — lg /且 B6 0, "2■,则AABC的形状是()A.等边三角形 B .直角三角形 C .等腰三角形 D .等腰直 角三角形5. AABC^, a 、b 、c 分别为/A 、/B /C 的对边,如果 a 、b 、c 成等差数列,/ B= 30° , △ ABC 勺面积为,那么b 为()A. 1+ 3B. 3+. 3D. 2+. 36.已知锐角A 是△ ABC 勺一个内角,a 、b 、c 是三角形中各内角A.212 3的对应边,若sin 2A — cos 2A= g,则( )A. b+ c=2a B . b+ c <2aC . b+ c<2aD . b+ cn 2a7、若ABC 的内角A 满足sin 2A I ,则sinA 8sA8、如果AB I C I 的三个内角的余弦值分别等于 A 2B 2c 2的三个内角的正 弦值,则A. A 1B i C i 和A 2B 2c 2都是锐角三角形 B . AB 1C 1和A 2B 2c 2都是钝角 三角形C. ABiG 是钝角三角形, 4B 2c 2是锐角三角形D.AB i C i 是锐角三角形,A 2B 2c 2是钝角三角形9、VABC 的三内角A,B,C 所对边的长分别为a,b,c 设向量in r ur r t . ., . .. p (a c,b), q (b a,c a),右 p//q ,则角 C 的大小为(A )6(B)3(C)2(D)i0、已知等腰△ ABC 的腰为底的2倍,则顶角A 的正切值是( )i5 D. -15711、 ABC 的内角A 、B 、C 的对边分别为a 、b 、c,若a 、b 、c 成等比 数列,且c 2a ,则cosBA.工3平 C . |A., i5A. 1 B, 3 。
正弦定理、余弦定理超经典练习题
正弦定理、余弦定理超经典练习题正弦定理、余弦定理练习题⼀、选择题1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为A.-B.C.-D.2.在△ABC中,a=λ,b=λ,A=45°,则满⾜此条件的三⾓形的个数是A.0B.1C.2D.⽆数个3.在△ABC中,b cos A=a cos B,则三⾓形为A.直⾓三⾓形B.锐⾓三⾓形C.等腰三⾓形D.等边三⾓形4.已知三⾓形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最⼤⾓为A.150°B.120°C.60°D.75°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.B.5-2 C. D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三⾓形是A.等边三⾓形B.直⾓三⾓形C.等腰三⾓形D.等腰三⾓形或直⾓三⾓形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三⾓形为A.直⾓三⾓形B.等腰三⾓形C.等边三⾓形D.等腰直⾓三⾓形8.正弦定理适应的范围是A.Rt△B.锐⾓△C.钝⾓△D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=A.10+B.10(-1)C.(+1)D.1010.在△ABC中,b sin A<a<b,则此三⾓形有A.⼀解B.两解C.⽆解D.不确定11.三⾓形的两边分别为5和3,它们夹⾓的余弦是⽅程5x2-7x-6=0的根,则三⾓形的另⼀边长为A.52B.2C.16D.412.在△ABC中,a2=b2+c2+bc,则A等于A.60°B.45°C.120D.30°13.在△ABC中,,则△ABC是A.锐⾓三⾓形B.直⾓三⾓形C.钝⾓三⾓形D.任意三⾓形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的⾯积S△ABC等于A. B.2 C.+1 D.(+1)15.已知三⾓形ABC的三边a、b、c成等⽐数列,它们的对⾓分别是A、B、C,则sin A sin C 等于A.cos2BB.1-cos2BC.1+cos2BD.1+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三⾓形为A.直⾓三⾓形B.锐⾓三⾓形C.等腰三⾓形D.等边三⾓形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直⾓三⾓形B.等腰直⾓三⾓形C.等边三⾓形D.等腰三⾓形19.△ABC中,A=60°,b=1,这个三⾓形的⾯积为,则△ABC外接圆的直径为A. B. C. D.20.在△ABC中,,则k为A.2RB.RC.4RD.(R为△ABC外接圆半径)⼆、填空题1.在△ABC中,A=60°,C=45°,b=2,则此三⾓形的最⼩边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最⼩⾓的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三⾓形为_________.6.在△ABC中,⾓A、B均为锐⾓且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三⾓形有⼀解,则a、b、A满⾜的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三⾓形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC 为.12.在△ABC中,sin A=2cos B sin C,则三⾓形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成⼀个锐⾓三⾓形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝⾓三⾓形的边长是三个连续⾃然数,则三边长为.三、解答题1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三⾓形的最⼤内⾓.3.已知在△ABC中,∠A=45°,a=2,c=,解此三⾓形.4.在四边形ABCD中,BC=a,DC=2a,四个⾓A、B、C、D度数的⽐为3∶7∶4∶10,求AB的长.5.在△ABC中,A最⼤,C最⼩,且A=2C,A+C=2B,求此三⾓形三边之⽐.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最⼤⾓A为最⼩⾓C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所⽰,半圆O的直径MN=2,OA=2,B为半圆上任意⼀点,以AB为⼀边作正三⾓形ABC,问B在什么位置时,四边形OACB⾯积最⼤?最⼤⾯积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,⽽cos C是⽅程2x2-3x-2=0的⼀个根,求△ABC周长的最⼩值.12.在△ABC中,a、b、c分别是⾓A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三⾓形的⾯积.15.已知S△ABC=10,⼀个⾓为60°,这个⾓的两边之⽐为5∶2,求三⾓形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的⾯积为1,tan B=,求△ABC的各边长.18.求值:19.已知△ABC的⾯积,解此三⾓形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的⼆次⽅程,其中a、b、c是△ABC的三边,(1)若∠A为钝⾓,试判断⽅程根的情况.(2)若⽅程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三⾓形的⾯积.24.已知:k是整数,钝⾓△ABC的三内⾓A、B、C所对的边分别为a、b、c (1)若⽅程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案⼀、选择题⼆、1 A2A3C4 B5 C6D7A8 D9B10 B11 B12C13C14C15.B16. C17:C18A19C20. A⼆、1. 2(-1)23. 45°4. 85.等腰三⾓形6.:钝⾓三⾓形7. a=b sin A或b<a8. 60°或120°9⽆10.11.钝⾓三⾓形直⾓三⾓形锐⾓三⾓形12.等腰三⾓形13. 120°14.或215. 36-1216.<x<17.a18. 2、3、4三、1.a=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三⾓形三边之⽐为6∶5∶47.a=6,b=5,c=48.当θ=时,S四边形OACB最⼤,最⼤值为+29.10(1)△ABC是等腰三⾓形或直⾓三⾓形(2)△ABC为等边三⾓形11△ABC周长的最⼩值为12.13.B1=60°,B2=120°;C1=90°,C2=30°;c1=2, c2=114..15.16.等边三⾓形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三⾓形或直⾓三⾓形23.24.(1)k=1,2,3(2)C=45°,B=15°。
正余弦定理典型例题
正余弦定理典型例题一、正弦定理典型例题1. 例题1:已知两角和一边,求其他边和角题目:在△ ABC中,已知A = 30^∘,B = 45^∘,a = 2,求b,c和C。
解析:根据三角形内角和C=180^∘-A B,所以C = 180^∘-30^∘-45^∘=105^∘。
由正弦定理(a)/(sin A)=(b)/(sin B),已知a = 2,A = 30^∘,B = 45^∘,则b=(asin B)/(sin A)。
因为sin A=sin30^∘=(1)/(2),sin B=sin45^∘=(√(2))/(2),所以b=(2×frac{√(2))/(2)}{(1)/(2)} = 2√(2)。
再根据正弦定理(a)/(sin A)=(c)/(sin C),sin C=sin105^∘=sin(60^∘+45^∘)=sin60^∘cos45^∘+cos60^∘sin45^∘=(√(3))/(2)×(√(2))/(2)+(1)/(2)×(√(2))/(2)=(√(6)+√(2)) /(4)。
所以c=(asin C)/(sin A)=(2×frac{√(6)+√(2))/(4)}{(1)/(2)}=√(6)+√(2)。
2. 例题2:已知两边和其中一边的对角,求其他边和角(可能有两解)题目:在△ ABC中,a = 2√(3),b = 6,A = 30^∘,求B,C,c。
解析:由正弦定理(a)/(sin A)=(b)/(sin B),可得sin B=(bsin A)/(a)。
把a = 2√(3),b = 6,A = 30^∘代入,sinB=frac{6×sin30^∘}{2√(3)}=(6×frac{1)/(2)}{2√(3)}=(√(3))/(2)。
因为b > a,A = 30^∘,所以B = 60^∘或B = 120^∘。
当B = 60^∘时,C=180^∘-A B=180^∘-30^∘-60^∘=90^∘,再由(a)/(sinA)=(c)/(sin C),c=(asin C)/(sin A)=frac{2√(3)×sin90^∘}{sin30^∘} = 4√(3)。
完整版)正弦定理与余弦定理练习题
完整版)正弦定理与余弦定理练习题1.已知三角形ABC中,a=4,b=43,A=30°,求角B的大小。
解:根据正弦定理,有XXX,即sinB=43/4×sin30°=21.5/4.由此可知B的大小为30°或150°,故选B。
2.已知锐角三角形ABC的面积为33,BC=4,CA=3,求角C的大小。
