江苏省扬州市2017~2018学年度高一数学第一学期期末调研测试试题(原卷版)
扬州市2017-2018学年度第一学期期末检测试题高三数学
扬州市2017-2018学年度第一学期期末检测试题高三数学2017-2018学年度第一学期期末检测试题高三数学2018.2第一部分一、 填空题1. 若集合A ={x |1<x <3},B ={0,1,2,3},则A ∩B =___________。
2. 若复数(a −2ⅈ)(1+3ⅈ)是纯虚数,则实数a 的值为__________。
3. 若数据31,37,33,a ,35的平均数是34,则这组数据的标准差为_________。
4. 为了了解某学校男生的身体发育情况,随机调查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图,根据此图估计该校2000名男生中体重在70-80kg 的人数为________。
5. 运行右边的流程图,输出的结果是_________。
6. 从两名男生2名女生中任选两人,则恰有一男一女的概率为__________。
7. 若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为______。
8. 若实数x ,y 满足{x ≤4y ≤33x +4y ≥12,则x 2+y 2的取值范围是________。
9. 已知各项都是正数的等比数列{a n }的前n 项和为S n ,若4a 4,a 3,6a 5成等差数列,且a 3=3a 22,则S 3=_________。
10. 在平面直角坐标系xOy 中,若双曲线x 2a2−y 2b 2=1(a >0,b >0)的渐近线与圆x 2+y 2−6y +5=0没有焦点,则双曲线离心率的取值范围是__________。
11. 已知函数f (x )=sⅈn x −x +1−4x 2x,则关于x 的不等式f (1−x 2)+f (5x −7)<0的解集为_________。
12. 已知正ΔABC 的边长为2,点P 为线段AB 中垂线上任意一点,Q 为射线AP 上一点,且满足AP ⃗⃗⃗⃗⃗⃗ ⋅AQ ⃗⃗⃗⃗⃗⃗ =1,则|CQ ⃗⃗⃗⃗⃗⃗ |的最大值为_________。
【数学】江苏省扬州中学2017-2018学年高一上学期12月阶段测试数学试题+答案
江苏省扬州中学2017-2018学年度第一学期阶段性测试高一数学2017.12 第Ⅰ卷(共60分)一、填空题:(本大题共14个小题,每小题5分,共70分.将答案填在答题纸上.) 1.若{}224,x x x ∈++,则x = .2.计算:2331log 98-⎛⎫+= ⎪⎝⎭.3.sin1320︒的值为 . 4.若一个幂函数()f x 的图象过点12,4⎛⎫⎪⎝⎭,则()f x 的解析式为 . 5.方程lg 2x x +=的根()0,1x k k ∈+,其中k Z ∈,则k = . 6.函数()tan 24f x x π⎛⎫=-⎪⎝⎭的定义域为 .7.函数()2log 23a y x =-+(0a >,且1a ≠)恒过定点的坐标为 . 8.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为 .9.已知点P 在直线AB 上,且4AB AP =uu u r uu u r ,设AP PB λ=uu u r uu r,则实数λ= .10.设函数()sin 0y x ωω=>在区间,64ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围为 .11.若关于x 的方程21220xx a +-+=在[]0,1内有解,则实数a 的取值范围是 .12.点E 是正方形ABCD 的边CD 的中点,若2AE DB ⋅=-uu u r uu u r ,则AE BE ⋅=uu u r uur.13.已知函数()4f x x a a x=+-+在区间[]1,4上的最大值为32,则实数a = . 14.已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,则函数()()1528y f x f x =+--有 个零点.第Ⅱ卷(共90分)二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.设全集U R =,集合{}121x A x -=≥,{}2450B x x x =--<. (1)求A B I ,()()U U C A C B U ;(2)设集合{}121C x m x m =+<<-,若B C C =I ,求实数m 的取值范围.16.设()2,1OA =-uu r ,()3,0OB =uu u r ,(),3OC m =uu u r.(1)当8m =时,将OC uuu r 用OA uu r 和OB uu u r表示;(2)若A B C 、、三点能构成三角形,求实数m 应满足的条件. 17. 已知函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭的部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[]0,π的单调增区间;(3)若函数()()1g x f x =+在区间(),a b 上恰有10个零点,求b a -得最大值.18. 某批发公司批发某商品,每件商品进价80元,批发价120元,该批发商为鼓励经销商批发,决定当一次批发量超过100个时,每多批发一个,批发的全部商品的单价就降低0.04元,但最低批发价不能低于102元.(1)当一次订购量为多少个时,每件商品的实际批发价位102元?(2)当一次订购量为x 个,每件商品的实际批发价为P 元,写出函数()P f x =的表达式; (3)根据市场调查发现,经销商一次最大订购量为500个,则当经销商一次批发多少个零件时,该批发公司可获得最大利润.19. 已知定义在实数集R 上的偶函数()f x 在区间(],0-∞上是单调递增,且()20f -=. (1)若()12sin 21f f x ⎛⎫<⎪+⎝⎭,求x 的取值范围;(2)若()5cos 216g x x a π⎛⎫=-+- ⎪⎝⎭,7,242x ππ⎡⎤∈⎢⎥⎣⎦,a R ∈.是否存在实数a ,使得()0f g x >⎡⎤⎣⎦恒成立?若存在,求a 的范围;若不存在,说明理由.20. 已知函数()()()log 101a f x x a =+<<,()()2log 33a g x x x =-+. (1)解关于x 的不等式()()g x f x >; (2)若函数()g x 在区间[]3,2m n m ⎛⎫> ⎪⎝⎭上的值域为()()log 3,log 3a a t n t m ++⎡⎤⎣⎦,求实数t 的取值范围; (3)设函数()()()f xg x F x a -=,求满足()F x Z ∈的x 的集合.高一数学参考答案及评分标准一、填空题1.1 2.6 3.2-4.()2f x x -= 5.1 6.3,28k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭7.()3,3 8.6 9.13,15- 10.(]0,2 11.[]0,1 12. 3 13.18 14. 4 二、解答题15.解:(1)∵{}1A x x =≥,{}15B x x =-<<∴{}15A B x x =≤<I ,()(){}15U U C A C B x x x =<≥或U (2)当C =∅时,211m m -<+ 即2m <当C B ⊆时,12111215m m m m +<-⎧⎪+≥-⎨⎪-≤⎩解之得33m <≤综上所述:m 的取值范围是(],3-∞.16.解:(1)当8m =时,()8,3OC =uu u r,设OC xOA yOB =+uu u r uu r uu u r,则()()()()8,32,13,023,x y x y x =-+=+-∴2383x y x +=⎧⎨-=⎩∴3143x y =-⎧⎪⎨=⎪⎩;(2)∵A B C 、、三点能构成三角形∴,AB AC uu u r uuu r不共线又()1,1AB =uu u r ,()2,4AC m =-uu u r∴()14120m ⨯-⨯-≠,∴6m ≠. 17.解:(1)2A =,243124T πππω=-=,2ω= 所以()2sin 23f x x π⎛⎫=+ ⎪⎝⎭(2)令222232k x k πππππ-+≤+≤+,k Z ∈得51212k x k ππππ-+≤≤+ 又因为[]0,x π∈,所以函数()y f x =在[]0,π的单调增区间为0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎤⎢⎥⎣⎦. 注:区间端点可开可闭,都不扣分. (3)()2sin 213f x x π⎛⎫=+=- ⎪⎝⎭, 得512x k ππ=+或()34x k k Z ππ=+∈ 函数()f x 在每个周期上有两个零点,所以共有5个周期, 所以b a -最大值为217533T ππ+=. 18.解:(1)设一次订购量为()100n n N +∈, 则批发价为1200.04n -,令1200.04102n -=, ∴1201020.04n -=,∴450n =,所以当一次订购量为550个时,每件商品的实际批发价为102元.(2)由题意知()()1200100,1200.0410*******,x x N f x x x x N⎧≤≤∈⎪=⎨--<≤∈⎪⎩(3)当经销商一次批发个零件x 时,该批发公司可获得利润为y ,根据题意知:()()400100400.0410*******xx f x x x x ⎧≤≤⎪=⎨--⋅<≤⎡⎤⎪⎣⎦⎩ 设()140f x x =,在100x =时,取得最大值为4000;设()220.0444f x x x =-+=()220.045500.04550x --+⨯,所以当500x =时,()2f x 取最大值.答:当经销商一次批发500个零件时,该批发公司可获得最大利润. 19.解:(1)∵()f x 为偶函数, ∴()()220f f -==∵偶函数()f x 在(],0-∞上单调递增 ∴()f x 在[)0,+∞上单调递减 ∴12sin 21x >+∴12sin 21x >+或12sin 21x <-+ ∴31sin 2,11,22x ⎛⎫⎛⎫∈---- ⎪ ⎪⎝⎭⎝⎭U ,又[]sin 21,1x ∈-,∴1sin 21,2x ⎛⎫∈--⎪⎝⎭故x 的取值范围为73311,,124412k k k k ππππππππ⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭U ,()k Z ∈(2)由题意知,当22t -<<时,()0f t > 又()sin 213g x x a π⎛⎫=-+- ⎪⎝⎭,7,242x ππ⎡⎤∈⎢⎥⎣⎦∵7,242x ππ⎡⎤∈⎢⎥⎣⎦,∴22,343x πππ⎡⎤-∈⎢⎥⎣⎦,∴sin 2123x π⎛⎫≤-≤ ⎪⎝⎭ 要使()0f g x >⎡⎤⎣⎦恒成立,则()22g x -<<恒成立 ①当0a >时,则()11g x a ≤≤-+12a -+<,01a <<②当0a =时,()1g x =显然成立 ③当0a <时,则()11a g x -+≤≤12a -+>-,∴30a -<<综上所述,使()0f g x >⎡⎤⎣⎦恒成立时,a的范围为31a -<<.20.解:(1)原不等式等价于20331x x x <-+<+,解得22x <故解集为(22.(2)∵23324y x ⎛⎫=-+ ⎪⎝⎭在32x >上是单调递增的,又01a <<,(或设1232x x >>,则120x x ->,123x x +>, ∴()()2211223333x x x x -+--+=()()121230x x x x -+->⎡⎤⎣⎦ ∴()()2211223333x x x x -+>-+,∵01a <<,∴()()221122log 33log 33a a x x x x -+<-+)所以函数()g x 在区间[]3,2m n m ⎛⎫>⎪⎝⎭上为减函数,因此 ()()()2log 33log 3a a g m m m t m =-+=+,()()()2log 33log 3a a g n n n t n =-+=+.即2333m m t m -+=+,2333n n t n -+=+,32m n ⎛⎫<<⎪⎝⎭. 所以m n 、是方程2333x x t x -+=+,3,2x ⎛⎫∈+∞⎪⎝⎭的两个相异的解. 设()263h x x x t =-+-,则()36430393630242332t h t ⎧⎪∆=-->⎪⎪⎛⎫=-⨯+->⎨ ⎪⎝⎭⎪⎪>⎪⎩所以1564t -<<-为所求. (3)()()()()()()2log 1log 332133a a x x x f x g x x F x a ax x +--+-+===-+,()1x >-∵()71551x x ++-≥+,当且仅当1x =时等号成立,(可用对勾函数单调性说明,不证不扣分)∴()211733151x x x x x ⎛+=∈ -+⎝⎦++-+,∵5343<<,∴()F x 有可能取得整数有且只有1,2,3, 当21133x x x +=-+时,解得2x =,2x =当21233x x x +=-+时,解得5,12x x ==; 当21333x x x +=-+时,解得2x =,43x =.故集合451,2,,,2232M ⎧=-⎨⎩.。
江苏省扬州中学2017-2018学年高二上学期期末考试数学试卷
扬州市2017-2018学年度第一学期期末检测试题高 二 数 学(满分160分,考试时间120分钟)注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1.命题“x ∃∈R ,210x -<”的否定是 ▲ . 2.直线210x y ++=在y 轴上的截距为 ▲ . 3.抛物线24y x =的焦点坐标为 ▲ .5.在边长为2的正方形内随机取一点,取到的点到正方形中心的距离大于1的概率为 ▲ . 6.某校学生高一年级有400人,高二年级有300人,高三年级有200人,现用分层抽样的方法从所有学生中抽取一个容量为n 的样本.已知从高三学生中抽取的人数为10,那么n = ▲ . 7.执行如图所示的程序框图,输出的s 值为 ▲ .8.已知函数ln(4)y x =-的定义域为A ,集合{|}B x x a =>,若x A ∈是x B ∈的充分不必要条件,则实数a 的取值范围为 ▲ .9. 已知椭圆22:1x y C +=上的点M 到右焦点的距离为2,则点M 到左准线的距离为 ▲ .11.已知函数()f x 的定义域为R ,'()f x 是()f x 的导函数,且(2)3f =,'()1f x <,则不等式()1f x x >+的解集为 ▲ .12.已知(4,0)A ,(1,0)B ,动点P 满足2PA PB =.设点P 到点(3,0)C -的距离为d ,则d 的取值范围为 ▲ .13.斜率为13直线l 经过椭圆22221(0)x y a b a b+=>>的左顶点A ,且与椭圆交于另一个点B ,若在y轴上存在点C 使得ABC △是以点C 为直角顶点的等腰直角三角形,则该椭圆的离心率 为 ▲ .14. 已知函数2()|3|f x x x a =-在[0,2]x ∈的值域为[0,4]m ,则实数m 的最小值为 ▲ . 二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本题满分14分)已知命题p :“椭圆2215x y a+=的焦点在x 轴上”;命题q :“关于x 的不等式23230x ax ++≥在R 上恒成立”.(1)若命题p 为真命题,求实数a 的取值范围;(2) 若命题“p 或q ”为真命题、“p 且q ”为假命题,求实数a 的取值范围.16.(本题满分14分)为了让学生更多地了解“数学史”知识,某班级举办一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动.现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表:(1)填充上述表中的空格(在解答中直接写出对应空格序号的答案); (2)若利用组中值近似计算数据的平均数,求此次数学史初赛的平均成绩;(3)甲同学的初赛成绩在[90,100],学校为了宣传班级的学习经验,随机抽取分数在[90,100]的4位同学中的两位同学到学校其他班级介绍,求甲同学被抽取到的概率.17.(本题满分14分)已知圆C 的半径为3,圆心在y 轴正半轴上,直线4390x y --=圆C 相切. (1)求圆C 的方程;(2)过点(1,0)Q 的直线l 与圆C 交于不同的两点1122(,),(,)A x y B x y 且4AB =,求12x x 的值.18.(本题满分16分)某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量y (万只)与时间x (年)(其中*x N ∈)的关系为2x y e =.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值21ayM x x =-+(其中a 为常数,且0a >)来进行生态环境分析. (1)当1a =时,求比值M 取最小值时x 的值;(2)经过调查,环保部门发现:当比值M 不超过4e 时不需要进行环境防护.为确保恰好..3年不需要进行保护,求实数a 的取值范围.(e 为自然对数的底, 2.71828e =)19.(本题满分16分)已知椭圆:E 22221(0)x y a b a b+=>>的右准线方程为2x =,椭圆的左顶点为A ,上顶点为B ,点P 为椭圆上异于,A B 任意一点.(1)求椭圆的方程;(2)若直线BP 与x 轴交于点M ,直线AP 与y 轴交于点N ,求证:AM BN ⋅为定值.20.(本题满分16分)已知:函数()ln f x ax x =-. (1)当1a =时,求函数()y f x =的极值;(2)若函数()()2g x f x x =-,讨论()y g x =的单调性;(3)若函数2()()h x f x x =+的图象与x 轴交于两点12(,0),(,0)A x B x ,且120x x <<.设012x x x λμ=+,其中常数λ、μ满足条件1λμ+=,且0≥>μλ.试判断在点00(,())M x h x 处的切线斜率的正负,并说明理由.。
