河北省邯郸市2020届高三下学期第一次模拟考试 数学(文)(含答案)
2024届河北省邯郸市高三上学期第一次调研测试语文试卷及参考答案
河北省邯郸市2024届高三上学期第一次调研测试语文试卷.一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
①人们普遍认为,正确的主题思想加上合适的艺术形式,就有可能成为一个好作品。
这种说法勉强也能成立,只不过,那是指常规的好作品,而不是指真正的杰作,更不是指伟大的作品。
②伟大的艺术作品,没有清晰的主题思想,也没有简明的结论。
现在我们似乎说得出几句它们的主题思想和结论,但那是后人强加给它们的。
后人为了讲解它们、分析它们,就找了几条普通人都能理解的“拐杖”,其实那些“拐杖”都不属于伟大作品本身。
例如,人们常常会说《离骚》的主题思想是“怀才不遇的爱国主义",说《红楼梦》的主题思想是“歌颂封建家庭叛逆者的爱情”,其实都是不对的。
在西方艺术中,荷马史诗,希腊悲剧,莎士比亚几部最好的悲剧,米开朗基罗、达·芬奇、罗丹的绘画和雕塑,贝多芬、巴赫、莫扎特的音乐,也都不存在明确的主题和结论。
讲得越清楚,就离它们越远。
③要用艺术方式来表现大科学家伽利略,有两种常规选择:一、通过伽利略对天文的观察和发现,表现人类与自然的贴近和较量;二、通过伽利略与罗马教会的冲突,表现科学与迷信、人格与神格之间的较量。
但德国剧作家布菜希特摒弃了这两种选择,他在剧作《伽利略传》中故意安排了一个最为难的结构:伽利略在教会的火刑威胁前屈服了,公开宣布自己的科学发现是谬误,教会因此赦免了他死罪,而他原先的学生和朋友也从道德上把他流放了,再也没有人理他;孤独的老人在二十年后又有了重大的科学发现,甚至比二十年前的发现更重要。
这让他的学生们产生了困惑:他当初该不该屈服?当初如果不屈服,必定死亡,那也就说不上后来的科学成就了;但是,屈服又是人们所不能接受的。
显然,布菜希特自己也没有结论,甚至连偏向都没有,他让广大观众与自己一起卷入苦恼。
但对艺术而言,真正震撼人心的地方正在这里,它让人们因苦恼而高贵。
2020届全国100所名校高三模拟金典卷(一)数学(文)试题(解析版)
2020届全国100所名校高三模拟金典卷(一)数学(文)试题一、单选题1.已知集合{|24},{|22}A x x B x x =-<≤=-≤<,则A B =U ( ) A .{|22}x x -<< B .{|24}x x -≤≤ C .{|22}x x -≤≤ D .{|24}x x -<≤【答案】B【解析】直接利用并集的定义计算即可. 【详解】由已知,集合{|24},{|22}A x x B x x =-<≤=-≤<,所以{|24}A B x x ⋃=-≤≤. 故选:B 【点睛】本题考查集合的并集运算,考查学生的基本计算能力,是一道基础题.2.已知a 是实数,()11a a i -++是纯虚数,则复数z a i =+的模等于( )A .2B CD .1【答案】C【解析】()11a a i -++是纯虚数可得1a =,则1z i =+,再根据模的计算的公式计算即可. 【详解】()11a a i -++是纯虚数,则实部为0,虚部不为0,即1a =,所以1z i =+,||z =故选:C 【点睛】本题考查复数模的计算,涉及到复数的相关概念,是一道容易题.3.某产品的宣传费用x (万元)与销售额y (万元)的统计数据如下表所示:根据上表可得回归方程ˆ9.6 2.9yx =+,则宣传费用为3万元时销售额a 为( ) A .36.5 B .30C .33D .27【答案】D【解析】由题表先计算出x ,将其代入线性回归方程即可. 【详解】 由已知,1(4235) 3.54x =+++=, 由回归方程过点(),x y ,故36.5y =, 即1(452450)36.54y a =+++=,解得27a =. 故选:D 【点睛】本题考查线性回归方程的简单应用,回归方程一定过样本点的中心(,)x y ,考查学生的基本计算能力,是一道容易题.4.已知在等差数列{}n a 中,34576, 11a a a a ++==,则1a =( ) A .3 B .7C .7-D .3-【答案】C【解析】由3456a a a ++=,可得42,a =结合7 11a =,可得公差d ,再由413a a d =+可得1a . 【详解】由等差数列的性质,得345436a a a a ++==, 所以42,a =公差7493743a a d -===-, 又4132a a d =+=,所以17a =-. 故选:C 【点睛】本题考查等差数列的性质及等差数列基本量的计算,考查学生的运算能力,是一道容易题.5.已知抛物线24y x =的准线与圆2260x y x m +--=相切,则实数m 的值为( ) A .8 B .7 C .6 D .5【答案】B【解析】由题可得准线方程为1x =-,再利用圆心到直线的距离等于半径计算即可得到答案. 【详解】由已知,抛物线的准线方程为1x =-,圆2260x y x m +--=的标准方程为22(3)9x y m -+=+,由1x =-与圆相切,所以圆心到直线的距离()314d =--==, 解得7m =. 故选:B 【点睛】本题主要考查抛物线的定义,涉及到直线与圆的位置关系,考查学生的运算求解能力,是一道容易题.6.已知平面向量a r ,b r满足a =r ,||3b =r ,(2)a a b ⊥-r r r ,则23a b -r r ( )A .BC .4D .5【答案】A【解析】由(2)0a a b ⋅-=r r r,可得2a b ⋅=r r,将其代入|23|a b -==r r .【详解】由题意可得||2a ==r ,且(2)0a a b ⋅-=r r r,即220a a b -⋅=r r r,所以420a b -⋅=r r, 所以2a b ⋅=r r.由平面向量模的计算公式可得|23|a b -==r r==故选:A 【点睛】本题考查利用数量积计算向量的模,考查学生的数学运算能力,是一道容易题. 7.已知定义在R 上的函数()y f x =,对于任意的R x ∈,总有()()123f x f x -++=成立,则函数()y f x =的图象( ) A .关于点()1,2对称 B .关于点33,22⎛⎫⎪⎝⎭对称 C .关于点()3,3对称 D .关于点()1,3对称【答案】B【解析】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,再结合()()123f x f x -++=简单推导即可得到. 【详解】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,则(2)(1(21))3(221)f a x f x a f x a -=--+=-+-+3(32)2()f a x b f x =--+=-,所以有23,320b a =-=,解得33,22a b ==.所以函数()y x =的图象关于点33,22⎛⎫⎪⎝⎭对称. 故选:B 【点睛】本题考查函数图象的对称性,考查学生的逻辑推理能力,当然也可以作一个示意图得到,是一道中档题.8.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生【答案】C【解析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.9.函数||4x e y x=的图象可能是( )A .B .C .D .【答案】C【解析】由函数的奇偶性可排除B ;由(1),(3)f f 可排除选项A 、D. 【详解】设||()4x e f x x =,定义域为{|0}x x ≠,||()()4x e f x f x x-=-=-,所以()f x 为奇函数,故排除选项B ;又(1)14e f =<,排除选项A ;3(3)112e f =>,排除选项D.故选:C 【点睛】本题考查由解析式选函数图象的问题,涉及到函数的性质,此类题一般从单调性、奇偶性、特殊点的函数值入手,是一道容易题.10.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .163πB .3π C .29π D .169π【答案】D【解析】由三视图可知该几何体为底面是圆心角为23π的扇形,高是4的圆锥体,再利用圆锥体积公式计算即可. 【详解】从三视图中提供的图形信息与数据信息可知:该几何体的底面是圆心角为23απ=的扇形,高是4的圆锥体, 容易算得底面面积2112442233S r παπ==⨯⨯=,所以其体积111644339V ππ=⨯⨯⨯=. 故选:D 【点睛】本题考查三视图还原几何体以及几何体体积的计算,考查学生的空间想象能力、数学运算能力,是一道中档题.11.已知函数()sin 3(0)f x x x ωωω=+>的图象上存在()()12,0,,0A x B x 两点,||AB 的最小值为2π,再将函数()y f x =的图象向左平移3π个单位长度,所得图象对应的函数为()g x ,则()g x =( ) A .2sin 2x - B .2sin2xC .2cos 26x π⎛⎫-⎪⎝⎭D .2sin 26x π⎛⎫- ⎪⎝⎭【答案】A【解析】()2sin 3f x x πω⎛⎫=+⎪⎝⎭,由min ||2AB π=可得T π=,2ω=,再由平移变换及诱导公式可得()g x 的解析式.【详解】()sin 3cos 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,因为||AB 的最小值为12222T ππω=⨯=,解得2ω=. 因为函数()y f x =的图象向左平移3π个单位长度, 所得图象对应的函数为()g x , 所以()2sin 22sin(2)2sin 233g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A 【点睛】本题考查三角函数图象的变换,涉及到辅助角公式、诱导公式的应用,考查学生的逻辑推理能力,是一道中档题.12.如图所示,在棱锥P ABCD -中,底面ABCD 是正方形,边长为2,22PD PA PC ===,.在这个四棱锥中放入一个球,则球的最大半径为( )A .2B 21C .2D 21【答案】D【解析】由题意,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD ,SA SB SC SP 、、、,则把此四棱锥分为五个棱锥,设它们的高均为R ,求出四棱锥的表面积S 以及四棱锥的体积P ABCD V -,利用公式13P ABCD V S -=⨯R ⨯,计算即可. 【详解】由已知,22PD AD PA ===,,所以222PD AD PA +=,所以PD AD ⊥,同理PD CD ⊥,又CD AD D =I ,所以PD ⊥平面ABCD ,PD AB ⊥,又AB AD ⊥,PD AD D ⋂=,所以AB ⊥平面PAD ,所以PA AB ⊥,设此球半径为R ,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD,SA SB SC SP、、、,则把此四棱锥分为五个棱锥,它们的高均为R.四棱锥的体积211222 3323P ABCD ABCDVS PD-⨯=⨯⨯=⨯=W,四棱锥的表面积S22112222222242222PAD PAB ABCDS S S=++=⨯⨯+⨯⨯⨯+=+ V V W,因为13P ABCDV S-=⨯R⨯,所以3222142221P ABCDVRS-====-++.故选:D【点睛】本题考查几何体内切球的问题,考查学生空间想象能力、转化与化归的能力,是一道有一定难度的压轴选择题.二、填空题13.设实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,则34z x y=-的最大值是__________.【答案】4【解析】作出可行域,344zy x=-,易知截距越小,z越大,【详解】根据实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,画出可行域,如图,平移直线34y x=即可得到目标函数的最大值.344z y x =-,易知截距越小,z 越大,平移直线34y x =,可知当目标函数经过点A 时取得最大值,由11y y x =-⎧⎨=--⎩,解得()0,1A -,所以max 304(1) 4.z =⨯-⨯-=故答案为:4 【点睛】本题考查简单的线性规划及应用,考查学生数形结合的思想,是一道容易题.14.曲线()e 43xf x x =+-在点()(0,)0f 处的切线方程为__________.【答案】52y x =-【解析】直接利用导数的几何意义计算即可. 【详解】因为()02f =-,'()4xf x e =+,所以'0(0)45f e =+=,所以切线方程为()25y --=()0x -,即5 2.y x =- 故答案为:52y x =- 【点睛】本题考查导数的几何意义,考查学生的基本计算能力,是一道容易题.15.已知数列{}n a 满足:11a =,12nn n a a +=+,则数列{}n a 的前n 项和n S =__________.【答案】122n n +--【解析】利用累加法可得数列{}n a 的通项公式,再利用分组求和法求和即可. 