植物细胞的信号传导
植物细胞的信号转导
G 蛋 白 参 与
4.GTP水解为GDP, 4.GTP水解为GDP, 水解为GDP 引起α 引起α-亚基与腺 苷酸环化酶分离, 苷酸环化酶分离, 重新恢复G 重新恢复G蛋白的 构象
protein) G-蛋白(G protein)与跨膜信号转导 指在受体接受胞外信号和产生胞内信号之间起膜 上信号转换的GTP 结合调节蛋白( 上信号转换的GTP 结合调节蛋白(GTP binding protein), ),G regulatory protein),G-蛋白在信号传递系统中 起着分子开关的作用。 起着分子开关的作用。 分子开关的作用
靶酶被激活后, 参与细胞分裂、 靶酶被激活后 , 参与细胞分裂 、 生长和分化等 过程,最终调节细胞生长发育。 过程,最终调节细胞生长发育。
磷脂酰肌醇信号系统
1.双信使: 1.双信使:IP3 与 DG 双信使 磷脂酰肌醇(PI) 磷脂酰肌醇(PI)是一种分布在质膜内侧的肌醇 磷脂,占膜脂的极小部分。以三种形式存在:PI、 磷脂,占膜脂的极小部分。以三种形式存在:PI、 PIP、PIP2。 PIP、PIP2。
举例:信号转导途径: 举例:信号转导途径:
刺激
信号
受体
反应
手触摸含羞草后小叶合拢 手触摸就是刺激(信号),小 手触摸就是刺激(信号),小 ), 叶合拢就是反应。偶联刺激到 叶合拢就是反应。 反应之间的生化和分子途径就 反应之间的生化和分子途径就 生化和分子 是这个反应的信号转导途径。 是这个反应的信号转导途径。 ( signaling pathway) )
细胞表面受体
酶联受体 (enzyme-linked receptor) enzyme离子通道偶联受体 (ion-channel-linked receptor) ion-channelG蛋白联接受体 (G-protein-linked receptor) protein-
第七章植物细胞的信号转导
第七章植物细胞的信号转导1信号转导:受体细胞通过受体接收胞外信号,将胞外信号转变为胞信号,并经一系列胞信号转导途径的传导和放大,控制相关基因表达和引起特定的生理生化反应,这种从细胞受体感受胞外信号,到引起特定生理生化反应的一系列信号转换过程和反应机制称为信号转导。
2化学信号:指细胞感受刺激后合成并传递到作用部位引起生理生化反应的化学物质。
3物理信号:指细胞感受到刺激后产生的能够起传递信息作用的电信号和水力学信号等物理性因子。
4第二信使:是指细胞感受胞外环境信号和胞间信号后产生的具有生理调节活性的胞信号分子,都是小分子物质。
植物中的第二信使主要有cAMP、钙离子、NO、DAG和IP3等。
5受体:存在于细胞表面或细胞部,能感受信号或与信号分子特异性结合,并引起特定的生理生化反应的生物大分子。
6细胞表面受体:指存在于细胞质膜上的受体,也称膜受体。
通常由与配基相互作用的细胞外结构域、将受体固定在细胞膜上的跨膜结构域和起传递信号作用的胞结构域3部分组成。
细胞表面受体通常是跨膜蛋白质,大多数信号分子不能过膜,通过与细胞表面受体结合,经跨膜信号转换将胞外信号传至胞。
7细胞受体:指存在于细胞质中或亚细胞组分(细胞核、液泡膜等)上的受体。
胞受体识别和结合的是能够穿过细胞质膜的信号分子。
8配基:指与受体特异结合的化学信号分子。
9钙指纹:指能被细胞识别的、由某种刺激产生的、具有特异性时空变化的钙信息。
10G蛋白:是细胞一类具有重要生理调节功能的蛋白质,参与细胞信号转导过程的G蛋白主要有小G蛋白和异三聚体G蛋白,其中三聚体G蛋白由β、α、ϒ3个不同亚基构成。
11双信使系统:指肌醇磷脂信号系统。
