《线代》期末练习卷(新)

合集下载

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

线代期末试题及答案解析

线代期末试题及答案解析

线代期末试题及答案解析一、选择题1. 下列哪个矩阵是零阵?A. $\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$B. $\begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}$C. $\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}$D. $\begin{bmatrix}2 & -2 \\ -3 & 3\end{bmatrix}$答案:B解析:零阵是所有元素都为0的方阵,选项B满足此条件。

2. 若矩阵$A$、$B$满足$AB=I$,其中$I$为单位矩阵,则矩阵$B$是矩阵$A$的:A. 逆矩阵B. 转置矩阵C. 相反矩阵D. 对角矩阵答案:A解析:若矩阵$A$的逆矩阵存在,则$A$的逆矩阵为$B$。

3. 下列哪个矩阵是对称矩阵?A. $\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$B. $\begin{bmatrix}-1 & 2 \\ 2 & -1\end{bmatrix}$C. $\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}$D. $\begin{bmatrix}1 & -1 \\ -1 & 1\end{bmatrix}$答案:D解析:对称矩阵是指矩阵的转置等于自身的矩阵,选项D满足此条件。

4. 若矩阵$A$、$B$满足$AB=BA$,则矩阵$A$和$B$是:A. 可逆矩阵B. 特征矩阵C. 对角矩阵D. 可交换矩阵答案:D解析:可交换矩阵是指满足$AB=BA$的矩阵,选项D满足此条件。

5. 若行矩阵$\mathbf{u}$、$\mathbf{v}$满足$\mathbf{u}\cdot\mathbf{v}=\mathbf{0}$,其中$\mathbf{0}$为零向量,则下列哪个说法是正确的?A. $\mathbf{u}$和$\mathbf{v}$一定不相等B. $\mathbf{u}$和$\mathbf{v}$一定相等C. $\mathbf{u}$和$\mathbf{v}$可能相等也可能不相等D. 不能确定$\mathbf{u}$和$\mathbf{v}$是否相等答案:C解析:行向量的内积为零意味着两个向量正交,不一定相等,所以选项C是正确的。

线性代数-期末测试题及其答案

线性代数-期末测试题及其答案

线性代数期末考试题、填空题(将正确答案填在题中横线上。

每小题5分,共25分)1 -3 11.若0 5 X =°,则;t = 。

-1 2 -2| f x2 . X3 = 02. ___________________________________________________________________ 若齐次线性方程组+^X2 +x3=0只有零解,则人应满足_____________________________________ 。

x1 +x2 +x3 = 03. 已知矩阵A, B, C =(q )s n,满足AC二CB,则A与B分别是 _____________ 阶矩阵。

4•已知矩阵A为3 3的矩阵,且|A| = 3,则|2A| = ___________ 。

5. n阶方阵A满足A2 -3A - E = 0,则A A=。

二、选择题(每小题5分,共25分)6•已知二次型f • X;• 5x2 2tX i X2 -2^X3 - 4X2X3 ,当t取何值时,该二次型为正定?()4 - 4 4 4 4 1A. —— <t W0B. ——<t < —C. 0<t< —D. —一c t< 一一5 5 5 5 5 2q 4 2''1 2 3"7.已知矩阵A =0 -3 4 B = 0X6 ,且A ~ B,求x的值()<0 4<0 0 5」3」A.3B.-2C.5D.-58 •设A为n阶可逆矩阵,则下述说法不正确的是()A. A^OB. A,HOC. r(A) = nD. A的行向量组线性相关9 •过点(0, 2, 4)且与两平面x 2z =1和y -3z =2的交线平行的直线方程为()A.xy-2 z -4B.x y —2 z-4-2 _ 3-1 2_ 3 -2 C.xy 2 z 4 D.x y 2 z 4-2312 32.已知矩阵'3 1、 10 A =,其特征值为()-1A.初=2,為 =4B.人二=_2,九2C.=4D. Z_1 :=2丄2 =-4 三、解答题(每小题10分,共50分)15.证明:若A 是n 阶方阵,且 从丁=|,A = —1,证明 A+I =0。