【详解】由已知,12nn n a a +-=,当2n ≥时,()()()211213211212222112n n n n n n a a a a a a a a ---=+-+-+⋅⋅⋅+-=+++⋅⋅⋅+==--,又11a =满足上式,所以21nn a =-,()212122222212n n n n S n n n +-=++⋅⋅⋅+-=-=---.故答案为:122n n +-- 【点睛】本题考查累加法求数列的通项以及分组求和法求数列的和,考查学生的运算求解能力,是一道中档题.16.已知双曲线22221x y a b-=(0b a >>)的左、右焦点分别是1F 、2F ,P 为双曲线左支上任意一点,当1222PF PF 最大值为14a时,该双曲线的离心率的取值范围是__________.【答案】【解析】112222111224|24|2PF PF a PF PF aPF a PF ==+++,1PF c a ≥-,分2c a a -≤,2a c a ≥-两种情况讨论,要注意题目中隐含的条件b a >.【详解】由已知,11222111224|24|2PF PF a PF PF aPF a PF ==+++,因为1PF c a ≥-,当2c a a -≤时,21121444a a PF a PF ≤=++,当且仅当12PF a =时,1222PF PF 取最大值14a, 由2a c a ≥-,所以3e ≤;当2c a a ->时,1222PF PF 的最大值小于14a,所以不合题意.因为b a >,所以22211b e a=->,所以2e >,所以2 3.e <≤故答案为:(2,3] 【点睛】本题考查双曲线的离心率的取值范围问题,涉及到双曲线的概念与性质及基本不等式,考查学生的逻辑推理能力,是一道有一定难度的题.三、解答题17.某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.成绩分组 频数[)75,80 2 [)80,85 6[)85,90 16[)90,9514[)95,1002高二(1)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;(2)在抽取的学生中,从成绩为[]95,100的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率. 【答案】(1)0.85;(2)715【解析】(1)利用1减去[)75,80的概率即可得到答案;(2)高一年级成绩为[]95,100的有4人,记为1234, , , A A A A ,高二年级成绩为[]95,100的有2名,记为12,B B ,然后利用列举法即可.【详解】(1)高一年级知识竞赛的达标率为10.0350.85-⨯=.(2)高一年级成绩为[]95,100的有0.025404⨯⨯=(名),记为1234, , , A A A A , 高二年级成绩为[]95,100的有2名,记为12,B B .选取2名学生的所有可能为121314111223242122343132414212, , , , , , , , , , , , , , A A A A A A A B A B A A A A A B A B A A A B A B A B A B B B ,共15种;其中2名学生来自于同一年级的有12131423243412,,,,,,A A A A A A A A A A A A B B ,共7种. 所以这2名学生来自于同一年级的概率为715. 【点睛】本题考查统计与古典概率的计算,涉及到频率分布直方图和频数分布表,考查学生简单的数学运算,是一道容易题.18.在ABC V 中,角、、A B C 所对的边分别是a b c 、、,且2B A C =+,b =. (1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值【答案】(1)4;(2)【解析】(1)由已知,易得3B π=,由正弦定理可得34c a =,再由角B 的余弦定理即可得到答案;(2)正弦定理得sin sin sin a c b A C B ===,所以,a A c C ==,sin )a c A C +=+,再利用两角和的正弦公式以辅助角公式可得6a c A π⎛⎫+=+⎪⎝⎭,即可得到最大值.【详解】(1)因为2B A C =+, 又A B C π++=,得3B π=.又3sin 4sin C A =,由正弦定理得34c a =,即34a c =, 由余弦定理2222cosb ac ac B =+-,得22331132442c c c c ⎛⎫=+-⨯⨯⨯ ⎪⎝⎭,解得4c =或4c =-(舍).(2)由正弦定理得sin sin sin a c b A C B ===,,a A c C ∴==,sin )a c A C ∴+=+sin()]A A B =++1sin sin sin sin cos322A A A A A π⎡⎤⎤⎛⎫=++=++⎢⎥ ⎪⎥⎝⎭⎦⎣⎦6A π⎛⎫=+ ⎪⎝⎭,由203A π<<,得5666A πππ<+=,当62A ππ+=,即3A π=时,max ()a c +=.【点睛】本题考查正余弦定理解三角形,涉及到两角和的正弦公式及辅助角公式的应用,考查学生的数学运算求解能力,是一道容易题. 19.在菱形ABCD 中,,3ADC AB a π∠==,O 为线段CD 的中点(如图1).将AOD △沿AO 折起到'AOD △的位置,使得平面'AOD ⊥平面ABCO ,M 为线段'BD 的中点(如图2).(Ⅰ)求证:'OD BC ⊥; (Ⅱ)求证:CM ∥平面'AOD ; (Ⅲ)当四棱锥'D ABCO -的体积为32时,求a 的值. 【答案】(Ⅰ)见解析. (Ⅱ)见解析. (Ⅲ) 2a =.【解析】(Ⅰ)证明OD '⊥AO . 推出OD '⊥平面ABCO . 然后证明OD '⊥BC .(Ⅱ)取P 为线段AD '的中点,连接OP ,PM ;证明四边形OCMP 为平行四边形,然后证明CM ∥平面AOD ';(Ⅲ)说明OD '是四棱锥D '﹣ABCO 的高.通过体积公式求解即可. 【详解】(Ⅰ)证明:因为在菱形ABCD 中,3ADC π∠=,O 为线段CD 的中点,所以'OD AO ⊥. 因为平面'AOD ⊥平面ABCO 平面'AOD I 平面ABCO AO =,'OD ⊂平面'AOD ,所以'OD ⊥平面ABCO . 因为BC ⊂平面ABCO ,所以'OD BC ⊥. (Ⅱ)证明:如图,取P 为线段'AD 的中点,连接OP,PM ; 因为在'ABD ∆中,P ,M 分别是线段'AD ,'BD 的中点, 所以//PM AB ,12PM AB =. 因为O 是线段CD 的中点,菱形ABCD 中,AB DC a ==,//AB DC , 所以122a OC CD ==. 所以OC //AB ,12OC AB =. 所以//PM OC ,PM OC =.所以四边形OCMP 为平行四边形, 所以//CM OP ,因为CM ⊄平面'AOD ,OP ⊂平面'AOD ,所以//CM 平面'AOD ;(Ⅲ)由(Ⅰ)知'OD ⊥平面ABCO .所以'OD 是四棱锥'D ABCO -的高,又S=23332228a a a a ⎛⎫+ ⎪⎝⎭= ,'2a OD = 因为3133'3162a V S OD =⨯⨯==, 所以2a =. 【点睛】本题考查线面平行与垂直的判定定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力,是基础题20.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,过右焦点F 作与x 轴垂直的直线,与椭圆的交点到x 轴的距离为32. (1)求椭圆C 的方程;(2)设O 为坐标原点,过点F 的直线'l 与椭圆C 交于A B 、两点(A B 、不在x 轴上),若OE OA OB =+u u u r u u u r u u u r,求四边形AOBE 面积S 的最大值.【答案】(1)22143x y +=;(2)3. 【解析】(1)由12c a =,232b a =结合222a bc =+解方程组即可;(2)设':1l x ty =+,联立直线'l 与椭圆的方程得到根与系数的关系,因为OE OA OB =+u u u r u u u r u u u r,可得四边形AOBE为平行四边形,12122||2AOB S S OF y y =⨯-==△将根与系数的关系代入化简即可解决. 【详解】 (1)由已知得12c a =, Q 直线经过右焦点,2222231,||2c y b y a b a ∴+===, 又222a b c =+Q,2,1a b c ∴===,故所求椭圆C 的方程为22143x y +=.(2)Q 过()1,0F 的直线与椭圆C 交于A B 、两点(A B 、不在x 轴上), ∴设':1l x ty =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩,得22(34)690t y ty ++-=,设()()1122,,,A x y B x y ,则122122634934t y y t y y t -⎧+=⎪⎪+⎨-⎪=⎪+⎩,OE OA OB =+u u u r u u u r u u u rQ ,∴四边形AOBE 为平行四边形,122122||234AOBS OF y y t S =∴⨯-===+△1m =≥, 得2621313m S m m m==++,由对勾函数的单调性易得当1m =,即0t =时,max 32S =. 【点睛】本题考查直线与椭圆的位置关系,涉及到椭圆的方程、椭圆中面积的最值问题,考查学生的逻辑推理能力,是一道中档题.21.设函数()2a 2xf x x alnx (a 0)x -=-+>. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)记函数()f x 的最小值为()g a ,证明:()g a 1<.【答案】(I )()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增;(II )详见解析. 【解析】(I )对函数()f x 求导,解导函数所对应的不等式即可求出结果; (II )由(I )先得到()g a ,要证()1g a <,即证明1ln 1a a a a--<,即证明2111ln a a a--<, 构造函数()211ln 1h a a a a=++-,用导数的方法求函数()h a 的最小值即可. 【详解】(Ⅰ)显然()f x 的定义域为()0,+∞.()()()()222242332222221x x a x x a x a x x f x a x x x x x+----++=-⋅='-+=. ∵220x +>,0x >,∴若()0,x a ∈,0x a -<,此时()0f x '<,()f x 在()0,a 上单调递减; 若(),x a ∈+∞,0x a ->,此时()0f x '>,()f x 在(),a +∞上单调递增; 综上所述:()f x 在()0,a 上单调递减,在(),a +∞上单调递增. (Ⅱ)由(Ⅰ)知:()()min 1ln f x f a a a a a==--, 即:()1ln g a a a a a=--. 要证()1g a <,即证明1ln 1a a a a --<,即证明2111ln a a a--<, 令()211ln 1h a a a a =++-,则只需证明()211ln 10h a a a a=++->,∵()()()22333211122a a a a h a a a a a a'-+--=--==,且0a >, ∴当()0,2a ∈,20a -<,此时()0h a '<,()h a 在()0,2上单调递减; 当()2,a ∈+∞,20a ->,此时()0h a '>,()h a 在()2,+∞上单调递增, ∴()()min 1112ln21ln20244h a h ==++-=->.∴()211ln 10h a a a a=++->.∴()1g a <. 【点睛】本题主要考查导数在函数中的应用,通常需要对函数求导,用导数的方法研究函数的单调性,最值等,属于常考题型.22.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:cos 4sin (0)C a a ρθθ=>,直线的参数方程为21x ty t=-+⎧⎨=-+⎩,(t 为参数).直线l 与曲线C 交于M N ,两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程.(2)设()2,1P --,若||,||,||PM MN PN 成等比数列,求a 和的||MN 值.【答案】(1)22cos 4sin (0)a a ρθρθ=>,10x y -+=;(2)10.【解析】(1)利用直角坐标、极坐标、参数方程互化公式即可解决;(2)将直线参数方程标准化,联立抛物线方程得到根与系数的关系,再利用直线参数方程的几何意义即可解决. 【详解】(1)曲线2:cos 4sin (0)C a a ρθθ=>,两边同时乘以ρ,可得22cos 4sin (0)a a ρθρθ=>,化简得24(0)x ay a =>;直线l 的参数方程为21x ty t =-+⎧⎨=-+⎩(t 为参数),消去参数t ,可得1x y -=-,即10x y -+=.