胞外信号被膜受体承受后以G蛋白为中介,由质膜中的磷脂酶C水解肌醇磷脂,产生两个胞信号分子:三磷酸肌醇(IP3)和二脂酰甘油(DAG),分别激活两个信号传递途径:IP3-Ca2+和DAG-PKC途径,因此把这一信号系统称为双信号系统。
植物细胞信号转导
㈡ G蛋白(G protein)
在受体接受胞间信号分子到产生胞内信号分子之 间,往往要进行信号转换,通常认为是通过G蛋 白将转换偶联起来,故又称偶联蛋白或信号转换 蛋白。 G蛋白全称为GTP结合调节蛋白(GTP binding regulatory protein),由于其生理活性有赖于三磷酸 鸟苷(GTP)的结合以及具有GTP水解酶的活性而得 名。
㈡ 肌醇磷脂信号系统
磷脂酰肌醇-4,5-二磷酸(phosphatidylinositol-4,5bisphosphate,PIP2)是一种分布在质膜内侧的肌 醇磷脂,占膜脂的极小部分。它是由PI(磷脂酰 肌醇,phosphatidylinositol )和PIP(磷酯酰肌醇4-磷酸,PI-4-phosphate)磷酸化而形成的。
㈠ 钙信号系统
静息态胞质Ca2+浓度小于或等于0.1mmol· L-1, 而细 胞壁、内质网和液泡中的Ca2+浓度要比胞质中的 高2~5个数量级。 细胞受刺激后,胞质Ca2+浓度可能发生一个短暂 的、明显的升高,或发生梯度分布或区域分布的 变化。
植物细胞中Ca2+的运输系统
胞外刺激信号可能直接或间接地调节这些钙离子 的运输系统,引起胞内游离钙离子浓度变化以至 影响细胞的生理生化活动。 胞内Ca2+信号通过其受体-钙调蛋白转导信号。现 在研究得较清楚的植物中的钙调蛋白主要有两种: 钙调素(calmodulin, CaM)与钙依赖型蛋白激酶。
蛋白激酶
(protein kinase)
蛋白质
蛋白磷酸脂酶
蛋白质-nPi
(protein phosphatase)
第7章植物细胞信号转导
6.1 同化物的运输
胞间、长距运输。环割的利用。形式及特点(稳定、溶解、运速)
6.2 同化物的运输机制
三种学说:压力流动说、泵动说、蛋白质收缩说
6.3.同化物的分配
代谢源、库,源库单位。分配特点:优先中心、就近同侧、在利用、功能叶间无关
6.4 影响同化物运输的因素
温度、光、水、矿
第7章 细胞信号转导
• 第一节 信号与受体结合
• 一、信号
• 对植物体来讲,环境变化就是刺激,就是信号。 根据信号分子的性质信号分为物理信号和化学信 号;光、电等刺激属于物理信号,而激素、病原 因子等属于化学信号。化学信号也称之为配体。 根据所处的位置信号,可分为胞外(胞间)信号 和胞内信号。
• 信号进入细胞后,最终引起生理生化变化和形态 反应。例如,电波就是在植物体进行传递的物理 信号。植物受到外界刺激时可产生电波,通过维 管束、共质体和外质体快速传递信息。又如,植 物根尖合成的ABA,通过导管向上运送到叶片保 卫细胞,引起气孔关闭,这个过程就是信号转导 的过程。
• 位于亚细胞组分如细胞核、液泡膜上的受 体叫做细胞内受体。一些信号(如甾类物 质)是疏水性小分子,不经过跨膜信号转 换,而直接扩散入细胞,与细胞内受体结 合后,在细胞内进一步传递和放大。
• 第二节 跨膜信号转换
• 信号与细胞表面的受体结合之后,通过受 体将信号转导进入细胞内,这个过程称为 跨膜信号转换。
• 二、受体在信号转导中的作用Fra bibliotek• 受体:是指能够特异地识别并结合信号、在细 胞内放大和传递信号的物质。细胞受体的特征是 有特异性、高亲和力和可逆性。至今发现的受体 大都为蛋白质。
• 位于细胞表面的受体称为细胞表面受体。在很多 情况下,信号分子不能跨过细胞膜,它们必须与 细胞表面受体结合,经过跨膜信号转换,将胞外 信号传入胞内,并进一步通过信号转导网络来传 递和放大信号。例如,细胞分裂素受体就是细胞 表面受体。
