七年级数学一元一次方程同步讲义

合集下载

人教版同步教参七年级数学-一元一次方程:一元一次方程的相关概念

人教版同步教参七年级数学-一元一次方程:一元一次方程的相关概念

一元一次方程第1节 一元一次方程的基本概念【知识梳理】1.方程的相关概念(1)方程:含有未知数的等式叫做方程.(2)方程的已知数和未知数.已知数:一般是具体的数值,如50x +=中(x 的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上用a b c m n 、、、、等表示.未知数:是指要求的数,未知数通常用x y z 、、等字母表示,如:关于x y 、的方程2ax by c -=中,2a b c -、、是已知数,,x y 是未知数.(3)方程的解:使方程左、右两边相等的未知数的值,叫做方程的解.(4)解方程:求方程的解的过程叫做解方程.(5)方程解的检验要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是.2.一元一次方程的定义(1)一元一次方程的概念只含有一个未知数,未知数的最高次数是1,这样的方程叫做一元一次方程.(2)一元一次方程的形式标准形式:0ax b +=(其中0,,a a b ≠是已知数).最简形式:ax b =(其中0,,a a b ≠是已知数).注:一元一次方程的判断标准(首先化简为标准形式或最简形式) ①只含有一个未知数(系数不为零).②未知数的最高次数是1.③方程是整式方程.3.等式的概念和性质(1)等式的概念:用等号“=”来表示相等关系的式子,叫做等式.(2)等式的性质等式的性质1:等式两边都加上(或减去)同一个数或同一个式子,所得结果仍是等式.若a b =,则.a m b m ±=±.等式的性质2:等式两边都乘以(或除以)同一个数或同一个式子(除数不能是O ),所得结果仍是等式.若a b =,则,(0)a b am bm m m m==≠ (3)等式的其他性质①对称性:若a b =,则b a =,②传递性:若,a b b c ==,则a c =. 【诊断自测】1、下列叙述中,正确的是( )A .方程是含有未知数的式子B .方程是等式C .只有含有字母x ,y 的等式才叫方程D .带等号和字母的式子叫方程2、下列说法中,正确的是( )A .代数式是方程B .方程是代数式C .等式是方程D .方程是等式3、下列各式不是方程的是( )A .3x 2+4=5B .m+2n=0C .x=﹣3D .4y >3 4、下列各式中:①x=0;②2x>3;③x 2+x ﹣2=0;④+2=0;⑤3x﹣2;⑥x=x﹣1;⑦x﹣y=0;⑧xy=4,是方程的有( )A .3个B .4个C .5个D .6个【考点突破】类型一:方程的概念例1、下列式子中,是方程的是( )A .x ﹣1≠0B .3x ﹣2C .2+3=5D .3x=6答案:D解析:A、是不等式,故A错误;B、是多项式,故B错误;C、不含未知数的等式,故C错误;D、含有未知数的等式叫方程,故D正确;故选:D.例2、在①2x+1;②1+7=15﹣8+1;③;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个答案:B解析:(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15﹣8+1,是等式但不含未知数,所以不是方程.(3),是含有未知数的等式,所以是方程.(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选B.例3、下列判断正确的是()A.方程是等式,等式就是方程 B.方程是含有未知数的等式C.方程的解就是方程的根 D.方程2x=3x没解答案:B解析:含未知数的等式叫方程,故A错误,B正确;一元方程的解就是方程的根,但是多原方程的解不能叫作方程的根,故C错误;方程2x=3x的解为x=0,故D错误.故选:B.例4、已知下列式子:①6x﹣3=8;②6﹣2=4;③x+y;④;⑤3x﹣4y;⑥;⑦x=3;⑧x+2>3,其中方程的个数是()A.4 B.6 C.7 D.8答案:A解析:①6x﹣3=8符合方程的定义,故本小题正确;②6﹣2=4不含有未知数,故本小题错误;③x+y不是等式,故本小题错误;④符合方程的定义,故本小题正确;⑤3x﹣4y不是等式,故本小题错误;⑥符合方程的定义,故本小题正确;⑦x=3符合方程的定义,故本小题正确;⑧x+2>3不是等式,故本小题错误.所以①④⑥⑦是方程.故选A.例5、下列四个式子中,是方程的是()A.π+1=1+πB.|1﹣2|=1 C.2x﹣3 D.x=0答案:D解析: A、π是常数,不是未知数,所以π+1=1+π不是方程.B、|1﹣2|=1不含未知数,不是方程.C、2x﹣3不是等式,不是方程.D、x=0是含有未知数的等式,是方程.故选D.类型二:方程的解例6、方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C.2 D.8答案:D解析:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.例7、已知x=2是关于x的方程3x+a=0的一个解,则a的值是()A.﹣6 B.﹣3 C.﹣4 D.﹣5答案:A解析:把x=2代入方程得:6+a=0,解得:a=﹣6.故选:A .例8、下列方程的根是x=0的是( )A .=0B .=1C .﹣5x=0D .2(x ﹣1)=0答案:C解析:A 、=≠0,故A 错误;B 、0不能作除数,故B 错误;C 、﹣5x=﹣5×0=0,故C 正确;D 、2(x ﹣1)=2(0﹣1)≠0,故D 错误;故选:C .例9、已知关于x 的方程3x+2a=2的解是a ﹣1,则a 的值是( )A .1B .C .D .﹣1答案:A解析:根据题意得:3(a ﹣1)+2a=2,解得a=1故选:A .例10、下列方程的解是x=2的方程是( )A .4x+8=0B .﹣x+=0C .x=2D .1﹣3x=5答案:B解析:把x=2代入各方程验证可得出x=2是方程﹣x+=0的解.故选:B .例11、已知x=1是方程x+2a=﹣1的解,那么a 的值是( )A .﹣1B .0C .1D .2答案:A解析:把x=1代入方程,得:1+2a=﹣1,解得:a=﹣1.故选A .例12、已知是方程09432=+-my x 的一个解,那么m 等于( )A .﹣B .C .D .﹣ 答案:B解析:把已知代入方程09432=+-my x 可得:12﹣12m+9=0,解得m=,故选B .类型三:等式的性质例13、已知方程x ﹣2y+3=8,则整式x ﹣2y 的值为( )A .5B .10C .12D .15答案:A解析:由x ﹣2y+3=8得:x ﹣2y=8﹣3=5,故选A例14、下列说法正确的是( )A .如果ac=bc ,那么a=bB .如果,那么a=bC .如果a=b ,那么D .如果,那么x=﹣2y答案:B解析:A 、根据等式性质2,需加条件c ≠0;B 、根据等式性质2,两边都乘以c ,即可得到a=b ;C 、根据等式性质2,当c ≠0时成立; D 、根据等式性质2,两边都乘以﹣3,应得到x=﹣18y ;故选B . 例15、下列各式说法错误的是( )A .如果x=y ,那么﹣3ax=﹣3ayB .如果=,那么x=yC .如果ac=bc ,那么a=bD .如果a=b ,那么-a=-b答案:C.解析:A 、如果x=y ,﹣3ax=﹣3ay ,故A 正确;B 、如果,那么x=y ,故B 正确C 、如果ac=bc (c ≠0),那么a=b ,故C 错误;D 、如果a=b ,那么-a=-b ,故D 正确;故选:C .例16、如果a=b ,那么下列结论中不一定成立的是( )A .=1B .a ﹣b=0C .2a=a+bD .ab a =2答案:A.解析: A 、b=0时,两边除以0无意义,故A 错误;B 、两边都减b ,故B 正确;C 、两边都加a ,故C 正确;D 、两边都乘以a ,故D 正确;故选:A .例17、已知等式3a=2b+5,则下列等式中不一定成立的是( )A .3a ﹣5=2bB .3a+1=2b+6C .3ac=2bc+5D .a= 答案:C解析:A 、根据等式的性质1可知:等式的两边同时减去5,得3a ﹣5=2b ;B 、根据等式性质1,等式的两边同时加上1,得3a+1=2b+6;D 、根据等式的性质2:等式的两边同时除以3,得a=; C 、当c=0时,3ac=2bc+5不成立,故C 错.故选:C . 类型四:一元一次方程的定义例18、若方程22(1)20m x mx x ---+=是关于x 的一元一次方程,则代数式|m ﹣1|的值为( )A .0B .2C .0或2D .﹣2 答案:A解析:由已知方程,得∵方程22(1)20m x mx x ---+=是关于x 的一元一次方程,∴且﹣m ﹣1≠0,解得,m=1,则|m ﹣1|=0.故选:A .例19、若关于x 的方程03)2(2=+--m x m 是一元一次方程,则m 的值是( )A .±3B .3C .﹣3D .都不对答案:A 解:∵方程03)2(2=+--m x m 是一元一次方程,∴|m|﹣2=1,且m ﹣2≠0,解得m=±3,故选:A .例20、若方程075)12(52--++-b x x a 是一元一次方程,则方程ax+b=1的解是()A .x=6B .x=﹣6C .x=﹣8D .x=8答案:A 解析:∵方程03)2(2=+--m x m 是一元一次方程,∴2a+1=0,b ﹣3=1,解得:a=﹣,b=4,代入方程ax+b=1得:﹣x+4=1,解得:x=6,故选:A .例21、若6)2(32=--m x m 是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数答案:A 02)1()1(22=++--x m x m 012=-m解析:根据一元一次方程的特点可得, 解得m=1.故选A .例22、已知18)3(2=--m xm 是关于x 的一元一次方程,则( ) A .m=2 B .m=﹣3C .m=±3D .m=1 答案:B 解析:已知18)3(2=--m xm 是关于的一元一次方程,则|m|﹣2=1,解得:m=±3,又∵系数不为0,∴m ≠3,则m=﹣3.故选B . 【易错精选】1、在下列方程中①122=+x x ,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有( )个.A .1B .2C .3D .4 2、下列方程=x ,=2,x 2﹣3x=1,x+y=2是一元一次方程的有( )个. A .1 B .2 C .3D .4 3、已知关于x 的方程04222=-+-b xax 是一元一次方程,则b a x +的值为( ) A .2 B .﹣4 C .6 D .8【精华提炼】1、等式(1)用等号“=”来表示相等关系的式子,叫做等式.(2)在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.(3)等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则.2、方程方程:含有未知数的等式叫方程,如21x +=,它有两层含义:①方程必须是等式;②等式中必须含有未知数3、方程的解方程的解:使方程左右两边的值相等的未知数的值;只含有一个未知数的方程的解,也叫方程的根。

初一一元一次方程讲义

初一一元一次方程讲义

一元一次方程教案教学目标:通过具体的例子让学生体会去分母解一元一次方程的简捷性和重要性,熟练掌握去分母解一元一次方程。

教学重难点:运用去分母解一元一次方程。

去分母时需要注意的问题。

教学过程1.一元一次方程的有关概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程.(2)一元一次方程的标准形式是:2.等式的基本性质(1)等式的两边都加上或减去或,所得的结果仍是等式.(2)等式的两边都乘以或都除以,所得的结果仍是等式. 3.解一元一次方程的基本步骤:解方程 1.32243332=+--x x 2.1423(1)(64)5(3)25x x x --++=+ 3.21101211364x x x -++-=- 4.22314615+=+---x x x x 5.003.002.003.0255.09.03.0=+---+x x x 6.83161.20.20.55x x x +-+-=-1. ⎥⎦⎤⎢⎣⎡+-=--)13(2131)2(322x x x x 2.1111(3)3302222y ⎧⎫⎡⎤---=⎨⎬⎢⎥⎣⎦⎩⎭例6.x 取何值时,代数式 63x + 与 832x- 的值相等.例7.已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.例8. 已知1x =-是关于x 的方程 327350x x kx -++= 的解,求221195k k --的值.例9.当.38322倍的的值是为何值时,代数式x x x x ++-例10. 若对于任意的两个有理数m, n 都有m ※n=43nm +,解方程3x ※4=2.1.甲`乙两件衣服成本共500元,甲按50%利润定价,乙按40%利润定价。

卖时客户要求两件均按9折出售,最终本店获得了157元,求两件衣服的各成本。

2.一个乘客乘机行李最多20kg 超过的按机票价的1.5%买行李票,李先生带了35kg 的行李上飞机,所有票共付了1323元,求李先生的机票价。

【北师大】七年级上册数学 第15讲 一元一次方程的解法 讲义(含答案)