(2)直线l 的参数方程21x ty t=-+⎧⎨=-+⎩(t 为参数)化为标准式为21x y ⎧=-⎪⎪⎨='+'⎪-⎪⎩('t 为参数),代入24(0)x ay a =>并整理得'2'1)8(1)0t a t a -+++=, 设M N ,两点对应的参数为''12, t t ,由韦达定理可得''121)t t a +=+,''128(1)0t t a ⋅=+>, 由题意得2||||||MN PM PN =⋅,即2''''1212t t t t -=⋅, 可得()2''''''1212124t t t t t t +-⋅=⋅, 即232(1)40(1)a a +=+,0a >,解得1,4a =所以2''121||81104MN t t ⎛⎫=⋅=+= ⎪⎝⎭,||MN =【点睛】本题考查极坐标与参数方程的应用,涉及到极坐标方程、普通方程、参数方程的互化,以及直线参数方程的几何意义求距离的问题,是一道容易题. 23.已知函数()|||2|f x x a x =-++. (1)当1a =时,求不等式()3f x ≤的解集; (2)()00,50x f x ∃∈-≥R ,求实数a 的取值范围. 【答案】(1){|21}x x-#;(2)[7,3]-【解析】(1)当1a =时,()|1||2|f x x x =-++,分2x -≤,21x -<<,1x ≥三种情况讨论即可;(2)()00,50x f x ∃∈-≥R ,则()min 5f x ≥,只需找到()f x 的最小值解不等式即可. 【详解】(1)当1a =时,()|1||2|f x x x =-++,①当2x -≤时,()21f x x =-- ,令()3f x ≤,即213x --≤,解得2x ≥-,所以2x =-, ②当21x -<<时,()3f x =,显然()3f x ≤成立,21x ∴-<<,③当1x ≥时,()21f x x =+,令()3f x ≤,即213x +≤,解得1x ≤,所以1x =. 综上所述,不等式的解集为{|21}x x-#.(2)0()|||2||()(2)||2|,f x x a x x a x a x =-++--+=+∃∈R Q …,有()050f x -…成立,∴要使()05f x ≥有解,只需|2|5a +≤,解得73a ≤≤-, ∴实数a 的取值范围为[7,3]-.【点睛】本题考查解绝对值不等式以及不等式能成立问题,考查学生的基本计算能力,是一道容易题.。
2020年高中三年级数学下期中第一次模拟试卷及答案(2)
2020年高中三年级数学下期中第一次模拟试卷及答案(2)一、选择题1.若直线()100,0ax by a b ++=>>把圆()()224116x y +++=分成面积相等的两部分,则122a b+的最小值为( ) A .10B .8C .5D .42.等比数列{}n a 的前n 项和为n S ,若36=2S =18S ,,则105S S 等于( ) A .-3B .5C .33D .-313.若a 、b 、c >0且a (a +b +c )+bc =4-,则2a +b +c 的最小值为( ) A.1 B.1 C .+2D .24.设数列{}n a 是等差数列,且26a =-,86a =,n S 是数列{}n a 的前n 项和,则( ). A .45S S <B .45S S =C .65S S <D .65S S =5.设n S 为等差数列{}n a 的前n 项和,1(1)()n n n S nS n N *++∈<.若871a a <-,则( ) A .n S 的最大值为8S B .n S 的最小值为8S C .n S 的最大值为7S D .n S 的最小值为7S6.设2z x y =+,其中,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最小值是12-,则z 的最大值为( ) A .9-B .12C .12-D .97.数列{}n a 的前n 项和为21n S n n =++,()()1N*nn n b a n =-∈,则数列{}n b 的前50项和为( ) A .49B .50C .99D .1008.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x =④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④9.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{}n a ,则()235log a a ⋅的值为( ) A .8B .10C .12D .1610.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .1611.已知数列{}n a 的通项公式为()*21log N 2n n a n n +=∈+,设其前n 项和为n S ,则使5n S <-成立的自然数n ( )A .有最小值63B .有最大值63C .有最小值31D .有最大值3112.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b << C .c b a <<D .b a c <<二、填空题13.已知x y ,满足20030x y y x y -≥⎧⎪≥⎨⎪+-≤⎩,,,,则222x y y ++的取值范围是__________.14.已知等差数列{}n a 的公差为()d d 0≠,前n 项和为n S,且数列也为公差为d 的等差数列,则d =______.15.(广东深圳市2017届高三第二次(4月)调研考试数学理试题)我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法---“三斜求积术”,即ABC △的面积S =,其中a b c 、、分别为ABC △内角、、A B C 的对边.若2b =,且tan C =,则ABC △的面积S 的最大值为__________.16.在钝角ABC V中,已知1AB AC ==,若ABC VBC 的长为______.17.已知对满足4454x y xy ++=的任意正实数x ,y ,都有22210x xy y ax ay ++--+≥,则实数a 的取值范围为______.18.已知120,0,2a b a b>>+=,2+a b 的最小值为_______________. 19.已知数列{}n a 满足11a =,111n na a +=-+,*n N ∈,则2019a =__________. 20.已知三角形中,边上的高与边长相等,则的最大值是__________.三、解答题21.已知等差数列{}n a 的前n 项和为n S ,且满足37a =,999S =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若()2nn n a b n N *=∈,求数列{}n b 的前n 项和n T . 22.已知等差数列{}n a 满足1210a a +=,432a a -=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足2337,b a b a ==.若6k b a =,求k 的值. 23.已知数列{}n a 的前n 项和为n S ,且221n n n S na a =+-. (1)求数列{}n a 的通项公式; (2)若数列21n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:4nT <. 24.已知函数()3sin cos f x x x =-. (1)求函数()f x 在,2x ππ⎡⎤∈⎢⎥⎣⎦的值域; (2)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若78663f A f B ππ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭,求a b 的取值范围.25.已知等差数列{}n a 满足1359a a a ++=,24612a a a ++=,等比数列{}n b 公比1q >,且2420b b a +=,38b a =.(1)求数列{}n a 、{}n b 的通项公式;(2)若数列{}n c ,满足4nn n c b =-,且数列{}n c 的前n 项和为n B ,求证:数列n n b B ⎧⎫⎨⎬⎩⎭的前n 项和32n T <. 26.D 为ABC V 的边BC 的中点.222AB AC AD ===.(1)求BC 的长;(2)若ACB ∠的平分线交AB 于E ,求ACE S V .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由于直线将圆平分,故直线过圆的圆心,将圆心坐标代入直线方程,利用“1”的代换的方法以及基本不等式,求得所求和的最小值. 【详解】圆的圆心为()4,1--,由于直线将圆平分,故直线过圆心,即410a b --+=,即41a b +=,故()121284448222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当82b aa b =,即11,82a b ==时,取得最小值为8.故选B. 【点睛】本小题主要考查直线和圆的位置关系,考查利用“1”的代换和基本不等式求解和式的最小值问题.直线能将圆平分成面积相等的两个部分,则这条直线是经过圆心的.要注意的是,圆的标准方程是()()222x a y b r -+-=,圆心是(),a b ,所以本题的圆心是()4,1--,而不是()4,1.2.C解析:C 【解析】 【分析】由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出105S S . 【详解】设等比数列{}n a 的公比为q (公比显然不为1),则()()61636333111119111a q S q q q S qa q q---===+=---,得2q =, 因此,()()101105510555111111233111a q S q q q S q a qq---===+=+=---,故选C. 【点睛】本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.3.D解析:D 【解析】由a (a +b +c )+bc =4-, 得(a +c )·(a +b )=4-∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c=1)=-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误4.B解析:B 【解析】分析:由等差数列的性质,即2852a a a +=,得5=0a ,又由545S S a =+,得54S S =. 详解:Q 数列{}n a 为等差数列, 2852a a a ∴+= 又286,6a a =-=Q ,5=0a ∴由数列前n 项和的定义545S S a =+,54S S ∴= 故选B.点睛:本题考查等差数列的性质与前n 项和计算的应用,解题时要认真审题,注意灵活运用数列的基本概念与性质.5.C解析:C 【解析】 【分析】由已知条件推导出(n 2﹣n )d <2n 2d ,从而得到d >0,所以a 7<0,a 8>0,由此求出数列{S n }中最小值是S 7. 【详解】∵(n +1)S n <nS n +1, ∴S n <nS n +1﹣nS n =na n +1 即na 1()12n n d-+<na 1+n 2d ,整理得(n 2﹣n )d <2n 2d ∵n 2﹣n ﹣2n 2=﹣n 2﹣n <0 ∴d >0∵87a a -<1<0 ∴a 7<0,a 8>0 数列的前7项为负, 故数列{S n }中最小值是S 7 故选C . 【点睛】本题考查等差数列中前n 项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.6.B解析:B 【解析】 【分析】作出不等式对应的可行域,当目标函数过点A 时,z 取最小值,即min 12z =-,可求得k 的值,当目标函数过点B 时,z 取最大值,即可求出答案. 【详解】作出不等式对应的可行域,如下图阴影部分,目标函数可化为2y x z =-+, 联立20x y y k+=⎧⎨=⎩,可得()2,A k k -,当目标函数过点A 时,z 取最小值,则()2212k k ⨯-+=-,解得4k =,联立0x y y k-=⎧⎨=⎩,可得(),B k k ,即()4,4B ,当目标函数过点B 时,z 取最大值,max 24412z =⨯+=.故选:B.【点睛】本题考查线性规划,考查学生的计算求解能力,利用数形结合方法是解决本题的关键,属于基础题.7.A解析:A 【解析】试题分析:当1n =时,113a S ==;当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦,把1n =代入上式可得123a =≠.综上可得3,1{2,2n n a n n ==≥.所以3,1{2,12,n n b n n n n n -==-≠为奇数且为偶数.数列{}n b 的前50项和为()()503235749224650S =--+++++++++L L ()()24349252503224922++=--⋅+⋅=.故A 正确.考点:1求数列的通项公式;2数列求和问题.8.C解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C. 