2017-2018高一数学上学期期末考试试题及答案
2017-2018学年度第一学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己的姓名、座号、考籍号分别填写在试卷和答题纸规定的位置.第Ⅰ卷(选择题 共48分)参考公式:1.锥体的体积公式1,,.3V Sh S h =其中是锥体的底面积是锥体的高 2.球的表面积公式24S R π=,球的体积公式343R V π=,其中R 为球的半径。
一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( )A .{}0B .{}1,2C .{}0,2D .{}0,1,2 2.空间中,垂直于同一直线的两条直线 ( )A .平行B .相交C .异面D .以上均有可能3.已知幂函数()αx x f =的图象经过点错误!,则()4f 的值等于 ( )A .16B 。
错误!C .2D 。
错误!4。
函数()lg(2)f x x =+的定义域为 ( )A 。
(—2,1)B 。
[-2,1]C 。
()+∞-,2 D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP |的最小值为 ( )AB .CD .26.设m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是 ( )A .若m ∥n ,m ∥α,则n ∥αB .若α⊥β,m ∥α,则m ⊥βC .若α⊥β,m ⊥β,则m ∥αD .若m ⊥n ,m ⊥α, n ⊥β,则α⊥βOOO O1 1117.设()x f 是定义在R 上的奇函数,当0≤x 时,()x x x f -=22,则()1f 等于 ( )A .-3B .-1C .1D .3 8.函数y =2-+212x x⎛⎫⎪⎝⎭的值域是 ( )A .RB .错误!C .(2,+∞)D 。
江苏省扬州市2017—2018学年度第一学期期末检测试题高二数学(解析版)
扬州市2017—2018学年度第一学期期末检测试题高二数学(满分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1. 命题“R,”的否定是______________.【答案】【解析】试题分析:特称命题的否定为全称命题,并将结论加以否定,因此命题的否定为:“,均有”考点:全称命题与特称命题2. 直线在轴上的截距为________.【答案】【解析】将化为,所以直线在轴上的截距为.3. 抛物线的焦点坐标为________.【答案】【解析】抛物线的焦点在轴上,且,所以抛物线的焦点坐标为,故答案为.4. 曲线在处的切线方程为___________________.【答案】【解析】因为,所以曲线在处的切线斜率为,即曲线在处的切线方程为,即.5. 在边长为2的正方形内随机取一点,取到的点到正方形中心的距离大于1的概率为____.【答案】【解析】试题分析:本题利用几何概型求解.只须求出满足:OQ≥1几何体的体积,再将求得的体积值与整个正方体的体积求比值即得...............考点:几何概型、球的体积公式、点评:本小题主要考查几何概型、球的体积公式、正方体的体积公式等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.属于基础题6. 某校学生高一年级有400人,高二年级有300人,高三年级有200人,现用分层抽样的方法从所有学生中抽取一个容量为的样本.已知从高三学生中抽取的人数为10,那么=____.【答案】45【解析】利用分层抽样的特点,得,解得.7. 执行如图所示的程序框图,输出的值为__________.【答案】【解析】由程序框图,得,即输出的值为.8. 已知函数的定义域为,集合,若是的充分不必要条件,则实数的取值范围为___________.【答案】【解析】函数的定义域为,,因为是的充分不必要条件,所以是的真子集,则,即实数的取值范围为.点睛:本题以数集为载体考查充分条件和必要条件的判定.在处理与数集有关的充分条件和必要条件的判定时,往往转化为数集之间的包含关系的判定,已知命题:,若,则是的充分条件,是的必要条件.9. 已知椭圆上的点到右焦点的距离为2,则点到左准线的距离为____.【答案】4【解析】因为椭圆上的点到右焦点的距离为2,所以到左焦点的距离为,即的横坐标为0,即点到左准线的距离为4.点睛:本题考查椭圆的定义的应用.在处理与圆锥曲线的两焦点问题时,往往利用圆锥曲线的定义合理进行转化,如遇到椭圆或双曲线上的点到准线问题,要考虑两者的第二定义进行合理转化.10. 已知双曲线的渐近线方程为,且过点,则双曲线的标准方程为_______.【答案】【解析】设以为渐近线的方程为,又因为该双曲线过点,所以,即双曲线的标准方程为.点睛:本题考查双曲线标准方程的求法.已知双曲线的渐近线求双曲线的标准方程时,要注意巧妙设法,可避免讨论,如:以为渐近线的双曲线方程可设为.11. 已知函数的定义域为R,是的导函数,且,,则不等式的解集为_______.【答案】【解析】令,因为,且,所以,,即在R上单调递减,且可化为,则,即不等式的解集为.点睛:本题考查利用导数研究不等式的解集.解决本题的关键是合理根据条件(且)构造函数和,再利用单调性进行求解.12. 已知,,动点满足.设点到点的距离为,则的取值范围为________.【答案】【解析】设,由题意,得,化简得,因为圆心到点的距离为3,所以,即.点睛:本题考查动点的轨迹方程、点到圆上的距离的最值.求动点的轨迹方程最主要的一种方法是直接法,其步骤为:(1)设点;(2)找几何条件;(3)列方程;(4)化简方程;(5)验证,进而得到其关键方程.13. 斜率为直线经过椭圆的左顶点,且与椭圆交于另一个点,若在轴上存在点使得是以点为直角顶点的等腰直角三角形,则该椭圆的离心率为________.【答案】14. 已知函数在的值域为,则实数的最小值为_____.【答案】【解析】因为,所以,令,则,,(1)当时,在上恒成立,即函数在上单调递增,则,即;(2)当时,函数在单调递增,在上单调递减,在上单调递增,且,,①若时,则在单调递增,则,即;②若,即时,,即;③若,即时,,即;综上所述,,即实数的最小值为.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15. 已知命题:“椭圆的焦点在轴上”;命题:“关于的不等式在R上恒成立”.(1)若命题为真命题,求实数的取值范围;(2)若命题“或”为真命题、“且”为假命题,求实数的取值范围.【答案】(1)(2)【解析】试题分析:(1)利用椭圆的标准方程化简命题,即可求解;(2)先根据真值表得到两简单命题的真假,再利用相关数集进行求解.试题解析:(1)真:椭圆的焦点在轴上∴(2)∵“或”为真命题、“且”为假命题∴真假或假真真:∵关于的不等式在R上恒成立∴,解得:∴或解得:或∴实数a的取值范围是或.16. 为了让学生更多地了解“数学史”知识,某班级举办一次“追寻先哲的足迹,倾听数学的声音的数学史知识竞赛活动.现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表:(1)填充上述表中的空格(在解答中直接写出对应空格序号的答案);(2)若利用组中值近似计算数据的平均数,求此次数学史初赛的平均成绩;(3)甲同学的初赛成绩在,学校为了宣传班级的学习经验,随机抽取分数在的4位同学中的两位同学到学校其他班级介绍,求甲同学被抽取到的概率.【答案】(1)①22;②14;③0.28;(2)77.4(3)【解析】试题分析:(1)利用频数、频率、容量间的关系进行求解;(2)利用平均数公式进行求解;(3)列出基本事件,利用古典概型的概率公式进行求解.试题解析:(1)①22;②14;③0.28;(2);(3)记“甲同学被抽取到”为事件,设四名学生为甲、乙、丙、丁,则总的基本事件为:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,共6个基本事件;满足事件的基本事件:甲乙、甲丙、甲丁,共3个基本事件,则 .答:此次数学史初赛的平均成绩为,甲同学被抽取到的概率为.17. 已知圆的半径为3,圆心在轴正半轴上,直线圆相切.(1)求圆的方程;(2)过点的直线与圆交于不同的两点且,求的值.【答案】(1)(2)【解析】试题分析:(1)利用圆心在轴正半轴上设出圆心坐标,再利用圆心到直线的距离等于半径进行求解;(2)设出直线方程,利用弦长公式进行求解.试题解析:(1)设,∵直线圆相切,且圆的半径为3∴,解得或∵∴∴圆的方程为:;(2)若直线的斜率不存在,则直线∴,不符合题意,舍;若直线的斜率存在,设:∵∴点到直线的距离为,即,化简得:∴联立方程:,消去得:∴18. 某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量(万只)与时间(年)(其中)的关系为.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值(其中为常数,且)来进行生态环境分析.(1)当时,求比值取最小值时的值;(2)经过调查,环保部门发现:当比值不超过时不需要进行环境防护.为确保恰好..3年不需要进行保护,求实数的取值范围.(为自然对数的底,)【答案】(1)M在时取最小值(2)【解析】试题分析:(1)求导,利用导函数的符号变化研究函数的单调性和最值;(2)利用(1)结论,列出不等式组进行求解.试题解析:(1)当时,,∴列表得:∴在上单调递减,在上单调递增∴在时取最小值;(2)∵根据(1)知:在上单调减,在上单调增∵确保恰好..3年不需要进行保护∴,解得:答:实数的取值范围为.19. 已知椭圆的右准线方程为,又离心率为,椭圆的左顶点为,上顶点为,点为椭圆上异于任意一点.(1)求椭圆的方程;(2)若直线与轴交于点,直线与轴交于点,求证:为定值.【答案】(1) (2)见解析【解析】试题分析:(1)利用椭圆的准线方程和离心率即可求解;(2)设出点的坐标,写出的直线方程,求出点的坐标,利用两点间的距离公式和点在椭圆上进行化简求解.试题解析:(1)∵椭圆的右准线方程为∴∵离心率为∴∴∴∴椭圆的方程为:;(2)方法(一)设点,则,,即.当时,,则,∴∵点异于点∴当且时,设直线方程为:,它与轴交于点直线方程为:,它与轴交于点∴,∴为定值.方法(二)若直线斜率不存在,则直线方程为:,此时,则,∴若直线斜率存在,设直线方程为:,且∴且则联立方程:,消去得:,解得:或,即点∵点异于点∴∴∴直线的方程为:,则且∴为定值.20. 已知:函数.(1)当时,求函数的极值;(2)若函数,讨论的单调性;(3)若函数的图象与轴交于两点,且.设,其中常数、满足条件,且.试判断在点处的切线斜率的正负,并说明理由.【答案】(1)极小值1,无极大值(2)当时,在上单调减;当时,在和上单调减,在上单调增(3)在点处的切线斜率为正.【解析】试题分析:(1)求导,利用导函数的符号变化得到函数的单调性,进而得到函数的极值;(2)求导,讨论二次项系数的符号、判别式的符号及两根大小进行求解;(3)先将问题转化为判断的符号,合理构造函数进行证明.试题解析:(1)当时,∴,令,则,列表得:∴有极小值,无极大值;(2),∴,设①当时,恒成立,即恒成立,∴在上单调减;②当且,即时,恒成立,且不恒为0,则恒成立,且不恒为0,∴在上单调减;③当且,即时,有两个实数根:,且∴∴当或时,,;当时,,;∴在和上单调减,在上单调增.∴综上:当时,在上单调减;当时,在和上单调减,在上单调增.(3),,问题即为判断的符号.∵函数的图象与轴交于两点,且∴两式相减得:∴∴)∵且∴∵∴研究:的符号,即判断的符号.令,,设∴方法(一)设,其对称轴为:∴在上单调减,则,即在上恒成立∴在上单调增∴,即∵∴∴,即∴在点处的切线斜率为正.方法(二)∵,∴∴在上恒成立∴在上单调增∴,即∵∴∴,即∴在点处的切线斜率为正.。
【数学试卷】江苏省扬州中学2017-2018学年高一上学期期末考试数学试题
扬州市2017—2018学年度第一学期期末调研测试试题高 一 数 学2018.01(全卷满分160分,考试时间120分钟)注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1. 设集合{0,1},{1,3}A B ==,则A B = ▲ .2. 7tan3π= ▲ . 3. 设幂函数)(x f 的图象过点,则)4(f = ▲ .4. 函数3()sin f x x x =的奇偶性为 ▲ 函数.(在“奇”、“偶”、“非奇非偶”、“既奇又偶”中选择)5. 已知扇形的面积为4cm 2,该扇形圆心角的弧度数是12,则扇形的周长为 ▲ cm . 6. = ▲ .7. 已知单位向量1e ,2e 的夹角为60°,则12|2|=e e + ▲ . 8. 已知1s()33co πα+=,则sin()6πα-= ▲ .9. 如图,在ABC △中,,2==EABE DC AD 若,CB AC DE μλ+= 则μλ-=___▲____. 10. 不等式)1(log 22+≤-x x 的解集是 ▲ .11. 已知ABC ∆的面积为16,8=BC ,则AC AB ⋅的取值范围是 ▲ .12. 已知函数()2sin()(0)6f x x πωω=->与()cos(2)(0)g x x θθπ=+<<的零点完全相同,则()6g π= ▲ .13. 设函数)10()1()(≠>--=-a a ak a x f xx且是定义域为R 的奇函数.若()312f =,且()x mf a a x g x x 2)(22-+=-在[)1,+∞上的最小值为2-,则m 的值为 ▲ .14. 设a 为实数,()f x 在R 上不是单调函数,则实数a的取值范围为 ▲ .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分14分)已知函数()6f x 的定义域为A ,集合}{B =2216xx ≤≤,非空集合}{C =+121x m x m ≤≤-,全集为实数集R . (1)求集合AB 和RC B ;(2)若A ∪C=A ,求实数m 取值的集合.16.(本小题满分14分)已知向量()()2,1sin(),2cos a b παα==-, (1)若3=4πα,求证:a b ⊥; (2)若向量,a b 共线,求b .17.(本小题满分15分)函数()2sin()f x x ωϕ=+(其中0ω>,||<2πϕ),若函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π且过点(0,1), ⑴求()f x 的解析式; ⑵求()f x 的单调增区间; ⑶求()f x 在(,0)2π-的值域.18.(本小题满分15分)近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、益为)(x f (单位:万元).(1)当投资甲城市128万元时,求此时公司总收益;⑵试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?19.(本小题满分16分)已知关于x 的函数2()2(1)g x mx m x n =--+为R 上的偶函数,且在区间[]1,3-上的最大值为10. 设xx g x f )()(=. ⑴ 求函数错误!未找到引用源。
江苏省扬州市2017-2018学年度第一学期期末调研测试高三数学试题 及答案解析