大学线代期末试题及答案

大学线代期末试题及答案

大学线代期末试题及答案一、选择题(每题5分,共20分)1. 设A为3阶方阵,且|A|=2,则|2A|等于多少?A. 4B. 8C. 16D. 32答案:B2. 若矩阵A可逆,则下列说法正确的是:A. A的行列式为0B. A的行列式不为0C. A的逆矩阵不存在D. A的逆矩阵是唯一的答案:B3. 向量组α1, α2, α3线性无关,则下列说法正确的是:A. 这三个向量可以构成一个平面B. 这三个向量可以构成一个空间C. 这三个向量可以构成一个直线D. 这三个向量可以构成一个点答案:B4. 设A是n阶方阵,如果A的特征值为λ,则下列说法正确的是:A. λ是A的最小特征值B. λ是A的最大特征值C. λ是A的特征值D. λ不是A的特征值答案:C二、填空题(每题5分,共20分)1. 若矩阵A的秩为2,则矩阵A的行列式|A|等于______。

答案:02. 设向量组α1, α2, α3线性相关,则至少存在不全为零的实数k1, k2, k3使得k1α1 + k2α2 + k3α3 = ______。

答案:03. 若A是3阶方阵,且A的迹等于6,则A的特征值之和等于______。

答案:64. 设向量空间V中有两个子空间U和W,若U与W的交集只包含零向量,则称U和W为______。

答案:互补子空间三、解答题(每题15分,共40分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的逆矩阵。

答案:首先计算A的行列式,|A| = 1*4 - 2*3 = -2。

然后计算A的伴随矩阵,即\[\begin{pmatrix} 4 & -2 \\ -3 & 1\end{pmatrix}\]。

最后,A的逆矩阵为\[\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}\] / (-2) = \[\begin{pmatrix} -2 & 1 \\1.5 & -0.5 \end{pmatrix}\]。

线性代数期末试题

线性代数期末试题

线性代数试题(附答案)一、填空题(每题2分,共20分)1.行列式0005002304324321= 。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=-+00202kz y kx z ky x z y kx 有非零解,且12≠k ,则k 的值为 。

3.若4×4阶矩阵A 的行列式*=A A ,3是A 的伴随矩阵则*A = 。

4.A 为n n ⨯阶矩阵,且ο=+-E A A 232,则1-A 。

5. 321,,ξξξ和321,,ηηη是3R 的两组基,且32133212321122,2,23ξξξηξξξηξξξη++=++=++=,若由基321,,ξξξ到基321,,ηηη的基变换公式为(321,,ηηη)=(321,,ξξξ)A ,则A= 6.向量其内积为),1,0,2,4(),5,3,0,1(-=--=βa 。

7.设=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)(,111012111,321212113AB tr AB B A 之迹则 。

8.若的特征值分别为则的特征值分别为阶矩阵1,3,2,133--⨯A A 。

9.二次型x x x x x x f 23222132123),,(--=的正惯性指数为 。

10.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1042024λλA 为正定矩阵,则λ的取值范围是 。

二、单项选择(每小题2分,共12分)1.矩阵()==≠≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)(,4,3,2,1,0,0,44342414433323134232221241312111A r i b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a A i i 则其中。

A 、1B 、2C 、3D 、4 2. 齐次线性方程组⎩⎨⎧=--=++-02023214321x x x x x x x 的基础解系中含有解向量的个数是( )A 、1B 、2C 、3D 、43.已知向量组=====k a a k a a 则线性相关,)1,2,0,0(),1,0,2,2(),1,0,,0(),0,1,1,1(4321 ( )A 、-1B 、-2C 、0D 、1 4. A 、B 则必有且阶矩阵均为,))((,22B A B A B A n -=-+( )A 、B=EB 、A=EC 、A=BD 、AB=BA5.已知=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==k A k a T 则的特征向量是矩阵,211121112)1,,1(( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或26.下列矩阵中与矩阵合同的是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-5000210002( ) A 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---200020001 B 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-500020003 C 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001 D ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020002三、计算题(每小题9分,共63分)1.计算行列式),2,1,0(0000002211210n i a a c a c a c b b b a i nnnΛΛΛΛΛΛΛΛΛΛ=≠其中2.当⎪⎪⎩⎪⎪⎨⎧=+++=-++=+++=+++ax x x x x x x x x x x x x x x x a 4321432143214321710535105363132,线性方程组取何值时有解?在方程组有解时,用其导出组的基础解系表示方程组的通解。