【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.9.C解析:C 【解析】 【分析】数列{}n a ,是等比数列,公比为2,前7项和为1016,由此可求得首项1a ,得通项公式,从而得结论. 【详解】Q 最下层的“浮雕像”的数量为1a ,依题有:公比()717122,7,101612a q n S -====-,解得18a =,则()12*82217,n n n a n n N -+=⨯=≤≤∈,57352,2a a ∴==,从而()()571212352352222,log log 212a a a a ⋅=⨯=∴⋅==,故选C .【点睛】本题考查等比数列的应用.数列应用题求解时,关键是根据题设抽象出数列的条件,然后利用数列的知识求解.10.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1,∴()111199911016y x x y x y x y x y ⎛⎫+=+⋅+=+++≥+= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.11.A解析:A 【解析】 【分析】利用对数运算,求得n S ,由此解不等式5n S <-,求得n 的最小值. 【详解】 ∵()*21log N 2n n a n n +=∈+, ∴12322223log log log 3142n n S a a a a n n =++++⋯+=++⋯++222312log log 3422n n n +⎛⎫=⨯⨯⋯⨯= ⎪++⎝⎭, 又因为21215log 6232232n S n n <-=⇒<⇒>+, 故使5n S <-成立的正整数n 有最小值:63. 故选:A. 【点睛】本小题主要考查对数运算和数列求和,属于基础题.12.B解析:B 【解析】 试题分析:因为ln 2ln 3ln8ln 9ln 2ln 30,23623--=<<,ln 2ln 5ln 32ln 25ln 2ln 50,251025--=>>,故选B. 考点:比较大小.二、填空题13.;【解析】【分析】利用表示的几何意义画出不等式组表示的平面区域求出点到点的距离的最值即可求解的取值范围【详解】表示点到点的距离则三角形为等腰三角形则点到点的距离的最小值为:1最大值为所以的最小值为:解析:[]0,9; 【解析】 【分析】 利用()()2201x y -++表示的几何意义,画出不等式组表示的平面区域,求出点(0,1)A -到点(,)x y 的距离的最值,即可求解222x y y ++的取值范围.【详解】()()22222011x y y x y ++=-++-()()2201x y -++表示点(0,1)A -到点(,)x y 的距离1AO =,1910,9110AD AC =+==+=ACD 为等腰三角形则点(0,1)A -到点(,)x y 的距离的最小值为:110 所以222x y y ++的最小值为:2110-=,最大值为:101=9-故222x y y ++的取值范围为[]09,故答案为:[]09,【点睛】本题主要考查了求平方和型目标函数的最值,属于中档题.14.【解析】【分析】表示出再表示出整理并观察等式列方程组即可求解【详解】等差数列的公差为前项和为设其首项为则=又数列也为公差为的等差数列首项为所以=即:整理得:上式对任意正整数n 成立则解得:【点睛】本题 解析:12【解析】表示出n S【详解】等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,设其首项为1a , 则n S =()112n n na d -+,又数列也为公差为d=()1n d -()1n d =-=上式对任意正整数n成立,则)2120122d d d da d d⎧=⎪=⎪-+=⎪⎩,解得:12d =,134a =-【点睛】本题主要考查了等差数列的前n 项和及通项公式,考查了方程思想及转化思想、观察能力,属于中档题.15.【解析】由题设可知即由正弦定理可得所以当时故填【解析】由题设可知)sin sin sin cos cos sin cos C C B C BC C =⇒=+,即sin C A =,由正弦定理可得c=,所以S ==242a a =⇒=时, maxS ==16.【解析】【分析】利用面积公式可求得再用余弦定理求解即可【详解】由题意得又钝角当为锐角时则即不满足钝角三角形故为钝角此时故即故答案为:【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用属于中等题【解析】利用面积公式可求得A ,再用余弦定理求解BC 即可. 【详解】由题意得,11sin sin 22A A =⨯⇒=又钝角ABC V ,当A 为锐角时,cos A ==则2717BC =+-=,即BC =.故A 为钝角.此时cos A ==故27110BC =++=.即BC =【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用,属于中等题型.17.(﹣∞【解析】【分析】由正实数xy 满足可求得x+y≥5由x2+2xy+y2﹣ax ﹣ay+1≥0恒成立可求得a≤x+y+恒成立利用对勾函数的性质即可求得实数a 的取值范围【详解】因为正实数xy 满足而4x解析:(﹣∞,265] 【解析】 【分析】由正实数x ,y 满足4454x y xy ++=,可求得x +y≥5,由x 2+2xy+y 2﹣ax ﹣ay+1≥0恒成立可求得a ≤x+y+1x y+恒成立,利用对勾函数的性质即可求得实数a 的取值范围.【详解】因为正实数x ,y 满足4454x y xy ++=,而4xy ≤(x+y )2,代入原式得(x +y )2﹣4(x+y )﹣5≥0,解得x +y≥5或x +y≤﹣1(舍去), 由x 2+2xy+y 2﹣ax ﹣ay+1≥0可得a (x +y )≤(x+y )2+1, 即a ≤x+y+1x y+,令t=x +y ∈[5,+∞), 则问题转化为a ≤t+1t,因为函数y=t +1t在[5,+∞)递增, 所以y min =5+15=265,所以a ≤265, 故答案为(﹣∞,265] 【点睛】本题考查基本不等式,考查对勾函数的单调性质,求得x +y≥5是关键,考查综合分析与运算的能力,属于中档题.18.【解析】【分析】先化简再利用基本不等式求最小值【详解】由题得当且仅当时取等故答案为:【点睛】本题主要考查基本不等式求最值意在考查学生对这些知识的掌握水平和分析推理能力解题的关键是常量代换解析:92【解析】 【分析】 先化简11122(2)2(2)()22a b a b a b a b+=⋅+⋅=⋅+⋅+,再利用基本不等式求最小值. 【详解】 由题得11121222(2)2(2)()(5)222a b a b a b a b a b b a+=⋅+⋅=⋅+⋅+=++19(522≥+=. 当且仅当221223222a b a ba b ⎧+=⎪==⎨⎪=⎩即时取等. 故答案为:92【点睛】本题主要考查基本不等式求最值,意在考查学生对这些知识的掌握水平和分析推理能力.解题的关键是常量代换.19.-2【解析】【分析】根据题干中所给的表达式得到数列的周期性进而得到结果【详解】根据题干表达式得到可以得数列具有周期性周期为3故得到故得到故答案为:-2【点睛】这个题目考查了求数列中的某些项一般方法是解析:-2 【解析】 【分析】根据题干中所给的表达式得到数列的周期性,进而得到结果. 【详解】根据题干表达式得到2341231111,2, 1.1211a a a a a a =-=-=-=-=-=+++ 5674551111,2, 1.1211a a a a a a =-=-=-=-=-=+++ 可以得数列具有周期性,周期为3,故得到20193673.÷= 故得到2019 2.a =- 故答案为:-2. 【点睛】这个题目考查了求数列中的某些项,一般方法是求出数列通项,对于数列通项不容易求的题目,可以列出数列的一些项,得到数列的周期或者一些其它规律,进而得到数列中的项.20.22【解析】试题分析:由题意得12bcsinA=12a2⇒bcsinA=a2因此ACAB+ABAC+BC2AB ⋅AC=bc+cb+a2bc=b2+c2+a2bc=a2+2bccosA+a2bc=2c 解析:【解析】试题分析:由题意得,因此,从而所求最大值是考点:正余弦定理、面积公式【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.三、解答题21. (Ⅰ)21n a n =+,n *∈N (Ⅱ)2552n nn T +=- 【解析】试题分析:(1)先根据条件列出关于首项与公差的方程组,解得首项与公差,代入等差数列通项公式即可(2)利用错位相减法求和, 利用错位相减法求和时,注意相减时项的符号变化,中间部分利用等比数列求和时注意项数,最后要除以1q -试题解析:(Ⅰ)由题意得:1127989992a d a d +=⎧⎪⎨⨯+=⎪⎩,解得132a d =⎧⎨=⎩ , 故{}n a 的通项公式为21n a n =+,*n N ∈ (Ⅱ)由(Ⅰ)得:212n nn b +=23435792122222n n n T +=++++⋯+ ① 234113572121222222n n n n n T +-+=+++⋯++ ② ①-②得:23411311112122222222n n n n T ++⎛⎫=++++⋯+- ⎪⎝⎭ 152522n n ++=-故2552n nn T +=-点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 22.(1)22n a n =+;(2)63 【解析】 【分析】(1)求出公差d 和首项1a ,可得通项公式;(2)由23,b b 得公比,再得6b ,结合{}n a 通项公式求得k . 【详解】(1)由题意等差数列{n a 的公差432d a a =-=,121210a a a d +=+=,14a =, ∴1(1)4(1)222n a a n d n n =+-=+-⨯=+; (2)由(1)23378,16b a b a ====,∴321628b q b ===,446282128b b q ==⨯=, ∴22128k a k =+=,63k =. 【点睛】本题考查等差数列与等比数列的通项公式,掌握基本量法是解题基础. 23.(1)1()2n n a n N *+=∀∈;(2)见解析 【解析】 【分析】(1)根据前n 项和与通项间的关系得到,221n n n S na a =+-,()1112121n n n S n a a ---=-+-,两式做差即可得到数列11n n a a n n -=+,数列1n a n ⎧⎫⎨⎬+⎩⎭为常数列,112n a n =+,即12n n a +=;(2)根据第一问得到()()22144114111n a n n n n n ⎛⎫=<=- ⎪++⎝⎭+,裂项求和即可. 【详解】(1)当1n =时,111221S a a =+-,即11a =,当2n ≥时,221n n n S na a =+- ①, ()1112121n n n S n a a ---=-+- ②-①②,得()112122n n n n n a na n a a a --=--+-,即()11n n na n a -=+,所以11n n a a n n -=+,且1122a =, 所以数列1n a n ⎧⎫⎨⎬+⎩⎭为常数列,112n a n =+,即()*12n n a n N +=∀∈. (2)由(1)得12n n a +=,所以()()22144114111n a n n n n n ⎛⎫=<=- ⎪++⎝⎭+, 所以()()22224444444423412233411n T n n n =++++<++++⨯⨯⨯++L L ,11111111414142233411n n n L ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=-< ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知n S 和n a 的关系,求n a 表达式,一般是写出1n S -做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等. 24.(1)[]1,2;(2)1,33⎡⎤⎢⎥⎣⎦.【解析】 【分析】(1)利用两角差的正弦公式得出()2sin 6f x x π⎛⎫=-⎪⎝⎭,由,2x ππ⎡⎤∈⎢⎥⎣⎦计算出6x π-的取值范围,再由正弦函数的基本性质可求出函数()y f x =在区间,2ππ⎡⎤⎢⎥⎣⎦上的值域; (2)根据题中条件得出4sin sin 3A B +=,可得出4sin sin 3A B =-,由0sin 1A <≤,0sin 1B <≤,可求出1sin 13B ≤≤,利用正弦定理以及不等式的性质可得出sin 41sin 3sin a A b B B ==-的取值范围. 【详解】(1)()1cos 2cos 2sin cos cos sin 2266f x x x x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭Q 2sin 6x π⎛⎫=- ⎪⎝⎭,,2x ππ⎡⎤∈⎢⎥⎣⎦Q ,5366x πππ∴≤-≤,则1sin 123x π⎛⎫≤-≤ ⎪⎝⎭,()12f x ∴≤≤,因此,函数()y f x =在,2x ππ⎡⎤∈⎢⎥⎣⎦的值域为[]1,2; (2)78663f A f B ππ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭Q ,即()82sin 2sin 3A B π+=-,化简得4sin sin 3A B +=,4sin sin 3A B ∴=-, 由0sin 1A <≤,0sin 1B <≤,即40sin 130sin 1B B ⎧<-≤⎪⎨⎪<≤⎩,得1sin 13B ≤≤. 