解:根据面积公式,有33=1/2×4×3×sinC,即sinC=22/3.由此可知C的大小为arcsin(22/3)≈75°,故选A。
3.已知三角形ABC中,a,b,c分别是角A,B,C所对的边,且(2a+c)cosB+bcosC=0,求角B的大小。
解:根据余弦定理,有c^2=a^2+b^2-2abcosC,即cosC=(a^2+b^2-c^2)/(2ab)。
代入已知式中,得(2a+c)cosB-b(a^2+b^2-c^2)/(2ab)=0,化简得(4a^2+2ac-b^2)cosB=2abc。
由此可知cosB=(2abc)/(4a^2+2ac-b^2)。
代入cosine double angle formula,得cos2B=(4a^2b^2c^2)/(4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4)。
由于cos2B≤1,可列出不等式4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4≥4a^2b^2c^2,即b^4-2ab^3+(2ac-2c^2-4a^2)b+6a^2c^2-5a^2b^2≤0.考虑b的取值,当b=0时,不等式显然成立;当b>0时,由于a,b,c均为正数,不等式两边同除以b^4后,得到一个关于x=ac/b^2的一元二次不等式6x^2-5x-2≤0.解得x∈[2/3,1],即ac/b^2∈[2/3,1]。
由此可知cosB的取值范围为[1/2,√3/2],故角B的大小为arccos(1/2)≈60°或arccos(√3/2)≈30°,故选B。
正弦定理与余弦定理测试题及答案
正弦定理与余弦定理练习题1.已知△ABC中,A:B:C=1:1:4,则a:b:c等于()A.1:1:4 B.1:1:2 C.1:1:D.2:2:2.(2015•浙江)任给△ABC,设角A,B,C所对的边分别为a,b,c,则下列等式成立的是()A.c2=a2+b2+2abcosC B.c2=a2+b2﹣2abcosC C.c2=a2+b2+2absinC D.c2=a2+b2﹣2absinC3.在三角形ABC中,A=120°,AB=5,BC=7,则的值为()A.B.C.D.4.在△ABC中,A=60°,a=4,b=4,则B等于()A.B=45°或135°B.B=135°C.B=45°D.以上答案都不对5.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B. C. D.6.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若bsinA﹣acosB=0,且b2=ac,则的值为()A.B.C.2 D.47.△ABC中,AB=,AC=1,∠B=30°,则∠C等于()A.60°B.90°C.120°D.60°或120°8.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若,则sinC=()A.0 B.2 C.1 D.﹣19.已知a,b,c分别为△ABC的三个内角A,B,C的对边,若a=2,b=2,A=60°,则角B等于()DA.45°或135°B.135°C.60°D.45°10.在△ABC中,tan=2sinC,若AB=1,求△ABC周长的取值范围()A.(2,3] B.[1,3] C.(0,2] D.(2,5]11.在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+c2+bc﹣a2=0,则=()A.﹣B.C.﹣D.12.在△ABC中,已知C=,b=4,△ABC的面积为,则c=()A.B. C. D.13.在△ABC中,三内角A,B,C的对边分别为a,b,c,面积为S,若S+a2=(b+c)2,则cosA等于()A.B.﹣C.D.﹣14.在三角形A BC中,∠C=60°,AC+BC=6,A B=4,则AB边上的高为()A. B.C. D.15.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2,a+b=6,=2cosC,则c=()A.2 B.4 C.2D.316.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=,则B的大小为(A )A.30°B.60°C.30°或150°D.60°或120°17在△ABC中,B=,c=150,b=50,则△ABC为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形18.在△ABC中,如果a+c=2b,B=30°,△ABC的面积为,那么b等于()A.B.C.D.19.若(a+b+c)(b+c﹣a)=3bc且sinA=2sinBcosC,则△ABC是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形20.(2015•安徽)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=.21.(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=.22.(2015•北京)在△ABC中,a=4,b=5,c=6,则=.23..(2015•重庆)在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=.24.在△ABC中,角A、B、C的对边分别为a,b,c,若S表示△ABC的面积,若acosB+bcosA=csinC,,则∠B=.25.在△ABC中,已知A=45°,b=1,且△ABC仅有一个解,则a的取值范围是.26.已知△ABC的三边a,b,c和其面积S满足S=c2﹣(a﹣b)2,则tanC=.27.设△ABC的三边长分别为a、b、c,面积为S,且满足S=a2﹣(b﹣c)2,b+c=8,则S的最大值为.28.在△ABC中,角A,B,C所对的边长分别为a,b,c,若,则角B的值为29(2015•山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.30.(2015•陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.31.已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求角A;(2)若a=2,△ABC的面积为,求b,c.32.在锐角△ABC中,a,b,c分别为角A、B、C所对的边,且a=2csinA.(Ⅰ)确定角C的大小;(Ⅱ)若c=,且△ABC的面积为,求a+b的值.33.在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC+1=2sinAsinC.(Ⅰ)求B的大小;(Ⅱ)若,,求△ABC的面积.34.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;(Ⅱ)若a﹣c=﹣1,求△ABC的面积.35.在△ABC中,角A、B、C所对的边分别为a、b、c,已知sin(A+)+2cos(B+C)=0,(1)求A的大小;(2)若a=6,求b+c的取值范围.36.在锐角△ABC中,a、b、c分别为内角A、B、C所对的边长,且满足.(1)求∠B的大小;(2)若b=,△ABC的面积S△ABC=,求a+c的值.37.如图,在△ABC中,D为边AB上一点,DA=DC.已知B=,BC=1.(Ⅰ)若DC=,求角A的大小;(Ⅱ)若△BCD面积为,求边AB的长.答案1-5CBDCA 6-10CDCDA 11-15BCDAC 16-19ABBD286420.221.122.123.624.4525.126.27.28.601201517a a ︒≥=︒︒或或29.解:①因为△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 已知cosB=,sin (A+B )=,ac=2,所以sinB=,sinAcosB+cosAsinB=,所以sinA+cosA=,结合平方关系sin 2A+cos 2A=1, 得27sin 2A ﹣6sinA ﹣16=0,解得sinA=或者sinA=﹣(舍去);②由正弦定理,由①可知sin (A+B )=sinC=,sinA=,所以a=2c ,又ac=2,所以c=1.30.解:(Ⅰ)因为向量=(a ,b )与=(cosA ,sinB )平行,所以asinB ﹣=0,由正弦定理可知:sinAsinB ﹣sinBcosA=0,因为sinB ≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a 2=b 2+c 2﹣2bccosA ,可得7=4+c 2﹣2c ,解得c=3,△ABC 的面积为:=. 31.解:(1)由正弦定理==化简已知的等式得:sinC=sinAsinC ﹣sinCcosA ,∵C 为三角形的内角,∴sinC ≠0,∴sinA ﹣cosA=1,整理得:2sin (A ﹣)=1,即sin (A ﹣)=,∴A ﹣=或A ﹣=,解得:A=或A=π(舍去),则A=; (2)∵a=2,sinA=,cosA=,△ABC 的面积为,∴bcsinA=bc=,即bc=4①;∴由余弦定理a 2=b 2+c 2﹣2bccosA 得:4=b 2+c 2﹣bc=(b+c )2﹣3bc=(b+c )2﹣12,整理得:b+c=4②, 联立①②解得:b=c=2. 32.解:(I )∵a=2csinA .∴由正弦定理可得sinA , 又sinA ≠0,∴sinC=,∵A 为锐角,∴. (2)∵c=,,且△ABC 的面积为,∴=,化为ab=6,由余弦定理可得:==(a+b )2﹣3ab ,∴a+b=5.33.解:(Ⅰ)由2cosAcosC+1=2sinAsinC 得:∴2(cosAcosC ﹣sinAsinC )=﹣1,∴,∴,又0<B <π,∴.(Ⅱ)由余弦定理得:,∴,又,,∴,故,∴.34.解:(I )由∵cosA=,0<A <π,∴sinA==,∵5(a 2+b 2﹣c 2)=3ab ,∴cosC==,∵0<C <π,∴sinC==,∴cos2C=2cos 2C ﹣1=,∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣×+×=﹣∵0<B<π,∴B=.(II)∵=,∴a==c,∵a﹣c=﹣1,∴a=,c=1,∴S=acsinB=××1×=.35.解:(1)由条件结合诱导公式得,sinAcos+cosAsin=2cosA,整理得sinA=cosA,∵cosA≠0,∴tanA=,∵0<A<π,∴A=;(2)由正弦定理得:,∴,,∴==,∵,∴,即6<b+c≤12(当且仅当B=时,等号成立)36.解:(1)由正弦定理:=,得==,∴sinB=,又由B为锐角,得B=;(2)∵S△ABC=acsinB=,sinB=,∴ac=3,根据余弦定理:b2=a2+c2﹣2accosB=7+3=10,∴(a+c)2=a2+c2+2ac=16,则a+c=4.37.解:(1)在△BCD中,B=,BC=1,DC=,由正弦定理得到:,解得,则∠BDC=60°或120°.又由DA=DC,则∠A=30°或60°.(2)由于B=,BC=1,△BCD面积为,则,解得.再由余弦定理得到=,故,又由AB=AD+BD=CD+BD=,故边AB的长为:.。
正余弦定理专题练习(含答案)