【北师大】七年级上册数学 第15讲 一元一次方程的解法 讲义(含答案)
5.解:- 13的倒数是-3,∵2x-3与- 13互为倒数,∴2x-3=3,解得:x=0.故填0.
6.解:移项得:x=3+5=8,故填8.
7.解:去括号得:5x-25+2x=-4
移项得:7x=21
系数化为1得:x=3
8.解:原方程可化为:2x=7-1
合并得:2x=6
系数化为1得:x=3
9.解:〔1〕去括号得:8x+12=8-8x-5x+10,
【例8】关于x的方程mx+2=2〔m-x〕的解满足|x-12|-1=0,求m的值.
同步练习
1.|2-23x|=4,那么x的值是〔 〕
A、-3B、9C、-3或9D、以上结论都不对
2.方程|3x|=15的解的情况是〔 〕
A、有一个解,是5B、无解C、有无数个解D、有两个解,是±5
3.使方程3|x+2|+2=0成立的未知数x的值是〔 〕
四、典型例题
〔一〕一元一次方程的解
【例1】3是关于x的方程2x-a=1的解,那么a的值是〔 〕
A、-5B、5C、7D、2
【例2】假设关于x的一元一次方程2x-k/3-x-3k/2=1的解是x=-1,那么k的值是〔 〕
A、27B、1C、-13/11D、0
【例3】请写出一个解为x=2的一元一次方程:
【例4】5是关于x的方程3x-2a=7的解,那么a的值为.
7.解:把x=0代入方程2x+n3+1=1-x2+n得:n3+1=12+n,去分母得:2n+6=3+6n,∴n=34,即当n=34时,关于x的方程2x+n3+1=1-x2+n的解为0.
〔二〕解一元一次方程

人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义

人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义

人教版七年级数学下册第9章。

一元一次不等式组知识点专题复习讲义一元一次不等式组知识点专题复讲义一、知识梳理1.知识结构图概念基本性质不等式的解法不等式的定义不等式的解集一元一次不等式的解法实际应用一元一次不等式组的解法二、知识点回顾1.不等式不等式是由不等号连接起来的式子。

常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”。

2.不等式的解与解集不等式的解是使不等式成立的未知数的值。

不等式的解集是一个含有未知数的不等式的解的全体。

解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

3.不等式的基本性质1) 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

4.一元一次不等式一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于的不等式叫做一元一次不等式。

其标准形式为:ax+b<或ax+b≤,ax+b>或ax+b≥0(a≠0)。

5.解一元一次不等式的一般步骤1) 去分母;2) 去括号;3) 移项;4) 合并同类项;5) 化系数为1.删除格式错误的段落。

对于每段话,进行小幅度的改写,使其更加通顺易懂。

解一元一次不等式和解一元一次方程类似。

不同的是,一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。

这是解不等式时最容易出错的地方。

例如,解不等式:-2/3x-1≤1/3解:去分母,得(3x-1)-2(3x-1)≤2(不要漏乘!每一项都得乘)去括号,得3x-3-6x+2≤2(注意符号,不要漏乘!)移项,得3x-6x≤2+3-1(移项要变号)合并同类项,得-3x≤4(计算要正确)系数化为1,得x≥-4/3(同除负,不等号方向要改变,分子分母别颠倒了)一元一次不等式组是含有相同未知数的几个一元一次不等式所组成的不等式组。

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

人教版七年级数学上册第三章一元一次方程
请你判断下列给定的t的值中,哪个是方程2t+1=7-t 的解?
(1)t=-2 (2)t=2 (3)t=1 根据方程的解的定义,我们得到t=2是方程2t+1=7-t 的解.
人教版七年级数学上册第三章一元一次方程
1.方程x=3是下列哪个方程的解?( C )
(A)3x+9=0
人教版七年级数学上册第三章一元一次方程
你知道什么 叫方程吗?
含有未知数的等式—方程
你能举出一些 方程的例子?
练习:
判断下列式子是不是方程,正确的打“√”,错误的打”×”:
(1) 1+2=3 (2) 1+2x=4 (3) x+1-3
(×) (4) x 2 1 (×)
(√) (5) x+y=2
4.已知数x-5与2x-4的值互为相反数,列出关于x的方程. 解:由题意得:(x-5)+(2x-4)=0.
人教版七年级数学上册第三章一元一次方程
1.方程、方程的解、一元一次方程的概念. 2.根据实际问题中的等量关系,用一元一次方程表示问 题中的数量关系. 注:分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法.
秀水两地之间,距青山50千米,距秀水70千米,
王家庄到翠湖的路程有多远?
回顾:路程=速度×时间 速度=路程÷时间
时间=路程÷速度
人教版七年级数学上册第三章一元一次方程
分析:若知道王家庄到翠湖的路程(比如x千米), 用含x的式子表示关于路程的数量: 那么王家庄距青山_(__x_-_5_0_)_千米,王家庄距秀水(_x_+_7_0_)_千米. 有关时间的数量: 从王家庄到青山行车___3__小时,王家庄 到秀水行车__5__小时.

(优质讲义)七年级上册数学一元一次方程应用题专项讲义

(优质讲义)七年级上册数学一元一次方程应用题专项讲义

一元一次方程解的综合与应用学生/课程年级学科授课教师日期时段核心内容方程解的综合与一元一次方程的实际应用(基础)课型教学目标1.掌握有关方程的解的综合应用;2.掌握分析解决实际问题的一般方法及步骤;提高分析实际问题中数量关系的能力,能熟练找出相等关系并列出方程;3.熟悉数字,年龄,积分,行程等问题的解题思路.重、难点1.根据实际环境,分析题目中各个条件间关系,找等量关系,列方程.2.熟悉数字,年龄,积分,行程等问题的解题思路.知识导图导学一:一元一次方程解的综合知识点讲解 1:含参数的解应用例 1. 方程2﹣3(x+1)=0的解与关于x的方程的解互为倒数,求k的值.我爱展示1. 已知:方程x+k=2的解比方程的解大1,求k的值.知识点讲解 2:整数解问题例 1. 已知关于x的方程k(x+1)=k﹣2(x﹣2)中,求当k取什么整数值时,方程的解是整数.我爱展示1. m取什么整数时,关于x的方程4x + m(x﹣6)=2(2﹣3m)的解是正整数.并求出方程的解.知识点讲解 3:错解方程例 1. 数学迷小虎在解方程去分母时,方程右边的﹣1漏乘了3,因而求得方程的解为x=﹣2,请你帮小虎同学求出A的值,并且正确求出原方程的解.【学有所获】1、方程的解,即为使等式两边成立的未知数值;2、解一元一次方程的步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.我爱展示1. 刘彬的练册上有一道方程题,其中一数字被墨水污染了,成了(“■”表示被墨水污染的数字),他翻了书后的答案,才知道这个方程的解为x=﹣1,于是他把被墨水污染的数字求了出来.你能把刘彬的计算过程写出来吗?(提示:设“■”数字为A,求A的值)知识点讲解 4:新定义计算例 1. 定义一种新运算“⊕”:A⊕B=A﹣2B,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x﹣3)⊕(x+1)=1,求x的值.我爱展示1. 若A、B、C、D均为有理数,现规定一种新的运算,若已知:.(1)的值为;(2)时,求x的值.导学二:和差倍积问题例 1. 已知y1=6﹣x,y2=2+7x,当x取何值时,y1与y2互为相反数?我爱展示1. x为何值时,代数式(2x﹣1)的值比(x+3)的值的3倍少5.导学三:年龄、数字问题例 1. 今年母女两人的年龄和为60岁,10年前母亲的年龄是女儿的7倍,则今年女儿的年龄为岁.例 2. [单选题] 一个三位数,个位数是A,十位数是B,百位数是C,这个三位数是()A.A+B+C B.ABC C.100A+10B+C D.100C+10B+A例 3. 把2016个正整数1,2,3,4,…,2016按如图方式排列成如图所示的数的方阵.(1)如图,用一个正方形框,在表中任意框住4个数,记左上角的一个数为x,另三个数x的代数式表示,则从小到大依次是,,.(2)当(1)中被框住的4个数之和等于2016时,x的值为多少?(3)在(1)中能否框住这样的4个数,使它们的和等于2015,等于2032.若能,求出x的值;若不能,说明理由.我爱展示1.[单选题] 若x表示一个两位数,y也表示一个两位数,小明想用x,y来组成一个四位数,且把x放在y的右边,你认为下列表达式中正确的是()A.yx B.x+y C.100x+y D.100y+x2.[单选题] 小明同学在某月的日历上圈出了三个相邻的数A、B、C,并求出了它们的和为42,则这三个数在日历中的排列位置不可能的是()A.B.D.C.3.先观察,再解答.如图(1)是生活中常见的月历,你对它了解吗?(1)图(2)是另一个月的月历,A表示该月中某一天,B、C、D是该月中其它3天,B、C、D与A有什么关系?B= ;C= ;D= .(用含A的式子填空).(2)用一个长方形框圈出月历中的三个数字(如图3﹣2﹣2 (2)中的阴影),如果这三个数字之和等于51,这三个数字各是多少?(3)这样圈出的三个数字的和可能是64吗?为什么?导学四:比赛积分问题例 1. 七年级进行法律知识竞赛,共有30道题,答对一道题得4分,不答或答错一道题扣2分.(1)小红同学参加了竞赛,成绩是90分,请问小红在竞赛中答对了多少道题?(2)小明也参加了竞赛,考完后他说:“这次竞赛我一定能拿到100分.”请问小明有没有可能拿到100分?试用方程的知识来说明理由.我爱展示1.为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2 分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?2.某电视台组织知识竞赛,共设20道选择题,每题必答,如表记录了3个参赛者的得分情况.(1)参赛者小婷得76分,她答对了几道题?(2)参赛者小明说他得了80分.你认为可能吗?为什么?导学五:行程问题知识点讲解 1:一般问题三个基本量间的关系:路程=速度×时间利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

一元一次方程(压轴必刷30题)—2024学年七年级数学上册同步讲义(浙教版)(解析版)

一元一次方程(压轴必刷30题)—2024学年七年级数学上册同步讲义(浙教版)(解析版)