2017—2018学年度第一学期期末检测试题高三数学第一部分一、填空题(本大题共14个小题,每小题5分,共70分.请将答案填写在答题卷相应的位置上)1.若集合{|13}A x x=<<,{0,1,2,3}B=,则A B=.2.若复数(2)(13)a i i-+(i是虚数单位)是纯虚数,则实数a的值为.3.若数据31,37,33,a,35的平均数是34,则这组数据的标准差是.4.为了了解某学校男生的身体发育情况,随机抽查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图.根据此图估计该校2000名男生中体重在7078()kg的人数为.5.运行下边的流程图,输出的结果是.6.从2名男生2名女生中任选两人,则恰有一男一女的概率为.7.若圆锥的侧面展开图的面积为3π且圆心角为23π的扇形,则此圆锥的体积为 .8.若实数x ,y 满足433412x y x y ≤⎧⎪≤⎨⎪+≥⎩,则22x y +的取值范围是 .9.已知各项都是正数的等比数列{}n a 的前n 项和为n S ,若44a ,3a ,56a 成等差数列,且2323a a =,则3S = .10.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的渐近线与圆22650x y y +-+=没有交点,则双曲线离心率的取值范围是 .11.已知函数14()sin 2xx f x x x -=-+,则关于x 的不等式2(1)(57)0f x f x -+-<的解集为 .12.已知正ABC ∆的边长为2,点P 为线段AB 中垂线上任意一点,Q 为射线AP 上一点,且满足1AP AQ ⋅=,则CQ 的最大值为 .13.已知函数12log (1)1,[1,]()21,(,]x x k f x x x k a -+-∈-⎧⎪=⎨⎪--∈⎩,若存在实数k 使得该函数的值域为[2,0]-,则实数a 的取值范围是 .14.已知正实数x ,y 满足22541x xy y +-=,则22128x xy y +-的最小值为 .二、解答题:(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.如图,在直三棱柱111ABC A B C -中,D ,E 分别为AB ,AC 的中点.(1)证明:11//B C 平面1A DE ;(2)若平面1A DE ⊥平面11ABB A ,证明:AB DE ⊥. 16.已知在ABC ∆中,6AB =,5BC =,且ABC ∆的面积为9. (1)求AC ;(2)当ABC ∆为锐角三角形时,求cos(2)6A π+的值.17.如图,射线OA 和OB 均为笔直的公路,扇形OPQ 区域(含边界)是一蔬菜种植园,其中P 、Q 分别在射线OA 和OB 上.经测量得,扇形OPQ 的圆心角(即POQ ∠)为23π、半径为1千米.为了方便菜农经营,打算在扇形OPQ 区域外修建一条公路MN ,分别与射线OA 、OB 交于M 、N 两点,并要求MN 与扇形弧PQ相切于点S .设POS α∠=(单位:弧度),假设所有公路的宽度均忽略不计.(1)试将公路MN 的长度表示为α的函数,并写出α的取值范围; (2)试确定α的值,使得公路MN 的长度最小,并求出其最小值.18.已知椭圆1E :22221(0)x y a b a b+=>>,若椭圆2E :22221(0,1)x y a b m ma mb+=>>>,则称椭圆2E 与椭圆1E “相似”.(1)求经过点,且与椭圆1E :2212x y += “相似”的椭圆2E 的方程;(2)若4m =,椭圆1E的离心率为2,P 在椭圆2E 上,过P 的直线l 交椭圆1E 于A ,B 两点,且AP AB λ=.①若B 的坐标为(0,2),且2λ=,求直线l 的方程;②若直线OP ,OA 的斜率之积为12-,求实数λ的值.19.已知函数()x f x e =,()g x ax b =+,,a b R ∈.(1)若(1)0g -=,且函数()g x 的图象是函数()f x 图象的一条切线,求实数a 的值;(2)若不等式2()f x x m >+对任意(0,)x ∈+∞恒成立,求实数m 的取值范围; (3)若对任意实数a ,函数()()()F x f x g x =-在(0,)+∞上总有零点,求实数b 的取值范围.20.已知各项都是正数的数列{}n a 的前n 项和为n S ,且22n n n S a a =+,数列{}n b 满足112b =,12n n n nbb b a +=+. (1)求数列{}n a 、{}n b 的通项公式; (2)设数列{}nc 满足2n n nb c S +=,求和12n c c c ++⋅⋅⋅+; (3)是否存在正整数p ,q ,()r p q r <<,使得p b ,q b ,r b 成等差数列?若存在,求出所有满足要求的p ,q ,r ,若不存在,说明理由.第二部分(加试部分)21. B .选修4-2:矩阵与变换已知x ,y R ∈,若点(1,1)M 在矩阵23x y ⎡⎤=⎢⎥⎣⎦A 对应的变换作用下得到点(3,5)N ,求矩阵A 的逆矩阵1A -.21. C .选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程是:2x m y ⎧=⎪⎪⎨⎪=⎪⎩(t 是参数,m 是常数).以O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为6cos ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于P 、Q 两点,且2PQ =,求实数m 的值. 22.扬州大学数学系有6名大学生要去甲、乙两所中学实习,每名大学生都被随机分配到两所中学的其中一所.(1)求6名大学生中至少有1名被分配到甲学校实习的概率;(2)设X ,Y 分别表示分配到甲、乙两所中学的大学生人数,记X Y ξ=-,求随机变量ξ的分布列和数学期望.23.二进制规定:每个二进制数由若干个0、1组成,且最高位数字必须为1.若在二进制中,n S 是所有n 位二进制数构成的集合,对于n a ,n n b S ∈,(,)n n M a b 表示n a 和n b 对应位置上数字不同的位置个数.例如当3100a =,3101b =时33(,)1M a b =,当3100a =,3111b =时33(,)2M a b =.(1)令510000a =,求所有满足55b S ∈,且55(,)2M a b =的5b 的个数; (2)给定(2)n a n ≥,对于集合n S 中的所有n b ,求(,)n n M a b 的和.扬州市2017—2018学年度第一学期期末调研测试试题高三数学参考答案第一部分一、填空题 1.{}2 2.6-3. 24. 2405.946.23 7. 38.144[,25]25 9.1327 10.3(1,)211.(2,3) 12.12 13. 1(,2]214. 73二、解答题15证明:⑴在直三棱柱111ABC A B C -中,四边形11B BCC 是平行四边形,所以11//B C BC ,在ABC ∆中,,D E 分别为,AB AC 的中点,故//BC DE ,所以11//B C DE , 又11B C ⊄平面1A DE ,DE ⊂平面1A DE , 所以11//B C 平面1A DE .⑵在平面11ABB A 内,过A 作1AF A D ⊥于F ,因为平面1A DE ⊥平面11A ABB ,平面1A DE 平面111A ABB A D=,AF ⊂平面11A ABB ,所以AF ⊥平面1A DE ,又DE ⊂平面1A DE ,所以AF DE ⊥,在直三棱柱111ABC A B C -中,1A A ⊥平面ABC ,DE ⊂平面ABC ,所以1A A DE ⊥, 因为1AF A A A= ,AF ⊂平面11A ABB ,1A A ⊂平面11A ABB ,所以DE ⊥平面11A ABB ,因为AB ⊂平面11A ABB ,所以DE AB ⊥.注:作1AF A D ⊥时要交代在平面内作或要交代垂足点,否则扣1分16 解:⑴因为S △ABC =1sin 92AB BC B =创,又AB=6,BC=5,所以3sin 5B =,又B (0,)π∈,所以4cos 5B ==±,当cosB=45时,AC == 当cosB=45-时,AC ===所以AC =注:少一解的扣3分⑵ 由ABC ∆为锐角三角形得B 为锐角,所以AB=6,,BC=5, 所以cosA ==又(0,)A π∈,所以sinA ==, 所以12sin 2213A ==,225cos 213A =-=-,所以cos(2)cos 2cos sin 2sin 666A A A p p p +=-.17. 解:⑴因为MN 与扇形弧PQ 相切于点S ,所以OS ⊥MN. 在RT OSM 中,因为OS=1,∠MOS=α,所以SM=tan α, 在RT OSN 中,∠NOS=23πα-,所以SN=2tan()3πα-,所以2tan tan()3MN παα=+-=,其中62ππα<<.⑵ 因为62ππα<<,所以10α->,令10t α=->,则tan 1)t α=+,所以42)MN t t=++,由基本不等式得2)MN ≥=, 当且仅当4t t=即2t =时取“=”.此时tan α=62ππα<<,故3πα=.答:⑴2tan tan()3MN παα=+-=,其中62ππα<<.⑵当3πα=时,MN 长度的最小值为.注:第⑵问中最小值对但定义域不对的扣2分.18解:⑴设椭圆2E 的方程为2212x y m m +=,代入点得2m =, 所以椭圆2E 的方程为22142x y +=.⑵因为椭圆1E 的离心率为2,故222a b =,所以椭圆2221:22E x y b +=, 又椭圆2E 与椭圆1E “相似”,且4m =,所以椭圆2221:28E x y b +=, 设112200(,),(,),(,)A x y B x y P x y ,①方法一:由题意得2b =,所以椭圆221:28E x y +=,将直线:2l y kx =+, 代入椭圆221:28E x y +=得22(12)80k x kx ++=,解得1228,012kx x k -==+,故212224,212k y y k -==+, 所以222824(,)1212k k A k k--++, 又2AP AB = ,即B 为AP 中点,所以2228212(,)1212k k P k k+++, 代入椭圆222:232E x y +=得222228212()2()321212k k k k ++=++,即4220430k k +-=,即22(103)(21)0k k -+=,所以10k =±,所以直线l 的方程为2y x =+. 方法二:由题意得2b =,所以椭圆221:28E x y +=,222:232E x y +=, 设(,),(0,2)A x y B ,则(,4)P x y --,代入椭圆得2222282(4)32x y x y ⎧+=⎪⎨+-=⎪⎩,解得12y =,故x =所以k =所以直线l 的方程为2y x =+.②方法一: 由题意得22222222200112228,22,22x y b x y b x y b +=+=+=,010112y y x x ⋅=-,即010120x x y y +=, AP AB λ= ,则01012121(,)(,)x x y y x x y y λ--=--,解得012012(1)(1)x x x y y y λλλλ+-⎧=⎪⎪⎨+-⎪=⎪⎩, 所以2220101(1)(1)()2()2x x y y b λλλλ+-+-+=,则22222222001100112(1)(1)24(1)2(1)2x x x x y y y y b λλλλλ+-+-++-+-=, 222222200010111(2)2(1)(2)(1)(2)2x y x x y y x y b λλλ++-++-+=,所以222228(1)22b b b λλ+-⋅=,即224(1)λλ+-=,所以52λ=. 方法二:不妨设点P 在第一象限,设直线:(0)O P y k x k =>,代入椭圆2222:28E x y b +=,解得0x =0y =,直线,O P O A的斜率之积为12-,则直线1:2O Ay x k=-,代入椭圆2221:22E x y b+=,解得1x =1y =,AP AB λ= ,则01012121(,)(,)x x y y x x y y λ--=--,解得012012(1)(1)x x x y y y λλλλ+-⎧=⎪⎪⎨+-⎪=⎪⎩,所以2220101(1)(1)()2()2x x y y b λλλλ+-+-+=,则22222222001100112(1)(1)24(1)2(1)2x x x x y y y y b λλλλλ+-+-++-+-=, 222222200010111(2)2(1)(2)(1)(2)2x y x x y y x y b λλλ++-++-+=,所以2222282(((1)22b b b λλλ+-++-⋅=,即222228(1)22b b b λλ+-⋅=,即224(1)λλ+-=,所以52λ=.19解:(1)由(1)0g -=知,()g x 的图象直线过点(1,0)-,设切点坐标为00(,)T x y ,由'()x f x e =得切线方程是000()x x y e e x x -=-, 此直线过点(1,0)-,故000(1)x x e e x -=--,解得00x =,所以'(0)1a f ==.(2)由题意得2,(0,)x m e x x <-∈+∞恒成立, 令2(),(0,)x m x e x x =-∈+∞,则'()2x m x e x =-,再令()'()xn x m x e x ==-,则'()2xn x e =-,故当(0,ln 2)x ∈时,'()0n x <,()n x 单调递减;当(ln 2,)x ∈+∞时,'()0n x >,()n x 单调递增,从而()n x 在(0,)+∞上有最小值(ln 2)22ln 20n =->, 所以()m x 在(0,)+∞上单调递增, 所以(0)m m ≤,即1m ≤. 注:漏掉等号的扣2分.(3)若0a <,()()()x F x f x g x e ax b =-=--在(0,)+∞上单调递增, 故()()()F x f x g x =-在(0,)+∞上总有零点的必要条件是(0)0F <,即1b >, 以下证明当1b >时,()()()F x f x g x =-在(0,)+∞上总有零点. ①若0a <,由于(0)10F b =-<,()()0b baa b b F e a b e a a---=---=>,且()F x 在(0,)+∞上连续,故()F x 在(0,)ba-上必有零点; ②若0a ≥,(0)10F b =-<,由(2)知221x e x x >+>在(0,)x ∈+∞上恒成立, 取0x a b=+,则0()()a b F x F a b e a a b b +=+=-+-22()(1)0a b a ab b ab b b >+---=+->,由于(0)10F b =-<,()0F a b +>,且()F x 在(0,)+∞上连续, 故()F x 在(0,)a b +上必有零点, 综上得:实数b 的取值范围是(1,)+∞.20. 解:(1)22n n n S a a =+①,21112n n n S a a +++=+②,②-①得:221112n n n n n a a a a a +++=-+-,即11()(1)0n n n n a a a a +++--=, 因为{}n a 是正数数列,所以110n n a a +--=,即11n n a a +-=, 所以{}n a 是等差数列,其中公差为1, 在22n n n S a a =+中,令1n =,得11a =, 所以n a n =, 由12nn n nb b b a +=+得1112n n b b n n +=⋅+, 所以数列{}n b n 是等比数列,其中首项为12,公比为12,所以1(),22n n n n b nb n ==即. 注:也可累乘求{}n b 的通项. (2)2212()2n n n n b n c S n n +++==+,裂项得1112(1)2n n n c n n +=-⋅+, 所以121112(1)2n n c c c n ++++=-+ , (3)假设存在正整数,,()p q r p q r <<,使得,,p q r b b b 成等差数列,则2p r q b b b +=,即2222p r q p r q+=, 因为11111222n n n n n n n nb b ++++--=-=,所以数列{}n b 从第二项起单调递减, 当1p =时,12222r q r q+=,若2q =,则122r r =,此时无解; 若3q =,则124r r =,因为{}n b 从第二项起递减,故4r =,所以1,3,4p q r ===符合要求, 若4q ≥,则1142q b b b b ≥≥,即12q b b ≥,不符合要求,此时无解; 当2p ≥时,一定有1q p -=,否则若2q p -≥,则2442221p p qP b b p b b p p+≥==≥++,即2p q b b ≥,矛盾, 所以1q p -=,此时122r pr =,令1r p m -=+,则12m r +=,所以121m p m +=--,12m q m +=-,综上得:存在1,3,4p q r ===或121m p m +=--,12m q m +=-,12m r +=满足要求.第二部分(加试部分)答案21.A .解:因为1315⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A ,即213315x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即2335x y +=⎧⎨+=⎩,解得12x y =⎧⎨=⎩, 所以2132⎡⎤=⎢⎥⎣⎦A , 法1:设1a b c d -⎡⎤=⎢⎥⎣⎦A ,则121103201a b c d -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA ,即2132020321a c a c b d b d +=⎧⎪+=⎪⎨+=⎪⎪+=⎩, 解得2132a b c d =⎧⎪=-⎪⎨=-⎪⎪=⎩,所以12132--⎡⎤=⎢⎥-⎣⎦A . 法2:因为1db a b ad bc ad bc c d c a ad bcad bc --⎡⎤⎢⎥⎡⎤--=⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥--⎣⎦,且21det()2213132==⨯-⨯=A , 所以1121213232---⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦A . 注:法2中没有交待逆矩阵公式而直接写结果的扣2分.B .解:(1)因为直线l 的参数方程是: 2x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数), 所以直线l 的普通方程为0x y m --=.