正余弦定理专题2020.3一、选择题1、在△ABC中,a=1,B=45°,S△ABC=2,则△ABC外接圆的直径为( )A.4B.60C.5D.6【解析】选C.因为由三角形的面积公式得:S=acsin B=×1×c×=2,所以c=4,又因为a=1,cos B=,根据余弦定理得:b2=1+32-8=25,解得b=5.所以△ABC的外接圆的直径为==5.2、在△ABC中,角A,B,C所对的边分别为a,b,c,如果c=a,B=30°,那么角C等于 ( )A.120°B.105°C.90°D.75°【解析】选A.因为c=a,所以sin C=sin A=sin(180°-30°-C)=sin(30°+C)=,即sin C=-cos C.所以tan C=-.又0°<C<180°,所以C=120°.3、在△ABC中,已知sin2A+sin2B-sin Asin B=sin2C,且满足ab=4,则该三角形的面积为( )A.1B.2C.D.【解析】选D.因为sin2A+sin2B-sin Asin B=sin2C,根据正弦定理得a2+b2-ab=c2,由余弦定理得2abcos C=ab,所以cos C=,所以sin C==,4、若△ABC为钝角三角形,三边长分别为2,3,x,则x的取值范围是( )A.(1,)B.(,5)C.(,)D.(1,)∪(,5)【解析】选D.(1)若x>3,则x对角的余弦值<0且2+3>x,解得<x<5.(2)若x<3,则3对角的余弦值<0且x+2>3,解得1<x<.故x的取值范围是(1,)∪(,5).所以S=absin C=×4×=.二、填空题5、在△ABC中,已知A=60°,tan B=,a=2,则c=________. 【解析】因为tan B=,所以sin B=,cos B=.又因为A=60°,所以sin C=sin[180°-(A+B)]=sin(120°-B)=sin 120°cos B-cos 120°sin B=+.由正弦定理,得=,即c===.答案:6、在△ABC中,角A,B,C的对边分别为a,b,c.若(a2+c2-b2)tan B=ac,则角B的度数为________.【解析】由余弦定理,得2accos B·tan B=ac,整理,得sin B=,所以B=60°或120°.答案:60°或120°7、△ABC的内角A,B,C的对边分别是a,b,c且满足acos B-bcos A=c,则△ABC的形状为________.【解析】根据正弦定理,得a=2Rsin A,b=2Rsin B,C=2Rsin C(其中R是△ABC外接圆的半径),代入acos B-bcos A=c得2Rsin Acos B-2Rsin Bcos A=2Rsin C,所以sin Acos B-sin Bcos A=sin (A+B),所以sin Acos B-sin Bcos A=sin Acos B+sin Bcos A,所以2sin Bcos A=0,又因为sin B≠0,所以cos A=0,又A∈(0,π),所以A=,所以该三角形为直角三角形.答案:直角三角形8、在△ABC中,若3b=2asin B,cos A=cos C,则△ABC的形状为________.【解析】由正弦定理知b=2R·sin B,a=2R·sin A,则3b=2a·sin B可化为:3sin B=2sin A·sin B.因为0°<B<180°,所以sin B≠0,所以sin A=,所以A=60°或120°,又cos A=cos C,所以A=C,所以A=60°,所以△ABC为等边三角形.答案:等边三角形9、在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,1+2cos(B+C)=0,则边BC上的高为________.【解析】由1+2cos(B+C)=0和B+C=π-A,得1-2cos A=0,所以cos A=,sin A=.再由正弦定理,得sin B==.由b<a知B<A,所以B不是最大角,B<,从而cos B==.由上述结果知sin C=sin(A+B)=×=.设边BC上的高为h,则有h=bsin C=.答案:10、在锐角三角形ABC中,a,b,c所对的角分别为A,B,C,A=2B,则的取值范围是________.【解析】在锐角三角形ABC中,A,B,C<90°,即所以30°<B<45°.由正弦定理知:===2cos B∈(,),故的取值范围是(,).答案:(,)三、解答题11、在△ABC中,a,b,c分别是角A,B, C所对的边且b=6,a=2,A=30°,求ac的值.【解析】由正弦定理=得sin B===.由条件b=6,a=2,b>a知B>A.所以B=60°或120°.(1)当B=60°时,C=180°-A-B=180°-30°-60°=90°.在Rt△ABC中,C=90°,a=2,b=6,c=4,所以ac=2×4=24.(2)当B=120°时,C=180°-A-B=180°-30°-120°=30°,所以A=C,则有a=c=2.所以ac=2×2=12.12、△ABC的内角A,B,C所对的边分别为a,b,c.向量m=(a,b)与n=(cos A,sin B)平行.(1)求A.(2)若a=,b=2,求sin C.【解析】(1)因为m∥n,所以asin B-bcos A=0.由正弦定理,得sin Asin B-sin Bcos A=0,又因为sin B≠0,从而tan A=.由于0<A<π,所以A=.(2)由正弦定理,得=,从而sin B=,又由a>b,知A>B,所以cos B=.故sin C=sin(A+B)=sin(B+)=sin Bcos +cos Bsin=.13、在△ABC中,求证:(1)=.(2)=.【证明】(1)由余弦定理,a2=b2+c2-2bccos A,于是==1-·2cos A=1-·2cos A===.(2)方法一:==·==.方法二:====.14、在△ABC中,已知(a+b+c)(a+b-c)=3ab,且2cos Asin B=sin C,确定△ABC的形状.【解析】由正弦定理得=,由2cos Asin B=sin C,有cos A==.又由余弦定理得cos A=,所以=,即c2=b2+c2-a2,所以a2=b2,所以a=b.又因为(a+b+c)(a+b-c)=3ab,所以(a+b)2-c2=3ab,所以4b2-c2=3b2,即b2=c2.所以b=c,所以a=b=c.15、所以△ABC为等边三角形.已知a,b,c分别为△ABC三个内角A,B,C的对边,+=.(1)求角A的大小.(2)若a=2,△ABC的面积为,求边b,c.【解析】(1)由+=及正弦定理得+=,得,sin Acos B+cos Asin B=2sin Ccos A,即 sin(A+B)=2sin CcosA. 因为sin(A+B)=sin(π-C)=sin C,且sin C≠0,所以,cos A=.又0<A<π,所以,A=.(2)因为△ABC的面积S=bcsin A=bcsin=,所以,bc=4.①由余弦定理得,a2=b2+c2-2bccos A,22=b2+c2-2bccos所以,b2+c2=8,②联立①②解得,b=c=2.16、在△ABC中,角A,B,C的对边分别为a,b,c,且a2-(b-c)2=(2-)bc,sin Asin B=cos2,BC边上的中线AM的长为.(1)求角A和角B的大小.(2)求△ABC的周长.【解析】(1)由a2-(b-c)2=(2-)bc,得a2-b2-c2=-bc所以cos A==.又0<A<π,所以A=.由sin Asin B=cos2,得sin B=,即sin B=1+cos C,则cos C<0,即C为钝角.所以B为锐角,且B+C=,则sin=1+cos C,化简得cos=-1,解得C=,所以B=.(2)由(1)知,a=b,在△ACM中,由余弦定理得AM2=b2+-2b··cos C=b2++=()2,解得b=2,所以a=2.在△ABC中c2=a2+b2-2abcos C=22+22-2×2×2×cos =12,所以c=2.所以△ABC的周长为4+2.。
正弦定理与余弦定理练习题共3套(附答案)
正弦定理与余弦定理练习第一套正弦定理(一)●作业导航掌握正弦定理,会利用正弦定理求已知两角和任意一边或两边和一边对角的三角形问题.一、选择题(本大题共5小题,每小题3分,共15分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于()A .30°B .30°或150°C .60°D .60°或120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为()A .9B .18C .93D .1833.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于()A .1∶2∶3B .2∶3∶1C .1∶3∶2D .3∶1∶24.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为()A .(2,+∞)B .(-∞,0)C .(-21,0)D .(21,+∞) 5.在△ABC 中,sin A >sin B 是A >B 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题(本大题共5小题,每小题3分,共15分)1.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________.2.在△ABC 中,若b =2c sin B ,则∠C =________.3.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.4.已知△ABC 的面积为23,且b =2,c =3,则∠A =________.5.在△ABC 中,∠B =45°,∠C =60°,a =2(3+1),那么△ABC 的面积为________.三、解答题(本大题共5小题,每小题6分,共30分)1.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16.(1)试写出△ABC 的面积S 与边长a 的函数关系式.(2)当a 等于多少时,S 有最大值?并求出这个最大值.2.在△ABC 中,已知a 2-a =2(b +c ),a +2b =2c -3,若sin C ∶sin A =4∶13,求a ,b ,c .3.在△ABC 中,求证2tan 2tanBA BA b a b a +-=+-.4.△ABC 中,A 、B 、C 成等差数列,b =1,求证:1<a +c ≤2.5.在一个三角形中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.参考答案一、选择题(本大题共5小题,每小题3分,共15分)1.D 分析:由正弦定理得,B bA a sin sin =,∴sin B =23sin =aA b ,∴∠B =60°或∠B =120°.2.C 分析:∵∠A =30°,∠B =120°,∴∠C =30°,∴BA =BC =6,∴S △ABC =21×BA ×BC ×sin B =21×6×6×23=93.3.A 分析:由正弦定理得,C cB b A a sin sin sin ==,∴sin A ∶sin B ∶sin C =1∶3∶2=21∶23∶1,∴A ∶B ∶C =30°∶60°∶90°=1∶2∶3.4.D 分析:利用正弦定理及三角形两边之和大于第三边.5.C 分析:A >B ⇔a >b ⇔2Rsin A >2Rsin B ⇔sin A >sin B .二、填空题(本大题共5小题,每小题3分,共15分)1.23或3分析:sin C =23230sin 32=︒,于是,∠C =60°或120°,故∠A =90°或30°,由S △ABC =21×AB ×AC ×sin A ,可得S △ABC =23或S △ABC =3.2.30°或150°分析:由b =2c sin B 及正弦定理C cB B c Cc B b sin sin sin 2sin sin ==得,∴sin C =21,∴∠C =30°或150°.3.22分析:∵c =2R sin C ,∴R =22sin 2=C c.4.60°或120°分析:∵S △ABC =21bc sin A ,∴23=21×2×3sin A ,∴sin A=23,∴∠A =60°或120°.5.6+23分析:∵B bA a sin sin =,∴︒=︒-︒-︒+45sin )6045180sin()13(2b,∴b =4.