由正弦定理得4sin sin 4131,3sin sin 3sin 3Ba Ab B B B -⎡⎤===-∈⎢⎥⎣⎦.因此,a b 的取值范围是1,33⎡⎤⎢⎥⎣⎦.【点睛】本题考查正弦型函数值域的求解,同时也考查了三角形中边长比值取值范围的计算,考查运算求解能力,属于中等题.25.(1)n a n =,2nn b =;(2)证明见解析.【解析】 【分析】(1)设等差数列{}n a 的公差为d ,由等差中项的性质可得出3434a a =⎧⎨=⎩,可计算出1a 和d的值,利用等差数列的通项公式可求出n a ,根据题意得出1b 与q 的方程组,结合条件1q >,求出1b 和q 的值,利用等比数列的通项公式可求出n b ;(2)利用分组求和法结合等比数列的求和公式得出()()1122213n n nB++--=,可得出131122121n n n n b B +⎛⎫=- ⎪--⎝⎭,然后利用裂项法可求出n T ,即可证明出32n T <. 【详解】(1)1359a a a ++=Q ,由等差中项的性质得339a =,33a ∴=,同理可得44a =, 设等差数列{}n a 的公差为d ,43431d a a ∴=-=-=,1323211a a d =-=-⨯=,()1111n a a n d n n ∴=+-=+-=.由题意得()22412311208b b b q q b b q ⎧+=+=⎪⎨==⎪⎩,两个等式相除得2152q q +=,整理得22520q q -+=.1q >Q ,解得2q =,12b ∴=,因此,111222n n n n b b q --==⨯=;(2)442n n nn n c b =-=-Q ,()()()1122424242n n n B =-+-++-Q L ()()()()()112121414212444442222214123n n n nnn ++---=+++-+++=-=----L L ()()11112221432233n n n n ++++---⋅+==,()()()()()()111112323222221222121213n n nn n n n n nn n b B +++++⋅∴===⋅------()()()()111212133112221212121n nn n n n +++---⎛⎫=⋅=- ⎪----⎝⎭,22311313113113131122122121221212212n n n n T ++⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭⎝⎭L .【点睛】本题考查等差数列与等比数列通项公式的求解,数列不等式的证明,涉及了裂项求和法与分组求和法,考查计算能力,属于中等题. 26.(1)=BC 2)20【解析】 【分析】(1)由题意知21AB AC AD ===,.设BD DC m ==,在ADB △与ADC V 中,由余弦定理即可解得m 的值.(2)在ACE △与BCE V 中,由正弦定理,角平分线的性质可得AE AC BE BC ==.可求BE =,215AE =().利用余弦定理可求cos BAC ∠的值,根据同角三角函数基本关系式可求sin BAC ∠的值,利用三角形的面积公式即可计算得解. 【详解】解:(1)由题意知21AB AC AD ===,.设BD DC m ==.在ADB V 与ADC V 中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.即:212cos 4m m ADB +-∠=,①212cos 1m m ADB ++∠=.②由①+②,得:232m =,所以m =BC = (2)在ACE V 与BCE V 中,由正弦定理得:,sin sin sin sin AE EC BE ECACE EAC BCE CBE==∠∠∠∠,由于ACE BCE ∠=∠,且sin sin BC ACBAC CBA=∠∠,所以6AE AC BE BC ==.所以BE =,所以215AE =().又222222121cos 22214AB AC BC BAC AB AC +-+-∠===-⋅⨯⨯,所以sin BAC ∠=,所以11211225420ACE S AC AE sin BAC =⋅⋅∠=⨯⨯⨯=V (). 【点睛】本题主要考查了余弦定理,正弦定理,角平分线的性质,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.。
河北省“五个一”名校联盟2023届高三年级摸底考数学卷及答案
河北省“五个一”名校联盟2023届高三年级摸底考试数学试卷命题单位:邯郸市第一中学(满分:150分,测试时间:120分钟)第I 卷(选择题,共60分)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2280A x x x =--<,{}2,3,4,5B =,则A B = ()A.{2}B.{}2,3 C.{}3,4 D.{}2,3,42.已知2i z =+,则()i z z -=()A.62i- B.42i- C.62i+ D.42i+3.已知圆锥的高为1,母线长为6,则过此圆锥顶点的截面面积的最大值为()A.2B.52D.34.设0>ω,若函数()2cos()2f x x πω=-在[,42ππ-上单调递增,则ω的取值范围是()A.1(0,]2B.3(1,]2C.3[0,]2D.(0,1]5.如图,在底面半径为1,高为6的圆柱内放置两个球,使得两个球与圆柱侧面相切,且分别与圆柱的上下底面相切.一个与两球均相切的平面斜截圆柱侧面,得到的截线是一个椭圆.则该椭圆的离心率为()A.226.已知82βαππ<<<,且5sin 2sin cos 2sin 4413πααπ-=,sin 2cos 4πβ+cos 2sin4πβ33=,则()βα22sin -的值为()B.96 C. D.96-7.若过点(,)m n 可以作曲线2log y x =的两条切线,则()A.2log m n> B.2log n m> C.2log m n< D.2log n m<8.先后抛掷两枚质地均匀的骰子,甲表示事件“第一枚骰子掷出的点数是1”,乙表示事件“第二枚骰子掷出的点数是2”,丙表示事件“两枚骰子掷出的点数之和是8”,丁表示事件“两枚骰子掷出的点数之和是7”,则下列说法正确的有()①甲与乙相互独立②乙与丁相互独立③乙与丙不互斥但相互独立④甲与丙互斥但不相互独立A.1个B.2个C.3个D.4个二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有6个相同的球,分别标有数字1,2,3,4,5,6,现从中有放回的取出5个球并记录取球结果,则下列统计结果中可能取出6号球的是()A.平均数为3,中位数为2B.中位数为3,众数为2C.平均数为2,方差为2.4D.中位数为3,极差为210.已知(cos ,sin ),(cos )a x x b x x ==r r ,函数()f x a b =⋅r r,则下列选项正确的是()A.函数f (x )的值域为13[,]22-.B.将函数1sin 2y x =+图像上各点横坐标变为原来的12(纵坐标不变),再将所得图像向左平移12π个单位长度,可得函数()f x 的图像.C.函数f (x )是奇函数.D.函数f (x )在区间[]π20,内所有零点之和为143π.11.如图,正方体ABCD -A 1B 1C 1D 1棱长为1,P 是1A D 上的一个动点,下列结论中正确的是()A.BP 的最小值为23B.PA PC +C.当P 在直线1A D 上运动时,三棱锥1B ACP -的体积不变D.以点B 为球心,2为半径的球面与面AB 1C 的交线长为π312.已知圆221:(12C x y +-=上两点A 、B 满足AB 点()0,0M x 满足:MA MB =,则下列结论中正确的是()A.当AB =,012x =B.当00x =时,过M 点的圆C 的最短弦长是C.线段AB 的中点纵坐标最小值是12D.过M 点作圆C 的切线且切点为A,B,则0x 的取值范围是(,)-∞⋃+∞第II 卷(非选择题,共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知函数()3(xxa e f x e x -=是偶函数,则=a ______.14.设抛物线2y =的焦点为F ,准线为l ,过抛物线上一点A 作l 的垂线,垂足为B .设0C (),AF 与BC 相交于点D .若CF AF =,则△ACD 的面积为_____.15.,212xx R e x a ∀∈-≥+,则a 的最大值为______.16.德国大数学家高斯年少成名,被誉为数学届的王子,19岁的高斯得到了一个数学史上非常重要的结论,就是《正十七边形尺规作图之理论与方法》.在其年幼时,对1+2+3+……+100的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法,现有函数()xf x =设数列{}n a 满足*121(0)()()()(1)()n n a f f f f f n N n n n-=+++++∈ ,若12,{}n n n n b a b n +=则的前项_________.n S =和四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知正项数列{}n a 满足11a =,且112++=-n n n n a a a a .(1)求数列{}n a 的通项公式;(2)记21n n a b n =+,求数列{}n b 的前n 项和为n S ,求证:11.32n S ≤<18.(本小题满分12分)某学校组织“纪念共青团成立100周年”知识竞赛,有A ,B,C 三类问题,每位参加比赛的同学需要先选择一类并从中随机抽取一个问题回答,只有答对当前的问题才有资格从下一类问题中再随机抽取一个问题回答.A 类问题中的每个问题回答正确得10分,否则得0分;B 类问题中的每个问题回答正确得20分,否则得0分,C 类问题中的每个问题回答正确得30分,否则得0分.已知小康同学能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,能正确回答C 类问题的概率为0.4,且能正确回答问题的概率与回答次序无关.(1)若小康按照CBA 的顺序答题,记X 为小康的累计得分,求X 的分布列;(2)相比较小康自选的CBA 的答题顺序,小康的朋友小乐认为按照ABC 的顺序答题累计得分期望更大,小乐的判断正确吗?并说明理由.19.(本小题满分12分)已知ABC ∆的内角C B A ,,的对边分别为c b a ,,,若4,b =在①()(sin sin )(sin sin )b c B C A C a +-=-,②1cos 3)(2cos =++B C A 两个条件中任选一个完成以下问题:(1)求;B (2)若D 在AC 上,且,AC BD ⊥求BD 的最大值.20.(本小题满分12分)如图,ABCD 为圆柱OO '的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若6==BC AB ,当三棱锥B DEF -的体积最大时,求二面角B DF E --的正弦值.21.(本小题满分12分)已知双曲线C :22221x y a b-=的离心率为2,1F 、2F 为它的左、右焦点,点P 为双曲线在第一象限上的一点,且满足120PF PF ⋅=uuu r uuu r,126PF PF =.(1)求C 的方程;(2)过点2F 作直线l 交双曲线于,A B 两点,在x 轴上是否存在定点(),0Q m ,使得⋅uur uuu rQA QB 为定值,若存在,求出m 的值和该定值;若不存在,请说明理由.2212012.()()ln ().();():(本小题满分分已知函数()讨论的零点个数()证明x f x x ax a f x f e xf x a=+≠≤-河北省“五个一”名校联盟2023届高三年级摸底考试数学参考答案一、单选题1——4:BADD 5——8:BBBC 二、多选题9.AB10.ABD 11.BCD12.CD三、填空题13.1-14.15.116.12n n +⋅四、解答题17.【解析】(1)数列{}n a 中,0n a >,由112++=-n n n n a a a a ,可得2111=-+nn a a .…………………………………………………………………………2分又11111a ==,则数列1n a ⎧⎫⎨⎬⎩⎭是首项为1公差为2的等差数列,则12)1(211-=-+=n n a n,则数列{}n a 的通项公式为121-=n a n .