同济大学线性代数期末试卷全套试卷(1至4套)

同济大学线性代数期末试卷全套试卷(1至4套)

《线性代数》期终试卷1( 2学时)本试卷共七大题一、填空题(本大题共7个小题,满分25分):1.(4分)设阶实对称矩阵的特征值为, , , 的属于的特征向量是, 则的属于的两个线性无关的特征向量是();2.(4分)设阶矩阵的特征值为,,,, 其中是的伴随矩阵, 则的行列式();3.(4分)设, , 则();4.(4分)已知维列向量组所生成的向量空间为,则的维数dim();5.(3分)二次型经过正交变换可化为标准型,则();6.(3分)行列式中的系数是();7.(3分) 元非齐次线性方程组的系数矩阵的秩为, 已知是它的个解向量, 其中, , 则该方程组的通解是()。

二、计算行列式:(满分10分)三、设, , 求。

(满分10分)四、取何值时, 线性方程组无解或有解?有解时求出所有解(用向量形式表示)。

(满分15分)五、设向量组线性无关, 问: 常数满足什么条件时, 向量组, , 也线性无关。

(满分10分)六、已知二次型,(1)写出二次型的矩阵表达式;(2)求一个正交变换,把化为标准形, 并写该标准型;(3)是什么类型的二次曲面?(满分15分)七、证明题(本大题共2个小题,满分15分):1.(7分)设向量组线性无关, 向量能由线性表示, 向量不能由线性表示 . 证明: 向量组也线性无关。

2. (8分)设是矩阵, 是矩阵, 证明: 时, 齐次线性方程组必有非零解。

《线性代数》期终试卷2( 2学时)本试卷共八大题一、是非题(判别下列命题是否正确,正确的在括号内打√,错误的在括号内打×;每小题2 分,满分20 分):1. 若阶方阵的秩,则其伴随阵。

()2.若矩阵和矩阵满足,则。

()3.实对称阵与对角阵相似:,这里必须是正交阵。

()4.初等矩阵都是可逆阵,并且其逆阵都是它们本身。

()5.若阶方阵满足,则对任意维列向量,均有。

()6.若矩阵和等价,则的行向量组与的行向量组等价。

()7.若向量线性无关,向量线性无关,则也线性无关。

线性代数期末试题及答案

线性代数期末试题及答案

第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

线性代数期末考试考核试卷

线性代数期末考试考核试卷
(答题括号:________)
4.以下哪个向量组构成一个基?
A. (1, 0, 0), (0, 1, 0), (0, 0, 0)
B. (1, 2, 3), (4, 5, 6), (7, 8, 9)
C. (1, 2, 3), (2, 4, 6), (1, 1, 1)
D. (1, 1, 0), (0, 1, 1), (1, 0, 1)
...
20.(根据实际题目内容填写答案)
二、多选题
1. BCD
2. ABCD
3. ABC
4. AB
5. ABC
...
20.(根据实际题目内容填写答案)
三、填题
1. 1
2.线性无关
3.主
...
10.(根据实际题目内容填写答案)
四、判断题
1. √
2. √
3. √
...
10. ×
五、主观题(参考)
1.向量组线性无关,可以通过计算行列式不为零来证明。一个可以由给定向量组线性表示的向量可以是它们的线性组合,例如\(a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3\),其中\(a, b, c\)是适当的系数。
D. (1, 1), (1, -1)
(答题括号:________)
5.在求解线性方程组时,以下哪些情况下可以使用高斯消元法?
A.系数矩阵是方阵
B.系数矩阵是非奇异的
C.方程组中方程的个数等于未知数的个数
D.方程组可能有无穷多解
(答题括号:________)
(以下题目类似,省略以节约空间)
6. ...
A.若A为m×n矩阵,则A的转置为n×m矩阵
B.若A为m×n矩阵,则A的转置为m×n矩阵