一元一次方程(压轴必刷30题5种题型专项训练)一.一元一次方程的定义(共1小题)1.(2022春•雁峰区校级月考)已知(m2﹣9)x2﹣(m﹣3)x+6=0是以x为未知数的一元一次方程,如果|a|≤|m|,那么|a+m|+|a﹣m|的值为()A.2B.4C.6D.8【分析】根据一元一次方程的定义,则x2系数为0,且x系数≠0,得出m=﹣3;由|a|≤|m|,得a﹣m≥0,a+m≤0,∴|a+m|+|a﹣m|=﹣a﹣m+a﹣m=﹣2m=6.【解答】解:∵一元一次方程则x2系数为0,且x系数≠0∴m2﹣9=0,m2=9,m=±3,﹣(m﹣3)≠0,m≠3,∴m=﹣3,|a|≤|﹣3|=3,∴﹣3≤a≤3,∴m≤a≤﹣m,∴a﹣m≥0,|a﹣m|=a﹣m,a+m≤0,|a+m|=﹣a﹣m,∴原式=﹣a﹣m+a﹣m=﹣2m=6.故选:C.【点评】本题主要考查了如何去绝对值以及一元一次方程的定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1.根据一元一次方程的定义求m的值.去绝对值时注意a+m、a﹣m 与0的关系.二.一元一次方程的解(共2小题)2.(2022秋•拱墅区月考)若关于x的方程(k﹣2019)x﹣2017=7﹣2019(x+1)的解是整数,则整数k的取值个数是()A.2B.3C.4D.6【分析】原方程依次去括号,移项,合并同类项,系数化为1,得到关于k的x的值,根据“该方程的解是整数”,得到几个关于k的一元一次方程,解之即可.【解答】解:方程(k﹣2019)x﹣2017=7﹣2019(x+1)整理化简,可得kx=5,即x=,∵该方程的解是整数,k为整数,∴x=1或﹣1或5或﹣5,即=1或﹣1或5或﹣5,解得:k=5或﹣5或1或﹣1,∴整数k的取值个数是4个,故选:C.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.3.(2021秋•天门月考)已知a,b为定值,关于x的方程=1﹣,无论k为何值,它的解总是1,则a+b=.【分析】把x=1代入方程=1﹣,得:=1﹣,整理可得(2+b)k+2a﹣4=0,再根据题意可得2+b=0,2a﹣4=0,进而可得a、b的值,从而可得答案.【解答】解:把x=1代入方程=1﹣,得:=1﹣,2(k+a)=6﹣(2+bk),2k+2a=6﹣2﹣bk,2k+bk+2a﹣4=0,(2+b)k+2a﹣4=0,∵无论k为何值,它的解总是1,∴2+b=0,2a﹣4=0,解得:b=﹣2,a=2.则a+b=0.故答案为:0.【点评】本题主要考查方程解的定义,由k可以取任何值得到a和b的值是解题的关键.三.解一元一次方程(共3小题)4.(2021春•余杭区校级月考)用⊕表示一种运算,它的含义是:A⊕B=.如果,那么3⊕4=.【分析】根据题中的新定义化简已知等式求出x的值,所求式子利用新定义化简后,将x的值代入计算即可求出值.【解答】解:根据题中的新定义得:2⊕1=+=,去分母得:2+x=10,即x=8,则3⊕4=+=+=.故答案为:【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.5.(2021秋•潮安区期末)小东同学在解一元一次方程时,发现这样一种特殊现象:x+=0的解为x=﹣,而﹣=﹣1;2x+=0的解为x=﹣,而﹣=﹣2.于是,小东将这种类型的方程作如下定义:若一个关于x的方程ax+b=0≠0)的解为x=b﹣a,则称之为“奇异方程”.请和小东一起进行以下探究:(1)若a=﹣1,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由;(2)若关于x的方程ax+b=0(a≠0)为奇异方程,解关于y的方程:a(a﹣b)y+2=(b+)y.【分析】(1)把a=﹣1代入原方程解得:x=b,若为“奇异方程”,则x=b+1,由于b≠b+1,根据“奇异方程”定义即可求解;(2)根据“奇异方程”定义得到a(a﹣b)=b,方程a(a﹣b)y+2=(b+)y可化为by+2=(b+)y,解方程即可求解.【解答】解:(1)没有符合要求的“奇异方程”,理由如下:把a=﹣1代入原方程解得:x=b,若为“奇异方程”,则x=b+1,∵b≠b+1,∴不符合“奇异方程”定义,故不存在;(2)∵ax+b=0(a≠0)为奇异方程,∴x=b﹣a,∴a(b﹣a)+b=0,a(b﹣a)=﹣b,a(a﹣b)=b,∴方程a(a﹣b)y+2=(b+)y可化为by+2=(b+)y,∴by+2=by+y,2=y,解得y=4.【点评】考查了解一元一次方程,关键是熟悉若一个关于x的方程ax+b=0(a≠0)的解为x=b﹣a,则称之为“奇异方程”.6.(2020秋•丰城市校级期中)(1)小玉在解方程去分母时,方程右边的“﹣1”项没有乘6,因而求得的解是x=10,试求a的值.(2)当m为何值时,关于x5m+3x=1+x的解比关于x的方程2x+m=5m的解大2?【分析】(1)把x=10代入错误的去分母得到的方程,求出a的值即可;(2)表示出两方程的解,由题意求出m的值即可.【解答】解:(1)错误去分母得:4x﹣2=3x+3a﹣1,把x=10代入得:a=3;(2)方程5m+3x=1+x,解得:x=,方程2x+m=5m,解得:x=2m,根据题意得:﹣2m=2,去分母得:1﹣5m﹣4m=4,解得:m=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四.同解方程(共1小题)7.(2022秋•义乌市月考)已知关于x的方程:2(x﹣1)+1=x与3(x+m)=m﹣1有相同的解,求以y为未知数的方程的解.【分析】根据方程1可直接求出x的值,代入方程2可求出m,把所求m和x代入方程3,可得到关于y的一元一次方程,解答即可.【解答】解:解方程2(x﹣1)+1=x得:x=1将x=1代入3(x+m)=m﹣1得:3(1+m)=m﹣1解得:m=﹣2将x=1,m=﹣2代入得:,解得:.【点评】本题解决的关键是能够求解关于x的方程,根据同解的定义建立方程.五.一元一次方程的应用(共23小题)8.(2022秋•义乌市校级月考)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P从原点出发,速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?(3)当时间t满足t1<t≤t2时,M、N两点之间,N、P两点之间,M、P两点之间分别有55个、44个、11个整数点,请直接写出t1,t2的值.【分析】(1)由题意列出方程可求解;(2)分两种情况讨论,列出方程可求解;(3)M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P两点距离最小,可得出M、P两点向右运动,N点向左运动,结合数轴分类讨论分析即可.【解答】解:(1)设运动时间为t秒,由题意可得:6+8+2t+6t=54,∴t=5,∴运动5秒点M与点N相距54个单位;(2)设运动时间为t秒,由题意可知:M点运动到6+2t,N点运动到﹣8+6t,P点运动到t,当t<1.6时,点N在点P左侧,MP=NP,∴t﹣(﹣8+6t)=6+2t﹣t,∴6+t=8﹣5t,∴t=s;当t>1.6时,点N在点P右侧,MP=NP,∴﹣8+6t﹣t=6+2t﹣t,∴6+t=﹣8+5t,∴t=s,∴运动s或s时点P到点M,N的距离相等;(3)由题意可得:M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P M、P两点向右运动,N点向左运动①如图,当t1=5s时,P在5,M在16,N在﹣38,再往前一点,MP之间的距离即包含11个整数点,NP之间有44个整数点;②当N继续以6个单位每秒的速度向左移动,P点向右运动,若N点移动到﹣39时,此时N、P之间仍为44个整数点,若N点过﹣39时,此时N、P之间为45 个整数点,故t2=+5=s∴t1=5s,t2=s.【点评】本题考查了一元一次方程在数轴上的动点问题中的应用,理清题中的数量关系、数形结合,是解题的关键.9.(2020秋•温州期末)七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数.①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?【分析】(1)根据得分规则课判断出不可能得的分数;(2)①设(1)班未满分的人数是x人,则满分的人数是2x人,列方程即可;②分别计算出两班得分的情况计算出两个班的总分,再比较即可.【解答】解:(1)∵共有4条线,可能全部连错,得0分,可能1条线对,3条线错,得5分,可能2条线对,2条线错,得10分,可能3条线对,则第4条也对,得20分,∴每人得分不可能是15分;故答案为:15.(2)①设(1)班未得满分的有x人,得满分的有2x人,依题意得:x+2x=40﹣4,解得x=12,2x=24.答:(1)班得满分的有24人;②∵(1)班除0分外,最低得分人数与其他未满分人数相等,∴得5分的和得10分的都是6人,∴(1)班总分为:24×20+6×10+6×5=570(分);设(2)班最低得分a人,其余未满分b人,则满分人数为(2a+b)人,∴总分为:5a+10b+20(2a+b)=(45a+30b)分,∵a+b+2a+b=40,∴(2)班总分为:45a+30b=15(3a+2b)=600(分)>570(分),∴(2)班总分高.【点评】本题考查一元一次方程的应用,找到等量关系列出方程是解题关键.10.(2021秋•瓯海区月考)某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?【分析】(1)通过理解题意可知本题的等量关系,即甲单独修完这些桌凳的天数=乙单独修完的天数+20天,列方程求解即可;(2)分别计算,通过比较选择最省钱的方案.【解答】解:(1)设该中学库存x套桌椅,则;解得x=960.答:该中学库存960套桌椅.(2)设a、b、c三种修理方案的费用分别为y1、y2、y3元,则y1=(80+10)×=5400,y2=(120+10)×=5200,y3=(80+120+10)×=5040,综上可知,选择方案c更省时省钱.答:方案c省时省钱.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.此题要掌握工作量的有关公式:工作总量=工作时间×工作效率.11.(2020秋•鹿城区期末)十一期间,各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100减50元”的活动.张先生买了一件标价为630元的上衣,张先生发现竟然比没打折前多付了18.5元钱,问丙商场先打了多少折后再参加活动?【分析】(1)按照不同的优惠方案算出实际花的钱数,再比较得出答案即可;(2)设这条裤子的标价为x元,按照优惠方案算出实际付款数,根据付款额一样,列方程求解即可;(3)先设丙商场先打了x折后再参加活动,折后减50n(0≤n<6),根据打折后比没打折前多付了18.5元钱,列方程求解.【解答】解:(1)选甲商城需付费用为(290+270)×0.6=336(元);选乙商城需付费用为290+(270﹣200)=360(元);选丙商城需付费用为290+270﹣5×50=310(元).∵310<336<360,∴选择丙商城最实惠.(2)设这条裤子的标价为x元,根据题意得:(380+x)×0.6=380+x﹣100×3,解得:x=370,答:这条裤子的标价为370元.(3)设丙商场先打了x折后再参加活动,折后减50n(0≤n<6且n为整数),根据题意得:(630×﹣50n)﹣(630﹣6×50)=18.5,整理得63x﹣50n=348.5,当n=0时,63x=348.5,可再优惠3×50=150元,与n=0矛盾,舍去当n=1时,63x=398.5,可再优惠3×50=150元,与n=1矛盾,舍去当n=2时,63x=448.5,可再优惠4×50=200元,与n=2矛盾,舍去当n=3时,63x=498.5,可再优惠4×50=200元,与n=3矛盾,舍去当n=4时,63x=548.5,可再优惠5×50=250元,与n=4矛盾,舍去当n=5时,63x=598.5,满足题意,此时x=9.5答:丙商场先打了9.5折后再参加活动.出合适的等量关系列出方程进行求解.12.(2020秋•永嘉县校级期末)某班级组织学生集体春游,已知班级总人数多于20人,其中有15名男同学,景点门票全票价为30元,对集体购票有两种优惠方案.方案一:所有人按全票价的90%购票;方案二:前20人全票,从第21人开始每人按全票价的80%购票;(1)若共有35名同学,则选择哪种方案较省钱?(2)当女同学人数是多少时,两种方案付费一样多?【分析】(1)方案一的收费=学生人数×30×90%,方案二的收费=20×30+(学生人数﹣20)×30×80%,将两者的收费进行比较,从而确定选择何种方案更省钱;(2)设女同学人数是x人时,两种方案付费一样多,列出方程求解即可.【解答】解:(1)方案一收费为:35×30×90%=945(元),方案二收费为:20×30+(35﹣20)×30×80%=960(元),∵960>945,∴方案一更省钱;(2)设女同学人数是x人时,两种方案付费一样多,由题意得(15+x)×30×90%=20×30+(15+x﹣20)×30×80%,解得:x=25,答:当女同学人数是25人时,两种方案付费一样多.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13.(2021秋•临海市月考)已知数轴上两点A、B对应的数分别为﹣1,3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值.若不存在,请说明理由?(3)当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?【分析】(1)根据点P到点A、点B的距离相等,结合数轴可得答案;(2)此题要分两种情况:①当P在AB左侧时,②当P在AB右侧时,然后再列出方程求解即可;(3)点P、点A、点B B的运动速度最快,点P的运动速度最慢.故P点总位于A点右侧,B可能追上并超过A.P到A、B的距离相等,应分两种情况讨论.【解答】解:(1)如图,若点P到点A、点B的距离相等,P为AB的中点,BP=P A.依题意得3﹣x=x﹣(﹣1),解得x=1;(2)由AB=4,若存在点P到点A、点B的距离之和为5,P不可能在线段AB上,只能在A点左侧,或B点右侧.①P在点A左侧,P A=﹣1﹣x,PB=3﹣x,依题意得(﹣1﹣x)+(3﹣x)=5,解得x=﹣1.5;②P在点B右侧,P A=x﹣(﹣1)=x+1,PB=x﹣3,依题意得(x+1)+(x﹣3)=5,解得x=3.5;(3)设运动t分钟,此时P对应的数为﹣t,B对应的数为3﹣20t,A对应的数为﹣1﹣5t.①B未追上A时,P A=PB,则P为AB中点.B在P的右侧,A在P的左侧.P A=﹣t﹣(﹣1﹣5t)=1+4t,PB=3﹣20t﹣(﹣t)=3﹣19t,依题意有1+4t=3﹣19t,解得t=;②B追上A时,A、B重合,此时P A=PB.A、B表示同一个数.依题意有﹣1﹣5t=3﹣20t,解得t=.即运动或分钟时,P到A、B的距离相等.【点评】此题主要考查了一元一次方程的应用,以及数轴,关键是理解题意,表示出两点之间的距离,利用数形结合法列出方程.14.(2020秋•永嘉县校级期末)为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么账肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的账算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.【分析】(1)设钢笔得单价为x元,则毛笔单价为(x+6)元,根据题意列出方程,求出方程的解即可得到结果;(2)①设单价为19元得钢笔y支,则单价为25元的毛笔为(60﹣y)支,根据题意列出方程,求出方程的解即可得到结果;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意列出关系式,根据z,a为整数,确定出a与z的值,即可得到结果.【解答】解:(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元,由题意得:30x+20(x+6)=1070,解得:x=19,则x+6=25,答:钢笔的单价为19元,毛笔的单价为25元;(2)①设单价为19元的钢笔y支,则单价为25元的毛笔为(60﹣y)支,根据题意得:19y+25(60﹣y)=1322,解得:y=,不合题意,即张老师肯定搞错了;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意得:19z+25(60﹣z)=1322﹣a,即6z=178+a,由a,z都是整数,且178+a应被6整除,经验算当a=2时,6z=180,即z=30,符合题意;当a=8时,6z=186,即z=31则签字笔的单价为2元或8元.故答案为:2或8.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.15.(2020秋•苍南县期末)一家电信公司推出手机话费套餐活动,具体资费标准见表:(1)已知小聪办理的是月租费为88元的套餐,小明办理的是月租费为118元的套餐,他们某一月的主叫时间都为m分钟(m>360).①请用含m的代数式分别表示该月他们的话费,化简后填空:小聪该月的话费为元;小明该月的话费为元.②若该月小聪比小明的话费还要多14元,求他们的通话时间.(2)若小慧的两个手机号码分别办理了58元、88元套餐.该月她的两个号码主叫时间共为220分钟,总话费为152元,求她两个号的主叫时间分别可能是多少分钟.【分析】(1)①用“根据话费=套餐费+主叫超时费”求出总话费;②因为m>360分钟,所以两人的话费均由套餐费和主叫超时费两部分组成,根据具体数字列出式子即可;(2)可设办理了58元套餐的主叫时间为x分钟,分类进行讨论求解即可.【解答】解:(1)①小聪该月的话费为:88+0.20(m﹣150)=58+0.2m,小明该月的话费为:118+0.15(m﹣350)=65.5+0.15m,故答案为:(58+0.2m),(65.5+0.15m);②58+0.2m=65.5+0.15m+14,解得:m=430,答:他们的通话时间为430分钟;(2)设办理了58元套餐的主叫时间为x分钟,依题意得:①当58元套餐的主叫时间超过限定时间,88元套餐没有超过限定时间时,得:58+0.25(x﹣50)+88=152,解得:x=74,则88元套餐的主叫时间为:220﹣74=146(分钟);②当58元套餐的主叫时间没有超过限定时间,88元套餐超过限定时间时,得:58+88+0.2(220﹣x﹣150)=152,解得:x=40,则88元套餐的主叫时间为:220﹣40=180(分钟);③当58元套餐的主叫时间超过限定时间,88元套餐超过限定时间时,得:58+0.25(x﹣50)+88+0.2(220﹣x﹣150)=152,解得:x=130,则88元套餐的主叫时间为:220﹣130=90(不符合题意).综上所述,小慧58元、88元套餐的主叫时间分别可能是74分钟,146分钟或40分钟,180分钟.【点评】本题考查了一元一次方程的应用,能读懂数表弄清数量关系是解题关键.16.(2020秋•拱墅区期末)某快递公司每件普通物品的收费标准如表:例如:寄往省内一件1.7千克的物品,运费总额为:10+8×(0.5+0.5)=18元.寄往省外一件3.2千克的物品,运费总额为:15+12×(2+0.5)=45元.(1)小丁同时寄往省内一件2千克的物品和省外一件2.7千克的物品,各需付运费多少元?(2)小丽同时寄往省内和省外同一件a千克的物品,已知a超过2,且a的整数部分是m,小数部分小于0.5,请用含字母的代数式表示这两笔运费的差.(3)某日小丁和小丽同时在该快递公司寄物品,小丁寄往省外,小丽寄往省内,小丁的运费比小丽的运费多43元,物品的重量比小丽多1.5千克,则小丁和小丽共需付运费多少元?【分析】(1)根据表中给出的运费计算方式分别计算运费即可;(2)利用已知条件分别求出同一件a千克的物品寄往省内和省外需付的运费,再用寄往省外付的运费﹣寄往省内付的运费即可求解;(3)设小丽的物品重(x+a)千克,x为正整数,a为小数部分,则小丁的物品重(x+a+1.5)千克,分①0<a≤0.5时,②0.5<a<1时两种情况,根据小丁的运费比小丽的运费多43元列出方程求解,再列式计算求出小丁和小丽共需付的运费.【解答】解:(1)寄往省内一件2千克的物品需付运费:10+8=18(元),∵超过1千克即要续重,续重以0.5千克为计重单位(不足0.5千克按0.5千克计算),∴寄往省外一件2.7千克的物品需付运费:15+12×2=39(元),∴小丁寄往省内的费用18元,寄往省外的费用39元;(2)省内:10+8(m﹣1+0.5)=(8m+6)元,省外:15+12(m﹣1+0.5)=(12m+9)元,12m+9﹣(8m+6)=12m+9﹣8m﹣6=(4m+3)元,∴这两笔运费的差(4m+3)元;(3)设小丽的物品重(x+a)千克,x为正整数,a为小数部分,小丁的物品重(x+a+1.5)千克,①0<a≤0.5时,小丽:10+8(x﹣1)+0.5×8=(8x+6)元,小丁:15+12(x﹣1)+2×12=(12x+27)元,∴12x+27﹣(8x+6)=43,解得:x=5.5(不是正整数,舍去);②0.5<a<1时,小丽:10+8(x﹣1)+1×8=(8x+10)元小丁:15+12(x﹣1)+2.5×12=(12x+33)元12x+33﹣(8x+10)=43解得:x=5,小丁和小丽共需付运费:8×5+10+12×5+33=143(元).∴小丁和小丽共需付运费143元.费计算方式分别列出寄往省内和省外需付的运费的代数式.17.(2022秋•义乌市月考)已知点O是数轴的原点,点A、B、C在数轴上对应的数分别是﹣12、b、c,且b、c满足(b﹣9)2+|c﹣15|=0,动点P从点A出发以2单位/秒的速度向右运动,同时点Q从点C出发,以1个单位/秒速度向左运动,O、B两点之间为“变速区”,规则为从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速,从点B运动到点O期间速度变为原来的3倍,之后立刻恢复原速,运动时间为秒时,P、Q两点到点B的距离相等.【分析】根据(b﹣9)2+|c﹣15|=0,可得B表示的数是9,C表示的数是15,由已知分四种情况讨论:①当0≤t≤6时,P在线段OA上,Q在线段BC上,此时不存在P、Q两点到点B的距离相等;②当6<t≤9时,P、Q都在线段OB上,t﹣6=9﹣3(t﹣6),解得t=,③当9<t≤15时,P在线段OB上,Q在线段OA上,此时不存在P、Q两点到点B的距离相等;④当t>15时,P在射线BC上,Q在射线OA上,9+2(t﹣15)﹣9=9﹣[﹣(t﹣9)],解得t=30.【解答】解:∵(b﹣9)2+|c﹣15|=0,∴b﹣9=0,c﹣15=0,∴b=9,c=15,∴B表示的数是9,C表示的数是15,①当0≤t≤6时,P在线段OA上,Q在线段BC上,此时不存在P、Q两点到点B的距离相等;②当6<t≤9时,P、Q都在线段OB上,P表示的数为t﹣6,Q表示的数是9﹣3(t﹣6),∴P、Q两点到点B的距离相等只需t﹣6=9﹣3(t﹣6),解得t=,③当9<t≤15时,P在线段OB上,Q在线段OA上,此时不存在P、Q两点到点B的距离相等;④当t>15时,P在射线BC上,Q在射线OA上,P表示的数为9+2(t﹣15),Q表示的数是﹣(t﹣9),∴P、Q两点到点B的距离相等只需9+2(t﹣15)﹣9=9﹣[﹣(t﹣9)],解得t=30,综上所述,P、Q两点到点B的距离相等,运动时间为秒或30秒,故答案为:或30.【点评】本题考查一元一次方程的应用,涉及数轴上的动点表示的数,两点间的距离等知识,解题的关键是分类讨论.18.(2021秋•义乌市月考)如图,已知一周长为30cm的圆形轨道上有相距10cm的A、B两点(备注:圆形轨道上两点间的距离是指圆上这两点间的较短部分展直后的线段长).动点P从A点出发,以7cm/s的速度,与此同时,动点Q从B点出发,以5cm/s的速度,按同样的方向运动,设运动时间为t(s),在P、Q第二次相遇前,当动点P、Q在轨道上相距14cm时,则t=秒.【分析】设经过ts,P、Q两点相距14cm,分相遇前和相遇后两种情况建立方程求出其解;分点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.【解答】解:共有4种可能:①7t+10﹣5t=14,解得:t=2;②7t+10﹣5t=16,解得:t=3;③7t+10﹣5t=44,解得:t=17;④7t+10﹣5t=46,解得:t=18.综上所知,t=2、3、17或18.故答案为:2、3、17或18.【点评】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系是解决问题的关键.19.(2022秋•拱墅区期末)如图,已知数轴上点A表示的数为10,点B位于点A左侧,AB=15.动点P从点A出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)当点P在A、B两点之间运动时,①用含t的代数式表示PB的长度;②若PB=2P A,求点P所表示的数;(2)动点Q从点B出发,以每秒5个单位长度的速度沿数轴向右匀速运动,当点Q到达点A后立即原速返回.若P,Q两点同时出发,其中一点运动到点B时,两点停止运动.求在这个运动过程中,P,Q 两点相遇时t的值.【分析】(1)①读懂题意,列代数式即可;②根据题意列关于t的一元一次方程,再求解即可;(2)读懂题意,分析整个运动过程,根据第一次相遇,第二次相遇路程上的关系列方程求解.【解答】解:(1)①∵点A表示的数为10,点B位于点A左侧,AB=15,∴点B表示的数为10﹣15=﹣5,∴点P在A、B=15﹣2t;②∵PB=2P A,∴15﹣2t=2×2t,∴t=2.5,∴P A=2×2.5=5,∴10﹣5=5,∴点P所表示的数为5;(2)在这个运动过程中,P,Q两点有两次相遇,设P,Q两点第一次相遇的时间为t秒,根据题意得(2+5)t=15,∴t=;设P,Q两点第二次相遇的时间为t秒,根据题意得2t+15=5t,∴t=5,∴在这个运动过程中,P,Q两点相遇时t的值为秒或5秒.【点评】本题考查了列代数式,数轴,一元一次方程的应用,解题的关键是掌握数轴知识,读懂题意,能根据题意列出正确的代数式和一元一次方程.20.(2022秋•江北区期中)数轴上点A表示﹣8,点B表示6,点C表示12,点D表示18.如图,将数轴在原点O和点B、C处各折一下,得到一条“折线数轴”.在“折线数轴”上,把两点所对应的两数之差的绝对值叫这两点间的和谐距离.例如,点A和点D在折线数轴上的和谐距离为|﹣8﹣18|=26个单位长度.动点M从点A出发,以4个单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点C期间速度变为原来的一半,过点C后继续以原来的速度向终点D运动;点M从点A出发的同时,点N从点D出发,一直以3个单位/秒的速度沿着“折线数轴”负方向向终点A运动,其中一点到达终点时,两点都停止运动.设运动的时间为t秒.(1)当t=2秒时,M、N两点在折线数轴上的和谐距离|MN|为;(2)当点M、N都运动到折线段O﹣B﹣C上时,O、M两点间的和谐距离|OM|=(用含有t的代数式表示);C、N两点间的和谐距离|CN|=(用含有t的代数式表示);t=时,M、N两点相遇;(3)当t=时,M、N两点在折线数轴上的和谐距离为4个单位长度;当t=时,M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等.【分析】(1)当t=2秒时,M表示的数是﹣8+2×4=0,N表示的数是18﹣3×2=12,即的M、N两点在折线数轴上的和谐距离|MN|为|12﹣0|=12;(2)当点M、N都运动到折线段O﹣B﹣C上,即t≥2时,M表示的数是×(t﹣2)=2t﹣4,N表示的数是12﹣3(t﹣2)=18﹣3t,而M、N两点相遇时,M、N表示的数相同,即得额2t﹣4=18﹣3t,可解得答案;(3)根据M、N两点在折线数轴上的和谐距离为4个单位长度,得|2t﹣4﹣(18﹣3t)|=4,可解得t=或t=,由t=2时,M运动到O,同时N运动到C,知t<2时,不存在M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等,当2≤t≤8,即M在从点O运动到点C时,有2t﹣4=|6﹣(18﹣3t)|,可解得t=8或t=,当8<t≤时,M在从C运动到D,速度变为4个单位/秒,不存在M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等,即可得答案.【解答】解:(1)当t=2秒时,M表示的数是﹣8+2×4=0,N表示的数是18﹣3×2=12,∴M、N两点在折线数轴上的和谐距离|MN|为|12﹣0|=12,故答案为:12;(2)由(1)知,2秒时M运动到O,N运动到C,∴当点M、N都运动到折线段O﹣B﹣C上,即t≥2时,M表示的数是×(t﹣2)=2t﹣4,N表示的数是12﹣3(t﹣2)=18﹣3t,∴O、M两点间的和谐距离|OM|=|2t﹣4﹣0|=2t﹣4,C、N两点间的和谐距离|CN|=|12﹣(18﹣3t)|=3t ﹣6,∵M、N两点相遇时,M、N表示的数相同,∴2t﹣4=18﹣3t,解得t=,故答案为:2t﹣4,3t﹣6,;(3)∵M、N两点在折线数轴上的和谐距离为4个单位长度,∴|2t﹣4﹣(18﹣3t)|=4,即|5t﹣22|=4,∴5t﹣22=4或5t﹣22=﹣4,解得t=或t=,由(1)知,t=2时,M运动到O,同时N运动到C,∴t<2时,不存在M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等,当2≤t≤8,即M在从点O运动到点C时,2t﹣4=|6﹣(18﹣3t)|,即|3t﹣12|=2t﹣4,∴3t﹣12=2t﹣4或3t﹣12=4﹣2t,。