因为曲线C 的极坐标方程为6cos ρθ=,故26cos ρρθ= ,所以226x y x += 所以曲线C 的直角坐标方程是22(3)9x y -+=.(2)设圆心到直线l 的距离为d,则d ==又d ==所以34m -=,即 1m =-或7m =.22.解:⑴记 “6名大学生中至少有1名被分配到甲学校实习” 为事件A ,则6163()=1264P A =-. 答:6名大学生中至少有1名被分配到甲学校实习的概率为6364. ⑵ξ所有可能取值是0,2,4,6,记“6名学生中恰有i 名被分到甲学校实习”为事件i A (01,6i = ,,),则3363365(0)()216C C P P A ξ====,2442646224246615(2)()()()2232C C C C P P A A P A P A ξ==+=+=+=,155165611515663(4)()()()2216C C C C P P A A P A P A ξ==+=+=+=,066066660606661(6)()()()2232C C C C P P A A P A P A ξ==+=+=+=,所以随机变量ξ的概率分布为:所以随机变量ξ的数学期望()024+6163216328E ξ=⨯+⨯+⨯⨯=.答:随机变量ξ的数学期望15()8E ξ=. 23.解(1)因为55(,)2M a b =,所以5b 为5位数且与5a 有2项不同,又因为首项为1,故5a 与5b 在后四项中有两项不同,所以5b 的个数为246C =.(2)当(,)n n M a b =0时,n b 的个数为01n C -; 当(,)n n M a b =1时,n b 的个数为11n C -, 当(,)n n M a b =2时,n b 的个数为21n C -,………当(,)n 1n n M a b =-时,n b 的个数为11n n C --,设(,)n n M a b 的和为S , 则01211111012(1)n n n n n S C C C n C -----=++++- , 倒序得12101111(1)210n n n n n S n C C C C -----=-++++ ,倒序相加得01111112(1)[](1)2n n n n n S n C C C n -----=-++=-⋅ ,即2(1)2n S n -=-⋅, 所以(,)n n M a b 的和为2(1)2n n --⋅.扬州市2017—2018学年度第一学期期末调研测试试题高三数学参考答案2018.2第一部分1.2.3.4.5.6.7.8.9. 10.11.12.13.14.15证明:⑴在直三棱柱中,四边形是平行四边形,所以,.………2分在中,分别为的中点,故,所以, (4)分又平面,平面,所以平面.………7分⑵在平面内,过作于,因为平面平面,平面平面,平面,所以平面,.………11分又平面,所以,在直三棱柱中,平面,平面,所以,因为,平面,平面,所以平面,因为平面,所以。
江苏省扬州市2017~2018学年度高一数学第一学期期末调研测试试题(解析版)
扬州市2017~2018学年度第一学期期末调研测试试题高一数学2018.01(全卷满分160分,考试时间120分钟)注意事项:答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方.2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1. 设集合,则_______.【答案】【解析】根据并集的概念知.2. ______.【答案】【解析】.3. 设幂函数的图象过点,则=_______.【答案】2【解析】设,,故.【答案】偶【解析】函数定义域为,且,故函数为偶函数.5. 已知扇形的面积为4cm,该扇形圆心角的弧度数是,则扇形的周长为______cm.【答案】10【解析】,故周长为.6. =_______.【答案】【解析】原式7. 已知单位向量,的夹角为60°,则_______.【答案】【解析】原式.8. 已知,则_______ .【答案】【解析】原式.9. 如图,在中,若则=_______.【答案】【解析】依题意有,而,故,所以填10. 不等式的解集是_______.【答案】【解析】画出,的图象如下图所示,由图可知,解集为.11. 已知的面积为16,,则的取值范围是______.【答案】【解析】由于为定值,故点到的距离为定值,由面积得.点在平行于的直线上运动.当位于的垂直平分线上时,由于,此时三角形为等腰直角三角形,且.点在其它位置时.故.【点睛】本题主要考查三角形的面积公式,考查向量的数量积运算.由于在三角形中,一边为定值,而三角形的面积也为定值,故三角形的高也是定值,利用面积公式将定值求出为,由此画出图象,利用图象分析出,代入向量数量积运算可得取值范围.12. 已知函数与的零点完全相同,则= ___.【答案】【解析】由于零点完全相同,故周期也相同,所以,即,由于,故,故,.【点睛】本题主要考查和函数的图象与性质.题目所给两个函数中,含有一个未知参数,也含有一个未知参数,但是这两个未知参数的位置是不同的,根据零点相同可判断出两个函数周期相同,由此求得其中一个参数,再利用特殊值求出另一个参数.13. 设函数是定义域为的奇函数.若,且在上的最小值为,则的值为______.【答案】2【解析】由于奇函数定义域为,故,故.,解得,故,令,,故,二次函数,开口向上,当时取得最小值,解得.由于,故,所以.【点睛】本小题主要考查函数的奇偶性与单调性,考查待定系数法求函数的解析式,考查利用换元法求函数的值域,考查二次函数的最值问题.由于是定义在上的奇函数,故有,如果奇函数在处没有定义,则没有这个条件.换元时要注意取值范围.14. 设为实数,函数若在上不是单调函数,则实数的取值范围为_____.【答案】【解析】,两段函数对称轴都为,当,即时,函数在定义域上递减,不符合题意.当,即时,函数在上不单调.【点睛】本题主要考查含有绝对值函数分类讨论单调性,考查二次函数对称轴与单调区间的关系.由于所给函数既含有绝对值,又含有参数,故利用参数进行分类讨论,去绝对值,将函数写成分段函数的形式.两段函数联系点在对称轴都相同.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15. 已知函数的定义域为A,集合,非空集合,全集为实数集R.(1)求集合和;(2)若A∪C=A,求实数取值的集合.【答案】(1),;(2).【解析】【试题分析】(1)由解得,由解得.由此求得.(2)由于所以,所以即.结合,解得的取值为.【试题解析】(1)∵函数的定义域为A,,又由得,(2),则即又要使集合为非空集合,则必须即所以实数m的取值集合为16. 已知向量(1)若,求证:;(2)若向量共线,求.【答案】(1)证明见解析;(2).【解析】【试题分析】(1)计算即可证得两向量垂直.(2)根据两个向量共线的公式,得到,化简求得,利用向量模的计算公式,计算出.【试题解析】(1)当时,又(2)因为向量共线,即当,则与矛盾,故舍去;当时,由得:又另解:由得所以17. 函数(其中,),若函数的图象与轴的任意两个相邻交点间的距离为且过点,⑴求的解析式;⑵求的单调增区间;⑶求在的值域.【答案】(1);(2)();(3).学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...【试题解析】⑴由题可知:,;函数的图象过点,,,,⑵令()的单调增区间为();⑶的值域为.18. 近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元,根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益与投入(单位:万元)满足,乙城市收益与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).(1)当投资甲城市128万元时,求此时公司总收益;⑵试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?【答案】(1)88万元;(2)当甲城市投资128万元,乙城市投资112万元时,总收益最大.【解析】【试题分析】(1)当甲万时,乙万,代入收益表达式可求得投资收益.(2)设投资甲万,则投资乙万.对分成,两种情况,求出总收益的表达式,利用一次函数和二次函数最值求法求得最大值.【试题解析】(1)当时,此时甲城市投资128万元,乙城市投资112万元所以总收益(万元)答:总收益为88万元.(2)由题知,甲城市投资万元,乙城市投资万元依题意得,解得当时,<当时,令,则所以当,即万元时,的最大值为因为故的最大值为(万元)答:当甲城市投资128万元,乙城市投资112万元时,总收益最大,且最大收益为88万元19. 已知关于的函数为上的偶函数,且在区间上的最大值为10. 设.⑴求函数的解析式;⑵若不等式在上恒成立,求实数的取值范围;⑶是否存在实数,使得关于的方程有四个不相等的实数根?如果存在,求出实数的范围,如果不存在,说明理由.【答案】(1);(2);(3)答案见解析.【解析】【试题分析】(1)利用,化简后可求得.此时函数对称轴为轴,故当时取得最大值,由此求得.进而求得.(2)将原不等式分离参数得到在上恒成立,利用换元法结合二次函数最值可求得.(3)先将原方程化为.利用换元法令,将上式变为二次函数零点问题来求解.【试题解析】(1)∵为上的偶函数,,,关于恒成立,,在区间上的最大值为10,当时,解得:,(2)不等式在上恒成立,即在上恒成立,上式可化为在上恒成立,令,∵,∴,则在上恒成立,又∵当时,,∴,即所求实数的取值范围为(3)方程,即,可化为:,令,则,若关于的方程有四个不相等的实数根,则关于的方程必须有两个不相等的实数根和,并且,记,则,解得:,所以,存在实数使得关于的方程有四个不相等的实数根,取值范围为【点睛】本题主要考查函数的奇偶性,考查待定系数法求函数的解析式,考查恒成问题的处理策略和零点问题的处理方法.若函数满足则函数为偶函数,题目给出这个条件,利用这个条件就可以求得一个未知参数,再结合最大值就可以求得另一个未知参数.20. 已知函数.(1)求不等式的解集;(2)函数若存在使得成立,求实数的取值范围;(3)若函数讨论函数的零点个数(直接写出答案,不要求写出解题过程).【答案】(1);(2);(3)答案见解析.【解析】【试题分析】(1)先判断出函数的是定义在区间上的减函数,然后将所求不等式等价转化为即,由此求得解集为.(2)由题意知:时,值域有交集.时,是减函数对分成两类讨论得出的值域,由此求得的取值范围.(3)由,得,令则作出图像,对分类,结合图象讨论零点的个数.【试题解析】(1),定义域为,函数是奇函数.又在时是减函数,(也可用定义法证明)故不等式等价于即,又故不等式的解集为.(2)由题意知:时,值域有交集.时,是减函数当时,时单调递减,当时,时单调递增,显然不符合综上:的取值范围为(3)由,得,令则作出图像由图可知,①当时,由得出,当时,,对应有3个零点;当时,,对应有1个零点;②当时,只有一个,对应有1个零点;③当时,只有一个,对应只有一个零点;④当时,,此时,,由得在时,,三个分别对应一个零点,共3个,在时,,三个分别对应1个,1个,3个零点,共5个.综上所述,当或或时,函数只有1个零点;当或时,函数有3个零点;当时,函数有5个零点.【点睛】本题主要考查函数的单调性和奇偶性,考查存在性问题的处理策略,考查复杂的零点问题,考查数形结合与分类讨论的数学思想.要求复合函数不等式的解集,可先求得函数的单调性和奇偶性,由此将原不等式变形,利用单调性去掉外层函数符号,进而求出不等式的解集.。
江苏省扬州市2018—2019学年高一第一学期期末检测试题数学(解析版)
2018—2019学年度第一学期期末检测试题高一数学2019.1全卷满分150分,考试时间120分钟1.答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效.一、选择题(本题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,集合,则()A. B. C. D.【答案】B【解析】【分析】已知集合A,B,取交集即可得到答案.【详解】集合,集合,则故选:B【点睛】本题考查集合的交集运算,属于简单题.2.的值为()A. B. C. D.【答案】A【解析】【分析】利用诱导公式和的三角函数值即可得到结果.【详解】,故选:A.【点睛】本题考查诱导公式和特殊角的三角函数值,属于基础题.3.已知幂函数的图象经过点,则=()A. B. C. D. -【答案】C【解析】【分析】将点代入中,可得幂函数解析式,从而得到f(4)的值.【详解】幂函数的图象经过点,则=,得到,即f(x)=,则f(4)=,故选:C.【点睛】本题考查幂函数的定义与应用,属于基础题.4.下列函数中,在其定义域内既是奇函数又是增函数的是()A. B. C. D.【答案】D【解析】【分析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.【详解】根据题意,依次分析选项:对于A,y=|x|为偶函数,不符合题意;对于B,y=tan x,是正切函数,在其定义域上不是增函数,不符合题意;对于C,,为指数函数,不是奇函数,不符合题意;对于D,y=x3,为幂函数,在其定义域内既是奇函数又是增函数,符合题意;故选:D.【点睛】本题考查函数的奇偶性与单调性的判断,关键是掌握常见函数的奇偶性与单调性.5.设向量,且,则()A. 3B. -2C. 1或-2D. 1或3【解析】【分析】先求出的坐标,根据即可得出=0,进行数量积的坐标运算即可求出m的值.【详解】;∵;∴=m(m+1)-2=0;解得m=1或﹣2.故选:C.【点睛】本题考查向量坐标的加法和数量积运算,考查向量垂直的充要条件,属于常考题.6.为了得到函数的图象,只需将的的图象上每一点().A. 向左平移个单位长度B. 向左平移个单位长度C. 向右平移个单位长度D. 向右平移个单位长度【答案】B【解析】这是同名函数的平移变换,,根据左加右减,得到要将函数向左平移个单位长度.故答案选B.7.的值为()A. -1B.C. 3D. -5【答案】A【解析】【分析】进行对数式、分数指数幂和根式的运算即可.【详解】原式=lg2+lg5﹣2﹣2+2=lg10﹣2=1﹣2=﹣1.故选:A.【点睛】本题考查对数式,根式和分数指数幂的运算,考查学生计算能力,属于基础题.8.如果点位于第四象限,那么角所在的象限是().A. 第一象限B. 第二象限C. 第三象限D. 第四象限【解析】∵点位于第四象限,∴,∴角所在的象限是第二象限.故选:B.9.若函数的定义域为,值域为,则的最小值为()A. B. C. D.【答案】A【解析】【分析】画出函数f(x)的图像,由定义域为,值域为,观察图像即可得到|b﹣a|的最小值.【详解】根据题意,画出函数f(x)图像,令可得x=或x=4,定义域为,值域为,由图象可知,定义域的最大区间[,4],最小区间是[,1],则的最小值为1-=故选:A.【点睛】本题考查对数函数的图象与性质,其中分析出满足条件的a,b的值,是解答的关键.10.已知函数,其中为非空集合,且满足,则下列结论中一定正确的是()A. 函数一定存在最大值B. 函数一定存在最小值C. 函数一定不存在最大值D. 函数一定不存在最小值【答案】C【解析】【分析】分别根据幂函数和二次函数的图象和性质,结合条件M∪N=R,讨论M,N,即可得到结论.【详解】∵函数,其中M,N为非空集合,且满足M∪N=R,∴由y=x3的值域为(﹣∞,+∞),y=x2的值域为[0,+∞),且M∪N=R,若M=(0,+∞),N=(﹣∞,0],则f(x)的最小值为0,故D错;若M=(﹣∞,0),N=[0,+∞),则f(x)无最小值,故B错;由M∪N=R,可得图象无限上升,则f(x)无最大值.故选:C.【点睛】本题考查函数最值的存在,注意幂函数和二次函数的图象和性质,考查分析推理能力.二、填空题(本题共6小题,每小题5分,共30分)11.若扇形的圆心角为(弧度),弧长为(单位:),则扇形面积为_____(单位:).【答案】【解析】【分析】首先根据弧长公式求得扇形的半径,然后利用扇形的面积公式即可求解.【详解】设扇形的弧长为l,圆心角大小为α(rad),半径为r,则由l=rα,可得:2π=r•,可得:r=6,扇形的面积为S=lr==6π故答案为:6π.【点睛】本题考查扇形的面积公式,正确掌握扇形的面积公式以及弧长公式是关键,属于基础题.12.函数定义域为_________.【答案】【解析】【分析】写出使函数有意义的不等式组,计算即可得答案.【详解】要使函数有意义,只需即,所以函数定义域为故答案为:【点睛】本题考查定义域的求解,需掌握:①分式分母不为0,②偶次根式被开方数大于等于0,③对数的真数大于0.13.若函数(其中)的部分图象如图所示,则函数的解析式__________.【答案】【解析】【分析】观察图像可得A,由周期可得值,再将特殊点代入解析式结合的范围可得值,从而得到函数解析式.【详解】由图可知:A=2,,∴T=π,ω==2,f(x)=2sin(2x+代入点(,0)得0=sin(2×+φ),∴φ+=π+2kπ,k∈Z,φ=+2kπ∵,∴φ=,∴y=2sin(2x+),故答案为:【点睛】本题考查由y=A sin(ωx+φ)的部分图象确定解析式,已知函数f(x)=A sin(ωx+φ)+B的图象求解析式(1). (2)由函数的周期T求.(3)利用“五点法”中相对应的特殊点求φ.14.如图,在半径为(单位:)的半圆形(为圆心)铁皮上截取一块矩形材料,其顶点在直径上,顶点在圆周上,则矩形面积的最大值为____(单位:).