…………………………………………………4分(2)由(1)知121-=n a n ,则1111(21(21)(21)22121n n a b n n n n n ===-+-+-+,…………………………………6分则数列{}n b 的前n 项和111111111123352121221()()n S n n n =-+-++-=--++L ,………………………8分,012131,311210,312,*<+-≤-∴≤+<∴≥+∴∈n n n N n .2131,1121132<≤∴<+-≤∴n S n …………………………………………………10分18.【解析】(1)由题可知,X 的所有可能取值为0,30,50,60……………………………1分()010.40.6P X ==-=()()300.410.60.16P X ==⨯-=()500.40.6(10.8)0.048P X ==⨯⨯-=()600.40.60.80.192P X ==⨯⨯= (5)分所以X 的分布列为X0305060P0.60.160.0480.192………………………………………………………………………………………………6分(2)由(1)知,()00.6300.16500.048600.19218.72E X =⨯+⨯+⨯+⨯=.若小康按照ABC 顺序答题,记Y 为小康答题的累计得分,则Y 的所有可能取值为0,10,30,60()010.80.2P Y ==-=()()100.810.60.32P Y ==-=()300.80.6(10.4)0.288P X ==⨯⨯-=()600.80.60.40.192P X ==⨯⨯=………………………………………………………10分所以()00.2100.32300.288600.19223.36E Y =⨯+⨯+⨯+⨯=故小乐的判断正确…………………………………………………………………………12分19.【解析】(1)若选①,由正弦定理得,(),)()(a c a c b c b -=-+………………………2分即,222ac a c b -=-即,222ac b c a =-+2221cos ,222a cb ac B ac ac +-∴===……4分(0,),,3B B ππ∈∴=Q ……………………………………………………………………5分若选②cos2()3cos cos2()3cos cos23cos 1,A C B B B B B π++=-+=+=Q …………………2分,1cos 31cos 22=+-∴B B 即22cos 3cos 20,B B +-=即2cos -=B (舍)或21cos =B ,…………………………………………………………4分(0,),,3ππ∈∴=Q B B ……………………………………………………………………5分(2)BD AC ⊥Q ,BD 为AC 边上的高,当面积最大时,高取得最大值.…………………6分法一:由余弦定理得,B ac c a b cos 216222-+==,由重要不等式得162ac ac ac ≥-=,当且仅当a=c 时取等,……………….…….…….…….…….……….…………………9分所以34sin 21≤=∆B ac S ABC .…….…….…….…….…….…….………………10分所以AC 边上的高的最大值为4312b =..…….…….…….…….………………12分法二:由正弦定理得ABC ∆外接圆的直径为2sin b R B ==,.……………………7分利用正弦定理表示面积得:11sin sin 2233ABC S ac B A C B ∆==⋅122sin()sin()233A A A A ππ=-=-)363A π=-+≤……………………………………………………10分所以AC 边上的高的最大值为322134=b ..…….…….…….…….………………12分20.【解析】(1)证明:如右图,连接AE ,由题意知AB 为O 的直径,所以AE BE ⊥.因为AD ,EF 是圆柱的母线,所以AD EF ∥且AD EF =,所以四边形AEFD 是平行四边形.所以AE DF ∥,所以BE DF ⊥.因为EF 是圆柱的母线,所以EF ⊥平面ABE ,又因为BE ⊂平面ABE ,所以EF BE ⊥.又因为DF EF F = ,DF 、EF ⊂平面DEF ,所以BE ⊥平面DEF .………………………………………4分(2)由(1)知BE 是三棱锥B DEF -底面DEF 上的高,由(1)知EF AE ⊥,AE DF ∥,所以EF DF ⊥,即底面三角形DEF 是直角三角形.设DF AE x ==,BE y =,则22:6Rt ABE x y+=在中有,………………………………………………………………5分所以221113326622B DEF DEFx yV S BE x y-∆+⎛=⋅=⋅⋅⋅=≤=⎝,当且仅当3==yx时等号成立,即点E,F分别是»AB,»CD的中点时,三棱锥B DEF-的体积最大,…………………………………………………………………………………7分(:另解等积转化法:1.3B DEF D BEF D BCF B CDF CDFV V V V S BC----∆====⋅,)F CD E F AB CD易得当与距离最远时取到最大值此时、分别为 、 中点下面求二面角B DF E--的正弦值:法一:由(1)得BE⊥平面DEF,因为DF⊂平面DEF,所以BE DF⊥.又因为EF DF⊥,EF BE E⋂=,所以DF⊥平面BEF.因为BF⊂平面BEF,所以BF DF⊥,所以BFE∠是二面角B DF E--的平面角,……9分由(1)知BEF为直角三角形,则3BF==.故3sin3BEBFEBF∠==,所以二面角B DF E--的正弦值为分法二:由(1)知EA,EB,EF两两相互垂直,如图,以点E为原点,EA,EB,EF所在直线为x,y,z轴建立空间直角坐标系E xyz-,则00000000(),(,,),(,B D E F.由(1)知BE⊥平面DEF,故平面DEF的法向量可取为00()EB=uuu r.设平面BDF的法向量为(,,)n x y z=,由((0,DF BF==,……………………………………………………8分得n DFn BF⎧⋅=⎨⋅=⎩,即⎧=⎪⎨+=⎪⎩,即xy=⎧⎪⎨=⎪⎩,取1z=,得n= (10)分设二面角B DF E --的平面角为θ,cos cos ,n EB n EB n EBθ⋅=<>==⋅r uur r uurr uur ,所以二面角B DF E --的正弦值为33.………………………………………………12分21.【解析】(1)解法一:由2ce a==得:2c a =,b ∴=,120PF PF ⋅=uuu r uuu rQ ,∴12PF PF ⊥,在12Rt F PF V 中,由122PF PF a -=得:222121224PF PF PF PF a +-=,代入222124PF PF c +=,126PF PF =得:224124c a -=解得:23b =,21a =,∴双曲线方程为:2213y x -=.………………………………………4分解法二:由2ce a==得:2c a =,b ∴==,设点()(),0P x y y >,则点P满足22221x y a b-=…①,120PF PF ⋅=uuu r uuu r Q ,()()222,,0c x y c x y x c y ∴---⋅--=-+=,即222x y c +=…②,121211222F PF S PF P y c F ⋅==,即3y c ⋅=…③,则由①②得:2b y c =,代入③得:23b =,21a =,∴双曲线方程为:2213y x -=.…………4分(2)解法一:当l 斜率不存在时,:2l x =,此时()2,3A ,()2,3B -,2(2)9QA QB m ⋅=--,uur uuu r当l 斜率为0时,:0l y =,此时()1,0A -,()10B ,,21QA QB m ⋅=-uur uuu r;QA QB ⋅若为定值,uur uuu r 22:(2)91.,0,1m m m QA QB ⋅=--=-=-则有解得uur uuu r:(10),:0.QA QB Q ⋅=-uur uuu r下证当为,时恒有;………………………………………………6分当l 斜率存在时,设():2l y k x =-,()11,A x y ,()22,B x y ,联立()22233y k x x y ⎧=-⎨-=⎩得()222234430k x k x k -+--=,则236360k ∆=+>,212243k x x k -∴+=-,2122433k x x k --=-,…………………………………8分()()121211QA QB x x y y ∴⋅=+++uur uuu r ()()212121212124x x x x k x x x x =++++-++⎡⎤⎣⎦()()()222121212114k x x k x x k =+--+++………………………………………………10分()()22222224341211433k k k k k k k ---=+--++--()222241(3)410.3k k k k +-=++=-综上所述:存在1m =-,使得0QA QB ⋅=uur uuu r ;……………………………………………12分解法二:当l 斜率为0时,:0l y =,此时()1,0A -,()10B ,,由(),0Q m 得:21QA QB m ⋅=-uur uuu r ;………………………………………………………………………6分当l 斜率不为0时,设:2l x ty =+,()11,A x y ,()22,B x y ,联立22233x ty x y =+⎧⎨-=⎩得:()22311290t y ty -++=,则236360t ∆=+>,1221231t y y t -∴+=-,122931y y t =-,…………………………………………………………8分()()()()11221212,,QA QB x m y x m y x m x m y y ∴⋅=-⋅-=--+uur uuu r 2212121212(2)(2)(1)(2)()(2)ty m ty m y y t y y m t y y m =+-+-+=+⋅+-++-()2222222129(1215)9(1)(2)(2)(2)313131t m t t m t m m t t t --+=++-+-=+----,………………………10分若⋅uur uuu r QA QB 为定值,则1215931m -=-,1m ∴=-,()1,0Q ∴-,此时0QA QB ⋅=uur uuu r ;当1m =-,l 斜率为0时,210QA QB m ⋅=-=uur uuu r ;综上所述,存在1m =-,使得0QA QB ⋅=uur uuu r ;………………………………………………………………………………12分2min ln ln ln 122.(1)()ln 0,,(),()(0,),()0,(,),()0,()(0,)1(,),()(),20,();,()0,()x x x f x x ax a g x g x x x x x e g x x e g x g x e e g x g e ex g x x e g x x g x -'=+==-=-=''∈<∈+∞>∴+∞∴==-→→+∞><→+∞→【解析】令则设当时时在上单调递减,在上单调递增分时当时且时L L L L L L L L L L L L L L L L L Q 0,311,(),0,(),a f x a a f x e e∴<-=->分当时无零点当或时有一个零点L L L L L L L10,().5L L L L L L L L L L L L L L L L L L L L L L L L L a f x e-<<当时有两个零点分ln ()()()(2),((),7ln 10(0)ln 10(0),:()10(0)8()1,()1,(,0)x at atat t f x x x x f e x f e t f f t a x a ate t at t t at e t tf x e x h x x e h x e x --------=≤-⇔≤-++-≥>++-≥>+-≥>'=+-=-∈-∞设则分即证,即证即证,分设则当时L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L 00,()0,(0,),()0,()(,0),()(0),()(0)010110,0"",(1),,,()0x h x x h x h x h x h x h x e x a x ef x -'<∈+∞'>∴-∞+∞∴≥=∴+-≥==>-=当时在单调递减在,单调递增,分当且仅当时成立由知当时存在使得L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L ()11()()10,().12x f x f e x f x e f x a-∴+-≥∴≤-分分L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L。
河北省邯郸市2020-2021学年度高三年级一模考试数学试卷
注意事项:
1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如 需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。
B.(1,5)
C.(-1,1)
D.((-1,1)∪(5,7)
2.已知复数=4-bi,a,b∈R,则 a+b=
A.2
B.-2
C.4
D.6
3.已知 2sin(x-α)=3sin(+α),则 sin2α-sin2α-cos2α=
A.