植物细胞信号转导
通常情况下, G蛋白以三聚体形式存在,与GDP结合, 处于钝化状态。
当信号分子与膜上的受体结合后形成激活型受体,它可 与G蛋白结合使之构型变化, G蛋白排斥GDP,结合 GTP而活化, α与βγ解离后与效应器结合,把胞外信 号转换为胞内信号;
植物细胞信号转导
植物体的新陈代谢和生长发育受遗传信息及 环境的调控。
植物如何感受环境刺激,环境刺激又如何调 控和决定植物生理活动、生长发育,植物细 胞如何综合内外因素以控制基因表达。人们 将这些过程称为细胞的信号转导(signal transduction)。
环境刺激
胞间信号 跨膜信号转换 细胞表面
第三节、胞内信号系统
胞间信号称为第一信使(初级信号) 胞内信号称为第二信使(次级信号)
胞外刺激信号激活或抑制的具有生理调节 活性的细胞内因子称为细胞信号转导过 程中的第二信使(胞内信号)
一、钙信号系统﹡
(一)衡量钙信使的标准
(1) 细胞质的Ca2+水平必须能对 来自环境与邻近细胞的刺激有所反应; 而且Ca2+水平的变化要早于该生理反应
根据作用机理,可将细胞表面受体分为3种类型: ① G蛋白偶联受体 ②酶偶联受体 ③离子通道偶联受体
第二节 信号跨膜转换
对于细胞内受体而言,信号可以进入细胞 内部与胞内的受体结合,完成信号的直 接跨膜进入。
大多数信号分子不能通过膜,信号分子通 过与细胞表面受体结合,经过跨膜信号 转换,将胞外信号传至胞内。
而在动物视觉系统细胞光感应中起重要作用的cGMP在 植物花色素苷诱导中起决定作用,并与Ca 2+ -CaM一起 诱导PSⅠ和Cyt b6/f的合成。
植物生理学第七章:植物体内细胞信号转导
植物生理学教研室
细胞信号转导
• G 蛋 白 全 称 为 GTP 结 合 调 节 蛋 白 (GTP binding regulatory protein),此类蛋白由 于其生理活性有赖于三磷酸鸟苷(GTP)的 结合以及具有GTP水解酶的活性而得名。 20世纪70年代初在动物细胞中发现了G蛋 白的存在,进华而南农业证大学明植物了生理G教研蛋室 白是细胞膜受 体与其所调节的相应生理过程之间的主 要信号转导者。
植物生理学教研室
细胞信号转导
华南农业大学植物生理教研室 植物生理学教研室
细胞信号转导
第一节 信号与受体结合
一、信号(理解)
• 信号是信息的物质体现形式和物理过程。 • 刺激就是信号 华南农业大学植物生理教研室 • 化学信号和物理信号,化学信号也称为配体 • 胞内信号和胞间信号 • 植物通过接受环境刺激信号而获得外界环境的
细胞信号转导
第七章 细胞信号转导
• 植物细胞信号转导: 是指细胞耦联 各种刺激信号(包括各种内外源刺 激信号)与华南其农业大引学植物起生理特教研室定生理效应之 间的一系列分子反应机制。
植物生理学教研室
细胞信号转导
分为4个步骤: 1、信号分子与细胞表面受体结合 2、跨膜信号转换 3、在细胞内华南通农业大过学植物信生理教号研室 转导网络进 行信号传递、放大与整合 4、导致生理生化变化
细胞信号转导
二、受体在信号转导中的作用(理解)
➢ 受体(receptor)是存在于细胞表面或亚细胞组分中 的天然分子,可特异地识别并结合化学信号物 质——配体,并在细胞内放大、传递信号,启动 一系列生化反应,最终导致特定的细胞反应。
植物生理学:第七章 细胞信号转导
目前植物中普遍接受的胞内第二信使系统主要有:钙 信使系统和肌醇磷脂信使系统。