【答案】【解析】【分析】设BC=x,连结OC,求出OB,得到矩形面积表达式,然后利用基本不等式求出函数的最值即可.【详解】设BC=x,连结OC,得OB=,所以AB=2,所以矩形面积S=2,x∈(0,4),S=2.即x2=16﹣x2,即x=2时取等号,此时y max=16故答案为:16【点睛】本题考查函数解析式的求法,考查利用基本不等式求函数最值问题,考查计算能力.15.如图,在平行四边形中,点是边上的中点,点是边上靠近的三等分点.若,,则__________.【答案】【解析】【分析】用表示,解出,然后利用向量的模的公式计算即可得到的值.【详解】,则,则故答案为:【点睛】本题考查平面向量基本定理的应用,考查数量积的计算方法和向量的模的求法,属于基础题.16.已知函数,若关于的不等式恰有两个整数解,则实数的取值范围是_________.【答案】或【解析】【分析】由题意可得f(x),g(x)的图象均过(-1,1),分别讨论a>0,a<0时,f(x)>g(x)的整数解情况,解不等式即可得到所求范围.【详解】由函数可得f(x),g(x)的图象均过(-1,1),且f(x)的对称轴为x=,当a>0时,对称轴大于0,由题意可得f(x)>g(x)恰有0,1两个整数解,可得,即有,解得当a<0时,对称轴小于0,由题意可得f(x)>g(x)恰有-3,﹣2两个整数解,可得,即有,解得,综上可得a的范围是或故答案为:或.【点睛】本题考查函数方程的转化思想,考查分类讨论思想方法,以及化简整理的运算能力,属于中档题.三、解答题(本大题共6小题,计70分.解答应写出必要的文字说明、证明过程或演算步骤)17.已知全集.(1)若,求;(2)若,求实数的取值范围.【答案】(1),;(2)【解析】【分析】(1)当a=2时,求出集合A,B和,然后取并集和交集即可得到答案;(2)由,可得,结合子集概念即可得到答案.【详解】,(1)当时,,所以,所以(2)因为,所以,所以【点睛】本题考查集合的交并补运算,考查集合间关系,子集的应用,属于简单题.18.已知向量,,(1)若,求的值;(2)若,,求的值.【答案】(1)(2)【解析】【分析】(1)利用两个向量平行的充要条件可得然后代入所求的式子化简即可得答案;(2)利用两个向量的数量积坐标公式可得,将平方再利用x的范围开方即可得到结果.【详解】解:(1)因为,,,所以,即,显然,否则若,则,与矛盾,所以(2)因为,,所以即所以因为,所以,又,所以,所以,所以【点睛】本题考查两个向量平行的充要条件和两个向量数量积的坐标公式,考查和关系的应用,属于基础题.19.已知,其中.(1)求的值;(2)求的值.【答案】(1)(2)【解析】【分析】(1)利用同角三角函数基本关系式以及两角和与差的三角函数转化求解即可.(2)利用正切的两角和的三角函数,结合角的范围,求解角的大小即可.【详解】解:(1)因为,,所以所以所以,(2)因为,,所以,因为,,所以,所以所以【点睛】本题考查两角和与差的三角函数,三角函数的化简求值,是基本知识的考查.20.已知函数,(1)求函数的最小正周期及对称中心;(2)求函数在上的单调增区间.【答案】(1)最小正周期;对称中心为(2)单增区间是[],【解析】【分析】(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简,然后利用正弦函数的周期公式和对称中心公式可得答案;(2)先利用正弦函数的单调性写出函数f(x)在R上得单调区间,再由x∈[0,π],对k取值,即可求得函数在[0,π]上单增区间.【详解】解:(1)所以,该函数的最小正周期;令,则,所以对称中心为(2)令则当时,由,解得;当时,由,解得所以,函数在上的单增区间是[],【点睛】本题主要考查三角函数的恒等变换及化简求值,三角函数的周期性和求法,三角函数单调区间的求法,属于基础题.21.已知函数是定义在R上的奇函数,(1)求实数的值;(2)如果对任意,不等式恒成立,求实数的取值范围.【答案】(1)1(2)【解析】【分析】(1)利用函数为奇函数的定义即可得到m值;(2)先判断出函数f(x)在R上单调递增,利用奇偶性和单调性将不等式转为恒成立,然后变量分离,转为求函数最值问题,最后解不等式即可得a的范围.【详解】解:(1)方法1:因为是定义在R上的奇函数,所以,即,即,即方法2:因为是定义在R上的奇函数,所以,即,即,检验符合要求.(2),任取,则,因为,所以,所以,所以函数在R上是增函数.注:此处交代单调性即可,可不证明因为,且是奇函数所以,因为在R上单调递增,所以,即对任意都成立,由于=,其中,所以,即最小值为3所以,即,解得,故,即.【点睛】本题考查函数奇偶性和单调性的综合应用,考查不等式恒成立问题,常用方法为利用变量分离转为函数最值问题,考查学生的计算能力和转化能力,属于中档题.22.已知二次函数满足下列3个条件: ①的图象过坐标原点;②对于任意都有;③对于任意都有,(1)求函数的解析式;(2)令,(其中为参数)①求函数的单调区间;②设,函数在区间上既有最大值又有最小值,请写出实数的取值范围.(用表示出范围即可,不需要过程)【答案】(1)(2)详见解析【解析】【分析】(1)利用f(0)=0求出c.通过函数的对称轴,得到a=-b,通过恒成立可得a值,从而得函数f(x)的表达式;(2)①先去掉绝对值符号得到函数g(x)的表达式,然后通过讨论对称轴与4m的关系结合二次函数图像的性质可得到单调区间;②结合①中的单调区间即可写出p,q的范围.【详解】解:(1)因为,所以.因为对于任意R都有,所以对称轴为,即,即,所以,又因为,所以对于任意都成立,所以,即,所以.所以.(2)①,当时,若,即,则在上递减,在上递增,若,即,则在上递增,当时,,若,即,则在上递增,在上递减,若,即,则在上递增,综上得:当时,的增区间为,,减区间为;当时,的增区间为,,减区间为;当时,的增区间为②【点睛】本题考查二次函数图像的性质,考查含绝对值的函数的单调性和最值问题,考查分类讨论思想和分析推理能力,综合性较强.。
2018届江苏省扬州市第一学期期末调研测试高三数学试题(解析版)
2018届江苏省扬州市第一学期期末调研测试高三数学试题一、填空题1.若集合,,则__________.【答案】【解析】2.若复数(是虚数单位)是纯虚数,则实数的值为__________.【答案】-6【解析】是纯虚数,则3.若数据31,37,33,,35的平均数是34,则这组数据的标准差是__________.【答案】2【解析】.4.为了了解某学校男生的身体发育情况,随机抽查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图.根据此图估计该校2000名男生中体重在的人数为__________.【答案】240【解析】该校2000名男生中体重在的人数为. 5.运行下边的流程图,输出的结果是__________.【答案】94【解析】不成立,执行,不成立,执行,成立,所以输出6.从2名男生2名女生中任选两人,则恰有一男一女的概率为__________.【答案】【解析】从2名男生2名女生中任选两人,共有种情况,其中一男一女有种情况,则恰有一男一女的概率为点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.7.若圆锥的侧面展开图的面积为且圆心角为的扇形,则此圆锥的体积为__________.【答案】【解析】设圆锥的底面半径为,母线长为,由题意知,且,解得,∴圆锥高∴此圆锥的体积8.若实数,满足,则的取值范围是__________.【答案】【解析】绘制不等式组表示的平面区域如图所示,目标函数的几何意义为坐标原点与可行域内的点连线距离的平方,据此可得,目标函数取得最大值时经过点,其最大值为:,考查坐标原点到直线的距离:可得目标函数的最小值为.综上可得的取值范围是.点睛:(1)本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.(2)解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.9.已知各项都是正数的等比数列的前项和为,若,,成等差数列,且,则__________.【答案】【解析】因为,,成等差数列,所以10.在平面直角坐标系中,若双曲线的渐近线与圆没有交点,则双曲线离心率的取值范围是__________.【答案】【解析】圆的方程可化为,双曲线的渐近线为,依题意有,整理得又,所以双曲线离心率的取值范围是.11.已知函数,则关于的不等式的解集为__________.【答案】【解析】函数的解析式:,则,且:,故函数单调递减,即函数是定义域内单调递减的奇函数,原不等式即:,故,求解关于的不等式可得原不等式的解集为:,表示为区间形式即.点睛:对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题,若f(x)为偶函数,则f(-x)=f(x)=f(|x|).12.已知正的边长为2,点为线段中垂线上任意一点,为射线上一点,且满足,则的最大值为__________.【答案】【解析】以的中点为坐标原点,建立如图所示的坐标系,则,设,三点共线,则:,即:,由可得:,据此可得点的轨迹方程满足:,整理变形可得:,如图所示,点的轨迹方程是以为直径的圆,则点睛:求与圆有关的轨迹方程时,常用以下方法:(1)直接法:根据题设条件直接列出方程;(2)定义法:根据圆的定义写出方程;(3)几何法:利用圆的性质列方程;(4)代入法:找出要求点与已知点的关系,代入已知点满足的关系式.13.已知函数,若存在实数使得该函数的值域为,则实数的取值范围是__________.【答案】【解析】在同一个平面直角坐标系中绘制函数的图像和函数在区间上的图像,函数的值域为,则函数图像位于直线和轴之间,观察函数图像可得,实数的取值范围是.14.已知正实数,满足,则的最小值为__________.【答案】【解析】令,则:,即,则:,据此有:,综上可得:当且仅当时等号成立.综上可得:的最小值为.二、解答题15.如图,在直三棱柱中,,分别为,的中点.(1)证明:平面;(2)若平面平面,证明:.【答案】(1)见解析;(2)见解析.【解析】试题分析:⑴由直三棱柱的性质可知四边形是平行四边形,结合三角形中位线的性质可得⑵在平面内,过作于,由线面垂直的性质定理可得平面,则,由直三棱柱的性质可得,则平面,利用线面垂直的定义可得.试题解析:⑴在直三棱柱中,四边形是平行四边形,所以,在中,分别为的中点,故,所以,又平面,平面,所以平面.⑵在平面内,过作于,因为平面平面,平面平面,平面,所以平面,又平面,所以,在直三棱柱中,平面,平面,所以,因为,平面,平面,所以平面,因为平面,所以.16.已知在中,,,且的面积为9.(1)求;(2)当为锐角三角形时,求的值.【答案】(1)或;(2).【解析】试题分析:⑴由题意结合三角形面积公式可得,则,据此分类讨论可得:当cosB=时,,当cosB=时,;⑵结合(1)的结论可知AB=6,AC=,BC=5,由余弦定理可得,则,,,所以.试题解析:⑴因为S△ABC=,又AB=6,BC=5,所以,又,所以,当cosB=时,,当cosB=时,,所以或.⑵由为锐角三角形得B为锐角,所以AB=6,AC=,BC=5,所以,又,所以,所以,,所以.17.如图,射线和均为笔直的公路,扇形区域(含边界)是一蔬菜种植园,其中、分别在射线和上.经测量得,扇形的圆心角(即)为、半径为1千米.为了方便菜农经营,打算在扇形区域外修建一条公路,分别与射线、交于、两点,并要求与扇形弧相切于点.设(单位:弧度),假设所有公路的宽度均忽略不计.(1)试将公路的长度表示为的函数,并写出的取值范围;(2)试确定的值,使得公路的长度最小,并求出其最小值.【答案】⑴,其中,⑵当时,长度的最小值为千米..【解析】试题分析:⑴由切线的性质可得OS⊥MN.则SM=,SN=,据此可得,其中.⑵利用换元法,令,则,由均值不等式的结论有:,当且仅当即时等号成立,即长度的最小值为千米.试题解析:⑴因为MN与扇形弧PQ相切于点S,所以OS⊥MN.在OSM中,因为OS=1,∠MOS=,所以SM=,在OSN中,∠NOS=,所以SN=,所以,其中.⑵因为,所以,令,则,所以,由基本不等式得,当且仅当即时取“=”.此时,由于,故.答:⑴,其中.⑵当时,长度的最小值为千米.点睛:(1)利用基本不等式解决实际问题时,应先仔细阅读题目信息,理解题意,明确其中的数量关系,并引入变量,依题意列出相应的函数关系式,然后用基本不等式求解.(2)在求所列函数的最值时,若用基本不等式时,等号取不到,可利用函数单调性求解.18.已知椭圆:,若椭圆:,则称椭圆与椭圆“相似”.(1)求经过点,且与椭圆:“相似”的椭圆的方程;(2)若,椭圆的离心率为,在椭圆上,过的直线交椭圆于,两点,且.①若的坐标为,且,求直线的方程;②若直线,的斜率之积为,求实数的值.【答案】(1);(2)①,②.【解析】试题分析:⑴设椭圆的方程为,结合椭圆过点可得椭圆的方程为.⑵由题意设椭圆,椭圆,设,①方法一:联立直线方程与椭圆方程可得,则,,代入椭圆可得,解得,直线的方程为.方法二:由题意得,则椭圆,,设,则,联立椭圆方程可得,则直线的方程为.②方法一:由题意得,结合,则,可得:,整理计算得到关于的方程:,.方法二:不妨设点在第一象限,直线,与椭圆方程联立可得,则,直线的斜率之积为,计算可得,则,结合,可得,即,.试题解析:⑴设椭圆的方程为,代入点得,所以椭圆的方程为.⑵因为椭圆的离心率为,故,所以椭圆,又椭圆与椭圆“相似”,且,所以椭圆,设,①方法一:由题意得,所以椭圆,将直线,代入椭圆得,解得,故,所以,又,即为中点,所以,代入椭圆得,即,即,所以,所以直线的方程为.方法二:由题意得,所以椭圆,,设,则,代入椭圆得,解得,故,所以,所以直线的方程为.②方法一:由题意得,,即,,则,解得,所以,则,,所以,即,所以.方法二:不妨设点在第一象限,设直线,代入椭圆,解得,则,直线的斜率之积为,则直线,代入椭圆,解得,则,,则,解得,所以,则,,所以,即,即,所以.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 19.已知函数,,.(1)若,且函数的图象是函数图象的一条切线,求实数的值; (2)若不等式对任意恒成立,求实数的取值范围;(3)若对任意实数,函数在上总有零点,求实数的取值范围.【答案】(1);(2);(3). 【解析】试题分析:(1)由题意可知的图象直线过点,设切点坐标为,则切线方程是,解方程可得,.(2)由题意得恒成立,构造函数,二次求导讨论可得在上单调递增, 所以,即.(3)利用必要条件探路,可知若,在上总有零点的必要条件是,即, 然后证明当时,在上总有零点可得实数的取值范围是.试题解析: (1)由知,的图象直线过点,设切点坐标为,由得切线方程是,此直线过点,故,解得,所以.(2)由题意得恒成立,令,则,再令,则,故当时,,单调递减;当时,,单调递增,从而在上有最小值,所以在上单调递增,所以,即.(3)若,在上单调递增,故在上总有零点的必要条件是,即,以下证明当时,在上总有零点.①若,由于,,且在上连续,故在上必有零点;②若,,由(2)知在上恒成立,取,则,由于,,且在上连续,故在上必有零点,综上得:实数的取值范围是.20.已知各项都是正数的数列的前项和为,且,数列满足,.(1)求数列、的通项公式;(2)设数列满足,求和;(3)是否存在正整数,,,使得,,成等差数列?若存在,求出所有满足要求的,,,若不存在,说明理由.【答案】(1),;(2);(3)存在或,,满足要求.【解析】试题分析:(1)由递推关系可得,则,是等差数列,其中公差为1,且,通项公式为,数列是等比数列,其中首项为,公比为,故.(2)结合(1)的结论可得,则,(3)假设存在正整数,使得成等差数列,则,而数列从第二项起单调递减,分类讨论:当时,,若,无解;若,符合要求,若,无解;故,此时,可得,.试题解析:(1)①,②,②-①得:,即,因为是正数数列,所以,即,所以是等差数列,其中公差为1,在中,令,得,所以,由得,所以数列是等比数列,其中首项为,公比为,所以.(2),裂项得,所以,(3)假设存在正整数,使得成等差数列,则,即,因为,所以数列从第二项起单调递减,当时,,若,则,此时无解;若,则,因为从第二项起递减,故,所以符合要求,若,则,即,不符合要求,此时无解;当时,一定有,否则若,则,即,矛盾,所以,此时,令,则,所以,,综上得:存在或,,满足要求. 21.已知,,若点在矩阵对应的变换作用下得到点,求矩阵的逆矩阵.【答案】.【解析】试题分析:由题意可得,利用待定系数法或者逆矩阵公式可得.试题解析:因为,即,即,解得,所以,法1:设,则,即,解得,所以.法2:因为,且,所以.22.在直角坐标系中,直线的参数方程是:(是参数,是常数).以为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线相交于、两点,且,求实数的值.【答案】(1)直线的普通方程为,曲线的直角坐标方程是;(2)或.【解析】试题分析:(1)消去参数可得直线的普通方程为.利用极坐标与直角坐标的关系可得曲线的直角坐标方程是;(2)由题意可得圆心到直线的距离为,求解关于实数m的方程可得或.试题解析:(1)因为直线的参数方程是: (是参数),所以直线的普通方程为.因为曲线的极坐标方程为,故,所以所以曲线的直角坐标方程是.(2)设圆心到直线的距离为,则,又,所以,即或.23.扬州大学数学系有6名大学生要去甲、乙两所中学实习,每名大学生都被随机分配到两所中学的其中一所.(1)求6名大学生中至少有1名被分配到甲学校实习的概率;(2)设,分别表示分配到甲、乙两所中学的大学生人数,记,求随机变量的分布列和数学期望.【答案】(1);(2)见解析.【解析】试题分析:⑴由题意结合对立事件概率公式可得6名大学生中至少有1名被分配到甲学校实习的概率为.⑵由题意可得所有可能取值是0,2,4,6,结合概率公式计算可得,,,,据此可得分布列,计算随机变量的数学期望.试题解析:⑴记“6名大学生中至少有1名被分配到甲学校实习” 为事件,则. 答:6名大学生中至少有1名被分配到甲学校实习的概率为.⑵所有可能取值是0,2,4,6,记“6名学生中恰有名被分到甲学校实习”为事件(),则,,,,所以随机变量的概率分布为:所以随机变量的数学期望.答:随机变量的数学期望.24.二进制规定:每个二进制数由若干个0、1组成,且最高位数字必须为1.若在二进制中,是所有位二进制数构成的集合,对于,,表示和对应位置上数字不同的位置个数.例如当,时,当,时.(1)令,求所有满足,且的的个数;(2)给定,对于集合中的所有,求的和.【答案】(1);(2).【解析】试题分析:(1)由题意可知为5位数且与有2项不同,由排列组合公式可得的个数为. (2)由题意可知的和,倒叙相加可得第 21 页共 22 页的和为.试题解析:(1)因为,所以为5位数且与有2项不同,又因为首项为1,故与在后四项中有两项不同,所以的个数为.(2)当=0时,的个数为;当=1时,的个数为,当=2时,的个数为,………当时,的个数为,设的和为,则,倒序得,倒序相加得,即,所以的和为.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。