∴S △ABC =21ab sin C =6+23.三、解答题(本大题共5小题,每小题6分,共30分)1.解:(1)∵a +b =16,∴b =16-aS =21ab sin C =21a (16-a )sin60°=43(16a -a 2)=-43(a -8)2+163(0<a <16)(2)由(1)知,当a =8时,S 有最大值163.2.解:∵sin C ∶sin A =4∶13∴c ∶a =4∶13设c =4k ,a =13k ,则⎪⎩⎪⎨⎧-=++=-38213)4(213132k b k k b kk∵k =133时b <0,故舍去.∴k =1,此时a =13,b =2135-,c =4.3.证明:由正弦定理,知a =2R sin A ,b =2R sin B2tan2tan2cos 2sin 22cos 2sin 2)22sin(22sin()22sin()22sin(sin sin sin sin sin 2sin 2sin 2sin 2B A B A B A B A B A B A B A B A B A B A B A B A B A B A BA BA B R A R B R A R b a b a +-=-++-=--++-++--+--++=+-=+-=+-∴4.证明:∵A 、B 、C 成等差数列,∴2B =A +C ,又A +B +C =π,∴B =3π,A +C =32π.∵b =1,设△ABC 的外接圆半径为R ,∴b =2R sin 3π∴1=2R ·23,∴3R =1.∴a +c =2R sin A +2R sin C =2R (sin A +sin C )=2R [sin(32π-C )+sin C ]=2R (23cos C +23sin C )=23R (21cos C +23sin C )=23R sin(C +6π)=2sin(C +6π)∵A +C =32π,∴0<C <32π∴6π<C +6π<65π∴21<sin(C +6π)≤1∴1<2sin(C +6π)≤2 ∴1<a +c ≤2.5.证明:在△ABC 中,设C ≥120°,则c 最长,令最短边为a ,由正弦定理得A B A A C a c sin )sin(sin sin +==∵A ≤B∴2A ≤A +B ≤180°-C ≤60°∵正弦函数在(0,3π)上是增函数,∴sin(A +B )≥sin2A >0∴A B A a c sin )sin(+=≥A A A A A sin cos sin 2sin 2sin ==2cos A ∴a c≥2cos A ∵2A ≤60° ∴0°<A ≤30°∴cos A ≥cos30°=23∴a c ≥2·23∴a c≥3∴最长边与最短边之比不小于第二套正弦定理练习(二)1.在ABC ∆中,已知角04345,2,,3B c b ===则角A 的值是()A.15°B.75°C.105°D.75°或15°2.ABC ∆中,bsinA<a<b,则此三角形有()A.一解B.两解C.无解D.不确定3.若sin cos cos ,A B CABC a b c==∆则是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在ABC ∆中,已知0060,45,8,B C BC AD BC ===⊥于D,则AD 长为()A.4(31)- B.4(3+1)3+3)D.4(33)5.在ABC ∆中,A>B 是sinA>sinB 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.在ABC ∆中,060,6,14B b a ===,则A=7.在ABC ∆ABC ∆中,已知cos 2cos 21sin 2sin cos ,cos sin B C A B C C B +=+==求证:b=c 且A=900。
(完整版)正弦定理与余弦定理练习题
正弦定理与余弦定理1.已知△ABC 中,a=4, 30,34==A b ,则B 等于( )A .30° B.30° 或150° C.60° D.60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B.60° C.45° D.30°3.已知ABC ∆中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A .6πB .3πC .32π D .65π4.在ABC 中,a 、b 、c 分别是角A 、B 、C 的对边。
若sin sin CA=2,ac a b 322=-,则B ∠=( ) A 。
030 B 。
060 C 。
0120 D 。
01505.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5,c=10,A=30°,则B 等于( ) A .105° B.60° C .15° D.105° 或 15°6.已知ABC ∆中,756,8,cos 96BC AC C ===,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .等腰三角形D .钝角三角形7.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A .2π B .3π C .4π D .6π8.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 9.在ABC ∆中,sin :sin :sin 3:2:4A B C =,那么cos C =( )A 。
高一数学解三角形正余弦定理基础练习题(含答案)
高高高高高高高高高高高高高高高高高高高高高高高第I卷(选择题)一、单选题(本大题共6小题,共30.0分)1.在△ABC中,A=60°,b=1,SΔABC=√3,求a+2b+csinA+2sinB+sinC=()A. √3B. 4√33C. 2 D. 2√3932.在ΔABC中,内角A,B,C的对边分别为a,b,c,且满足c=2acosB,则ΔABC的形状是()A. 等腰三角形或直角三角形B. 直角三角形C. 等腰直角三角形D. 等腰三角形3.的内角A,B,C的对边分别为a,b,c.若的面积为a2+b2−c24,则C=()A. π2B. π3C. π4D. π64.在△ABC中,若a=18,b=24,A=45°,则此三角形()A. 无解B. 有一解C. 有两解D. 解的个数不确定5.△ABC的内角A,B,C的对边分别是a,b,c且满足acosB−bcosA=c,则△ABC是()A. 等腰或直角三角形B. 直角三角形C. 等腰直角三角形D. 等腰三角形6.△ABC的三内角A、B、C的对边边长分别为a、b、c.若a=√52b,A=2B,则cos B等于()A. √53B. √54C. √55D. √56二、多选题(本大题共2小题,共10.0分)7.在▵ABC中,角A,B,C的对边分别为a,b,c,a=8,b<4,c=7,且满足(2a−b)cosC=c⋅cosB,则下列结论正确的有()A. C=60∘B. ▵ABC的面积为6√3C. b=2D. ▵ABC为锐角三角形8.已知角A,B,C是△ABC的三个内角,下列结论一定成立的有()A. sin(B+C)=sinAB. cos(A+B)=cosCC. 若A>B,则sinA>sinBD. 若sin2A=sin2B,则△ABC是等腰三角形第II卷(非选择题)三、单空题(本大题共3小题,共15.0分)9.在△ABC中,若sinA:sinB:sinC=3:4:6,则cosB=.10.在△ABC中,若(a−c)(a+c)=b(b+c),则A=.11.在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则A=.四、解答题(本大题共8小题,共96.0分)12.在锐角三角形ABC中,a,b,c分别为角A,B,C的对边,且2csinC=(2b−a)sinB+(2a−b)sinA.(1)求角C;(2)若c=2√3,求△ABC的周长l的取值范围.13.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,其外接圆半径R满足R2+2accos B=a2+c2.(1)求B的大小;(2)若b=2,C=5π,求△ABC的面积.1214.在△ABC中,角A,B,C的对边分别为a,b,c.已知△ABC的面积为3sinA,周长为4(√2+1),且sinB+sinC=√2sinA.(1)求a及cosA的值;(2)求cos(2A−π3)的值.15.在△ABC中,a,b,c分别是角A,B,C的对边,且cosBcosC =−b2a+c.(1)求B的大小;(2)若b=√13,a+c=4,求△ABC的面积.16.已知a,b,c分别为△ABC内角A,B,C的对边,且asinB−√3bcosA=0.(1)求角A;(2)若a=√13,b=3,求△ABC的面积.17. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且bsinA =√3acos B .(1)求角B 的大小;(2)若b =3,sinC =2sinA ,求a ,c 的值.18. 如图所示,在四边形ABCD 中,AD =1,CD =2,AC =√7.(1)求cos∠CAD 的值;(2)若cos∠BAD =−√714,sin∠CBA =√216,求BC 的长.19.△ABC的内角A,B,C的对边分别为a,b,c,已知cosBcosC−sinBsinC=1.2(1)求A;(2)若a=2√3,b+c=4,求△ABC的面积.答案和解析1.【答案】D【解析】【分析】本题考查正弦定理,余弦定理,三角形面积公式,属于中档题.先由三角形面积公式求出c,由余弦定理求出a,再由正弦定理可得.【解答】解:∵在△ABC中,A=60°,b=1,SΔABC=√3,∴√3=12bcsinA,即√3=12c×√32,解得c=4,由余弦定理得,a2=b2+c2−2bccosA,∴a2=1+16−4=13,即a=√13,∴由正弦定理得,asinA =bsinB=csinC=2R,∴2R=2√393,∴a+2b+csin A+2sin B+sin C =2R=2√393.故选D.2.【答案】D【解析】【分析】本题考查应用解三角形判定三角形的形状,基础题型.解题关键是将已知的等式进行化简,这里用到了余弦定理,化简后得到a=b,从而得到答案.【解答】解:∵c=2acosB,∴c=2a·a2+c2−b22ac,∴a2=b2,∴a=b,∴△ABC的形状是等腰三角形.故选D.【解析】【分析】本题考查三角形内角的求法,考查余弦定理、三角形面积公式等基础知识,考查学生运算能力,是基础题.由S△ABC=12absinC=a2+b2−c24得sinC=a2+b2−c22ab=cosC,由此能求出结果.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为a2+b2−c24,∴S△ABC=12absinC=a2+b2−c24,∴sinC=a2+b2−c22ab=cosC,∵0<C<π,∴C=π4.故选C.4.【答案】C【解析】【分析】本题考查正弦定理解三角形的应用,解题的关键是熟练掌握正弦定理解三角形的计算,利用正弦定理得sinB=2√23,又a<b,可得三角形解的个数.【解答】解:因为asinA =bsinB,所以sinB=ba ·sinA=2418×sin45°=2√23.又因为a<b,所以B有两解,∴三角形有两解.故选C.【解析】【分析】本题考查正弦定理和两角和与差的正弦公式,属于基础题.利用正弦定理化简已知的等式,再利用两角和与差的正弦函数公式变形后,得到A为直角,可得出三角形ABC为直角三角形.