大一线性代数期末考试试题

大一线性代数期末考试试题

大一线性代数期末考试试题一、选择题(每题2分,共10分)1. 下列矩阵中,哪一个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, 1; 1, 1]D. [0, 1; 1, 0]2. 如果向量v = (3, -2)和向量w = (1, λ)平行,那么λ的值是多少?A. 3B. -2C. λD. 不能确定3. 对于n阶矩阵A,其行列式的值为0,这意味着:A. A是单位矩阵B. A是零矩阵C. A不是满秩矩阵D. A的所有特征值都是14. 线性变换T: R^3 → R^3,由矩阵[1, 2, 0; 0, 1, 2; 1, 1, 1]表示,该变换的特征向量对应的特征值是:A. 0B. 1C. 2D. 35. 对于向量空间V中的一组基B = {v1, v2, v3},向量v = 2v1 +3v2 - v3在基B下的坐标表示为:A. (2, 3, -1)B. (2, 3, 1)C. (2, 3, 0)D. (-1, 3, 2)二、填空题(每题3分,共15分)6. 矩阵A = [4, -1; 2, 3]的迹为______。

7. 如果线性方程组的系数矩阵为[1, 2; 3, 4],增广矩阵为[1, 2, 1; 3, 4, 0],则该方程组的解为______。

8. 对于向量空间W = {v ∈ R^4 | Av = 0},其中A = [1, 2, 3, 0; 0, 1, 2, 3],则W的维数为______。

9. 已知向量v = (1, 2, 3)和向量u = (4, -1, 2),则v·u(向量v和向量u的点积)等于______。

10. 若矩阵B可由矩阵A通过初等行变换得到,且A = [1, 2; 3, 4],则|B| = |A| = ______。

三、解答题(共75分)11. (15分)证明矩阵A和它的转置矩阵A^T具有相同的行列式值。

12. (20分)给定一个线性变换T: R^n → R^m,其中T由矩阵C表示,证明T的特征向量和矩阵C的特征向量在相同的特征值下是共线的。

线性代数期末试题及答案

线性代数期末试题及答案

8.设A 为三阶方阵, 且3=A , 则 12-=A .一、填空题(每小题2分,共20分)1.行列式=-203297302233241.2.设014111112--=D ,则=++333231A A A .3.设 , 231102 ⎪⎪⎭⎫ ⎝⎛-=A , 102324171⎪⎪⎪⎭⎫ ⎝⎛-=B 则= )( TAB . 4.设052=-+I A A ,则=+-1)2(I A .5.已知矩阵⎪⎪⎪⎭⎫⎝⎛-=100120121A ,*A 是A 的伴随矩阵,则=-1*)(A .6.A 、A 分别为线性方程组b AX =的系数矩阵与增广矩阵,则线性方程组b AX =有解的充分必要条件是 .7.设⎪⎪⎪⎭⎫ ⎝⎛-=30511132a A ,且秩(A )=2,则=a .9.向量组1(1,2,1,1),T α=-,)0,3,0,2(2T=αT )1,4,2,1(3--=α的秩等于 . 10.设21,αα是)3(≥n n 元齐次线性方程组OAX =的基础解系,则=)(A r .二、选择题(每小题2分,共20分)1.已知101yxy x aA =,则A 中元素a 的代数余子式11A 等于( ).A.1- B .1 C .a - D .a2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为1,1,2,3-,则=A ( ).A .3B .3-C .5D .5-3.B A ,均为n 阶矩阵,且2222)(BAB AB A ++=+,则必有( ).A.B A = B .I A = C .I B = D .BA AB =4.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ).A.0=+B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B5.设33⨯阶矩阵),,(1γβα=A ,),,(2γβα=B ,其中γβαα,,,21均为3维列向量,若2=A ,1-=B ,则=+B A ( ).A.4 B .4- C .2 D .16.设B AX =为n 个未知数m 个方程的线性方程组,,)(r A r =下列命题中正确的是( ).A .当n m =时,B AX =有唯一解 B .当n r =时,B AX =有唯一解C .当m r =时,B AX =有解D .当n r <时,B AX =有无穷多解7.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A .1或2B .1或-2C .-1或2D .-1或-28.n 阶矩阵A 的秩r n =的充分必要条件是A 中( ).A.所有的r 阶子式都不等于零 B .所有的1r +阶子式都不等于零 C.有一个r 阶子式不等于零 D .有一个r 阶子式不等于零, 且所有1r +阶子式都等于零9.设向量组,),,1(21T a a =α,),,1(22T b b =αT c c ),,1(23=α,则321,,ααα线性无关的充分必要条件是 ( ).A.c b a ,,全不为0 B .c b a ,,不全为0 C .c b a ,,互不相等 D .c b a ,,不全相等10.