最新扬州市-高二上期末数学试题及答案
扬州市2017—2018学年度第一学期期末检测试题高 二 数 学2018.1(满分160分,考试时间120分钟)注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1.命题“x ∃∈R ,210x -<”的否定是 ▲ . 2.直线210x y ++=在y 轴上的截距为 ▲ . 3.抛物线24y x =的焦点坐标为 ▲ .5.在边长为2的正方形内随机取一点,取到的点到正方形中心的距离大于1的概率为 ▲ . 6.某校学生高一年级有400人,高二年级有300人,高三年级有200人,现用分层抽样的方法从所有学生中抽取一个容量为n 的样本.已知从高三学生中抽取的人数为10,那么n = ▲ . 7.执行如图所示的程序框图,输出的s 值为 ▲ .8.已知函数ln(4)y x =-的定义域为A ,集合{|}B x x a =>,若x A ∈是x B ∈的充分不必要条件,则实数a 的取值范围为 ▲ .9. 已知椭圆22:1x y C +=上的点M 到右焦点的距离为2,则点M 到左准线的距离为 ▲ .11.已知函数()f x 的定义域为R ,'()f x 是()f x 的导函数,且(2)3f =,'()1f x <,则不等式()1f x x >+的解集为 ▲ .12.已知(4,0)A ,(1,0)B ,动点P 满足2PA PB =.设点P 到点(3,0)C -的距离为d ,则d 的取值范围为 ▲ .13.斜率为13直线l 经过椭圆22221(0)x y a b a b +=>>的左顶点A ,且与椭圆交于另一个点B ,若在y轴上存在点C 使得ABC △是以点C 为直角顶点的等腰直角三角形,则该椭圆的离心率 为 ▲ . 14. 已知函数2()|3|f x x x a =-在[0,2]x ∈的值域为[0,4]m ,则实数m 的最小值为 ▲ . 二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本题满分14分)已知命题p :“椭圆2215x y a+=的焦点在x 轴上”;命题q :“关于x 的不等式23230x ax ++≥在R 上恒成立”.(1)若命题p 为真命题,求实数a 的取值范围;(2) 若命题“p 或q ”为真命题、“p 且q ”为假命题,求实数a 的取值范围. 16.(本题满分14分)为了让学生更多地了解“数学史”知识,某班级举办一次“追寻先哲的足迹,倾听数学的声音” 的数学史知识竞赛活动.现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如(1)填充上述表中的空格(在解答中直接写出对应空格序号的答案); (2)若利用组中值近似计算数据的平均数,求此次数学史初赛的平均成绩;(3)甲同学的初赛成绩在[90,100],学校为了宣传班级的学习经验,随机抽取分数在[90,100]的4位同学中的两位同学到学校其他班级介绍,求甲同学被抽取到的概率.17.(本题满分14分)已知圆C 的半径为3,圆心在y 轴正半轴上,直线4390x y --=圆C 相切. (1)求圆C 的方程;(2)过点(1,0)Q 的直线l 与圆C 交于不同的两点1122(,),(,)A x y B x y 且4AB =,求12x x 的值. 18.(本题满分16分)某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量y (万只)与时间x (年)(其中*x N ∈)的关系为2x y e =.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值21ayM x x =-+(其中a 为常数,且0a >)来进行生态环境分析. (1)当1a =时,求比值M 取最小值时x 的值; (2)经过调查,环保部门发现:当比值M 不超过4e 时不需要进行环境防护.为确保恰好..3年不需要进行保护,求实数a 的取值范围.(e 为自然对数的底, 2.71828e =L )19.(本题满分16分)已知椭圆:E 22221(0)x y a b a b+=>>的右准线方程为2x =,椭圆的左顶点为A ,上顶点为B ,点P 为椭圆上异于,A B 任意一点.(1)求椭圆的方程;(2)若直线BP 与x 轴交于点M ,直线AP 与y 轴交于点N ,求证:AM BN ⋅为定值. 20.(本题满分16分)已知:函数()ln f x ax x =-. (1)当1a =时,求函数()y f x =的极值;(2)若函数()()2g x f x x =-,讨论()y g x =的单调性;(3)若函数2()()h x f x x =+的图象与x 轴交于两点12(,0),(,0)A x B x ,且120x x <<.设012x x x λμ=+,其中常数λ、μ满足条件1λμ+=,且0≥>μλ.试判断在点00(,())M x h x 处的切线斜率的正负,并说明理由.扬州市2017—2018学年度第一学期期末检测试题高 二 数 学 参 考 答 案 2018.11.x ∀∈R ,210x -≥ 2.1- 3.(1,0) 4.y x = 5. 14π-6.45 7.1158.(,4)-∞ 9.4 10.221y x -= 11.(,2)-∞ 12.[1,5] 1314.1215.解:(1)p 真:椭圆2215x y a+=的焦点在x 轴上 ∴05a << …………5分(2)∵“p 或q ”为真命题、“p 且q ”为假命题 ∴p 真q 假或p 假q 真………………7分q 真:∵关于x 的不等式23230x ax ++≥在R 上恒成立∴2(2)4330a ∆=-⨯⨯≤,解得:33a -≤≤ ……………………11分 ∴0533a a a <<⎧⎨<->⎩或或0533a a a ≤≥⎧⎨-≤≤⎩或 解得:35a <<或30a -≤≤∴实数a 的取值范围是35a <<或30a -≤≤. ……………………14分 16.解:(1)①22;②14;③0.28; ……………………3分 (2)650.20750.44850.28950.0877.4⨯+⨯+⨯+⨯=; ……………………8分 (3)记“甲同学被抽取到”为事件A ,设四名学生为甲、乙、丙、丁,则总的基本事件为: 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,共6个基本事件;满足事件A 的基本事件:甲乙、甲丙、甲丁,共3个基本事件,则1()2P A = ……………………13分答:此次数学史初赛的平均成绩为77.4,甲同学被抽取到的概率为12.……………………14分 17.解:(1)设(0,)C m ,0m >∵直线4390x y --=圆C 相切,且圆C 的半径为3 ∴|39|35m --=,解得2m =或8m =- ∵0m > ∴2m = ……………………5分 ∴圆C 的方程为:22(2)9x y +-=; ……………………7分 (2)若直线AB 的斜率不存在,则直线:1AB x =∴AB = 若直线AB 的斜率存在,设AB :(1)y k x =-∵4AB = ∴点C 到直线:0AB kx y k --==化简得:24410k k -+= ∴12k =……………………9分 联立方程:221(1)2(2)9y x x y ⎧=-⎪⎨⎪+-=⎩,消去y 得:2510110x x --=∴12115x x =- ……14分18.解:(1)当1a =时,22(1)1xe M x x x =>-+,∴222(1)(2)'(1)x x x e M x x --=-+……………………3分列表得:…………………6分∴M 在(1,2)上单调减,在(2,)+∞上单调增 ∴M 在2x =时取最小值;……………………8分(2)∵222(1)(2)'(0)(1)xa x x e M a x x --=>-+ 根据(1)知:M 在(1,2)上单调减,在(2,)+∞上单调增 ∵确保恰好..3年不需要进行保护 ∴43444(1)22(3)72(4)13M e e ae M e ae M e ⎧=≤⎪⎪⎪=≤⎨⎪⎪=>⎪⎩,解得:13722e a<≤答:实数a 的取值范围为137(,]22e. ……………………16分19.解:(1)∵椭圆的右准线方程为2x = ∴22a c =∴a = ∴21,2c a == ∴21b = ∴椭圆的方程为:2212x y +=;………………6分(2)方法(一)设点00(,)P x y ,则220012x y +=,((0,1)A B ,即220022x y +=. 当00x =时,(0,1)P -,则(0,0)M ,(0,1)N -∴2AM BN ⋅=分∵点P 异于点A ∴0x ≠当0x ≠00x ≠时,设直线AP 方程为:y x =,它与y 轴交于点N直线BP 方程为:0011y y x x -=+,它与x 轴交于点00(,0)1x M y --∴000||1x AM y =-=-,|1BN ==…………12分∴22000||(1)x AM BN y --⋅==-||== ……………………16分方法(二)若直线BP 斜率不存在,则直线BP 方程为:0x =,此时(0,1)P -,则(0,0)M ,(0,1)N -∴2AM BN ⋅= ………………8分若直线BP 斜率存在,设直线BP 方程为:1y kx =+,且0k ≠∴1(,0)M k-且1|AM k =-= ………………10分 则联立方程:22112y kx x y =+⎧⎪⎨+=⎪⎩,消去y 得:22(21)40k x kx ++=,解得: 10x =或22421k x k =-+,即点222421(,)2121k k P k k -+-++ ∵点P 异于点A∴k ≠∴22222121421APk k k k k -++===-+∴直线AP的方程为:y x =+,则(0,N且|1|BN == ………………14分∴1|||AM BN k -⋅=⨯= ………………16分20.解:(1)当1a =时,()ln f x x x =- ∴()11'1x f x-=-=,令()'0f x =,则1x =,列表得:∴()f x 有极小值()11f =,无极大值; ……………………3分 (2)()2ln g x ax x x =--,0x >∴()2121'2x ax g x a x x x-+-=--=,设2()21G x x ax =-+-①当0a ≤时,()0G x <恒成立,即()'0g x <恒成立,∴()g x 在(0,)+∞上单调减;②当0a >且280a ∆=-≤,即0a <≤()'0G x ≤恒成立,且不恒为0,则()'0g x ≤恒成立,且不恒为0,∴()g x 在(0,)+∞上单调减; ③当0a >且280a ∆=->,即a >()0G x =有两个实数根:12x x =121210,022a x x x x +=>=>∴120x x>> ∴当20x x <<或1x x >时,()0G x <,'()0g x <;当21x x x <<时,()0G x>,'()0g x >; ∴()g x在和)+∞上单调减,在上单调增.∴综上:当a ≤时,()g x 在(0,)+∞上单调减;当a >时,()g x 在和)+∞上单调减,在上单调增. ……………………7分(3)2()ln h x ax x x =-+,1'()2h x a x x=-+,问题即为判断0'()h x 的符号. ∵函数2()()h x f x x =+的图象与x 轴交于两点12(,0),(,0)A x B x ,且120x x <<∴21112222ln 0ln 0ax x x ax x x ⎧-+=⎪⎨-+=⎪⎩ 两式相减得:22121212()(ln ln )()0a x x x x x x ---+-=∴121212ln ln ()x x a x x x x -=-+- ……………………9分∴01212121'()'()2()h x h x x a x x x x =+=-+++λμλμλμ121212121212121212ln ln ln ln 11()2()(21)()x x x x x x x x x x x x x x x x x x --=-+-++=+----+-+λμλλμλμ ∵0≥>μλ且1+=λμ ∴210-≤λ ∵120x x << ∴12(21)()0x x --≥λ………………11分 研究:121212ln ln 1x x x x x x ---+λμ的符号,即判断112212ln x x x x x x --+λμ的符号. 令12,(0,1)x t t x =∈,1122121ln ln x x x t t x x x t ---=-++λμλμ,设1()ln ,(0,1)t H t t t t -=-∈+λμ∴2222221()(1)11(21)'()()()()t t t t H t t t t t t t +--+-+=-=-=+++λμλλλμμλμλμλμ方法(一)设222()(21)F t t t =+-+λλμμ,其对称轴为:2221212(1)1211222t ----===+≥λμλλλλλλ∴()F t 在(0,1)上单调减,则222()(1)21()10F t F >=+-+=+-=λλμμλμ,即'()0H t >在(0,1)上恒成立 ∴()H t 在(0,1)上单调增 ∴()(1)0H t H <=,即112212ln 0x x xx x x --<+λμ ……………14分 ∵120x x -< ∴121212ln ln 10x x x x x x -->-+λμ∴12121212ln ln 1(21)()0x x x x x x x x -+--->-+λλμ,即0'()0h x >∴在点00(,())M x h x 处的切线斜率为正. ……………………16分方法(二)2222222(21)(1)()'()()()t t t t H t t t t t +-+--==++λλμμλμλμλμ ∵0≥>μλ,01t << ∴2210,0t t -<-<λμ ∴'()0H t >在(0,1)上恒成立 ∴()H t 在(0,1)上单调增 ∴()(1)0H t H <=,即112212ln 0x x xx x x --<+λμ ……………14分 ∵120x x -< ∴121212ln ln 10x x x x x x -->-+λμ∴12121212ln ln 1(21)()0x x x x x x x x -+--->-+λλμ,即0'()0h x >∴在点00(,())M x h x 处的切线斜率为正. ……………………16分。
江苏省扬州市20172018学年高一下学期期末考试数学试卷+word版含答案
2017—2018学年度第二学期期末检测试题高一数学2018.06(全卷满分160分,考试时间120分钟)注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1.2. 3. 在4. 5. 6. 7. 8. 9. 10. 设④若l ⊥?,l ∥?,则?⊥?. 其中真命题的序号是▲.11. 设n S ,n T 分别是等差数列{}n a ,{}n b 的前n 项和,已知121-+=n n T S n n ,*n N ∈, 则=44b a ▲. 12. 如图,勘探队员朝一座山行进,在前后A 、B 两处观察山顶C 的仰角分别是︒30和︒45,两个观察点A 、B之间的距离是100米,则此山CD 的高度为▲米.13. 已知正实数,x y 满足xy y x =+,则1213-+-y yx x 的最小值为▲. 14. 对于数列}{n x ,若对任意*N n ∈,都有n n n n x x x x ->-+++112成立,则称数列}{n x 为“增差数列”.设nn n n t a 3132-+=)(,若数列n a a a a ,,,, 654(*,N n n ∈≥4)是“增差数列”,则实数t 的取值范围是▲.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分14分)如图,(116..已知(1(217.()1()2记18.设∆,且角B 为钝角.(1(219.(本小题满分16分)共享汽车的出现为我们的出行带来了极大的便利,当然也为投资商带来了丰厚的利润。
现某公司瞄准这一市场,准备投放共享汽车。