【解答】解:利用正弦定理,化简已知的等式得:即sinAcosB−sinBcosA=sin(A+B)=sinAcosB+cosAsinB,∴2cosAsinB=0,∵0<B<π,∴sinB≠0,∴cosA=0,∵0<A<π,,所以△ABC是直角三角形,故选B.6.【答案】B【解析】【分析】本题主要考查了正弦定理和二倍角公式的应用.在解三角形中,利用正余弦定理进行边角转化是解题的基本方法,通过正弦定理、二倍角公式得出sinA和sinB的方程组,求出cosB的值.【解答】解:∵△ABC中{a=√52bA=2B,∴根据正弦定理及二倍角公式得{sinA=√52 sinBsinA=sin2B=2sinBcosB,在△ABC中,,∴cosB=√54,故选B.7.【答案】AB【解析】【分析】本题考查正弦定理、余弦定理、三角形面积公式,属于中档题.利用定理逐项验证,即可求出结果.【解答】解:∵(2a−b)cosC=c⋅cosB,∴2sinAcosC−sinBcosC=sinCcosB,即2sinAcosC=sinBcosC+sinCcosB=sin(B+C)=sinA,∵sinA≠0,∴cosC=12,∵C∈(0°,180°),∴C=60°,故A正确;由余弦定理,得c2=a2+b2−2abcosC,即49=64+b2−8b,且b<4,解得b=3,故C错误;∴S△ABC=12absinC=12×8×3×√32=6√3,故B正确;∵b2+c2−a2=49+9−64=−6<0,∴角C为钝角,∴△ABC为钝角三角形,故D错误.故选AB.8.【答案】AC【解析】【分析】本题主要考查诱导公式,正弦定理,正弦函数的单调性,属于基础题也是易错题.由题意利用诱导公式,正弦定理,正弦函数的单调性,逐一判断各个选项是否正确,从而得出结论.【解答】解:对于A,三角形ABC中,∵A+B+C=π,∴sin(B+C)=sinA,故A正确;对于B,三角形ABC中,∵A+B+C=π,∴cos(A+B)=−cosC,故B错;对于C,因为A>B,所以a>b,根据正弦定理可得sinA>sinB,C正确;对于D,因为sin2A=sin2B,所以2A=2B或2A+2B=180°,即A=B或A+B=90°,此三角形为等腰三角形或直角三角形,故D错.故选AC.9.【答案】2936【解析】【分析】本题考查了正弦定理、余弦定理的应用,考查了推理能力与计算能力,属于中档题.sinA:sinB:sinC=3:4:6,由正弦定理可得:a:b:c=3:4:6,不妨设a=3,b=4,c=6.再利用余弦定理即可得出.【解答】解:sinA:sinB:sinC=3:4:6,由正弦定理可得:a:b:c=3:4:6,不妨设a=3,b=4,c=6.由余弦定理可得:cosB=32+62−422×3×6=2936.故答案为:2936.10.【答案】120°【解析】【分析】本题考查余弦定理,属于基础题.把已知等式整理后代入求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.【解答】解:因为(a−c)(a+c)=b(b+c),即b2+c2−a2=−bc,所以根据余弦定理得:cosA=b2+c2−a22bc =−12,又A为三角形的内角,则A=120°.故答案为120°.11.【答案】30°【解析】【分析】本题考查了正弦、余弦定理,以及特殊角的三角函数值,属于基础题.利用正弦定理化简,得到c=2√3b,代入a2−b2=√3bc得到a=√7b,利用余弦定理求出cosA的值,即可确定出A的度数.【解答】解:利用正弦定理化简,得到c=2√3b,代入a2−b2=√3bc中,得:a2−b2=6b2,即a=√7b.由余弦定理得:cosA=b2+c2−a22bc =2224√3b2=√32.∵A为三角形的内角,∴A=30°.故答案为30°.12.【答案】解:(1)由已知及正弦定理可得2c2=(2b−a)b+(2a−b)a,即c2=b2+a2−ab,则cos C=b2+a2−c22ab =12,因为0<C<π2,所以C=π3.(2)因为c=2√3,C=π3,所以由正弦定理得asinA =bsinB=csinC=4,则a=4sinA,b=4sinB=4sin(2π3−A),△ABC的周长=4sinA+4sin (2π3−A)+2√3=4√3sin (A+π6)+2√3,在锐角三角形ABC中,{0<A<π2,0<2π3−A<π2,得π6<A<π2,所以π3<A+π6<2π3,所以√32<sin(A+π6)≤1,所以6+2√3<4√3sin(A+π6)+2√3≤6√3,所以△ABC的周长l∈(6+2√3,6√3].【解析】【试题解析】本题考查了解三角形的正弦定理、余弦定理的应用及正弦型三角函数的性质,属于中档题.(1)由条件,利用正弦定理,得到c2=b2+a2−ab,结合余弦定理,得到C=π3;(2)利用正弦定理,得到a=4sin A,b=4sin B=4sin (2π3−A),表示出三角形的周长,利用角的范围,根据正弦型三角函数的性质得到结果.13.【答案】解:,,,,又B为锐角,∴B=π6.(2)∵b=2,C=5π12,∴A=π−(π6+5π12)=5π12,∴a=c,由余弦定理,得,∴a2=4(2+√3),.【解析】本题主要考查了三角形面积公式、正弦定理,余弦定理在解三角形中的应用,属于基础题.(1)由知B=π6.(2)由余弦定理,得求得a2=4(2+√3),即可求得三角形的面积.14.【答案】解:(1)∵△ABC的面积为3sinA=12bcsinA,∴可得:bc=6,∵sinB+sinC=√2sinA,可得:b+c=√2a,∴由周长为4(√2+1)=√2a+a,解得:a=4,∴cosA=b2+c2−a22bc =(b+c)2−2bc−a22bc=a2−1212=13,(2)∵cosA=13,∴sinA=√1−cos2A=2√23,∴sin2A=2sinAcosA=4√29,cos2A=2cos2A−1=−79,∴cos(2A−π3)=cos2Acosπ3+sin2Asinπ3=4√6−718.【解析】(1)由已知及三角形面积公式可求bc=6,进而可求a,利用余弦定理即可得解cosA的值.(2)利用同角三角函数基本关系式可求sinA,利用二倍角公式可求sin2A,cos2A的值,进而利用两角差的余弦函数公式即可计算得解.本题主要考查了三角形面积公式,余弦定理,同角三角函数基本关系式,二倍角公式,两角差的余弦函数公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.15.【答案】解:(1)由cosBcosC =−b2a+c及正弦定理得,即2sinAcosB+cosBsinC=−sinBcosC,∴2sinAcosB=−(cosBsinC+sinBcosC)=−sin(B+C)=−sinA,∵A为三角形的内角,sinA≠0,,∵B为三角形的内角,;(2)由余弦定理得,b2=a2+c2−2accosB,得b2=(a+c)2−2ac−2accosB,∵b=√13,a+c=4,B=23π,∴13=16−2ac×(1−12),∴ac=3,.【解析】本题考查了正弦定理,余弦定理,三角形面积公式,考查运算求解能力,属于中档题.(1)由正弦定理得,cosBcosC =−sinB2sinA+sinC,可得,结合B的范围即可求出结果;(2)由余弦定理得,b2=a2+c2−2accosB,可得13=16−2ac×(1−12),解得ac=3,利用三角形面积公式即可求出答案.16.【答案】解:,∴由正弦定理可得:,∵sinB≠0,,即tanA=√3,∵A∈(0,π),;(2)∵a=√13,b=3,,∴由余弦定理,可得:,,∴解得:,(负值舍去),.【解析】本题主要考查了正余弦定理在解三角形中的综合运用,三角形面积公式运用,考查了学生对基本公式的运用能力和变形能力,属于基础题.(1)已知等式利用正弦定理化简,根据sinB不为0求出tanA的值,即可确定出角A的大小;(2)由cosA,a,b的值,利用余弦定理求出c的值,再由b,c,sinA的值,利用三角形面积公式即可求出三角形ABC面积.17.【答案】解:(1)∵bsinA=√3acosB,由正弦定理可得sinBsinA=√3sinAcosB,又sinA≠0,∴tanB=√3.∵B是△ABC的内角,∴B=π.3(2)∵sinC=2sinA,∴由正弦定理得c=2a,∴由余弦定理b2=a2+c2−2accosB,,得9=a2+4a2−2a⋅2acosπ3解得a=√3(负根舍去),∴c=2a=2√3.【解析】本题考查了正弦定理、余弦定理的运用,考查了推理能力与计算能力,属于中档题.(1)由bsinA =√3acosB 可得sinBsinA =√3sinAcosB ,化简整理即可得出;(2)由sinC =2sinA ,可得c =2a ,由余弦定理可得b 2=a 2+c 2−2accosB ,代入计算即可得出.18.【答案】解:AD =1,CD =2,AC =√7,(Ⅰ)在△ADC 中,由余弦定理, 得cos∠CAD =AC 2+AD 2−CD 22AC⋅AD=(√7)2+12−222×√7×1=2√77; (Ⅱ)设∠BAC =α,则α=∠BAD −∠CAD ,,且都为三角形内角, ,∴sinα=sin(∠BAD −∠CAD)=sin∠BADcos∠CAD −cos∠BADsin∠CAD =3√2114×2√77+√714×√217=√32, 在△ABC 中,由正弦定理,BCsinα=ACsin∠CBA , 解得:BC =3. 即BC 的长为3.【解析】本题考查了正余弦定理的运用,两角和与差的三角函数公式和计算能力,属于中档题.(Ⅰ)在△ADC 中,由余弦定理直接求解可得cos∠CAD 的值.(Ⅱ)由cos∠BAD =−√714,sin∠CBA =√216,利用同角三角函数关系式,两角和与差的三角函数公式和正弦定理即可求BC 的长.19.【答案】解:(1)∵cosBcosC−sinBsinC=cos(B+C)=−cosA=12.∴cosA=−12,∵A∈(0,π),∴A=2π3.(2)∵a=2√3,A=2π3,b+c=4,∴由余弦定理a2=b2+c2−2bccosA,可得:12=b2+c2+bc=(b+c)2−bc=16−bc,可得:bc=4,∴△ABC的面积S=12bcsinA=12×4×√32=√3.【解析】(1)由已知利用两角和的余弦函数公式,三角形内角和定理,诱导公式可求cosA=−12,结合范围A∈(0,π),可求A的值.(2)由已知及余弦定理可求bc=4,进而利用三角形面积公式即可计算得解.本题主要考查了两角和的余弦函数公式,三角形内角和定理,诱导公式,余弦定理,三角形面积公式在解三角形中的应用,属于基础题.。
正弦与余弦定理练习题及答案