B.
C.
D.
4.函数的部分图象大致是
5.构建德智体美劳全面培养的教育体系是我国教育一直以来努力的方向.某中学积极响应 党的号召,开展各项有益于德智体美劳全面发展的活动.如图所示的是该校高三(1)、(2)班两 个班级在某次活动中的德智体美劳的评价得分对照图(得分越高,说明该项教育越好).下列 说法正确的是
(2)设 bn=4,求数列(bn)的前 n 项和 Tn 18.(12 分) 设 ABC 的内角 A,B,C 的对边分别为 a,b,c,且满足 acosB-bcosA=c (1)求的值; (2)若点 D 为边 AB 的中点,AB=10,CD=5,求 BC 的值. 19.(12 分) 为了树立和践行绿水青山就是金山银山的理念,加强环境的治理和生态的修复,某市在 其辖区内某一个县的 27 个行政村中各随机选择农田土壤样本一份,对样本中的铅、锦、铭等 重金属的含量进行了检测,并按照国家土壤重金属污染评价级标准(清洁、尚清洁、轻度污 染、中度污染、重度污染)进行分级,绘制了如图所示的条形图 (1)从轻度污染以上(包括轻度污染)的行政村中按分层抽样的方法抽取 6 个,求在轻度、 中度、重度污染的行政村中分别抽取的个数; (2)规定:轻度污染记污染度为 1,中度污染记污染度为 2,重度污染记污染度为 3.从(1)中 抽取的 6 个行政村中任选 3 个,污染度的得分之和记为 X,求 X 的数学期望.
2020届高考数学(文)总复习:创新思维课时规范练(含答案)第二章 第二节 函数的单调性与最值
课时规范练 A 组 基础对点练1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:当x >0时,f (x )=3-x 为减函数; 当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.故选C. 答案:C2.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1x B .y =e -x C .y =-x 2+1D .y =lg|x |解析:A 中y =1x 是奇函数,A 不正确;B 中y =e -x=⎝ ⎛⎭⎪⎫1e x 是非奇非偶函数,B不正确;C 中y =-x 2+1是偶函数且在(0,+∞)上是单调递减的,C 正确;D 中y =lg|x |在(0,+∞)上是增函数,D 不正确.故选C. 答案:C3.(2019·天津模拟)若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( ) A .f (x )=(x -1)2 B .f (x )=e x C .f (x )=1xD .f (x )=ln(x +1)解析:根据条件知,f (x )在(0,+∞)上单调递减.对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ; 对于B ,f (x )=e x 在(0,+∞)上单调递增,排除B ; 对于C ,f (x )=1x 在(0,+∞)上单调递减,C 正确; 对于D ,f (x )=ln(x +1)在(0,+∞)上单调递增,排除D. 答案:C4.(2019·福州模拟)函数f (x )=⎩⎨⎧-x +3a ,x <0a x ,x ≥0,(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( ) A .(0,1) B.⎣⎢⎡⎭⎪⎫13,1 C.⎝ ⎛⎦⎥⎤0,13 D.⎝ ⎛⎦⎥⎤0,23 解析:∵⎩⎪⎨⎪⎧0<a <13a ≥1,∴13≤a <1.答案:B5.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 解析:若函数f (x )=a x 在R 上为减函数,则有0<a <1;若函数g (x )=(2-a )x 3在R 上为增函数,则有2-a >0,即a <2,所以“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件,选A. 答案:A6.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25)B .f (log 25)<f (20.3)<f (0.32)C .f (log 25)<f (0.32)<f (20.3)D .f (0.32)<f (log 25)<f (20.3)解析:∵对任意的x 1,x 2∈(-∞,0),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,∴f (x )在(-∞,0)上是减函数. 又∵f (x )是R 上的偶函数, ∴f (x )在(0,+∞)上是增函数, ∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A. 答案:AB 组 能力提升练7.定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为( ) A .[-1,2) B .[0,2) C .[0,1)D .[-1,1)解析:函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,∴函数在[-2,2]上单调递增,∴⎩⎪⎨⎪⎧-2≤a 2-a ≤2,-2≤2a -2≤2,2a -2<a 2-a ,∴⎩⎪⎨⎪⎧-1≤a ≤2,0≤a ≤2,a <1或a >2,∴0≤a <1,故选C. 答案:C8.已知定义在R 上的函数f (x )在[1,+∞)上单调递减,且f (x +1)是偶函数,不等式f (m +2)≥f (x -1)对任意的x ∈[-1,0]恒成立,则实数m 的取值范围是( ) A .[-3,1]B .[-4,2]C .(-∞,-3]∪[1,+∞)D .(-∞,-4]∪[2,+∞)解析:因为f (x +1)是偶函数,所以f (-x +1)=f (x +1),所以f (x )的图象关于x =1对称,由f (m +2)≥f (x -1)得|(m +2)-1|≤|(x -1)-1|,所以根据题意得|m +1|≤2,解得-3≤m ≤1.故选A. 答案:A9.若函数f (x )=x 2-12ln x +1在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( ) A .[1,+∞) B.⎣⎢⎡⎭⎪⎫1,32 C .[1,2)D.⎣⎢⎡⎭⎪⎫32,2 解析:函数f (x )的定义域为(0,+∞),所以k -1≥0,即k ≥1.令f ′(x )=4x 2-12x =0,解得x =12⎝ ⎛⎭⎪⎫x =-12舍.因为函数f (x )在区间(k -1,k +1)内不是单调函数,所以k -1<12<k +1,得-12<k <32.综上得1≤k <32. 答案:B10.(2018·西安一中模拟)已知函数f (x )=⎩⎨⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-∞,-2)∪(1,+∞) C .(-1,2)D .(-2,1)解析:∵当x =0时,两个表达式对应的函数值都为零,∴函数的图象是一条连续的曲线.∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.故选D.答案:D11.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.解析:由f (x )=⎩⎪⎨⎪⎧-2x -a ,x <-a22x +a ,x ≥-a2,可得函数f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫-a 2,+∞,故3=-a 2,解得a =-6.答案:-612.已知函数f (x )=x +ax (x ≠0,a ∈R ),若函数f (x )在(-∞,-2]上单调递增,则实数a 的取值范围是__________.解析:设x 1<x 2≤-2,则Δy =f (x 1)-f (x 2)=x 1+a x 1-x 2-a x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-a x 1x 2=(x 1-x 2)(x 1x 2-a )x 1x 2.因为x 1-x 2<0,x 1x 2>0,所以要使Δy =(x 1-x 2)(x 1x 2-a )x 1x 2<0恒成立,只需使x 1x 2-a >0恒成立,即a <x 1x 2恒成立.因为x 1<x 2≤-2,所以x 1x 2>4,所以a ≤4,故函数f (x )在(-∞,-2]上单调递增时,实数a 的取值范围是(-∞,4]. 答案:(-∞,4]。
2020届名校学术联盟新高考原创精准模拟考试(一)文科数学试卷
2020届名校学术联盟新高考原创精准模拟考试(一)文科数学试卷本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若,则复数z的虚部是A. 1B.C. 3D.【答案】B【解析】【分析】本题首先可以根据复数的运算法则对复数进行化简,将复数化简为的形式,再通过复数的虚部的相关概念即可得出结果。
【详解】,所以复数的虚部为。
【点睛】本题考查复数的相关性质,主要考查复数的运算法则以及虚部的相关概念,考查计算能力,提高了学生对于复数运算的掌握,是简单题。
2.设集合,则()A. B. C. D.【答案】C【解析】【分析】本题首先可以通过解一元二次不等式计算出集合A,然后通过对数的性质计算出集合B,最后计算出,即可得出结果。
2020届高三数学第一次月考试题 文(含解析)新 人教