《一元一次方程》 讲义

《一元一次方程》 讲义

《一元一次方程》讲义一、什么是一元一次方程在数学的世界里,方程就像是一座神秘的桥梁,连接着已知和未知。

而一元一次方程,则是这座桥梁中较为基础和常见的一种。

一元一次方程,简单来说,就是指含有一个未知数,并且未知数的最高次数是 1 的整式方程。

我们可以用一个通用的形式来表示一元一次方程:ax + b = 0 (其中a ≠ 0 )。

这里的“x”就是我们要寻找的未知数,“a”是未知数的系数,“b”则是常数项。

比如说,3x + 5 = 14 就是一个一元一次方程。

在这个方程中,未知数是 x ,系数是 3 ,常数项是 5 和 14 。

二、一元一次方程的求解接下来,让我们一起来探索如何求解一元一次方程。

求解一元一次方程的基本思路就是通过一系列的运算,将方程变形,最终求出未知数的值。

以方程 2x + 7 = 15 为例,我们的目标是让 x 单独在等号的一边。

首先,我们要把常数项 7 移到等号的右边,这时候要注意,移项时要变号,所以得到 2x = 15 7 ,即 2x = 8 。

然后,将方程两边同时除以系数 2 ,得到 x = 4 。

再来看一个稍微复杂一点的方程,比如 5(x 3) + 2 = 17 。

第一步,先把括号展开,得到 5x 15 + 2 = 17 。

接着,合并同类项,5x 13 = 17 。

然后,把-13 移到等号右边,5x = 17 + 13 ,即 5x = 30 。

最后,两边同时除以 5 ,解得 x = 6 。

三、一元一次方程的应用一元一次方程在我们的日常生活中有着广泛的应用。

比如,购物时计算折扣和价格。

假设一件商品原价为 x 元,打 8 折后的价格是 160 元,那么可以列出方程 08x = 160 ,解得 x = 200 ,就知道这件商品的原价是 200 元。