国庆作业(一)正弦定理和余弦定理练习题一.选择题1.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于( )A. 6B. 2C. 3 D.2 62A3.在△( ) A.4A5.在△( ) A6A7A.32B.34C.32或 3 D.34或328.△ABC的内角A、B、C的对边分别为a、b、c.若c=2,b=6,B=120°,则a等于( )A. 6 B.2 C. 3 D. 2二、填空题9.在△ABC中,角A、B、C所对的边分别为a、b、c,若a=1,c=3,C=π3,则A=________.10.在△ABC中,已知a=433,b=4,A=30°,则sin B=________.11.在△ABC中,已知∠A=30°,∠B=120°,b=12,则a+c=________.12.在△ABC中,a=2b cos C,则△ABC的形状为________.13,c=14151617灯塔Asin C 218cos C 2=19.(2009年高考四川卷)在△ABC中,A、B为锐角,角A、B、C所对应的边分别为a、b、c,且cos 2A=35,sin B=1010.(1)求A+B的值;(2)若a-b=2-1,求a,b,c的值.20.△ABC中,ab=603,sin B=sin C,△ABC的面积为153,求边b的长.21.已知△ABC的周长为2+1,且sin A+sin B=2sin C.(1)求边AB的长;(2)若△ABC的面积为16sin C,求角C的度数.23.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值. 余弦定理练习题1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A 2.在3.在A 4.在=3ac ,则∠B 5.在 )A 6( )A7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC→的值为( )A .2B .-2C .4D .-48.在△ABC 中,b =3,c =3,B =30°,则a 为( )A. 3 B .2 3 C.3或2 3 D .29.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.1314..15.16.172cos(A +B )=18(2)若△ABC 19A -π4)20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A.6B. 2C. 3 D .2 6解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6.2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin B sin A =4 6.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A<60°,∴B =4.在A C 5.在b =2,则c =A 1.6.在A 角形7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2C. 3D. 2解析:选D.由正弦定理得6sin120°=2sin C ,∴sin C =12. 9.在=π3,则A =1011.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43,∴a +c =8 3.答案:8 312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B ,代入式子a =2b cos C ,得2R sin A =2·2R ·sin B ·cos C ,所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C ,化简,整理,得sin(B -C )=0.∵0°<B <180°,0°<C <180°,∴-180°<B -C <180°,∴B -C =0°,B =C .答案:等腰三角形13∴12×1415解得b =2 3.答案:2 316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2,∴c <b sin C ,∴此三角形无解.答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20,∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,所以∠A =180°-(30°+105°)=45°,由正弦定理得 =BC ·sin ∠ABC 18=14,sin B sin C A =2π3.由正弦定理a sin A =b sin B =c sin C ,得b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2.19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.解:(1)∵A 、B 为锐角,sin B =1010,∴cos B =1-sin 2B =31010. 又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255,20故边b 的长为215.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .3 6D .4 6解析:选A.由余弦定理,得AC =AB 2+BC 2-2AB ·BC cos B= 42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( )A. 3B. 2C. 5 D .2 解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C=22+(3-1)2-2×2×(3-1)cos30°=2,3A C 4B =3ac 5( )A C 6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2.设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC→的值为( )A .2B .-2C .4D .-4解析:选A.S △ABC =3=12|AB →|·|AC →|·sin A=12×4×1×sin A ,∴sin A =32,又∵△ABC 为锐角三角形,89-33a ,9上的中线AD ∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0),∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12,又C ∈(0°,180°),∴C =120°.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C , ∴c 2=21或61,∴c =21或61.答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4,设a =2k (k >0),则b =3k ,c =4k , 的值为=2×7×5=1935,∴AB →·BC →=|AB →|·|BC→|·cos(π-B ) =7×5×(-1935)=-19.答案:-1915.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2 =12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°.答案:45°16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),172cos(A+B )=18(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.解:(1)由题意及正弦定理得AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13,由余弦定理得cos C=AC2+BC2-AB2 2AC·BC=?AC+BC?2-2AC·BC-AB22AC·BC=12,所以C=60°.19.在△ABC中,BC=5,AC=3,sin C=2sin A.(1)求AB的值;(2)求sin(2A-π4)的值.中,由正弦定理AB=BC,20△ABC=2bc,所以c2b=2bc,即c2=b2+c2-a2,所以a=b.又因为(a+b+c)(a+b-c)=3ab,所以(a+b)2-c2=3ab,所以4b2-c2=3b2,所以b=c,所以a=b=c,因此△ABC为等边三角形.。
正弦定理余弦定理练习题及答案(供参考)
正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为B.D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为°°°°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.C.D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是△B.锐角△ C.钝角△ D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=+(-1) C.(+1)10.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为12.在△ABC中,a2=b2+c2+bc,则A等于°°°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A.C.+1D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于+cos2B+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A.B.C.D.20.在△ABC中,,则k为D.(R为△ABC外接圆半径)二、填空题(共18题,题分合计75分)1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三角形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为.12.在△ABC中,sin A=2cos B sin C,则三角形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题(共24题,题分合计244分)1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C 和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC 的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题(共20题,合计100分)1 A 2A3C 4 B 5 C 6D 7A 8 D 9B 10 B 11 B 12C 13C 14C 16. C 17:C 18A 19C 20. A二、填空题(共18题,合计75分)1.2(-1) 23. 45°4. 85.等腰三角形6.:钝角三角形7.a=b sin A或b<a8.60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13.120°14.或215. 36-1216.<x<17.a18. 2、3、4三、解答题(共24题,合计244分)=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶4=6,b=5,c=48.当θ=时,S四边形OACB最大, 最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.=60°,B2=120°;C1=90°,C2=30°;c1=2,c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三角形或直角三角形23.24.(1)k=1,2,3 (2)C=45°,B=15°。
正余弦定理练习题(含答案)