对于动物中研究较为透彻的环核苷酸信使系统是否同 样存在于植物以及其在植物中存在的普遍性,尽管目前尚 有争议,但已有一部分报道在拟南芥等植物中存在并参与 了植物气孔运动、光诱导叶绿体花色素的合成等信号转导 过程。
细胞表面受体 细胞内受系统)
细胞受体的特征 (1)特异性; (2)高亲和力; (3)可逆性。
受体与配体的结合是一种分子识别 过程,靠氢键、离子键与范德华力 的作用,配体与受体分子空间结构 的互补性是特异性结合的主要因素。
在植物感受各种外界刺激的信号转导过程中,受体的功 能主要表现在两个方面:
一、Ca2+/CaM在信号转导中的作用
钙信使系统是植物细胞中重要的也是研究最多的胞内信使系统。
胞内钙梯度的存在是Ca2+信号产生的基础。正常情况下 植物细胞质中游离的静息态Ca2+水平为10-7 ~10-6 mol/L左右, 而液泡的游离钙离子水平在10-3mol/L左右,内质网中钙离子 浓度在10-6mol/L,细胞壁中的钙离子浓度也高达10-5-103mol/L。因而细胞壁等质外体作为胞外钙库,内质网、线粒 体和液泡作为胞内钙库。静止状态下这些梯度的分布是相对 稳定的,当受到刺激时,钙离子跨膜运转调节细胞内的钙稳 态(calcium homeostasis),从而产生钙信号。
Ca2+ ‧ CaM的下游靶酶包括质膜上的Ca2+-ATP酶、Ca2+通 道、NAD激酶、多种蛋白激酶等。这些酶被激活后,参与 蕨类植物的孢子发芽、细胞有丝分裂、原生质流动、植物激 素的活性、向性、调节蛋白质磷酸化,最终调节细胞生长发 育。
植物生理学:第七章 细胞信号转导
G蛋白下游的靶效应器很多,包括磷酯酶C(PLC)、 磷酯酶D(PLD)、磷酯酶A2(PLA2)、磷酯酰肌醇3激 酶(PI3K)、腺苷酸环化酶、离子通道等。
通常认为,G蛋白参与的跨膜转换信号方式主要是α亚 基调节,而βγ亚基的功能主要是对G蛋白功能的调节和修饰, 或把G蛋白锚定在细胞膜上。随着研究的深入,越来越多的 证据表明,G蛋白被受体激活后βγ亚基游离出来也可以直接 激活胞内的效应酶。有些甚至是α亚基和βγ亚基复合体协同 调节。在目前所知道的8种不同的腺苷酸环化酶(AC)同工 酶中,AC1通过α亚基激活,AC2、AC4、AC7则直接被βγ 亚基激活,但需要α亚基存在,两种协同起作用。
信号的主要功能:在细胞内和细胞间传递生物信息,当植 物体感受信号分子所携带的信息后,或引起跨膜的离子流动, 或引起相应基因的表达,或引起相应酶活性的改变等,最终 导致细胞和生物体特异的生理反应。
外部信号对 拟南芥植株 生长和发育 的影响
二、受体(receptor)在信号转导中的作用
受体(指能够特 异地识别并结合 信号、在细胞内 放大和传递信号 的物质)
一、G蛋白参与的跨膜信号转换
是细胞跨膜转换信号的主要方式。G蛋白 即GTP结合蛋白(GTP binding protein),是细胞内一类具有重要生理调节功能的蛋白质。G蛋 白可以和三磷酸鸟苷(GTP)结合,并具有GTP水解酶的活性。在所有 的G蛋白中只有两种类型G蛋白参与细胞信号传递:小G蛋白和异三聚体 G蛋白。小G蛋白是一类只含有一个亚基的单聚体G蛋白,它们分别参与 细胞生长与分化、细胞骨架、膜囊泡与蛋白质运输的调节过程。
在细胞跨膜信号转导中起主要作用的是异三聚体G蛋白(heterotrimeric G-proteins,也被称作大G蛋白)。常把异三聚体G蛋白简称为G蛋白。
植物的细胞信号转导[1]
Alfred G. Gilman
Martin Rodbell
G蛋白偶 联系统:
表面受体 (七次跨 膜)、G蛋 白和效应 物
图 G蛋白介导的细胞信号转导途径
G 蛋 白 βγ 亚 基 作 用 机 制
二、胞内信使系统