再比如,行程问题。

如果一辆汽车以每小时 60 千米的速度行驶,行驶了 x 小时后,总共行驶了 300 千米,那么可以列出方程 60x =300 ,解得 x = 5 ,也就是这辆汽车行驶了 5 小时。

北师大版 七年级数学上册 5.4 应用一元一次方程——打折销售 讲义

北师大版 七年级数学上册 5.4 应用一元一次方程——打折销售 讲义

5.4应用一元一次方程——打折销售考点:打折销售问题增长率问题知识点一 打折销售问题1、在商品销售问题中常出现的量:进价、售价、标价、利润、利润率等。

2、有关的关系式:①利润率;进价进价售价利润⨯=-= ②%100%100⨯-=⨯=进价进价售价进价利润利润率 ③利润率)(进价利润进价折扣价标价售价+⨯=+=⨯=110④10⨯=标价售价折扣价 注意:几折销售,若设x 折销售,则打折后的价格应该表示为打折前的价格乘x 的十分之一。

练习考查角度:利用一元一次方程解销售问题中的价格问题、折扣问题盈亏问题例题1 某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售。

请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标。

例题2 一件标价为250元的商品,若该商品按8折销售,则该商品的实际售价是?例题3 一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的成本价是?例题4 一件服装标价200元,若以6折销售,仍可获利20%,则这件服装进价是多少元?例题5 一商店把某种品牌的羊毛衫按标价的8折出售,仍可获利20%,若该品牌的羊毛衫的进价是每件100元,则标价是每件多少元?例题6 一家商店将某种服装进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价多少元?例题7 某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元,那这件衣服的进价为多少元?例题8 某件商品的进价是400元,标价为550元,按标价的8折出售,该商品的利润率是多少?例题9 已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?例题10 某商品的进价是200元,标价是300元,打折销售后的利润率为5%,此商品是按几折销售的?例题11 某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打多少折?例题12 某商店将两台进价不同的豆浆机都卖了378元,其中一台盈利40%,另一台亏本20%,在这次买卖中,这家商店是盈利还是亏本?盈利或亏本多少元?思路:两台豆浆机共卖了378×2=756(元),是盈利还是亏本要看这家商店进这两台豆浆机时一共花了多少钱,进价高于售价就亏本,进价低于售价就盈利,所以首先要分别计算出这两台豆浆机的进价。

精品 2014年一元一次方程应用题 行程问题 同步讲义+同步练习

精品 2014年一元一次方程应用题 行程问题 同步讲义+同步练习

第 7 页 共 8 页
七年级数学同步讲义
(3) 3( x 2) 1 4 x (2 x 1)
(4)
x4 x 2 (x 5) 5 2
13.甲、乙两站相距 245km,一列慢车由甲站开出,速度为 50km/h;同时,一列快车由乙站开出,速度 为 70km/h,两车同向而行,快车在慢车的后面,经过几小时快车可以追上慢车?
第 6 页 共 8 页
七年级数学同步讲义
一元一次方程应用题测试题 满分:100 分 时间:20 分钟 姓名: B.由 3x-2 =2x + 1 得 x= 3 D.由-2x= 3 得 x= - 得分: 1.下列变形错误的是( ) A.由 x + 7= 5 得 x+7-7 = 5-7 ; C.由 4-3x = 4x-3 得 4+3 = 4x+3x 2.下列解方程去分母正确的是( A.由 )
第 8 页 共 8 页
(2)当 x=-3 时,代数式 (2 m) x 2m 3 的值是-7,当 x 为何值时,这个代数式的值是 1?
5.如果方程
1 x4 x2 的解与方程 4 x (3a 1) 6 x 2a 1 的解相同,求式子 a 的值 . 8 a 3 2
第 3 页 共 8 页
例 5.一只轮船,在甲、乙两地之间航行,顺水用 8 小时,逆水比顺水多 30 分钟,一直轮船在静水中速 度为每小时 26km,求水流的速度?
例 6.已知有 A、B、C 三个码头,BC 相距 24km,某船从 B 顺水而下到达 A 后,立即逆水而上到达 C.共用 8 小时,已知水流速度 5km/h,船在静水中的速度为 20km/h,求 A、B 之间的距离。