正弦定理训练题之阳早格格创做1.正在△ABC中,∠A=45°,∠B=60°,a=2,则b等于()A.6B. 2C. 3 D.26 2.正在△ABC中,已知a=8,B=60°,C=75°,则b等于()A.4 2 B.4 3 C.4 6 D.32 33.正在△ABC中,角A、B、C的对于边分别为a、b、c,A=60°,a =43,b=42,则角B为()A.45°或者135°B.135°C.45°D.以上问案皆分歧过失4.正在△ABC中,a∶b∶c=1∶5∶6,则sinA∶sinB∶sinC等于() A.1∶5∶6B.6∶5∶1C.6∶1∶5 D.没有决定剖析:选A.由正弦定理知sinA∶sinB∶sinC=a∶b∶c=1∶5∶6. 5.正在△ABC中,a,b,c分别是角A,B,C所对于的边,若A=105°,B=45°,b=2,则c=()A.1 B.12C.2 D.146.正在△ABC中,若cos Acos B=ba,则△ABC是()A.等腰三角形B.等边三角形C.曲角三角形D.等腰三角形或者曲角三角形7.已知△ABC中,AB=3,AC=1,∠B=30°,则△ABC的里积为()A.32B.34C.32或者3D.34或者328.△ABC的内角A、B、C的对于边分别为a、b、c.若c=2,b=6,B=120°,则a等于()A.6B.2C.3D.29.正在△ABC中,角A、B、C所对于的边分别为a、b、c,若a=1,c=3,C=π3,则A=________.10.正在△ABC中,已知a=433,b=4,A=30°,则sinB=________.11.正在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.12.正在△ABC 中,a =2bcosC ,则△ABC 的形状为________. 13.正在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sinA +sinB +sinC=________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C=________. 15.正在△ABC 中,已知a =32,cosC =13,S △ABC =43,则b =________.16.正在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.17.如图所示,货轮正在海上以40 km/h 的速度沿着圆背角(指从正北目标逆时针转到目标目标线的火仄转角)为140°的目标航止,为了决定船位,船正在B 面瞅测灯塔A 的圆背角为110°,航止半小时后船到达C 面,瞅测灯塔A 的圆背角是65°,则货轮到达C 面时,取灯塔A 的距离是几?18.正在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对于边,若a =23,sin C 2cos C 2=14,sin Bsin C =cos2A 2,供A 、B 及b 、c. 19.(2009年下考四川卷)正在△ABC 中,A 、B 为钝角,角A 、B 、C所对于应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)供A +B 的值;(2)若a -b =2-1,供a ,b ,c 的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的里积为153,供边b 的少.余弦定理训练题1.正在△ABC 中,如果BC =6,AB =4,cosB =13,那么AC 等于() A .6B .26C .36D .462.正在△ABC 中,a =2,b =3-1,C =30°,则c 等于() A. 3 B.2C. 5 D .23.正在△ABC 中,a2=b2+c2+3bc ,则∠A 等于()A .60°B .45°C .120°D .150°4.正在△ABC 中,∠A 、∠B 、∠C 的对于边分别为a 、b 、c ,若(a2+c2-b2)tanB =3ac ,则∠B 的值为()A.π6B.π3C.π6或者5π6D.π3或者2π35.正在△ABC 中,a 、b 、c 分别是A 、B 、C 的对于边,则acosB +bcosA 等于()A .aB .bC .cD .以上均分歧过失6.如果把曲角三角形的三边皆减少共样的少度,则那个新的三角形的形状为()A .钝角三角形B .曲角三角形C .钝角三角形D .由减少的少度决断7.已知钝角三角形ABC 中,|AB→|=4,|AC →|=1,△ABC 的里积为3,则AB →·AC→的值为() A .2 B .-2C .4 D .-48.正在△ABC 中,b =3,c =3,B =30°,则a 为() A.3B .23C.3或者23D .29.已知△ABC 的三个内角谦脚2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的少为________.10.△ABC 中,sinA ∶sinB ∶sinC =(3-1)∶(3+1)∶10,供最大角的度数.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的里积,若a =4,b =5,S =53,则边c 的值为________.12.正在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.13.正在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________. 14.已知△ABC 的三边少分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.15.已知△ABC的三边少分别是a、b、c,且里积S=a2+b2-c24,则角C=________.16.(2011年广州调研)三角形的三边为连绝的自然数,且最大角为钝角,则最小角的余弦值为________.17.正在△ABC中,BC=a,AC=b,a,b是圆程x2-23x+2=0的二根,且2cos(A+B)=1,供AB的少.18.已知△ABC的周少为2+1,且sin A+sin B=2sin C.(1)供边AB 的少;(2)若△ABC的里积为16sin C,供角C的度数.19.正在△ABC中,BC=5,AC=3,sin C=2sin A.(1)供AB的值;(2)供sin(2A-π4)的值.20.正在△ABC中,已知(a+b+c)(a+b-c)=3ab,且2cos Asin B=sinC,决定△ABC的形状.正弦定理1.正在△ABC中,∠A=45°,∠B=60°,a=2,则b等于()A.6B.2C.3D.26剖析:选A.应用正弦定理得:asinA =bsinB,供得b=asinBsinA= 6.2.正在△ABC中,已知a=8,B=60°,C=75°,则b等于()A.42B.43C.46D.32 3剖析:选C.A=45°,由正弦定理得b=asinBsinA=4 6.3.正在△ABC中,角A、B、C的对于边分别为a、b、c,A=60°,a =43,b=42,则角B为()A.45°或者135°B.135°C.45°D.以上问案皆分歧过失a sinA =bsinB得:sinB=bsinAa=22,又∵a>b,∴B<60°,∴B=45°.4.正在△ABC中,a∶b∶c=1∶5∶6,则sinA∶sinB∶sinC等于() A.1∶5∶6B.6∶5∶1C .6∶1∶5D .没有决定剖析:选A.由正弦定理知sinA ∶sinB ∶sinC =a ∶b ∶c =1∶5∶6.5.正在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对于的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12C .2 D.14剖析:选 A.C =180°-105°-45°=30°,由b sinB =c sinC得c =2×sin 30°sin45°=1. 6.正在△ABC 中,若cos A cos B =b a,则△ABC 是( ) A .等腰三角形 B .等边三角形C .曲角三角形 D .等腰三角形或者曲角三角形剖析:选D.∵b a =sin B sin A ,∴cos A cos B =sin B sin A, sinAcosA =sinBcosB ,∴sin2A =sin2B即2A =2B 或者2A +2B =π,即A =B ,或者A +B =π2. 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的里积为( ) A.32 B.34C.32或者 3D.34或者32剖析:选D.AB sinC =AC sinB ,供出sinC =32,∵AB >AC , ∴∠C 有二解,即∠C =60°或者120°,∴∠A =90°或者30°.再由S △ABC =12AB·ACsinA 可供里积. 8.△ABC 的内角A 、B 、C 的对于边分别为a 、b 、c.若c =2,b =6,B =120°,则a 等于( )A. 6 B .2C. 3D.26sin120°=2sinC, ∴sinC =12. 又∵C 为钝角,则C =30°,∴A =30°,△ABC 为等腰三角形,a =c = 2.9.正在△ABC 中,角A 、B 、C 所对于的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 剖析:由正弦定理得:a sinA =c sinC, 所以sinA =a·sinC c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 问案:π610.正在△ABC 中,已知a =433,b =4,A =30°,则sinB =________. 剖析:由正弦定理得a sinA =b sinB ⇒sinB =bsinA a =4×12433=32. 问案:3211.正在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.剖析:C =180°-120°-30°=30°,∴a =c ,由a sinA =b sinB 得,a =12×sin30°sin120°=43, ∴a +c =8 3.问案:8312.正在△ABC 中,a =2bcosC ,则△ABC 的形状为________.剖析:由正弦定理,得a=2R·sinA,b=2R·sinB,代进式子a=2bcosC,得2RsinA=2·2R·sinB·cosC,所以sinA=2sinB·cosC,即sinB·cosC+cosB·sinC=2sinB·cosC,化简,整治,得sin(B-C)=0.∵0°<B<180°,0°<C<180°,∴-180°<B-C<180°,∴B-C=0°,B=C.问案:等腰三角形13.正在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csinA+sinB+sinC=________,c=________.剖析:由正弦定理得a+b+csinA+sinB+sinC=asinA=63sin60°=12,又S△ABC=12bcsinA,∴12×12×sin60°×c=183,∴c=6.问案:12614.已知△ABC中,∠A∶∠B∶∠C=1∶2∶3,a=1,则a-2b+csin A-2sin B+sin C=________.剖析:由∠A∶∠B∶∠C=1∶2∶3得,∠A=30°,∠B=60°,∠C=90°,∴2R=asinA =1sin30°=2,又∵a=2Rsin A,b=2Rsin B,c=2Rsin C,∴a-2b+csin A-2sin B+sin C =2R sin A-2sinB+sin Csin A-2sin B+sin C=2R=2.问案:215.正在△ABC中,已知a=32,cosC=13,S△ABC=43,则b=________.剖析:依题意,sinC =223,S △ABC =12absinC =43, 解得b =2 3.问案:2316.正在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.剖析:∵bsinC =43×12=23且c =2, ∴c<bsinC ,∴此三角形无解.问案:017.