该公司取得了在10个省份投放共享汽车的经营权,计划前期一次性投入61610⨯元.设在每个省投放共享汽车的市的数量相同(假设每个省的市的数量足够多),每个市都投放1000辆共享汽车.由于各个市的多种因素的差异,在第n 个市的每辆共享汽车的管理成本为(1000kn +)元(其中k 为常数).经测算,若每个省在5个市投放共享汽车,则该公司每辆共享汽车的平均综合管理费用为1920元.(本题中不考虑共享汽车本身的费用)注:综合管理费用=前期一次性投入的费用+所有共享汽车的管理费用,平均综合管理费用=综合管理费用÷共享汽车总数. (1)求k 的值;(2)问要使该公司每辆共享汽车的平均综合管理费用最低,则每个省有几个市投放共享汽车?此时每辆共享汽车的平均综合管理费用为多少元? 20.(本小题满分16分)已知数列{a n }的前n 项和为S n ,a 4=2且n n S n na +=2,数列{}n b 满足nn a n b 2210+=()*∈N n ,(1)(2)由.2017—2018学年度第二学期期末检测试题高一数学参考答案一、填空题:1.412.),(21-3.n 2 6.47.41-8.41209.3410.②④11.13812.50350+13.625+ 14.⎪⎭⎫⎝⎛+∞,152 15.//AP BQ ,∵PQ (2∴1BB ∵1BB PQQR Q =,∴1BB 。
数学---江苏省扬州市2016—2017学年度高一第一学期期末调研测试试题
江苏省扬州市2016—2017学年高一第一学期期末调研测试试题一、填空题(本大题共14小题,每小题5分,共70分) 1.4tan3π= . 2.计算:2lg 2lg 25+= .3.若幂函数()f x x α=的图象过点(4,2),则(9)f = .4.已知角α的终边经过点(2,)(0)P m m >,且cos α=,则m = . 5.在用二分法求方程3210x x --=的一个近似解时,现在已经将一根确定在区间(1,2)内,则下一步可断定该根所在的区间为 .6.某扇形的圆心角为2弧度,周长为4 cm ,则该扇形面积为 cm 2. 7.若3a b +=,则代数式339a b ab ++的值为 .8.已知0.6log 5a =,452b =,sin1c =,将,,a b c 按从小到大的顺序用不等号“<”连接为 .9.将正弦曲线sin y x =上所有的点向右平移23π个单位长度,再将图象上所有点的横坐标变为原来的13倍(纵坐标不变),则所得到的图象的函数解析式y = .10.已知函数()f x 为偶函数,且(2)()f x f x +=-,当(0,1)x ∈时,1()()2x f x =,则7()2f =.11.已知21()ax x f x x++=在[2,)+∞上是单调增函数,则实数a 的取值范围为 .12.如图所示,在平行四边形ABCD 中,4AB =,3AD =,E 是边CD 的中点,13DF DA =,若4AE BF ⋅=-,则sin BAD ∠= .13.已知12(1)()32(1)x x f x x x -⎧≥=⎨-<⎩,若对任意[0,]2πθ∈,不等式211(cos sin )032f θλθ+-+>恒成立,整数λ的最小值为 .14.已知函数1()ln()f x a x=-(a R ∈).若关于x 的方程ln[(4)25]()0a x a f x -+--=的解集中恰好有一个元素,则实数a 的取值范围为 .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本题满分14分)已知全集U R =,集合{|27}A x x =≤<,3{|0log 2}B x x =<<,{|1}C x a x a =<<+. (1)求A B ,()U C A B ;(2)如果A C =∅ ,求实数a 的取值范围.16.(本题满分14分)已知:θ为第一象限角,(sin(),1)a θπ=- ,1(sin(),)22b πθ=-- .(1)若//a b ,求sin 3cos sin cos θθθθ+-的值;(2)若||1a b +=,求sin cos θθ+的值.17.(本题满分14分)某工厂生产甲、乙两种产品所得利润分别为P 和Q (万元),它们与投入资金m (万150万元资金投入生产甲、乙两种产品,并要求对甲,乙两种产品的投资金额不低于25万元.(1)设对乙产品投入资金x 万元,求总利润y (万元)关于x 的函数关系式及其定义域; (2)如何分配使用资金,才能使所得总利润最大?最大利润为多少?18.(本题满分16分)已知函数)(0)4y x πωω+>.(1)若4πω=,求函数的单调增区间和对称中心;(2)函数的图象上有如图所示的,,A B C 三点,且满足AB BC ⊥. ①求ω的值;②求函数在[0,2]x ∈上的最大值,并求此时x 的值.19.(本题满分16分)已知函数1()1x x e f x e -=+(e 为自然对数的底数,2,71828e = ).(1)证明:函数()f x 为奇函数;(2)判断并证明函数()f x 的单调性,再根据结论确定23(1)()4f m m f -++-与0的大小关系;(3)是否存在实数k ,使得函数()f x 在定义域[,]a b 上的值域为[,]a b ke ke .若存在,求出实数k 的取值范围;若不存在,请说明理由.20.(本题满分16分)设函数2()||2f x ax x b =-+(a ,b R ∈). (1)当152,2a b =-=-时,解方程(2)0x f =; (2)当0b =时,若不等式()2f x x ≤在[0,2]x ∈上恒成立,求实数a 的取值范围; (3)若a 为常数,且函数()f x 在区间[0,2]上存在零点,求实数b 的取值范围.参考答案1 2.2 3.3 4.1 5.3(,2)26. 1 7.278. a c b << 9.2sin(3)3πy x =- 10 11.1[,)4+∞ 12.4 13.1 14.(1,2]{3,4}15.解:(1)由30log 2x <<,得19x << ∴{|19}B x x =<<,∴(1,9)A B = , ............4分(,2)[7,)U C A =-∞+∞ ,()(1,2)[7,9)U C A B = ; ............8分(2)A C =∅ ∴12a +≤或7a ≥,解得:1a ≤或7a ≥. ............14分16.解:(1)(sin(),1)(sin ,1)a θπθ=-=- ,1(cos ,)2b θ=-//a b ∴1cos sin 02θθ-=, 化简得:tan 2θ=(不求也可以), ...........4分∴sin 3cos tan 35sin cos tan 1θθθθθθ++==-- ...........7分(2)||1a b += ∴21(sin cos )14θθ-++=,则1sin c o s 8θθ= ............11分25(sin cos )12sin cos 4θθθθ∴+=+=θ 为第一象限角 sin 0,cos 0θθ∴>>,则sin cos θθ+=............14分 17.解:(1)对乙产品投入资金x 万元,则对甲产品投入资金(150x -)万元;所以11(150)657619133y P Q x x =+=-+++-+, ............5分2515015025150x x ≤-≤⎧⎨≤≤⎩,解得:25125x ≤≤,∴其定义域为[25,125]; ............7分(2)令t ,则[5,5]t ∈,则原函数化为关于t 的函数:21()41913h t t t =-++,t ∈.............10分 所以当6t =,即36x =时,max max ()(6)203y h t h ===(万元)答:当对甲产品投入资金114万元,对乙产品投入资金36万元时,所得总利润最大,最大利润为203元. ..........14分18.解:(1))44y x ππ+.22,2442k x k k Z ππππππ-+≤+≤+∈,解得:3818,k x k k Z -+≤≤+∈∴函数的单调增区间为[38,18]()k k k Z -++∈; .............4分,44x k k Z πππ+=∈ 14,x k k Z ∴=-+∈ ∴函数的对称中心为(14,0)()k k Z -+∈.............8分(2)①由图知:点B 是函数图象的最高点,设0(B x ,函数最小正周期为T ,则003(,0),(,0)44T TA x C x -+ 3(),(3)44T T AB BC ∴== , ............10分 AB BC ⊥ 233016AB BC T ∴⋅=-= ,解得:4T = 242ππω∴==. ............12分②[0,2]x ∈ 5[,]2444x ππππ∴+∈ s i n (),1]24x ππ∴+∈∴函数在[0,2] ............14分 此时2,242x k k Z ππππ+=+∈,则14,2x k k Z =+∈; [0,2]x ∈ 12x ∴= ............16分 19.解:(1)函数()f x 定义域为R , .............1分对于任意的x R ∈,都有11()()11x xx xe ef x f x e e -----===-++,所以函数()f x 为奇函数. .............4分 (2)在R 上任取12,x x ,且12x x <, 1212121212112()()()11(1)(1)x x x x x x x x e e e e f x f x e e e e ----=-=++++12x x < 120x x e e ∴<<12120,10,10x x x x e e e e ∴-<+>+>12()()0f x f x ∴-<,即12()()f x f x < ()f x ∴为R 上的增函数 .............7分221331()244m m m -+=-+≥ 23(1)()4f m m f ∴-+≥223333(1)()(1)()()()04444f m m f f m m f f f ∴-++-=-+-≥-=. ............10分(3)()f x 为R 上的增函数且函数()f x 在定义域[,]a b 上的值域[,]a b ke ke∴0k >且()()a b f a ke f b ke ⎧=⎨=⎩11x xxe ke e -∴=+在R 上有两个不等实根; .............12分 令,(0,)x t e t =∈+∞且单调增,问题即为方程2(1)10kt k t +-+=在(0,)+∞上有两个不等实根,设2()(1)1h t kt k t =+-+,则2(1)4010(0)10k k k k h ⎧-->⎪-⎪->⎨⎪=>⎪⎩,解得:03k <<-. .............16分 20.解:(1)当152,2a b =-=-时,2()|2|15f x x x =+-,所以方程即为:|2(22)|150x x +-= 解得:23x =或25x =-(舍),所以2log 3x =; .............3分 (2)当0b =时,若不等式||2x a x x -≤在[0,2]x ∈上恒成立;当0x =时,不等式恒成立,则a R ∈; .............5分 当02x <≤时,则||2a x -≤在(0,2]上恒成立,即22x a -≤-≤在(0,2]上恒成立,因为y x a =-在(0,2]上单调增,max 2y a =-,min y a >-,则222a a -≤⎧⎨-≥-⎩,解得:02a ≤≤;则实数a 的取值范围为[0,2]; .............8分 (3)函数()f x 在[0,2]上存在零点,即方程||2x a x b -=-在[0,2]上有解;设22()()()x ax x a h x x ax x a ⎧-≥=⎨-+<⎩当0a ≤时,则2(),[0,2]h x x ax x =-∈,且()h x 在[0,2]上单调增,所以min ()(0)0h x h ==,max ()(2)42h x h a ==-,则当0242b a ≤-≤-时,原方程有解,则20a b -≤≤;............10分 当0a >时,22()()()x ax x a h x x ax x a ⎧-≥=⎨-+<⎩,()h x 在[0,]2a 上单调增,在[,]2aa 上单调减,在[,)a +∞上单调增; ① 当22a≥,即4a ≥时,max min ()(2)24,()(0)0h x h a h x h ==-==,则当0224b a ≤-≤-时,原方程有解,则20a b -≤≤;② 当22a a <≤,即24a ≤<时,2max min ()(),()(0)024a a h x h h x h ====,则当2024a b ≤-≤时,原方程有解,则208a b -≤≤;③ 当02a <<时,2max min ()max{(),(2)}max{,42},()(0)024a a h x h h a h x h ==-==,当2424a a ≥-,即则42a -+≤<时,2max ()4a h x =,则当2024a b ≤-≤时,原方程有解,则208a b -≤≤;当2424a a <-,即则04a <<-+max ()42h x a =-,则当0242b a ≤-≤-时,原方程有解,则20a b -≤≤; .....14分综上,当4a <-+b 的取值范围为[2,0]a -;当44a -+≤<时,实数b 的取值范围为2[,0]8a -;当4a ≥时,实数b 的取值范围为[2,0]a -. .....................................16 分。
江苏省扬州市2018-2019学年高一数学上册期末试题
扬州市2018—2018学年度第一学期期末调研测试试题高 一 数 学2018.1(全卷满分160分,考试时间120分钟)注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.已知集合}1,0{=A ,}1,1{-=B ,则AB = ▲ .2.幂函数)(x f 的图象过点)2,4(,则(2)f = ▲ . 3.函数()tan(2)4f x x π=+的最小正周期为 ▲ .4.已知扇形的圆心角为3π,半径为2,则该扇形的面积为_____▲____. 5.已知点P 在线段AB 上,且||4||AB AP =,设AP PB λ=,则实数λ= ▲ . 6.函数1)(-=x xx f 的定义域为 ▲ . 7.求值:2(lg5)lg 2lg50+⨯= ▲ . 8.角α的终边经过点),3(y P -,且54sin =α,则y = ▲ . 9.方程121124x x -+=+的解为x = ▲ .10.若||1,||2a b ==,且()a a b ⊥-,则向量a 与b 的夹角为 ▲ .11.若关于x 的方程0sin cos 2=+-a x x 在],0[π内有解,则实数a 的取值范围是 ▲ .12.下列说法中,所有正确说法的序号是 ▲ .①终边落在y 轴上的角的集合是{|,}2k k Z παα=∈; ②函数)4cos(2π-=x y 图象的一个对称中心是)0,43(π; ③函数tan y x =在第一象限是增函数;④为了得到函数-=x y 2sin(3π)的图象,只需把函数sin 2y x =的图象向右平移6π个单位长度.13.若函数2()log (1)(0a f x x ax a =-+->且1)a ≠有最大值,则实数a 的取值范围 是 ▲ .14.已知22,0(),0x x f x x x ⎧≥⎪=⎨-<⎪⎩,若对任意的1x ≥有(2)()0f x m mf x ++>恒成立,则实数m的取值范围是 ▲ .二、解答题(本大题共6小题,共计90分.请在答题纸指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题14分)已知集合{|11}A x a x a =-<<+,{|03}B x x =<<. ⑴若0=a ,求A B ;⑵若B A ⊆,求实数a 的取值范围.16.(本小题14分)如图,在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.⑴若点F 是CD 上靠近C 的三等分点,设EF AB AD λμ=+,求λμ+的值;1AE BF ⋅=时,求DF 的长.已知向量(sin ,cos 2sin ),(1,2)a b θθθ=-=,其中πθ<<0. ⑴若a //b ,求θθcos sin ⋅的值; ⑵若||||=,求θ的值.18.(本小题15分) 已知函数)0,0)(3sin()(>>+=ωπωA x A x f 的部分图象如图所示.⑴求A 和ω的值;⑵求函数()y f x =在],0[π的单调增区间;⑶若函数()()1g x f x =+在区间(,)a b 上恰有10个零点,求a b -的最大值.扬州瘦西湖隧道长3600米,设汽车通过隧道的速度为x 米/秒(017)x <<.根据安全和车流的需要,当06x <≤时,相邻两车之间的安全距离d 为()x b +米;当617x <<时,相邻两车之间的安全距离d 为2(2)63a xx ++米(其中,a b 是常数).当6x =时,10d =,当16x =时,50d =.⑴求,a b 的值;⑵一列由13辆汽车组成的车队匀速通过该隧道(第一辆汽车车身长为6米,其余汽车车身长为5米,每辆汽车速度均相同).记从第一辆汽车车头进入隧道,至第13辆汽车车尾离开隧道所用的时间为y 秒. ①将y 表示为x 的函数;②要使车队通过隧道的时间y 不超过280秒,求汽车速度x 的范围. 20.