1 6

七年级上册数学培优讲义(一元一次方程的概念及解法)第六讲

七年级上册数学培优讲义(一元一次方程的概念及解法)第六讲

一元一次方程的概念及解法板块一等式与方程的概念☞等式的概念:用等号“=”来表示相等关系的式子.叫做等式.在等式中.等号左、右两边的式子.分别叫做这个等式的左边、右边.等式可以是数字算式.可以是公式、方程.也可以是用式子表示的运算律、运算法则.☞等式有如下几种类型(仅做了解).恒等式:无论用什么数值代替等式中的字母.等式总能成立.如:数字算式123+=.条件等式:只能用某些数值代替等式中的字母.等式才能成立.方程56x=才成立.x+=需要1矛盾等式:无论用什么数值代替等式中的字母.等式都不能成立.如125+=-.+=.11x x等式由代数式构成.但不是代数式.代数式没有等号.【例1】下列各式中.哪些是等式⑴31x-⑵523x+=⑸()x+<⑷53-=⑶212x y+=-=-⑹1x y z xz yz【解题思路】等式的概念【题目答案】⑵⑷⑸⑹☞方程和它的解方程:含有未知数的等式叫方程.如21x+=.它有两层含义:①方程必须是等式;②等式中必须含有未知数方程的解:使方程左右两边的值相等的未知数的值;只含有一个未知数的方程的解.也叫方程的根.☞关于方程中的未知数和已知数:未知数:是指要求的数.未知数通常用x 、y 、z 等字母表示.如:关于x 、y 的方程2ax by c -=中.a 、2b -、c 是已知数.x 、y 是未知数.【例2】 下列各式中哪些是方程⑴7887⨯=⨯ ⑵2345x x ++ ⑶312y y -= ⑷60x =⑸31x > ⑹111x =+ ⑺26x y -= ⑻2430y y -+=【解题思路】方程的概念【题目答案】⑶⑷⑹⑺⑻【巩固练习】判断下列各式是不是方程.如果是.指出已知数和未知数;如果不是.说明理由⑴373x x -=-+ ⑵223y -= ⑶2351x x -+⑷112--=- ⑸42x x -=- ⑹152x y -= 【解题思路】判断一个式子是不是方程.一要看是否为等式.二要看是否含未知数.【题目答案】⑴是方程;⑵是方程;⑶不是方程;⑷不是方程;⑸是方程;⑹是方程【例3】 检验下列各数是不是方程315x x -=+的解⑴3x =; ⑵1x =-【解题思路】方程的解(注意严格要求学生的书写格式.不能直接将数值代入方程.如3(1)15(1)⨯--=+-.这样写不对的原因在于未检验之前.并不知道1x =-是否是方程的解)【题目答案】⑴把3x =分别代入原方程的左边和右边.得左边3318=⨯-=.右边538=+= ∴左边=右边∴3x =是方程315x x -=+的解 ⑵把1x =-分别代入原方程的左边和右边.得 左边3(1)14=⨯--=-.右边514=-= ∵左边≠右边∴1x =-不是方程315x x -=+的解【巩固练习】检验下列各数是不是方程213x y x y ++=--的解⑴23x y =⎧⎨=-⎩ ⑵10x y =⎧⎨=⎩⑶02x y =⎧⎨=-⎩【解题思路】方程的解【题目答案】⑴把23x y =⎧⎨=-⎩分别代入原方程的左边和右边.得左边22(3)12=⨯+-+=.右边2(3)32=---= ∴左边=右边∴23x y =⎧⎨=-⎩是方程213x y x y ++=--的解⑵把1x =⎧⎨分别代入原方程的左边和右边.得左边21013=⨯++=.右边1032=--=- ∵左边≠右边∴10x y =⎧⎨=⎩不是方程213x y x y ++=--的解⑶把02x y =⎧⎨=-⎩分别代入原方程的左边和右边.得左边20(2)11=⨯+-+=-.右边0(2)31=---=- ∴左边=右边∴02x y =⎧⎨=-⎩是方程213x y x y ++=--的解【例4】 若2-为关于x 的一元一次方程.713mx +=的解.则m 的值是 【解题思路】将2x =-代入原方程中.即可求解【题目答案】3m =-【巩固练习】关于x 的方程320x a +=的根是2.则a 等于 【解题思路】略 【题目答案】3-板块二 等式的性质☞等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式.所得结果仍是等式.若a b =.则a m b m ±=±;等式性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式.所得结果仍是等式.若a b =.则am bm =.a bm m=(0)m ≠☞注意:⑴在对等式变形过程中.等式两边必须同时进行.即:同时加或同时减.同时乘以或同时除以.不能漏掉某一边⑵等式变形过程中.两边同加或同减.同乘或同除以的数或整式必须相同. ⑶在等式变形中.以下两个性质也经常用到: 对称性.即:如果a b =.那么b a =.传递性.即:如果a b =.b c =.那么a c =.又称为等量代换考点难点:等号左右互换的时候忘记变符号【例5】 根据等式的性质填空:(1)4a b =-.则______a b =+; (2)359x -=.则39x =+ ;(3)683x y =+.则x =_________; (4)122x y =+.则x =__________.【解题思路】(1)4a b =+.在等式两端同时加上b ;(2)395x =+.在等式两端同时加上5;(3)836y +.在等式的两端同时乘以16;(4)24y +.在等式的两端同时乘以2.【题目答案】(1)4a b =+ (2)395x =+ (3)836y + ;(4)24y +【巩固练习】下列变形中.不正确的是( )A .若25x x =.则5x =B .若77,x -=则1x =-C .若10.2x x -=.则1012x x -=D .若x ya a=.则ax ay =【解题思路】根据等式的性质二.除数不能为0【题目答案】A【巩固练习】用适当数或等式填空.使所得结果仍是等式.并说明根据的是哪一条等式性质及怎样变形的.⑴如果23x =+.那么x =____________;根据 ⑵如果6x y -=.那么6x =+_________;根据⑶如果324x y -=.那么34x y -=______;根据⑷如果34x =.那么x =_____________;根据 【解题思路】略【题目答案】⑴1-.等式的性质1;⑵y .等式的性质1;⑶8.等式的性质2;⑷43.等式的性质2板块三 一元一次方程的概念☞一元一次方程的概念:只含有一个未知数.并且未知数的最高次数是1.系数不等于0的方程叫做一元一次方程.这里的“元”是指未知数.“次”是指含未知数的项的最高次数.☞一元一次方程的形式:最简形式:方程ax b =(0a ≠.a .b 为已知数)叫一元一次方程的最简形式. 标准形式:方程0ax b +=(其中0a ≠.a .b 是已知数)叫一元一次方程的标准形式.☞注意:⑴任何一元一次方程都可以转化为最简形式或标准形式.所以判断一个方程是不是一元一次方程.可以通过变形(必须为恒等变换)为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.如果不变形.直接判断就出会现错误.⑵方程ax b =与方程()0ax b a =≠是不同的.方程ax b =的解需要分类讨论完成 【例6】 下列各式中:⑴3x +;⑵2534+=+;⑶44x x +=+;⑷12x=;⑸213x x ++=;⑹44x x -=-;⑺23x =;⑻2(2)3x x x x +=++.哪些是一元一次方程?【解题思路】方程、等式的概念【题目答案】(6)、(8)是一元一次方程.其他均不是A .2237x x x +=+ B .3435322x x -+=+C . 22(2)3y y y y +=--D .3813x y -= 【解题思路】略【题目答案】B【巩固练习】在初中数学中.我们学习了各种各样的方程.以下给出了6个方程.请你把属于一元方程的序号填入圆圈⑴中.属于一次方程的序号填入圆圈⑵中.既属于一元方程又属于一次方程的序号填入两个圆圈的公共部分.①359x +=:②2440x x ++=;③235x y +=:④20x y +=;⑤8x y z -+=:⑥1xy =-.(2)(1)⑤③①②(2)(1)【解题思路】一元一次方程的定义 【题目答案】如图【例7】 若131m x -=是一元一次方程.那么m = 【解题思路】一元一次方程的定义【题目答案】2m =【巩固练习】若关于x 的方程1(2)50k k x k --+=是一元一次方程.则k = 【解题思路】1120k k ⎧-=⎪⎨-≠⎪⎩【题目答案】2k =-【巩固练习】若关于x 的方程2223x x ax a x a -=-+是一元一次方程.则a = .方程的解是 【解题思路】一元一次方程的定义【题目答案】原方程化为一般形式得222(1)(3)0a x a x a a ---++=.则10a -=.∴1a =.1x =-【巩固练习】已知关于x 的方程(21)50nm x --=是一元一次方程.则m 、n 需要满足的条件为 【解题思路】一元一次方程的定义 【题目答案】210m -≠且1n =.即12m ≠且1n =±板块四 一元一次方程的解法☞解一元一次方程的一般步骤:1.去分母:在方程的两边都乘以各分母的 最小公倍数 .温馨提示:不要漏乘不含分母的项.分子是个整体.含有多项式时应加上括号.2.去括号:一般地.先去 小括号.再去 中括号.最后去 大括号. 温馨提示:不要漏乘括号里的项.不要弄错符号.3.移项:把含有 未知数 的项都移到方程的一边. 不含未知数的项 移到方程的另一边. 温馨提示:⑴移项要变号;⑵不要丢项. 4.合并同类项:把方程化成ax b =的形式. 温馨提示:字母和其指数不变.5.系数化为1:在方程的两边都除以未知数的系数a (0a ≠ ).得到方程的解 b x a=. 温馨提示:不要把分子、分母搞颠倒. 【例10】 下列等式中变形正确的是( )A.若31422x x -+=.则3144x x -=-B. 若31422x x -+=.则3182x x -+=C. 若31422x x -+=.则3180x -+=D. 若31422x x -+=.则3184x x -+=【解题思路】考查去分母解方程第一步骤.学生很容易出现漏乘等问题造成失分 【题目答案】D【例11】 122233x x x -+-=-【解题思路】按照去分母.去括号.移项.合并同类项.系数化1的步骤解答【题目答案】35x =-.【巩固练习】解方程:⑴6(1)5(2)2(23)x x x ---=+ ⑵12225y y y -+-=-【解题思路】略【题目答案】⑴23x =;⑵117y =【巩固练习】解方程:(1)3(3)52(25)x x -=--;(2)()()()243563221x x x --=--+;(3)135(3)3(2)36524x x ---= 【解题思路】略【题目答案】(1)107x =-;(2)38x =;(3)12x =.☞先变形、再解方程本类型题:需要先利用等式的基本性质.将小数化为整数.然后再进行解方程计算【例12】 解方程:7110.2510.0240.0180.012x x x --+=-. 解:原方程可化为7110.251432x x x --+=-去分母.得 .根据等式的性质( )移项.得 .根据等式的性质( ) 合并同类项.得 .系数化为1.得 .根据等式的性质( )【解题思路】注意解方程的基本步骤与等式的性质【题目答案】去分母.得3(71)4(10.2)6(51)x x x -=--+.根据等式的性质1去括号.得21340.8306x x x -=---.移项.得210.830346x x x ++=+-.根据等式的性质1合并同类项.得51.81x =.系数化为1.得5259x =.根据等式的性质2【例13】 0.130.41200.20.5x x +--=【解题思路】略【题目答案】原方程可变形为304102025x x +--=去分母得5(30)2(410)200x x +--=去括号得5150820200x x +-+= 移项、合并得330x -= ∴10x =-【巩固练习】解下列方程:⑴2 1.210.70.3x x --=; ⑵0.40.90.10.50.030.020.50.20.03x x x +-+-=; ⑶1(0.170.2)10.70.03x x --= ⑷0.10.020.10.10.30.0020.05x x -+-=⑸42230%50%x x -+-= ⑹1(4)335190.50.125x x x +++=+⑺0.20.450.0150.010.5 2.50.250.015x x x ++-=-⑻0.10.90.210.030.7x x --= 【解题思路】解这类方程通常先应用分数的基本性质.将系数化为整数⑴原方程可化为201210173x x --=.而后解得2126x =; ⑵原方程可化为49532523x x x+-+-=去分母6(49)15(5)10(32)x x x +--=+解得9x =; ⑶原方程可化为1017201x x --=.解得14x =.⑷原方程可化为1002010100.325x x -+-=.则4812.3x =.解得41160x =. ⑸原方程可化为10401020235x x -+-=.解得13110x =. ⑹解得7x =-. ⑺解得9x =.⑻解得48127619x ==.【题目答案】略☞逐层去括号含有多重括号时.去括号的顺序可以从内向外.也可以从外向内. 【例14】 解方程:111[16]20343x ⎛⎫--+= ⎪⎝⎭【解题思路】原方程可变形为11(1)66043x --+= 整理得1103x -=解得3x =【题目答案】3x =【巩固练习】解方程:()11111[1]3261224x ------=-.【解题思路】11111[(1)]3261224x ------=-. 11111[(1)]3261224x -+-=-. 111(1)268x +=-.1112x =-. 【题目答案】1112x =-【例15】 解方程:11110721()3(2)33623x x x x x +-⎡⎤⎡⎤--=--⎢⎥⎢⎥⎣⎦⎣⎦【解题思路】注意一定去括号的顺序.解得12x =.【题目答案】12x =【巩固练习】解方程:1112(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦【解题思路】略 【题目答案】117x =-【巩固练习】解下列方程:(1)[]{}234(51)82071x ----=(2)11111071233223x x x x x +-⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭【解题思路】(1)略;(2)原方程可化为:11110713926x x x x x +--+=-+. 186229183021x x x x x -++=-+-.513x =.【题目答案】(1)1x = (2)513x =☞整体思想注意观察方程中.完全一样的整式【例16】 解方程:1123(23)(32)11191313x x x -+-+=【解题思路】原方程可变为:111(23)(23)(23)0111913x x x ---+-=.即111()(23)0111319x +--=.又1110111319+-≠.所以230x -=.即32x =. 【题目答案】32x =【巩固练习】方程113(1)(1)2(1)(1)32x x x x +--=--+【解题思路】按常规去括号整理后再解.显然较繁.应用整体思想求解()()()()1131121123x x x x +++=-+-.()()771123x x +=-.括号.移项.可解得5x =-. 【题目答案】5x =-【巩固练习】解方程:11311377325235x x ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭【解题思路】这一方程在变换过程中.宜将375x ⎛⎫- ⎪⎝⎭作为一个整体.方程两边同乘以6.得3323(7)32(7)55x x --=--.333(7)2(7)3255x x --+-=-.333(7)2(7)155x x ----=.3345(7)1,53x x --==. 【题目答案】343x =343x =课堂检测1.下列各式不是方程的是:( )A . 24y y -=B . 2m n =C . 222p pq q -+D . 0x = 【解题思路】略【题目答案】C .2.解方程⑴ 11(4)(3)34y y -=+ ⑵ 3126x x x +-=-⑶253164x x ---=⑷42132[()]3324x x x --= 【解题思路】略【题目答案】⑴ 1y =.⑵ 4x =.⑶13x =.⑷127x =-.3.解方程:10.50.210.30.30.30.02x x x---=【解题思路】原方程可化为10521030332x x x ---=.解得513x =. 【题目答案】513x =1. 解方程 :⑴12225y y y -+-=-⑵122233x x x -+-=-【解题思路】⑴105(1)202(2)y y y --=-+.10552024y y y -+=--.117y =. ⑵按照去分母.去括号.移项.合并同类项.系数化1的步骤解答可得:35x =-.【题目答案】⑴117y =.⑵35x =-2. 解方程:111233{[]}234324x x x x ⎛⎫----=+ ⎪⎝⎭【解题思路】略 【题目答案】解得229x =-3. 解方程:0.10.40.2111.20.3x x -+-=课后练习【解题思路】原方程可化为42101123x x -+-=.解得8x =-. 【题目答案】8x =-.4. 求方程31333(()()447167x x x x ⎡⎤---=-⎢⎥⎣⎦的解. 【解题思路】原方程可化为:33333()()4167167x x x x -+-=-.注意在运算过程中把37x ⎛⎫- ⎪⎝⎭视为一个整体.解得0x =.【题目答案】0x =.。

寒假讲义-数学-七年级-第3讲-一元一次方程综合复习

寒假讲义-数学-七年级-第3讲-一元一次方程综合复习
去分母的时候,方程等号两边的各项同时乘以分母数字的最小公倍数紧记常数项也要乘
分母小数化为整数,是为了方便去分母,即分式的分子 分母同时乘以一个数,使小数化为整数
【例题精讲】
(1) ; (2) .
【课堂练习】
1、已知关于x的方程mx+2=2(m-x)的解满足方程 ,求m的值.
2、如果代数式 与 的值互为相反数,那么x=_______.
★等式:含有“=”
★整式方程:分母中不含有字母
【例题精讲】
例1. 下列方程: ; ; ;④ ;⑤ ;⑥ .其中,一元一次方程的个数是________.
例2. 若方程 是关于 的一元一次方程,则 =________.
【课堂练习】
1、下列方程中,属于一元一次方程的是( )
A. B. C. D.
2、若关于 的方程 是一元一次方程,则 =________.
5、求盈亏
[例5]某商店有两种进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店盈利还是亏损?盈利或亏损了多少元?
【知识梳理】
方案选择问题
【例题精讲】
例1:某同学在A、B两家超市发现他看中的随身听的单价相同,书包的单价也相同,随身听和书包的单价和452元,且随身听的单价比书包的单价的4倍少8元。某天该超市打折,A超市所有商品打8折出售,B超市购物每满100元返购物券30元,但他只带了400元钱,如果他只在一家超市购买看中的两件物品,你能说明他可以选择哪一家吗?若两家都可以选择,哪家更省钱呢?
【例题精讲】
例1. 一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50 个或做桌腿300条,现有5m3木料,那么用多少立方米的木料做桌面, 多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.

人教版初中数学同步讲义七年级上册第02讲 解一元一次方程(解析版)

人教版初中数学同步讲义七年级上册第02讲 解一元一次方程(解析版)
知识点 03 解方程——去括号、移项、合并、系数化为 1
1. 具体步骤: ①去括号:用括号前的数(包含符号)乘以括号内的 每一项 。当括号前是负数时,一定要改变
每一项的 符号 。 ②移项:把含有未知数的项移到等号的左边,常数项移到等号的右边。注意移动过的项一定要改变符
号。 ③合并:按照合并同类项的方法进行合并。 ④系数化为 1:方程的左右两边同时除以系数或乘上系数的倒数。 题型考点:①步骤的熟悉。 ②利用步骤解方程。
【即学即练 1】
7.解方程 2x﹣(x+10)=5x+2(x﹣1),步骤如下:
去括号,得 2x﹣x﹣10=5x+2x﹣2 第一步
移项,得 2x﹣x﹣5x+2x=﹣2+10 第二步
合并同类项,得﹣2x=8 第三步
系数化为 1,得 x=﹣4 第四步
以上解方程步骤中,开始出现错误的是( )
A.第一步
B.第二步
B.4x=8
C.8x=8
【解答】解:方程 8x+6x﹣10x=8,
合并同类项得:4x=8,
故选:B.
【即学即练 3】
3.判断下列方程的求解过程是否正确,说明原因:
(1)﹣6x+3x=﹣1﹣8.
解:合并同类项,得﹣9x=﹣9.系数化为 1,得 x=1.
(2)5x+4x=18.
解:合并同类项,得 9x=18.
系数化 1,得:x= …………………………第⑥步
C.第三步
【解答】解:解方程 2x﹣(x+10)=5x+2(x﹣1),步骤如下:
去括号,得 2x﹣x﹣10=5x+2x﹣2 第一步
移项,得 2x﹣x﹣5x﹣2x=﹣2+10 第二步

七年级数学一元一次方程讲义

七年级数学一元一次方程讲义

一元一次方程【知识梳理】【例题精讲】1.等式的性质 例1.依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。

解: 原方程可变形为352123x x +-=(_____________________) 去分母, 得3(3x +5)=2(2x -1). (____________________) 去括号, 得9x +15=4x -2. (_____________________) (________), 得9x -4x =-15-2. (_______________________) 合并, 得5x =-17. ( ) (________),得x =175-. (_________________________)2.方程及一元一次方程的概念。