已知21,ββ为b AX =的两个不同的解,21,αα为其齐次方程组0A X =基础解系,21,k k 为任意常数,则方程组b AX =的通解可表成( ).A.2)(2121211ββααα-+++k kB .2)(2121211ββααα++-+k k线性代数期末试题答案一、填空题(每小题2分,共20分)1.52.03. ⎪⎪⎪⎭⎫⎝⎛-1031314170 4. )(31I A - 5.1/211/2011/2001/2-⎛⎫⎪⎪ ⎪⎝⎭6.)()(A r A r =7.6=a8. 38 9.2 10.2-n二、选择题(每小题2分,共20分)1.B2.C3.D4.D5.A6.C7.B8.D9.C 10.B 三、(8分)解:3211324-824823592373(1)373125212412411131D -===-----18361836(1)1313241=-=-=-四、(10分)解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=14191269629303212114321011324TAA (2)⎪⎪⎪⎭⎫⎝⎛-----=--461351341)2(1E A (3) 由XA AX2+=,得A XE A =-)2(A E A X 1)2(--=⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-----=9122692683321011324461351341五、(12分)解:将方程组的增广矩阵A 用初等行变换化为阶梯矩阵:22112411411242110228018211240134(1)(4)00(4)2k k k k k k k k k k k ⎡⎤⎢⎥----⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=-→-→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎣⎦⎣⎦+-⎢⎥-⎣⎦A所以,⑴ 当1k≠-且4k ≠时,()()3r r ==A A ,此时线性方程组有唯一解.⑵ 当1k =-时,()2=A r ,()3=A r ,此时线性方程组无解.⑶ 当4k=时,()()2==A A r r ,此时线性方程组有无穷多组解.此时,原线性方程组化为132334x x x x =-⎧⎨=-⎩ 因此,原线性方程组的通解为13233334x x x x x x=-⎧⎪=-⎨⎪=⎩或者写为123034101x x C x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x (C R)∈六、(10分)解:记向量组4321,,,αααα对应矩阵为A 并化为行阶梯形矩阵为12341223122324130212(,,,)12030013062300002634000A αααα--⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪ ⎪ ⎪==→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭所以向量组4321,,,αααα的秩为3且它的一个最大无关组为:123,,ααα或124,,ααα1004101020013000000A -⎛⎫⎪ ⎪- ⎪→⎪ ⎪ ⎪ ⎪⎝⎭41231432αααα=--+ 七、(12分)解:(1).⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=61826239131039131024511810957245113322311312A⎪⎪⎪⎪⎪⎭⎫⎝⎛----→0000000039131015801为自由未知量。

线性代数期末考试试卷+答案

线性代数期末考试试卷+答案

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题2分,共10分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.矩阵⎪⎪⎪⎭⎫ ⎝⎛=323122211211a a a a a a A 的行向量组线性 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。

( )2. 零向量一定可以表示成任意一组向量的线性组合。

( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。

( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0100100000010010A ,则A A =-1。

( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。

① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 s n )线性无关的充要条件是( )。

① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示 ④ s ααα,,, 21中不含零向量3. 下列命题中正确的是( )。

① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。

线性代数期末考试试卷及答案

线性代数期末考试试卷及答案

一、 填空题(每空3分,共15分)1、设A 为n 阶方阵,且3A =,则|3A |= 。

2、设矩阵5678A ⎡⎤=⎢⎥⎣⎦,则A *= 。

(其中A *是A 的伴随矩阵) 3、已知n 阶矩阵A 满足2A A =,则A 的特征值为 。

4、n 阶方阵A 与对角矩阵相似的充要条件是 。

5、二次型22212312133428f x x x x x x x =-+-+的实对称矩阵为 。

二、选择题(每小题3分,共15分)1、12021k k +≠+的充要条件是( )(A )1k ≠ (B )3k ≠-(C )1k ≠且3k ≠- (D )1k ≠或3k ≠-2、若111221226a a a a =,则121122212020021a a a a --的值为( ) ()A 12 ()B -12 ()C 18 ()D 03、设,A B 都是n 阶方阵,且0AB =,则下列一定成立的是( )()A 0A =或0B = (),B A B 都不可逆 (),C A B 中至少有一个不可逆 ()0D A B += 4、向量组()12,,,2s s ααα≥ 线性相关的充分必要条件是( )()A 12,,,s ααα 中含有零向量。

()B 12,,,s ααα 中有两个向量的对应分量成比例。

()C 12,,,s ααα 中每一个向量都可由其余1s -个向量线性表示。

()D 12,,,s ααα 中至少有一个向量可由其余1s -个向量线性表示。

5、当ad ≠bc 时,1a b c d -⎡⎤⎢⎥⎣⎦=( ) (A )d c b a -⎡⎤⎢⎥-⎣⎦(B )1d b c a ad bc -⎡⎤⎢⎥--⎣⎦(C )1d b c a bc ad ⎡⎤⎢⎥--⎣⎦(D )1d c b a ad bc -⎡⎤⎢⎥--⎣⎦三、(8分)计算行列式411102*********23D -=-四、(11分)求向量组()()()()12342,1,1,1,1,1,7,10,3,1,1,2,8,5,9,11αααα==-=--=的一个最大无关组,并将其余向量用此最大无关组线性表示。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。

答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。

答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。

答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。

答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。

线代期末考试试题

线代期末考试试题

线代期末考试试题### 线性代数期末考试试题#### 一、选择题(每题2分,共20分)1. 矩阵A的行列式为0,那么矩阵A是:- A. 可逆的- B. 不可逆的- C. 单位矩阵- D. 零矩阵2. 若向量\( \mathbf{v} = (1, 2, 3) \),求\( \mathbf{v} \)的模长:- A. 1- B. 2- C. 3- D. 63. 以下哪个矩阵是对称矩阵?- A. \( \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \)- B. \( \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \)- C. \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)- D. \( \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \)4. 线性变换\( T \)将向量\( \mathbf{v} \)映射到\( \mathbf{v} \)本身,那么\( \mathbf{v} \)是:- A. 零向量- B. 特征向量- C. 单位向量- D. 任意向量5. 矩阵的特征值是:- A. 矩阵的对角线元素- B. 矩阵的行列式- C. 矩阵的迹- D. 满足\( Av = \lambda v \)的\( \lambda \)...(此处省略其他选择题)#### 二、填空题(每空2分,共20分)1. 矩阵\( A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \)的特征多项式是\( \lambda^2 - \_ \_ \_ \)。

2. 若向量\( \mathbf{u} = (4, -1) \)和\( \mathbf{v} = (2, 3) \),则\( \mathbf{u} \)和\( \mathbf{v} \)的点积是\( 4 \times 2 + (-1) \times 3 = \_ \_ \)。