胞外的信号经过跨膜 转换进入细胞后,通 常产生第二信使并通 过相应的胞内信使系 统将信号级联放大, 引起细胞最终的生理 反应。
光诱导的气孔运动 蓝光/绿光
干旱诱导的气孔运 动
干旱
根的向地性生长 重力
含羞草感震运动
机械刺激、电 波
光周期诱导植物开 花
光周期
低温诱导植物开花 低温
乙烯诱导果实成熟 乙烯
根通气组织的形成 乙烯、缺氧
植物抗病反应
病原体产生的 激发子
受体或感受部位 向光素 光敏色素 蓝光受体/玉米黄素
相应的生理生化反应 茎受光侧生长素浓度比背光侧低,受光侧生长 速率低于背光侧
钙库中Ca2+浓度比细胞质中的高2个数量 级以上。
2) 钙稳态的调节 受激态:当细胞受到外界刺激时,细胞质中Ca2+浓度
图 细胞表面受体的三种类型
三、植物细胞信号转导的概念和特性
(一)细胞信号转导的概念
从细胞受体感受胞外信号,到引起特定生理反应的 一系列信号转换过程和反应机制称为信号转导(signal transduction)。
表 一些常见的植物信号转导的事例
生理现象 植物向光性反应
信号 蓝光
光诱导的种子萌发 红光/远红光
→酶或功能蛋白→生物学效应。 图 G蛋白偶联受体结构模型图
2012年 诺贝尔 化学奖
③ 酶联受体(enzyme-linked receptor)
植物生理学中的信号转导了解植物细胞内信号传递的机制
植物生理学中的信号转导了解植物细胞内信号传递的机制植物生理学中的信号转导:了解植物细胞内信号传递的机制植物生理学是研究植物在生长、发育和适应环境的过程中所发生的各种生理反应的学科。
作为一个复杂的生物机体,植物细胞内需要通过信号传递系统来感知和响应外界的环境变化。
信号转导是植物细胞内信号传递的关键过程,它能够使植物在遇到生物和非生物胁迫时做出适应性的反应。
本文将探讨植物生理学中的信号转导,以了解植物细胞内信号传递的机制。
一、信号的感知与转导植物细胞内信号传递的第一步是信号的感知。
植物细胞通过对外界刺激的感知,获取关于环境的信息,并将其转化为细胞内的信号。
这些信号可以是光线、温度、盐度、激素等多种形式。
植物的感受器通常是膜蛋白,例如光感受器负责感知光线,激素受体负责感知激素的存在。
感知到信号后,植物细胞进入信号转导流程。
信号转导是指将感知到的信号传递给细胞内的下游部分,以产生相应的生理反应。
信号转导的机制由多个组分构成,包括信号传感器、信号传导器、信号激活器和效应器。
这些组分在细胞内相互协作,将信号从感知器传递到效应器,实现植物生理反应的调节。
二、信号转导通路在植物生理学中,信号转导通路是通过多个蛋白质相互作用而形成的复杂网络系统。
常见的信号转导通路包括蛋白激酶、磷酸酶和离子通道等。
这些通路中的蛋白质能够感知和传导信号,并参与到细胞的生理活动中。
信号通路中的蛋白质通常通过磷酸化和去磷酸化等方式来传导信号。
磷酸化是通过添加磷酸基团到蛋白质上,从而改变其构象和功能。
去磷酸化则是将磷酸基团从蛋白质上去除,使其恢复原来的构象和功能。
这两种方式的协同作用,使信号能够在细胞内传递和放大,最终调控植物的生理反应。
三、第二信使和信号响应在信号转导过程中,第二信使起着重要的作用。
第二信使可以是小分子化合物,例如环状腺苷酸(cAMP)和钙离子(Ca2+)。
它们能够将感知到的信号转导给细胞内的下游组分,触发相应的生理反应。
植物生理学 第一章细胞信号转导
蛋白质的磷酸化与脱磷酸化作用在细 胞信号转导中有级联放大信号的作用。
蛋白激酶和蛋白磷酸酶的作用及在 植物体的分布情况,目前了解得还不太 深入。
nATP 蛋白质
蛋白激酶
nADP 蛋白质-nPi
Байду номын сангаас蛋白磷酸酶
nPi
H2O
蛋白质的可逆磷酸化反应
DAG--活化蛋白激酶C