(本小题16分)已知2()xf e ax x =-,a R ∈. ⑴求()f x 的解析式;⑵求(0,1]x ∈时,()f x 的值域; ⑶设0a >,若()[()1]l o x h x f x a e =+-⋅对任意的3112,[,]x x e e --∈,总有121()()3h x h x a -≤+恒成立,求实数a 的取值范围.2018—2018学年度第一学期高一数学期末试卷参 考 答 案2018.1一、填空题1. {1,0,1}- 2 3. 2π 4.23π 5. 13 6. {|0x x ≥且1}x ≠7. 1 8. 4 9. 2-10.4π11. [1,1]- 12. ②④ 13. (2,)+∞ 14. 1(,)4-+∞二、解答题15⑴若0=a ,则}11|{<<-=x x A ,A ∩B }10|{<<=x x ……7分⑵1013a a -≥⎧⎨+≤⎩,则12a ≤≤,所以实数a 的取值范围是12a ≤≤ ……14分16⑴EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的三等分点,所以1123EF BC CD =+, 在矩形ABCD 中,,BC AD CD AB ==-,所以1132EF AB AD =-+, 即11,32λμ=-=,则111326λμ+=-+=; ……7分 ⑵设DC m DF =)0(>m ,则DC m CF )1(-=, 所以1122AE AB BC AB AD =+=+, (1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=,所以1()[(1)]2AE BF AB AD m AB AD ⋅=+⋅-+ 22(1)2m AB AD =-+=3(1)21m -+=,所以DF 的长为 ……14分 注:也可以建立平面直角坐标系,表示出与的坐标,阅卷根据情况酌情给分.17⑴因为//a b ,所以2sin cos 2sin θθθ=- ……3分显然cos 0θ≠,所以1tan 4θ=. ……5分 所以θθcos sin ⋅=θθθθ22cos sin cos sin +⋅1tan tan 2+=θθ174= ……8分⑵因为||||a b ==……11分所以0cos sin cos 2=+θθθ,0cos =θ或θθcos sin -=. 又πθ<<0,所以2πθ=或34πθ=. ……15分18⑴2,A =ωπππ421234=-=T ,2=ω 所以()2sin 23f x x π⎛⎫=+ ⎪⎝⎭……4分 ⑵令πππππk x k 223222+≤+≤+-,Z k ∈得ππππk x k +≤≤+-12125 ……7分 又因为∈x ],0[π,所以函数()y f x =在],0[π的单调增区间为]12,0[π和],127[ππ……9分 注:区间端点可开可闭,都不扣分. ⑶()2sin 213f x x π⎛⎫=+=- ⎪⎝⎭, 得512x k ππ=+或3()4x k k Z ππ=+∈ ……11分 函数()f x 在每个周期上有两个零点,所以共有5个周期, ……13分 所以a b -最大值为217533T ππ+=. ……15分19⑴当6x =时,610d x b b =+=+=,则4b =,当16x =时,22162162506363a x a d x =++=⨯++=,则1a =; 所以1,4a b ==. ……4分 ⑵①当06x <≤时,651212(4)3600371412x xy x x +⨯++++==,当617x <<时,221651212(2)360024369063xx x x y x x+⨯++++++==所以2371412,06243690,617xx xy x x x x +⎧<≤⎪⎪=⎨++⎪<<⎪⎩……10分②当06x <≤时,min 37141262806y +⨯=>,不符合题意,当617x <<时,2243690280x x y x++=≤ 解得15123x ≤<,所以1517x ≤< ……16分 答⑴1,4a b ==.⑵①2371412,06243690,617xx xy x x x x +⎧<≤⎪⎪=⎨++⎪<<⎪⎩②汽车速度x 的范围为1517x ≤<.注:不答扣一分20⑴设x e t =,则ln 0x t =>,所以2()(ln )ln f t a t t =-所以2()(ln )ln (0)f x a x x x =->; ……3分 ⑵设ln (0)x m m =≤,则2()()f x g m am m ==-当0a =时,()()f x g m m ==-,()g m 的值域为[0,)+∞当0a ≠时,2211()()()(0)24f x g m am m a m m a a==-=--≤若0a >,102a >,()g m 的值域为[0,)+∞ 若0a <,102a <,()g m 在1(,]2a -∞上单调递增,在1[,0]2a上单调递减, ()g m 的值域为1(,]4a-∞- ……7分 综上,当0a ≥时()f x 的值域为[0,)+∞当0a <时()f x 的值域为1(,]4a-∞-; ……8分 ⑶因为(1)()ln 1ln a h x a x x -=-+对任意3112,[,]x x e e --∈总有121()()3h x h x a -≤+所以()h x 在31[,]e e --满足max min 1()()3h x h x a -≤+ ……10分设ln ([3,1])x s s =∈--,则1()()1ah x r s as s-==+-,[3,1]s ∈-- 当10a -<即1a >时()r s 在区间[3,1]--单调递增 所以1(1)(3)3r r a ---≤+,即8412()333a a ----≤+,所以35a ≤(舍) 当1a =时,()1r s s =-,不符合题意 ……12分 当01a <<时,1即112a ≤<时,()r s 在区间[3,1]--单调递增所以1(1)(3)3r r a ---≤+,则1325a ≤≤若13<<即11102a <<时()r s在[3,-递增,在[1]-递减所以1((3)31((1)3r r a r r a ⎧--≤+⎪⎪⎨⎪--≤+⎪⎩,得11102a <<3即1010a <≤时()r s 在区间[3,1]--单调递减所以1(3)(1)3r r a ---≤+,即8412333a a --+≤+,得111110a ≤< ……15分 综上所述:13115a ≤≤. ……16分。
高一数学调研测试 答案
扬州市2016—2017学年度第一学期期末调研测试试题 高 一 数 学 参 考 答 案 2017.11 2.2 3.3 4.1 5.3(,2)26. 1 7.278. a c b << 9.2sin(3)3πy x =-10 11.1[,)4+∞ 12.4 13.1 14.(1,2]{3,4}15.解:(1)由30log 2x <<,得19x << ∴{|19}B x x =<<,∴(1,9)A B =, ............4分 (,2)[7,)U C A =-∞+∞,()(1,2)[7,9)U C A B =; ............8分(2)A C =∅ ∴12a +≤或7a ≥,解得:1a ≤或7a ≥. ............14分16.解:(1)(sin(),1)(sin ,1)a θπθ=-=-,1(cos ,)2b θ=- //a b ∴1cos sin 02θθ-=, 化简得:tan 2θ=(不求也可以), ...........4分 ∴sin 3cos tan 35sin cos tan 1θθθθθθ++==-- ...........7分 (2)||1a b += ∴21(sin cos )14θθ-++=,则1sin cos 8θθ= ............11分 25(sin cos )12sin cos 4θθθθ∴+=+=θ为第一象限角 sin 0,cos 0θθ∴>>,则sin cos θθ+=............14分 17.解:(1)对乙产品投入资金x 万元,则对甲产品投入资金(150x -)万元;所以11(150)657619133y P Q x x =+=-+++-+, ............5分 2515015025150x x ≤-≤⎧⎨≤≤⎩,解得:25125x ≤≤,∴其定义域为[25,125]; ............7分(2)令t t ∈,则原函数化为关于t 的函数:21()41913h t t t =-++,t ∈ .............10分 所以当6t =,即36x =时,max max ()(6)203y h t h ===(万元)答:当对甲产品投入资金114万元,对乙产品投入资金36万元时,所得总利润最大,最大利润为203万元. .............14分18.解:(1))44y x ππ+. 22,2442k x k k Z ππππππ-+≤+≤+∈,解得:3818,k x k k Z -+≤≤+∈∴函数的单调增区间为[38,18]()k k k Z -++∈; .............4分 ,44x k k Z πππ+=∈ 14,x k k Z ∴=-+∈ ∴函数的对称中心为(14,0)()k k Z -+∈.............8分 (2)①由图知:点B 是函数图象的最高点,设0(B x ,函数最小正周期为T ,则003(,0),(,0)44T T A x C x -+3(,3),(3)44T T AB BC ∴==, ............10分 AB BC ⊥ 233016AB BC T ∴⋅=-=,解得:4T = 242ππω∴==. ............12分 ②[0,2]x ∈ 5[,]2444x ππππ∴+∈ s i n (),1]24x ππ∴+∈ ∴函数在[0,2] ............14分此时2,242x k k Z ππππ+=+∈,则14,2x k k Z =+∈; [0,2]x ∈ 12x ∴= ............16分 19.解:(1)函数()f x 定义域为R , .............1分 对于任意的x R ∈,都有11()()11x xx xe ef x f x e e -----===-++, 所以函数()f x 为奇函数. .............4分(2)在R 上任取12,x x ,且12x x <,1212121212112()()()11(1)(1)x x x x x x x x e e e e f x f x e e e e ----=-=++++ 12x x < 120x x e e ∴<<12120,10,10x x x x e e e e ∴-<+>+>12()()0f x f x ∴-<,即12()()f x f x < ()f x ∴为R 上的增函数 .............7分221331()244m m m -+=-+≥23(1)()4f m m f ∴-+≥ 223333(1)()(1)()()()04444f m m f f m m f f f ∴-++-=-+-≥-=. ............10分 (3)()f x 为R 上的增函数且函数()f x 在定义域[,]a b 上的值域[,]a b ke ke∴0k >且()()a b f a ke f b ke⎧=⎨=⎩ 11x x x e ke e -∴=+在R 上有两个不等实根; .............12分 令,(0,)x t e t =∈+∞且单调增,问题即为方程2(1)10kt k t +-+=在(0,)+∞上有两个不等实根,设2()(1)1h t kt k t =+-+,则2(1)4010(0)10k k k k h ⎧-->⎪-⎪->⎨⎪=>⎪⎩,解得:03k <<-. .............16分20.解:(1)当152,2a b =-=-时,2()|2|15f x x x =+-,所以方程即为:|2(22)|150x x +-= 解得:23x =或25x =-(舍),所以2log 3x =; .............3分(2)当0b =时,若不等式||2x a x x -≤在[0,2]x ∈上恒成立; 当0x =时,不等式恒成立,则a R ∈; .............5分 当02x <≤时,则||2a x -≤在(0,2]上恒成立,即22x a -≤-≤在(0,2]上恒成立,因为y x a =-在(0,2]上单调增,max 2y a =-,min y a >-,则222a a -≤⎧⎨-≥-⎩,解得:02a ≤≤; 则实数a 的取值范围为[0,2]; .............8分(3)函数()f x 在[0,2]上存在零点,即方程||2x a x b -=-在[0,2]上有解;设22()()()x ax x a h x x ax x a ⎧-≥=⎨-+<⎩当0a ≤时,则2(),[0,2]h x x a x x =-∈,且()h x 在[0,2]上单调增,所以m i n ()(0)0h x h ==,max ()(2)42h x h a ==-,则当0242b a ≤-≤-时,原方程有解,则20a b -≤≤;............10分当0a >时,22()()()x ax x a h x x ax x a ⎧-≥=⎨-+<⎩,()h x 在[0,]2a 上单调增,在[,]2a a 上单调减,在[,)a +∞上单调增;① 当22a ≥,即4a ≥时,max min ()(2)24,()(0)0h x h a h x h ==-==,则当0224b a ≤-≤-时,原方程有解,则20a b -≤≤;② 当22a a <≤,即24a ≤<时,2max min ()(),()(0)024a a h x h h x h ====,则当2024a b ≤-≤时,原方程有解,则208a b -≤≤; ③ 当02a <<时,2max min ()max{(),(2)}max{,42},()(0)024a a h x h h a h x h ==-==,当2424a a ≥-,即则42a -+≤<时,2max ()4a h x =,则当2024a b ≤-≤时,原方程有解,则208a b -≤≤;当2424a a <-,即则04a <<-+max ()42h x a =-,则当0242b a ≤-≤-时,原方程有解,则20a b -≤≤; ...........14分综上,当4a <-+b 的取值范围为[2,0]a -;当44a -+≤<时,实数b 的取值范围为2[,0]8a -; 当4a ≥时,实数b 的取值范围为[2,0]a -. .....................................16 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扬州市2017~2018学年度第一学期期末调研测试试题
高一数学
2018.01
(全卷满分160分,考试时间120分钟)
注意事项:
答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方.
2.试题答案均写在答题卷相应位置,答在其它地方无效.
一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)
1. 设集合,则_______.
2. ______.
3. 设幂函数的图象过点,则=_______.
4. 函数的奇偶性为_______函数.(在“奇”、“偶”、“非奇非偶”、“既奇又偶”中选择)
5. 已知扇形的面积为4cm,该扇形圆心角的弧度数是,则扇形的周长为______cm.
6. =_______.
7. 已知单位向量,的夹角为60°,则_______.
8. 已知,则_______ .
9. 如图,在中,若则=_______.
...
10. 不等式的解集是_______.
11. 已知的面积为16,,则的取值范围是______.
12. 已知函数与的零点完全相同,则= ___.
13. 设函数是定义域为的奇函数.若,且在
上的最小值为,则的值为______.
14. 设为实数,函数若在上不是单调函数,则实数的取值范围为_____.
二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)
15. 已知函数的定义域为A,集合,非空集合
,全集为实数集R.
(1)求集合和;
(2)若A∪C=A,求实数取值的集合.
16. 已知向量
(1)若,求证:;
(2)若向量共线,求.
17. 函数(其中,),若函数的图象与轴的任意两个相邻交点间的距离为且过
点,
⑴求的解析式;
⑵求的单调增区间;
⑶求在的值域.
18. 近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元,根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益与投
入(单位:万元)满足,乙城市收益与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).
(1)当投资甲城市128万元时,求此时公司总收益;
⑵试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?
19. 已知关于的函数为上的偶函数,且在区间上的最大值为10. 设.
⑴求函数的解析式;
⑵若不等式在上恒成立,求实数的取值范围;
⑶是否存在实数,使得关于的方程有四个不相等的实数根?如果存在,求出实
数的范围,如果不存在,说明理由.
20. 已知函数.
(1)求不等式的解集;
(2)函数若存在使得成立,求实数的取值范围;
(3)若函数讨论函数的零点个数(直接写出答案,不要求写出解题过程).。