如图所示,货轮正在海上以40 km/h 的速度沿着圆背角(指从正北目标逆时针转到目标目标线的火仄转角)为140°的目标航止,为了决定船位,船正在B 面瞅测灯塔A 的圆背角为110°,航止半小时后船到达C 面,瞅测灯塔A 的圆背角是65°,则货轮到达C 面时,取灯塔A 的距离是几?解:正在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,所以∠A =180°-(30°+105°)=45°,由正弦定理得AC =BC·sin ∠ABC sinA=20sin30°sin45°=102(km). 即货轮到达C 面时,取灯塔A 的距离是10 2 km.18.正在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对于边,若a =23,sin C 2cos C 2=14,sin Bsin C =cos2A 2,供A 、B 及b 、c. 解:由sin C 2cos C 2=14,得sinC =12, 又C ∈(0,π),所以C =π6或者C =5π6.由sin Bsin C =cos2A 2,得 sin Bsin C =12[1-cos(B +C)], 即2sin Bsin C =1-cos(B +C),即2sin Bsin C +cos(B +C)=1,变形得cos Bcos C +sin Bsin C =1,即cos(B -C)=1,所以B =C =π6,B =C =5π6(舍来), A =π-(B +C)=2π3. 由正弦定理a sin A =b sin B =c sin C,得 b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2. 19.(2009年下考四川卷)正在△ABC 中,A 、B 为钝角,角A 、B 、C所对于应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)供A +B 的值;(2)若a -b =2-1,供a ,b ,c 的值.解:(1)∵A 、B 为钝角,sin B =1010, ∴cos B =1-sin2B =31010. 又cos 2A =1-2sin2A =35,∴sinA =55,cos A =255, ∴cos(A +B)=cos Acos B -sin Asin B=255×31010-55×1010=22. 又0<A +B <π,∴A +B =π4. (2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =c sin C得 5a =10b =2c ,即a =2b ,c =5b.∵a -b =2-1,∴2b -b =2-1,∴b =1.∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的里积为153,供边b 的少.解:由S =12absin C 得,153=12×603×sin C , ∴sin C =12,∴∠C =30°或者150°. 又sin B =sin C ,故∠B =∠C.当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =b sin B,∴b =215. 当∠C =150°时,∠B =150°(舍来).故边b 的少为215.余弦定理1.正在△ABC 中,如果BC =6,AB =4,cosB =13,那么AC 等于()A .6B .26C .3 6D .46剖析:选A.由余弦定理,得 AC =AB2+BC2-2AB·BCcosB=42+62-2×4×6×13=6. 2.正在△ABC 中,a =2,b =3-1,C =30°,则c 等于()A. 3B.2C. 5 D .2剖析:选B.由余弦定理,得c2=a2+b2-2abcosC=22+(3-1)2-2×2×(3-1)cos30°=2,∴c = 2.3.正在△ABC 中,a2=b2+c2+3bc ,则∠A 等于() A .60° B .45° C .120° D .150°剖析:选D.cos ∠A =b2+c2-a22bc =-3bc 2bc =-32,∵0°<∠A <180°,∴∠A =150°.4.正在△ABC 中,∠A 、∠B 、∠C 的对于边分别为a 、b 、c ,若(a2+c2-b2)tanB =3ac ,则∠B 的值为()A.π6B.π3C.π6或者5π6D.π3或者2π3剖析:选D.由(a2+c2-b2)tanB =3ac ,偶像到余弦定理,代进得cosB =a2+c2-b22ac =32·1tanB =32·cosBsinB .隐然∠B≠π2,∴sinB =32.∴∠B =π3或者2π3.5.正在△ABC 中,a 、b 、c 分别是A 、B 、C 的对于边,则acosB +bcosA 等于()A .aB .bC .cD .以上均分歧过失剖析:选C.a·a2+c2-b22ac +b·b2+c2-a22bc =2c22c=c.6.如果把曲角三角形的三边皆减少共样的少度,则那个新的三角形的形状为()A .钝角三角形B .曲角三角形C .钝角三角形D .由减少的少度决断剖析:选A.设三边少分别为a ,b ,c 且a2+b2=c2. 设减少的少度为m ,则c +m >a +m ,c +m >b +m ,又(a +m)2+(b +m)2=a2+b2+2(a +b)m +2m2>c2+2cm +m2=(c +m)2,∴三角形各角均为钝角,即新三角形为钝角三角形.7.已知钝角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的里积为3,则AB →·AC→的值为()A .2B .-2C .4D .-4剖析:选A.S △ABC =3=12|AB →|·|AC →|·sinA=12×4×1×sinA ,∴sinA =32,又∵△ABC 为钝角三角形,∴cosA =12,∴AB →·AC →=4×1×12=2. 8.正在△ABC 中,b =3,c =3,B =30°,则a 为() A. 3 B .23 C.3或者2 3 D .2剖析:选C.正在△ABC 中,由余弦定理得b2=a2+c2-2accosB ,即3=a2+9-33a ,∴a2-33a +6=0,解得a =3或者2 3.9.已知△ABC 的三个内角谦脚2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的少为________.剖析:∵2B =A +C ,A +B +C =π,∴B =π3.正在△ABD 中,AD =AB2+BD2-2AB·BDcosB=1+4-2×1×2×12= 3.问案:310.△ABC 中,sinA ∶sinB ∶sinC =(3-1)∶(3+1)∶10,供最大角的度数.解:∵sinA ∶sinB ∶sinC =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k(k >0), ∴c 边最少,即角C 最大.由余弦定理,得cosC =a2+b2-c22ab =-12,又C ∈(0°,180°),∴C =120°.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的里积,若a =4,b =5,S =53,则边c 的值为________.剖析:S =12absinC ,sinC =32,∴C =60°或者120°.∴cosC =±12,又∵c2=a2+b2-2abcosC ,∴c2=21或者61,∴c =21或者61. 问案:21或者61 12.正在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.剖析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4, 设a =2k(k >0),则b =3k ,c =4k ,cos B =a2+c2-b22ac =2k 2+4k 2-3k 22×2k×4k =1116,共理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4). 问案:14∶11∶(-4)13.正在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.剖析:∵cos C =13,∴sin C =223.又S △ABC =12absinC =43,即12·b·32·223=43,∴b =2 3. 问案:2314.已知△ABC 的三边少分别为AB =7,BC =5,AC =6,则AB →·BC→的值为________.剖析:正在△ABC 中,cosB =AB2+BC2-AC22AB·BC=49+25-362×7×5=1935,∴AB →·BC →=|AB →|·|BC→|·cos(π-B) =7×5×(-1935)=-19.问案:-1915.已知△ABC 的三边少分别是a 、b 、c ,且里积S =a2+b2-c24,则角C =________.剖析:12absinC =S =a2+b2-c24=a2+b2-c22ab ·ab 2=12abcosC ,∴sinC =cosC ,∴tanC =1,∴C =45°.问案:45°16.(2011年广州调研)三角形的三边为连绝的自然数,且最大角为钝角,则最小角的余弦值为________.剖析:设三边少为k -1,k ,k +1(k≥2,k ∈N),则⎩⎨⎧k2+k -12-k +12<0k +k -1>k +1⇒2<k <4,∴k =3,故三边少分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.问案:7817.正在△ABC中,BC=a,AC=b,a,b是圆程x2-23x+2=0的二根,且2cos(A+B)=1,供AB的少.解:∵A+B+C=π且2cos(A+B)=1,∴cos(π-C)=12,即cosC=-12.又∵a,b是圆程x2-23x+2=0的二根,∴a+b=23,ab=2.∴AB2=AC2+BC2-2AC·BC·cosC=a2+b2-2ab(-12)=a2+b2+ab=(a+b)2-ab=(23)2-2=10,∴AB=10.18.已知△ABC的周少为2+1,且sin A+sin B=2sin C.(1)供边AB的少;(2)若△ABC的里积为16sin C,供角C的度数.解:(1)由题意及正弦定理得AB+BC+AC=2+1,BC+AC=2AB,二式相减,得AB=1.(2)由△ABC的里积12BC·AC·sin C=16sin C,得BC·AC=13,由余弦定理得cos C=AC2+BC2-AB22AC·BC=AC+BC2-2AC·BC-AB22AC·BC=12,所以C=60°.19.正在△ABC中,BC=5,AC=3,sin C=2sin A.(1)供AB的值;(2)供sin(2A-π4)的值.解:(1)正在△ABC中,由正弦定理ABsin C =BC sin A,得AB=sinCsinA BC=2BC=2 5.(2)正在△ABC中,根据余弦定理,得cos A=AB2+AC2-BC22AB·AC=255,于是sin A=1-cos2A=55.进而sin 2A=2sin Acos A=45,cos 2A=cos2A-sin2A=3 5.所以sin(2A-π4)=sin 2Acosπ4-cos 2Asinπ4=210.20.正在△ABC中,已知(a+b+c)(a+b-c)=3ab,且2cos Asin B=sinC,决定△ABC的形状.解:由正弦定理,得sin Csin B =c b.由2cos Asin B=sin C,有cosA=sinC2sin B =c 2b.又根据余弦定理,得cos A=b2+c2-a22bc,所以c2b=b2+c2-a22bc,即c2=b2+c2-a2,所以a=b.又果为(a+b+c)(a+b-c)=3ab,所以(a+b)2-c2=3ab,所以4b2-c2=3b2,所以b=c,所以a=b=c,果此△ABC为等边三角形.。