PI PI激酶 PIP PIP激酶 PIP2
IP3--从内质网和液
泡释放Ca2+
IP3是水溶性的,可从质膜扩散到细胞质, 然后与内质网或液泡膜上的IP3-Ca2+通道结 合,使通道打开。
Ca2+迅速释放到细胞质,使胞质中Ca2+ 升高,引起生理反应。
IP3→促使Ca2+库释放Ca2+→增加细胞 质Ca2+的信号转导,称为IP3/Ca2+信号传递 途径。
举例:信号转导途径:
信号 受体
反应
手触摸含羞草后小叶合拢 手触摸就是刺激(信号), 小叶合拢就是反应。偶联 刺激到 反应之间的生化 和分子途径就是这个反应 的信号转导途径。 ( signaling pathway)
胞外 信号
一、胞间信号的传递
温度
湿度
物
气体
理 胞内
光
信 信号
号
电
重力
病原微生物
污染
G蛋白是连接受体发生跨膜信号转换的 重要物质之一。
GTP结合蛋白(简称G蛋白),根据其亚基组 分以及相对分子质量大小的不同分为两大类:
异源三体G蛋白(heterotrimeric Gprotein) 三种亚基(、、)构成
小G蛋白(small G protein)或称 单体G蛋白(monomeric G protein)
植物生理学:第六章 植物细胞信号转导
第二节
跨膜信号转换
二、受体的类型:质膜表面有三种受体 受体的类型: 类型
receptor): 1、G蛋白偶联受体(G-protein-linked receptor):受体蛋白 蛋白偶联受体(G-protein(G 的氨基端位于细胞外侧,羧基端位于内侧 位于内侧, 的氨基端位于细胞外侧,羧基端位于内侧,一条单肽链形成 几个跨膜α螺旋结构;羧基端有与G 蛋白相互作用的区域, 几个跨膜α螺旋结构;羧基端有与G 蛋白相互作用的区域, 受体活化后直接将G蛋白激活,进行跨膜信号转换。 受体活化后直接将G蛋白激活,进行跨膜信号转换。 酶偶联受体(enzyme (enzymereceptor): 2、酶偶联受体(enzyme-linked receptor):受体本身是一种 酶蛋白,当细胞外区域与配体结合时,可以激活酶, 酶蛋白,当细胞外区域与配体结合时,可以激活酶,通过细 胞内侧酶的反应传递信号。 胞内侧酶的反应传递信号。 离子通道偶联受体(ion channel(ionreceptor): ):除 3、离子通道偶联受体(ion-channel-linked receptor):除 了含有与配体结合的部位外,受体本身就是离子通道, 了含有与配体结合的部位外,受体本身就是离子通道,受体 接收信号后立即引起离子的跨膜流动。 接收信号后立即引起离子的跨膜流动。 • 受体与化学信号物质的识别反应是细胞信号转导过程中的第 受体与化学信号物质的识别反应 识别反应是细胞信号转导过程中的第 一步。 一步。
第六章 植物细胞信号转导
• 植物的生长发育是基因差别表达的结果,或者说是基因在一定 植物的生长发育是基因差别表达的结果, 时间、空间上表达的结果。基因表达受环境刺激的调控, 时间、 空间上表达的结果 。基因表达受环境刺激的调控 ,动物 通过神经和内分泌系统进行调节;植物通过精确的、完善的信 通过神经和内分泌系统进行调节;植物通过精确的、完善的 信 号转导系统来调节自身 适应环境。 来调节自身, 号转导系统来调节自身,适应环境。 • 细胞信号转导(cell signal transduction):指的是偶联各种 细胞信号转导( transduction):指的是偶联各种 胞外刺激信号(包括各种内、外源刺激信号) 胞外刺激信号(包括各种内、外源刺激信号)与其相应的生理 反应之间的一系列分子反应机制。 反应之间的一系列分子反应机制。 • 植物细胞信号转导(signal transduction)主要研究植物感受、 植物细胞信号转导( transduction)主要研究植物感受、 传递环境刺激的分子途径及在植物发育过程中调控基因的表达 和生理生化反应。 和生理生化反应。