《线代》期末练习卷(答案)aaaaaa

《线代》期末练习卷(答案)aaaaaa

新增题目答案8.矩阵,A B 分别为2阶与3阶可逆矩阵,且11234A -⎛⎫= ⎪⎝⎭,11012B -⎛⎫= ⎪⎝⎭,则A O O B ⎛⎫ ⎪⎝⎭的逆矩阵为解:A O O B ⎛⎫⎪⎝⎭:分块对角矩阵的逆矩阵是111200340000100012A O OB --⎛⎫ ⎪⎛⎫ ⎪=⎪ ⎪⎝⎭ ⎪⎝⎭9. 已知矩阵211421211A a ⎛⎫ ⎪=+ ⎪ ⎪⎝⎭,且()1r A =,则a = 1解:()1301r A A a =<⇒=⇒=10. 计算范德蒙行列式1111123414916182764= 12解:范德蒙行列式:书P29 例6三、计算题(本大题共5小题,共54分)5. (12分) 设向量组123,,ααα线性无关,证明:向量组122331,,αααααα+++线性无关.解:P130 例5请大家注意:P160 习题 13 证明线性无关,思路一样:具体如下:设向量组123,,ααα线性无关,证明:向量组112123,,αααααα+++线性无关证明:方法一:(反证)假设向量组112123,,αααααα+++线性相关,即有一组不全为0的数:123,,k k k 使得 ()()1121231230k k k αααααα+++++= 整理成:()()1231232330k k k k k k ααα+++++=而123,,ααα线性无关,故123233000k k k k k k ++=⎧⎪+=⎨⎪=⎩ (1)因为11101110001=≠,故方程组(1)只有零解,即1230k k k ===,与假设矛盾,所以向量组112123,,αααααα+++线性无关。

线性代数期末测试卷

线性代数期末测试卷

一、填空题(3分×5=15分)1. 若方程组121230220x x x x λ+=⎧⎨+=⎩有非零解,则λ=_____.2. 若A 与B 均为四阶方阵,2,2,A B ==-则12AB -=_____.3. 设=(100)T α,,,=(001)T β,,,=(3 0 4 )T γ-,,,则γ由,αβ线性表示的表达式_____.4. 设一排列为67345218,则其逆序数为 _____.5. 设3阶方阵A 的特征值分别为-2,1 ,2 ,则22A A +=_____.二、单项选择题(3分×5=15分)1. 设,A B 分别为m n ⨯和n m ⨯矩阵()m n ≠,则_____的运算结果不是n 阶方阵.A. BAB.ABC. ()T BAD. T T A B2. 设A 为3阶方阵,且2A =,2A *=_____.A. 4B. 8C. 16D. 323. 设=(21)t β-,,可由1=(143)α,,, 2=(231)α-,,线性表示,则t =_____. A. 1 B. -2C. 3D. -34. 设A 为43⨯的矩阵,B 为四阶可逆矩阵,且()3R A =,则矩阵AB 的秩为_____.A. 1B. 2C. 3D. 45. 设()1R A n =-,n 元线性方程组(0)Ax b b =≠有三个互不相同的解,αβ和γ,则导出组基础解系为_____.A. ,,αβγB.α-βC. α+βD. ,αβ三、计算题(10分×6=60分)1. 计算行列式2345345245235234 .2. 已知矩阵=(121)A ,,和=(112)B ,,,求()T n A B (n 为正整数). 3. 求1=(1 11 ,1 )T α--,,,,2=(0 21 , 1 )T α,,,-,3=(1 11 , 1 )T α-,,,-,4=(0 01 ,2 )T α,,,,5=(20 0 ,0 )T α,,,的一个最大线性无关组,并用最大线性无关组表示其余向量.4. 求矩阵X ,使其满足AX B =,其中100210321A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,110110B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭.5. 求方程组12341234123421422221x x x x x x x x x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩的通解.6. 求矩阵123213336A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的特征值与特征向量.四、证明题(5分×2=10分)1. 设方阵A 满足270A A E +-=,求证:A 及3A E +,并求1A -及()13A E +-.2. 设123,,ααα线性无关,证明向量组112123123,,b b b =α=α+α=α+α+α也线性无关.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建师范大学协和学院 11 - 12学年第 1 学期
10 级 《线性代数》 期末模拟练习
一、 单项选择题(本大题共8小题,每小题2分,共16分)
1. 在下面的排列中,为奇排列的是( )
A. 34125
B. 34152
C. 24153
D. 31452 2. 1
1
1
1101
2
λλ
-=的充分必要条件为( ) A. 12λλ=-=且 B.12λλ≠-≠或 C. 12λλ=-=或 D.12λλ≠-≠且 3. 设A B 、均为n 阶矩阵,且A B O =,则( ) A. A O B O ==或 B. A B O += C. 00A B ==或 D. 0A B += 4.矩阵1113
1521
3A ⎛⎫