例1.下列各式中, 只有( )是一元一次方程 A. 05=-y x B. ()453-=+x x C. 251x x =+ D. 71=-xx 例2.已知()021|2|=-++a xa 是关于x 的一元一次方程, 则代数式23222aa a a +--的值为( ) A .2 B. 4 C. 1 D. 4或1一元一次方程等式的性质结合实际问题讨论解方程(合并与移项)解一元一次方程的一般步骤对利用一元一次方程解决实际问题进行进一步探究实际问题结合实际问题讨论解方程(去括号与去分母)3.方程的解例1.已知x =-3 是方程6231-=x mx 的一个解,则m 的值为 ,代数式20082)1113(+-m m 的值为例2.已知关于x 的方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解,相同的解是 .例3. 已知x =-1是方程ax 2+bx =-2的一个解,下列判断正确的是( ) A. a +b =-1 B. a -b =-1 C. a +b =-2 D. a -b =-24.一元一次方程的解法例1.已知关于x 的一元一次方程ax -bx = m 有解,则有( ) A. a ≠ b B. a > b C. a < b D.m ≠0例2. 解方程 (1) 163242=--+x x (2) 3x -[1-(2+3x )]=7 (3)4 1.550.8 1.230.50.20.1x x x----=+ (4)21323x x --=(5) 解关于x 的方程 )12(4232-≠-=-a x b ax例3. 如果b a d c 表示,bc ad - 若232-x 42+x = -4,求x 的值。

人教版七年级数学上册同步精品课堂 3.1.1 一元一次方程(同步课件)

人教版七年级数学上册同步精品课堂 3.1.1 一元一次方程(同步课件)

除了使用算术方法,你还能用其他方法解决这个问题吗?
设A,B两地之间相距 x km,
客车从A地到B地所用的时间为___7x0_h____ 卡车从A地到B地所用的时间为____6x0__h __
因为客车比卡车早1小时到达B地,即
x 60
x 70
1
等式与方程
未知数 等式
x x 1 60 70
列方程时,要先设字母表示未知数,然后根据问题中的相等关系, 写出含有未知数的等式——方程。 我们已经知道,方程是含有未知数的等式. 我们已经得到的这个等式是方程.
一元一次方程
分析实际问题中的数量关系,利用其中的相等关系列出方程, 是用数学解决实际问题的一种方法.
随堂练习
练习1.已知3是关于x的方程2x-a=1的解,则a的值是( B )
A.-5 B.5 C.7 D.2
随堂练习
练习2.小敏买书需要用48元,付款时恰好用了1元和5元的纸币共12张,设所用
的1元纸币为x张,根据题意,下列所列方程正确的是( A )
课堂练习
含有未知数的等式叫做方程。
课堂练习
练习1.下列各式不是方程的是( C ) A.3x2+4=5 B.m+2n=0 C.4y>3 D.x=-3
一元一次方程
问题1:一辆客车和一辆卡车同时从A地出发沿着同一公路同方向行驶, 客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车 早1小时到达B地,A,B两地之间的路程是多少?
A.x+5(12-x)=48 B.x+5(x-12)=48 C.x+12(x-5)=48 D.5x+(12-x)=48
随堂练习
练习3.已知y=1是方程my=y+2的解,求m2-3m+1的值. 解:把y=1代入方程 my = y+2 得 m = 3, 当 m = 3 时, m2-3m+1 = 12-3×1+1 =1.

初一数学第四讲 一元一次方程

初一数学第四讲   一元一次方程

第四讲 一元一次方程教学目标1.理解方程的概念,能够根据要求列出恰当的方程,能够对方程模型进行准确的判断;2.熟练掌握移项、去括号、合并同类项等化简方程的方法,掌握解一元一次方程的步骤;3.能够分析实际问题中的已知量和未知量,以及它们之间的关系,能够熟练找出题目中的等量关系,并列出方程进行求解,并根据问题判断“解”的合理性。

教学重点 移项、去括号、合并同类项等化简方程的方法 教学难点 能列方程解应用题 教学方法建议讲授法,讲练结合 选材程度及数量课堂精讲例题 搭配课堂训练题 课后作业 A 类(4)道(10)道(4)道B 类 (9)道 (8)道 (7)道C 类(6)道(6)道(5)道第1——2课时 一元一次方程相关概念及解法一、知识梳理1.等式及其性质⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2.方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3.解一元一次方程的步骤①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.4.易错知识辨析(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.二、课堂精讲例题(一)一元一次方程的定义 例题1若3223=+-k kxk是关于x 的一元一次方程,则k =_______.【难度分级】:A 类【选题意图】(对应知识点):本题主要考查学生对一元一次方程的定义的理解。