第七章植物细胞的信号转导
第七章植物细胞的信号转导1信号转导:受体细胞通过受体接收胞外信号,将胞外信号转变为胞内信号,并经一系列胞内信号转导途径的传导和放大,控制相关基因表达和引起特定的生理生化反应,这种从细胞受体感受胞外信号,到引起特定生理生化反应的一系列信号转换过程和反应机制称为信号转导。
2化学信号:指细胞感受刺激后合成并传递到作用部位引起生理生化反应的化学物质。
3物理信号:指细胞感受到刺激后产生的能够起传递信息作用的电信号和水力学信号等物理性因子。
4第二信使:是指细胞感受胞外环境信号和胞间信号后产生的具有生理调节活性的胞内信号分子,都是小分子物质。
植物中的第二信使主要有cAMP、钙离子、NO、DAG和IP3等。
5受体:存在于细胞表面或细胞内部,能感受信号或与信号分子特异性结合,并引起特定的生理生化反应的生物大分子。
6细胞表面受体:指存在于细胞质膜上的受体,也称膜受体。
通常由与配基相互作用的细胞外结构域、将受体固定在细胞膜上的跨膜结构域和起传递信号作用的胞内结构域3部分组成。
细胞表面受体通常是跨膜蛋白质,大多数信号分子不能过膜,通过与细胞表面受体结合,经跨膜信号转换将胞外信号传至胞内。
7细胞内受体:指存在于细胞质中或亚细胞组分(细胞核、液泡膜等)上的受体。
胞内受体识别和结合的是能够穿过细胞质膜的信号分子。
8配基:指与受体特异结合的化学信号分子。
9钙指纹:指能被细胞识别的、由某种刺激产生的、具有特异性时空变化的钙信息。
10G蛋白:是细胞内一类具有重要生理调节功能的蛋白质,参与细胞信号转导过程的G蛋白主要有小G蛋白和异三聚体G蛋白,其中三聚体G蛋白由β、α、ϒ3个不同亚基构成。
11双信使系统:指肌醇磷脂信号系统。
胞外信号被膜受体接受后以G蛋白为中介,由质膜中的磷脂酶C水解肌醇磷脂,产生两个胞内信号分子:三磷酸肌醇(IP3)和二脂酰甘油(DAG),分别激活两个信号传递途径:IP3-Ca2+和DAG-PKC途径,因此把这一信号系统称为双信号系统。
植物信号传导
PC: phosphotidylcholine 激发子 LysoPC: lysophosphotidylcholine
18
7.3.2 环核苷酸
cAMP由腺苷酸环化 酶从ATP合成。 cGMP由鸟苷酸环化 酶从GTP合成。
合成
分解
19
图7.18 G蛋白、cAMP 和被调控基因间的关系 (动物)。
腺苷环化酶合成的 cAMP通过激酶A(PKA) 活化CREB(cAMP应答 元件结合蛋白)。PKA 由调控和催化亚基形成 异源四聚体。特点 ➢ 高特异性 ➢ Fra bibliotek亲合力,结合常数
Kd应该与配体在体内 的活性浓度相当 ➢ 饱和性、当配体达到 一定浓度时饱和 ➢ 可逆性,使系统能够 应答配体浓度的变化
11
受体的分离: ✓Photoaffinity标记 ✓突变体筛选
图7.10 鉴定受体的简单方法是采用同位素亲和标 记配体(如:nitrene氮宾和carbene碳宾)。配体 与受体混和、在UV作用下氮宾或者碳宾活性与受 体发生不可逆结合。
Figure 7.4 Overview:
information may be
transmitted from the
exterior to the interior of
the cell by movement of a
ligand or by signal
transduction.