= ⎪ ⎪⎝

的秩()r A =( ) A. 0 B. 1 C. 2 D. 3 5.设A B 、均为n 阶可逆矩阵,则下列公式正确的是( ) A. 111()A B A B ---+=+ B. 1
1
1
()(0)A A λλλ
--=

C.1
*
A
A A -= D.111()A
B A B ---=
6. 设n 元未知量的线性方程组A x b =有无穷多解,则( )
A. ()r A n =
B. ()r A n ≤
C. ()r A n <
D. ()r A n > 7. 向量组12,,,s ααα (2s ≥)线性相关的充要条件是( )
A. 12,,,s ααα 中至少有两个向量成比例
B. 12,,,s ααα 中至少有一个零向量
C. 12,,,s ααα 的秩为s
D. 12,,,s ααα 中至少有一个向量可由其余向量线性表示 8.下列命题错误的是( )
A. 12,ξξ是齐次线性方程组0A x =的解,则1235ξξ+也是0A x =的解
B.若向量组12,n βββ ,,
线性相关,则向量组12,,n a βββ ,,也线性相关
C.矩阵m n A ⨯的秩()min{,}R A m n ≤
D. 若矩阵A 中有某个t 阶子式为零,则()R A t <
二、填空题(本大题共10小题,每小题3分,共30分)
1. 已知四阶矩阵A 的笫三行元素分别是-1,2,0,1,与它们相应的余子式分别是5,0,-7,4,则
行列式=A _________.
2.11
1213
21
222331
32
33
0a a a a a a M a a a =≠,则1121
1222
1323
21222331
32
33
444222a a a a a a a a a a a a +++=
3.设矩阵1234,1
11
1A B ⎛⎫⎛⎫
==
⎪ ⎪--⎝⎭⎝⎭
,则23A B A B -+= . 4. 设A 是四阶方阵,且12
A =, 则1*(3)2A A --=________(*A 是A 的伴随矩阵).
5.3阶方阵A 的行列式A =2,则2A -=
6. 若线性方程组123123123000
x x x x x x x x x λλλ++=⎧⎪
++=⎨⎪++=⎩只有零解,则常数λ满足 .
7.向量1131α⎛⎫ ⎪= ⎪ ⎪-⎝⎭,2012α⎛⎫ ⎪= ⎪ ⎪⎝⎭,341k α⎛⎫

= ⎪ ⎪⎝⎭
线性相关,则常数k = .
8.矩阵,A B 分别为2阶与3阶可逆矩阵,且1
1234A -⎛⎫= ⎪⎝⎭,1
1012B -⎛⎫= ⎪⎝⎭,则A
O O B ⎛⎫
⎪⎝⎭
的逆矩阵为 9. 已知矩阵2
114
2121
1A a ⎛⎫

=+ ⎪ ⎪⎝

,且()1r A =,则a = 1
10. 计算范德蒙行列式1111
1234
14916
182764
= 12
三、计算题(本大题共5小题,共54分)
1.(8分)计算四阶行列式.
1222
2122
2212
2221
D=
2.(10分)已知矩阵
301
110
014
A
⎛⎫

=


⎝⎭
,且AB A B
=+,求B.
3. (12分)已知向量组
11 1 2
α
⎛⎫

=


⎝⎭

2
2
3
5
α
⎛⎫

=


⎝⎭

3
1
2
5
α
⎛⎫

=


⎝⎭

4
3
2
7
α
⎛⎫

=


⎝⎭
,求一个极大无关组,并把
其余向量用该极大无关组线性表示。

4. (12分)用基础解系表示如下线性方程组的全部解.
1234123412341
23423026413287162
x x x x x x x x x x x x x x x x +-+=⎧⎪
+-+=-⎪⎨+-+=-⎪
⎪---=-⎩
5. (12分) 设向量组123,,ααα线性无关,证明:向量组122331,,αααααα+++线性无关.。

相关文档
最新文档