一元一次方程应用(一)---教师讲义

一元一次方程应用(一)---教师讲义

中 正 教 育 教 师 辅 导 讲 义年 级: 七年级 课 时 数:3 学员姓名: 辅导科目: 数学 学科教师: 课程主题 一元一次方程应用(一)授课类型 T 课本同步C 专题辅导T应用能力提升授课日期时段 年 月 日 段( :00-- :00)学习目标1.能分析简单问题中的数量关系,并建立方程解决问题;体会利用方程解决问题的关键是寻找等量关系.2.进一步经历运用方程解决实际问题的过程,体会数学的应用价值.教学内容【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答. 要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系; (2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可; (6)“答”就是写出答案,注意单位要写清楚. 要点二、水箱变高了(等积变形问题)“等积变形”是以形状改变而体积不变为前提.常见类型:①形状面积变了,周长没变;②原体积=变化后体积.常用的面积、体积公式:长方形的周长公式:(长+宽)×2;面积公式:长×宽 长方体的体积公式:长×宽×高正方形的周长公式:边长×4; 面积公式:边长×边长 正方体体积公式:边长×边长×边长圆的周长公式:C=2d r ππ=;面积公式:2S r π=;圆柱的体积公式:V 柱=底面积×高;圆锥的体积公式:V 锥=13×底面积×高 要点诠释:寻找等量关系的方法,抓住两个等量关系:第一,形变体积不变;第二,形变体积也变,但重量不变. 要点三、打折销售(利润问题) (1)-=100%=100%⨯⨯利润售价成本利润率成本成本(2) 标价=成本(或进价)×(1+利润率) (3) 实际售价=标价×打折率(4) 利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.要点诠释:寻找等量关系的方法,抓住价格升降对利润的影响来考虑. 【典型例题】类型一、水箱变高了(等积变形问题)1.一个底面直径5厘米、高18厘米的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离.【思路点拨】先求得两个圆柱的体积,进而求得体积差,等量关系为:体积小的底面积×高度=体积差,把相关数值代入即可求解.解:底面直径5厘米、高18厘米的圆柱形瓶内体积为:V 1=π×()2×18=(立方厘米), 底面直径6厘米、高10厘米的圆柱形玻璃体积为:V 2=π×(6÷2)2×10=(立方厘米),因为V 2<V 1,所以装不下. 设瓶内水面还有xcm .π×()2×x=,解得:x=3.6.答:装不下,瓶内水面还有3.6厘米.【总结升华】解决本题的难点是判断出哪个容器的体积大;关键是得到倒满较小的容器后的体积的等量关系.2.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际按照他的设计,鸡场的面积是多少?解:根据小王的设计可以设宽为x米,则长为(x+5)米,根据题意得:2x+(x+5)=35解得: x=10.因此小王设计的长为x+5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的.根据小赵的设计可以设宽为y米,长为(y+2)米,根据题意得2y+(y+2)=35解得: y=11.因此小赵设计的长为y+2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米).答:小赵的设计符合实际按照他的设计,鸡场的面积是143平方米.【总结升华】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,但要注意所得的结果应满足实际情况的需要.类型二、打折销售(利润问题)3.以现价销售一件商品的利润率为30%,如果商家在现有的价格基础上先提价40%,后降价50%的方法进行销售,商家还能有利润吗?为什么?解:设该商品的成本为a元,则商品的现价为(1+30%)a元,依题意其后来折扣的售价为(1+40%)(1-50%)(1+30%)a =0.91a.∵0.91a-a=-0.09a,∴0.09aa·100%=-9%.答:商家不仅没有利润,而且还亏损9%.【总结升华】解答此类问题时,一定要弄清题意.分清售价、进价、数量、利润之间的关系很重要.举一反三:【变式】某个商品的进价是500元,把它提价40%后作为标价.如果商家要想保住12%的利润率搞促销活动,请你计算一下广告上可写出打几折? 解:设该商品打x 折,依题意,则: 500(1+40%)·10x=500(1+12%). x=8.答:该商品的广告上可写上打八折.4.列方程解应用题:丽丽的妈妈到百盛商场给她买一件漂亮毛衣,售货员说:“这毛衣前两天打八折,今天又在八折的基础上降价10%,只卖144元,丽丽很快算出了这件毛衣的原标价,你知道是多少元吗?【思路点拨】首先设毛衣的原价是x 元,则八折就是80%x 元,再在八折的基础上降价10%卖价是(1-10%)×80%x ,再根据题目中说的“只卖144元”可得方程. 解:设毛衣的原价是x 元,由题意得: (1-10%)×80%x =144, 解得: x=200, 答:这件毛衣的原价是200元.【总结升华】此题主要考查了一元一次方程的应用,关键是弄清题意,设出未知数,根据题意表示出售价.此题用到的公式是:原售价×打折率=实际售价. 举一反三:【变式】张新和李明相约到图书大厦去买书,请你根据他们的对话内容(如图所示),求出李明上次所买书籍的原价.解:设李明上次购买书籍的原价为x 元,由题意得: 0.8x+20=x-12, 解得:x =160.答:李明上次所买书籍的原价是160元.一、选择题1.有一个底面半径为10cm,高为30cm的圆柱形大杯中存满了水,把水倒入一个底面直径为10cm的圆柱形小杯中,刚好倒满12杯,则小杯的高为()A.6cm B.8cm C.10cm D.12cm2.请根据图中给出的信息,可得正确的方程是()A.B.C.D.3.图(①)为一正面白色,反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上黏贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图(②)所示.若图(②)中白色与灰色区域的面积比为8:3,图(②)纸片的面积为33,则图(①)纸片的面积为()A.B.C.42 D.444.某物品标价为132元,若以9折出售,仍可获利10%,则该物品进价是( )A.105元 B.106元 C.108元 D.118元5.某个体商贩在一次买卖中同时卖出两件上衣, 每件售价均为135元, 若按成本计算, 其中一件盈利25%, 一件亏本25%, 则在这次买卖中他 ( )A.不赚不赔 B.赚9元 C.赔18元 D.赚18元6.某品牌冰箱去年国庆节开始季节性降低20%,到今年五一节又季节性涨价20%后,现售价为2400元/台,则该品牌冰箱去年国庆节之前的售价为每台()A.2000元B.2200元C.2400元D.2500元二、填空题7.用长为1米,直径是40毫米的圆钢能锻拉成直径为4毫米的圆钢丝米.8.一只直径为90毫米的圆柱形玻璃杯中装满了水,把杯中的水倒入一个底面性为131×131平方毫米、高为81毫米的长方体铁盒中,当铁盒装满水时,玻璃杯中水的高度大约下降了多少设大约下降了x毫米,则可列方程.9.如图,将一个正方形纸片剪去一个宽为4cm的长条(阴影部分)后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,若两次剪下的长条面积正好相等,则每一个长条的面积为cm2.10.一件商品进价的15%的利润后售价为230元,它的进价是x元,那么可得方程为,它的进价是.11.五•一期间,某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了折优惠.12.商场打折促销时,张老师买了一件衣服和一条裤子,共用了284元.其中衣服按标价打六折,裤子按标价打八折,衣服的标价为300元,则裤子的标价应为元.三、解答题13.某商品的进价为200元,标价为300元,折价销售的利润率为5%,问此商品是按几折销售的?14.若进货价降低8%,而售出价不变,那么利润可由目前的p%增加到(p+10)%,求p .15.在一次春游中,小明、小亮等同学随家人一同到江郎山游玩.如图所示是购买门票时,小明与他爸爸的对话:问题:(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由. 【答案与解析】 一、选择题1.【答案】C 【解析】设小杯的高为x ,根据题意得:π×102×30=π×12×(10÷2)2x 解得:x=10 2.【答案】A 【解析】等级变形问题,形变体积不变.3.【答案】C 【解析】设每一份为x ,则图②中白色的面积为8x ,灰色部分的面积为3x ,由题意,得 8x+3x=33,解得:x=3,∴灰色部分的面积为:3×3=9,∴图(①)纸片的面积为:33+9=42. 4.【答案】 C 【解析】设该物品进价是x 元,则有132×90%=(1+10%)x , 解得x =108. 5.【答案】C 【解析】成本分别为:135108125%=+,135180125%=-;盈亏:13513510818018+--=-6.【答案】D 【解析】先降价20%,价格应是原价的(1﹣20%),又涨价20%,涨价后的价格应是原价的(1﹣20%)×(1+20%),所以设该品牌冰箱去年国庆节之前的售价为每台x 元,根据题意得出:(1﹣20%)×(1+20%)x =2400,解得:x=2500. 二、填空题7.【答案】100【解析】设能锻拉成直径为4毫米的圆钢丝x 米,则22201=2x ππ⨯⨯⨯⨯,解得:x =100. 8.【答案】【解析】等级变形问题,形变体积不变.9.【答案】80【解析】解:设正方形的边长是xcm ,则根据题意得:4x=5(x ﹣4),解得:x=20.故长方条的面积为4x=80cm 2.10.【答案】230%)151(=+x , 200元【解析】考查利润、进价、售价之间的关系,利润=售价-进价. 11.【答案】九【解析】设用贵宾卡又享受了x 折优惠,依题意得:10000﹣10000×80%×=2800,解之得:x=9.12.【答案】130【解析】设裤子标价为x 元.由题意得:300×60%+80%x=284,解得:x=130. 三、解答题13.解:设此商品是按x 折销售的,依题意得:3002002005%10x⨯-=⨯ 解得, x =7 答:此商品是按7折销售的.14.解:设进货价为x ,则下降后的进货价为0.92x .则 (1+p%)x= [1+(10+p )%]0.92x , 即(1+0.01p )x= [1+0.01(p+10)] 0.92x , 解得: p=15. 答:p 为15.15.解:(1)设小明他们一共去了x 个成人,则去了(11-x)个学生,根据题意得: 40x+0.5×40×(11-x)=360. 解得x =7.所以11-x =4.答:小明他们一共去了7个成人,4个学生. (2)若按14人购买团体票,则需要花费: 14×40×60%=336(元),360-336=24(元).答:买团体票更省钱,可节省24元.一、选择题1. 小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出了这块矿石的体积.如果他量出玻璃杯的内直径是d ,把矿石完全浸没在水中,测出杯中水面上升的高度为h ,则小明的这块矿石体积是( )A . 4πd 2hB . 2πd 2hC . πd 2hD .4πd 2h 2. 已知有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯的容量比为2:3,甲桶果汁与乙桶果汁的体积比为4:5,若甲桶内的果汁刚好装满小纸杯120个,则乙桶内的果汁最多可装满几个大纸杯( ) A . 64B . 100C . 144D . 2253. 如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD :AB=?( )A . 5:3B . 7:5C . 23:14D . 47:294.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为( ) A .26元 B .27元 C .28元 D .29元5. 受季节影响,某种商品开始实行优惠措施,按原价降低10%后,又降低a 元,现在每件售价b 元,那么该商品每件的原售价为( ) A . 110%a b +-B . -110%b a-C . (1﹣10%)(a+b )D . (1﹣10%)(a ﹣b )6. 学友书店推出售书优惠方案:①一次性购书不超过100元的,不享受优惠;②一次性购书超过100元但不超过200元的,一律打九折;③一次性购书超过200元的,一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为( )A .180元B .202.5元C .180元或202.5元D .180元或200元 二、填空题7.爷爷病了,需要挂100毫升的药液,小明守候在旁边,观察到输液流量是每分钟3毫升,输液10分钟后,吊瓶的空出部分容积是50毫升(如图),利用这些数据,计算整个吊瓶的容积是 毫升.8.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,则甲的容积为.9.矩形ABCD被分成6个正方形,其中最小的正方形边长为1,则矩形ABCD的面积为.10. 杉杉打火机厂生产某种型号的打火机.每只的成本为2元,毛利率为25%.工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%.则这种打火机每只的成本降低了________元.(精确到0.01元.毛利率=).11.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次去购书享受八折优惠,他查看了所买书的定价,发现两次共节约了34元.则该学生第二次购书实际付款______________元.12. 中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.某人两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款 .三、解答题13. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按40%的利润定价,乙服装按50%的利润定价,在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装的成本各是多少元?14. 加油啊!小朋友!春节快到了,鄂州移动公司为了方便学生上网查资料,提供了两种上网优惠方法:A.计时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元一次方程》全章复习与巩固(一)【知识网络】【典型例题】类型一、一元一次方程的概念例1.(2014•郸城县校级模拟)如果方程(k﹣1)x|k|+3=0是关于x的一元一次方程,那么k的值是.举一反三:【变式】下列说法中正确的是( ).A.2a-a=a不是等式 B.x2-2x-3是方程 C.方程是等式 D.等式是方程例2.若方程3(x-1)+8=2x+3与方程253x k x+-=的解相同,求k的值.举一反三:【变式】(2015春•泉州期中)当x=时,代数式2x+1与5x﹣8的值相等.类型二、一元一次方程的解法例3.解方程2351 46y y+--=举一反三:【变式】解方程:解方程:0.10.050.20.0550.20.54x x+--+=例4.解方程:113(1)(1)2(1)(1)22x x x x+--=--+类型三、一元一次方程的应用例5.甲车从A地出发以60 km/h的速度沿公路匀速行驶,0.5 h后,乙车也从A地出发,以80 km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车.例6.如图,一个盛有水的圆柱形玻璃容器的内底面半径为10cm,原容器内水的高度为12cm,把一根半径为2cm的玻璃棒垂直插入水中后,问容器内的水将升高多少cm?(圆柱的体积=底面积×高)例7.某商品的进价为1500元,提高40%后标价,若打折销售,使其利润为20%,则此商品是按几折销售的?(结果精确到0.1)举一反三:【变式】“五一”期间,某商场搞优惠促销活动,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折(按原销售价70%销售)和九折,共付款386元,这两种商品原销售价之和为500元,问两种商品原销售价分别为多少元?【巩固练习】一、选择题1.(2015春•宜阳县期中)下列方程中,是一元一次方程的为()A.3x+2y=6 B.x2+2x﹣1=0 C.=x D.﹣3=2.下列变形错误的是( ).A.由x + 7= 5得x+7-7 = 5-7B.由3x-2 =2x + 1得x= 3C.由4-3x = 4x-3得4+3 = 4x+3xD.由-2x= 3得x= -323. 某书中一道方程题:213xx++=,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是 2.5x=-,那么□处应该是数字( ).A.-2.5 B.2.5 C.5 D.74. 将(3x+2)-2(2x-1)去括号正确的是( ).A 3x+2-2x+1B 3x+2-4x+1C 3x+2-4x-2D 3x+2-4x+25. 当x=2时,代数式ax-2x的值为4,当x=-2时,这个代数式的值为().A.-8B.-4C.-2D.86.解方程121153x x+-=-时,去分母正确的是( ).A.3(x+1)=1-5(2x-1) B.3x+3=15-10x-5C.3(x+1)=15-5(2x-1) D.3x+1=15-10x+57.某球队参加比赛,开局11场保持不败,积23分,按比赛规则,胜一场得3分,平一场得1分,则该队获胜的场数为( ).A.4 B.5 C.6 D.78.某超市选用每千克28元的甲种糖3千克,每千克20元的乙种糖2千克,每千克12元的丙种糖5千克混合成杂拌糖后出售,在总销售额不变的情况下,这种杂拌糖平均每千克售价应是( ).A .18元B .18.4元C .19.6元D .20元 二、填空题9.在0,-1,3中, 是方程3x -9=0的解. 10.如果3x=-6是关于x 的一元一次方程,那么a = ,方程的解.11.若x =-2是关于x 的方程的解,则a = . 12.由3x =2x +1变为3x -2x =1,是方程两边同时加上 .13.“代数式9-x 的值比代数式-1的值小6”用方程表示为 . 14.当x = 时,代数式与互为相反数.15.(2015•哈尔滨模拟)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班的学生有 人.16.某商场把彩电按标价的8折出售,仍可获利20%,若该彩电的进价为2000元,则标价是 . 三、解答题17.(1)310.10.3542x x -=+;(2)122(1)(3)23x x x --=+. 18.已知代数式11213y y ---+的值为0,求代数式312143y y ---的值. 19.(2015•南丹县一模)某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,(2)若该水果店按售价销售完这批水果,获得的利润是多少元?20.学校校办工厂需制作一块广告牌,请来师徒二人,已知师傅单独完成需4天,徒弟单独完成需6天,现由徒弟先做一天,再两人合作,完成后共得到报酬450元,如果按各人完成的工作量计算报酬,那么该如何分配?52a -=x 324=-a x x 32223x -32x-《一元一次方程》全章复习与巩固(二)【知识网络】【典型例题】类型一、一元一次方程的相关概念例1.已知方程(3m-4)x2-(5-3m)x-4m=-2m是关于x的一元一次方程,求m和x的值.举一反三:【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.例2. (2015秋•营山县校级期中)对于ax+b=0(a ,b 为常数),表述正确的是( ) A .当a ≠0时,方程的解是x= B .当a=0,b ≠0时,方程有无数解 C .当a=0,b=0,方程无解 D .以上都不正确举一反三:【变式】已知|x+1|+(y+2x)2=0,则y x =________.类型二、一元一次方程的解法例3.解方程:解方程3{2x-1-[3(2x-1)+3]}=5.举一反三: 【变式】解方程26752254436z z z z z +---++=-类型三、特殊的一元一次方程的解法1.解含字母系数的方程例4.解关于x 的方程:11()(2)34m x n x m -=+2.解含绝对值的方程 例5. 解方程|x-2|=3.举一反三:【变式】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系为: ( )A. m n k >>B.n k m >>C.k m n >>D.m k n >>类型四、一元一次方程的应用例6.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?例7. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?例8.某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元,制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获利润2000元,该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂某领导提出了两种可行方案:方案1:尽可能多的制成奶片,其余直接销售鲜牛奶;方案2:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?举一反三:【变式】(2015•吴江市一模)现有甲、乙两种金属的合金10kg,如果加入甲种金属若干,那么重新熔炼后的合金中乙种金属占2份,甲种金属占3份,如果加入的甲种金属是第一次加入的2倍,那么重新熔炼后的合金中乙种金属占3份,甲种金属占7份,第一次加入的甲种金属多少?原来这块合金中甲种金属的百分比是多少?【巩固练习】一、选择题1.已知方程||(1)34m m x +-=是关于x 的一元一次方程,则m 的值是( ). A .±1 B .1 C .-1 D .0或1 2.已知1x =是方程122()3x x a -=-的解,那么关于y 的方程(4)24a y ay a +=+的解是( ).A .y =1B .y =-1C .y =0D .方程无解3.已知2(1)3(1)4(1)x y x y y x y x ++--+=---+-,则x y +等于( ).A .65-B .65C .56- D .564.一列火车长100米,以每秒20米的速度通过800米长的隧道,从火车进入隧道起,至火车完全通过所用的时间为( ).A .50秒B .40秒C .45秒D .55秒5.一架飞机在两城间飞行,顺风要5.5小时,逆风要6小时,风速为24千米/时,求两城距离x 的方程是( ). A .24245.56x x -=+ B .24245.56x x -+= C .2245.56 5.5x x=-+D .245.56x x-= 6.(2015•永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为( )A .10:00B .12:00C .13:00D .16:00 7.某书中一道方程题:213xx ++= ,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是x =﹣2.5,那么□处应该是数字( ). A .-2.5 B .2.5 C .5 D .78. 已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,…, 若21010b ba a+=⨯符合前面式子的规律,则a +b 的值为( ). A . 179 B . 140 C . 109 D . 210二、填空题9.已知方程2235522ax x x x a ++=-+是关于x 的一元一次方程,则这个方程的解为________.10.已知|4|m n -+和2(3)n -互为相反数,则22m n -=________. 11.(2015•温州校级自主招生)对于实数a ,b ,c ,d ,规定一种数的运算:=ad ﹣bc ,那么当=10时,x= .12.一商店把某商品按标价的九折出售仍可获得20%的利润率,若该商品的进价是每件30元,则标价是每件 元.13.某种中草药含甲、乙、丙、丁四种草药成分,这四种草药成分的质量比是0.7∶1∶2∶ 4.7.现在要配制这种中药1400克,这四种草药分别需要多少克?设每份为x 克,根据题意,得 .14.有一列数,按一定的规律排列:―1,2,―4,8,―16,32,―64,128,…,其中某三个相邻数之和为384,这三个数分别是 .15.已知关于x 的方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解,则该方程的解为 .16. x 表示一个两位数, y 表示一个三位数, 若把x 放在y 的左边组成一个五位数记作M 1, 把y 放在x 的左边组成一个五位数记作M 2, 则 M 1 - M 2 是 的倍数. 三、解答题17.解方程:(1)0.40.90.030.0250.50.032x x x ++--=.(2) .)12(43)]1(31[21+=--x x x(3)|3x-2|-4=0 .18.探究:当b为何值时,方程|x-2|=b+1 ①无解;②只有一个解;③有两个解.19.(2015•海淀区二模)小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小明与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.20.商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出场价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?。

相关文档
最新文档