5
7.2 受体(receptor)
Chapter 7 植物细胞信号传导
7.1 Introduction
信号(signal) 把环境条件的变化或来
自环境的刺激统称为信号 。 为第一信使(first messenger)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 two major signal transduction pathway in plant
• Cytosolic Calcium • Protein kinase /phosphorylase
细胞外 细胞膜 细胞质
环 境 刺 激
胞 间 信 号
受 体
G效
蛋应 白器
酪氨酸 蛋白激
酶
cAMP
第一节 Over view of signal transduction
1 The stream of signals is continuous and complex
2 Signal transduction network within cells, among
Cells and through the plant
接受信号主要通过蛋白受体或改变膜电位
受体位置
光反应红光受体
光敏色素组成一个蛋白质家族, 各有不同生理功能
光形态建成中信号传导效应的复杂性
第二节 植物细胞跨膜信号转导
受体(receptor):
是在效应器官细胞表面或亚细胞组分中可特异 地识别并结合信号分子—配体(ligand) ,或物理信 号(光温信号)大分子物质,多为为蛋白质。
3Finally modified gene expression
• Different signal effects Different transduction networks in different way and different place
• But finally change the gene expression pattern
Ca2+
Ca2+ 调节蛋白
IP3 DAG
PKA PKCa2+ PKCa2+ ·CaM
PKC
酶
蛋细
白 磷胞
酸 化
反
修应
饰
CaM
初级信使
膜上信号 转换系统
第二信使
胞间信号传递 膜上信号转换 胞内信号转导 蛋白质可逆磷酸化
6 Signal perceiving
• To initiate transduction, the signal must be Senesced by receptor or changing membrane
4 Plant cells containing two information system genetic and epigenetic
4.1DNA –RNA-Protein (phenotype ) 4.2 many phenotype are strongly modified by environmental factor and gene respond environmental stimulates are epigenes have pleiotropic function
Glucocorticoid steroid receptors
• Glucocorticoid steroid recn factors.
• Glucocorticoid hormone is lipophilic and diffuses readily through the membrane to the cytosol.
potential • Regulate receptor concentration can change the
sensitivities of cell to signal • Many receptors when bind its ligand (signal)
active protein kinase and protein phosphatase activities • Intracellular receptors can act as ion channel
• In the nucleus, the receptor–hormone complex binds to the enhancer regions of steroid-regulated genes.
• Transcription of the genes is stimulated. (From Becker et al. 1996.)
第二章 植物细胞信号转导
• 生长和发育是基因在一定时间、空间上顺序表 达的过程,而基因的表达同时受到内外环境的 调控。
• 植物细胞信号转导(signal transduction):
是植物感受、传导环境分子的刺激及其在发 育过程中调控基因的表达和生理生化反应,包 括信号、受体、信号转导网络和反应等环节。
• Once in the cytosol, the hormone binds to its cytosolic receptor,
• causing the release of an inhibitory protein from the receptor.
• The activated receptor then diffuses into the nucleus.
❖ 具有特异性、高亲和力、可逆性等特点。
受体位置
An example of intracellular receptor
• The receptor for glucocorticoid hormone (cortisol糖皮质激素 ) differs from the others in that it is located in the cytosol, anchored in an inactive state to a cytosolic protein. Binding of the hormone causes the release of the receptor from its cytosolic anchor, and the receptor– hormone complex then migrates into the nucleus, where it binds to the enhancer and stimulates transcription (Figure)