2019学年第一学期九月测试卷高三数学(文科)一、选择题(每小题5分,共60分)1. 设集合M={1,2,3,4,5,6},N={1,4,5,7},则M∩N等于( )A. {1,2,4,5,7}B. {1,4,5}C. {1,5}D. {1,4}【答案】B【解析】则2. ( )A. B. C. D. -【答案】A【解析】试题分析:选C.考点:诱导公式.【易错点晴】本题主要考查诱导公式,属于容易题型.本题虽属容易题型,但如果不细心的话容易因判断错象限、或因忘了改变函数名而犯错.解决此类题型的口诀是:奇变偶不变,符号看象限,应用改口诀的注意细节有:1、“奇”、“偶”指的是的奇数倍或偶数倍,2、符号看象限,既要看旧角,又要看旧函数名.要熟练掌握这两个细节才不会“走火入魔”.3. 下列函数中,是偶函数且在上为增函数的是( )A. B. C. D.【答案】A【解析】由选项可看出四个函数中D为奇函数,所以排除D,在ABC三个选项中,A函数为增函数,B函数为减函数,C函数既有增区间又有减区间.故选A.4. 若已知函数f(x)= , 则的值是( )A. B. 3 C. D.【答案】D【解析】由函数f(x)=可知:,+1=故选:D5. 函数y=的定义域是( )A. [1,2]B. [1,2)C.D.【答案】D【解析】即得解得故选D6. 下列说法中,正确的是()A. 命题“若,则”的否命题为“若,则”B. 命题“存在,使得”的否定是:“任意,都有”C. 若命题“非”与命题“或”都是真命题,那么命题一定是真命题D. ""是" "的充分不必要条件【答案】C【解析】对于A,命题“若,则”的否命题为“若a≤b,则”;∴A 不正确;对于B,命题“存在x∈R,使得”的否定是:“任意x∈R,都有”;∴B不正确;对于C,若命题“非p”是真命题则P是假命题,命题“p或q”是真命题,那么命题q一定是真命题,∴C正确;对于D,∴推不出. ∴D不正确故选:C.7. 设a=,,则a,b,c的大小关系是( )A. b>c>aB. a>c>bC. b>a>cD. a>b>c【答案】D【解析】,所以故选D8. 函数f(x)=2x-6+lnx的零点个数为( )A. 1B. 2C. 3D. 4【答案】A【解析】,所以函数在上递增,又,所以函数的零点只有1个故选A点睛:本题是零点存在性定理的考查,先确定函数的单调性,在判断特殊点处的函数值有正负变化即得解.9. 函数y=Asin(ωx+φ)在一个周期内的图象如图所示,则此函数的解析式为( )A. B.C. D.【答案】B【解析】由图知A=2,又,此函数的解析式是故选B.10. 若=,则cos(π-2α)=( )A. -B.C. -D.【答案】C【解析】==,故选C11. 函数y= (0<a<1)的图象的大致形状是( )A. B.C. D.【答案】D【解析】又所以函数在上递减,在上递增,故选D点睛:函数中有绝对值的要去掉绝对值,写成分段函数,根据单调性即可以选出选项.12. 已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( )A. (-∞,0)B.C. (0,1)D. (0,+∞)【答案】B【解析】函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点.则实数a的取值范围是(0,).故选B.二、填空题(每小题5分,共20分)13. 已知=2, 则=______【答案】3【解析】,故答案为314. 函数f(x)=的单调递增区间为________.【答案】【解析】根据复合函数的单调性,内外层函数同则增异则减的原则,f(x)=的递增区间为的递减区间,但要注意定义域,所以f(x)=的递增区间为................故答案为点睛:研究复合函数的单调性:先把复合函数分成内外两层,根据内外层函数单调性相同,复合函数增,内外层函数单调性相异,复合函数减,即同则增异则减,做题时还要注意定义域.15. 已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则=________.【答案】-2【解析】由f(x+4)=f(x)得f(x)的周期为4,所以又f(x)在R上是奇函数,所以故答案为-2.点睛:函数奇偶性,周期性结合求函数值的问题,先利用周期性,把变为再利用奇偶性根据已知很容易出结果.16. 若不等式2x ln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是________.【答案】(-∞,]【解析】2xlnx≥-x2+ax-3,则a≤2lnx+x+,设h(x)=2lnx+x+(x>0),则h′(x)=.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4,则a≤h(x)min=4,故实数a的取值范围是(-∞,4].故答案为:(-∞,4]点睛:恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.三、解答题(共6小题,共70分,解答应写出必要的文字说明、计算过程或证明步骤)17. (10分) 化简求值:(1) ; (2) .【答案】(1) 4 ; (2)【解析】试题分析:(1)主要是对数运算性质的考查(2)主要是三角恒等变换的二倍角公式,两角和与差的余弦公式的考查.试题解析:(1)原式= (2)原式=18. (12分)(1)已知sinα=- ,且α为第四象限角,求tanα的值;(2)已知cos且都是锐角,求的值【答案】(1)(2)【解析】试题分析:(1)由α为第四象限角,根据同角基本关系的平方关系得的值,商式关系得出.(2) cos,是锐角得出sin,又都是锐角,,得出,根据得出结果.试题解析:(1)为第四象限角,(2) 因为是锐角,所以sin=又都是锐角,,=,则cos=cos19. (12分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)若f(x)在区间[-4,6]上是单调函数.求实数a的取值范围.【答案】(1)35 (2) a≤-6,或a≥4【解析】试题分析:(1) 当a=-2时,f(x)=x2-4x+3=(x-2)2-1,根据二次函数的单调性得出函数的最值(2)二次函数的对称轴为x=-a,根据图像得出[-4,6]在轴的左侧或在轴的右侧,即-a≤-4,或-a≥6得解.试题解析:(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增.∴f(x)的最小值是f(2)=-1.又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4,或-a≥6,即a≤-6,或a≥4.20. (12分)已知.f(x)=sin x cos x-cos2x+(1)求f(x)的最小正周期,并求其图象对称中心的坐标;(2)当0≤x≤时,求函数f(x)的值域.【答案】(1)(k∈Z) (2)【解析】试题分析:(1)先对函数f(x)=sin x cos x-cos2x+=sin2x- (cos2x+1)+化简得f(x)=sin,令sin=0,得=kπ(k∈Z)解得对称中心(2)0≤x≤所以-≤2x-≤,根据正弦函数图像得出值域.试题解析:(1)f(x)=sin x cos x-cos2x+=sin2x- (cos2x+1)+=sin2x-cos2x=sin,所以f(x)的最小正周期为π.令sin=0,得=kπ(k∈Z),所以x= (k∈Z).故f(x)图象对称中心的坐标为 (k∈Z).(2)因为0≤x≤,所以-≤2x-≤,所以≤sin≤1,即f(x)的值域为.点睛:本题重点考查三角函数式的恒等变换,正弦型函数的最小正周期,正弦型函数的对称中心,及函数在某一定义域下的值域,是高考的常见题型,在求值域时要运用整体的思想.21. (12分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线方程为l:y=3x+1,且当x=时,y=f(x)有极值.(1)求a,b,c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值.【答案】(1) a=2,b=-4, c=5 (2) 最大值为13,最小值为【解析】试题分析:(1)对函数进行求导,当x=1时,切线l的斜率为3,可得2a+b=0,当x=时,y=f(x)有极值,则f′=0,联立得出a,b,c的值(2) 由(1)可得f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4. 令f′(x)=0,解得x1=-2,x2=,研究单调性得出最值.试题解析:(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.当x=1时,切线l的斜率为3,可得2a+b=0,①当x=时,y=f(x)有极值,则f′=0,可得4a+3b+4=0,②由①②,解得a=2,b=-4.由于切点的横坐标为1,所以f(1)=4. 所以1+a+b+c=4,得c=5.(2)由(1)可得f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4.令f′(x)=0,解得x1=-2,x2=.当x变化时,f′(x),f(x)的取值及变化情况如下表所示:所以y=f(x)在[-3,1]上的最大值为13,最小值为.点睛:已知切线方程求参数问题,利用切线斜率,切点在切线上也在曲线上这两点即可求出字母值.函数的极值问题要注意对应的导值为0,且在此点的左右函数有单调性变化.22. (12分)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.【答案】(1)见解析(2) (0,1)【解析】试题分析:(1)先求导数,再根据导函数符号是否变化进行讨论:若,则,在单调递增;若,导函数先正后负,函数先增后减;(2)由(1)知函数有最大值条件为,且最大值为,转化为解不等式,先化简,再利用导数研究函数单调性及零点,确定不等式解集试题解析:解:(Ⅰ)的定义域为若,则,所以在单调递增若,则当时,;当时,。
2020届河北省高三下学期新时代NT教育模拟自测联考(卷Ⅱ)文科数学试卷及答案
一个选项正确.
1.集合 犃={狓|狓2-4狓-5=0},犅={狓|狓2=1},则 犃∪犅=
A.{-1}
B.{1,-1,5}
C.{1,-1,-5}
D.{1}
2.复数狕=3+犻4犻 (犻为虚数单位),则狕--|狕|在复平面对应的点在
A.第 一 象 限
B.第 二 象 限
C.第 三 象 限
D.第 四 象 限
烆犲-狓 -4,狓<0
A. B. C. D 11.过椭圆3狓62+2狔72 =1上一点 犘 分别向圆犆1:(狓+3)2+狔2=4 和 圆 犆2:(狓-3)2+狔2=1
作切线,切点分别为 犕,犖,则|犘犕|2+|犘犖|2 的最小值为
奖、一等奖、二等奖、三等奖、参与奖,获奖团队每队可获得相应金额的奖励,已知
获奖人数的分配 情 况 如 图 所 示, 奖 励 金 额 分 别 为: 特 等 奖 50 万 元, 一 等 奖 20 万 元, 二等奖10万元,三等奖5 万 元, 参 与 奖 1 万 元, 则 下 列说法不正确的是
A. 获 得 参 与 奖 的 团 队 最 多 B. 获 得 三 等 奖 的 总 费 用 最 高
. 15.在△犃犅犆 中,角 犃,犅,犆 的对边分别 为犪,犫,犮, 若 sin2犃,sin2犅,sin2犆 成 等 差 数
列 , 则 cos犅
取
最小
值时
,犮 犪
=
.
16.已知正三棱锥 犘-犃犅犆 的外 接 球 为 球犗, 已 知 犘犃=2槡3,犃犅=犅犆=犃犆=3, 点 犇
在线段犃犆 上,且 犃犆=6犃犇,过点 犇 作球犗 的截面,则所得截面圆面积的最小值为
A.55
B.67
C.85
D.90
烄|ln狓|,狓>0
2014届河北省邯郸市高三第一次模拟考试文科数学试题(含答案解析)word版
B( x 2 , y 2 ) , C ( x3 , y 3 ) , D( x 4 , y 4 ) 其中 x1 < x 2 < x3 < x 4 ,则有
A. sin x 4 = 1 C. sin x 4 = k cos x 4 B. sin x 4 = ( x 4 + 1) cos x 4 D. sin x 4 = ( x 4 + 1) tan x 4 第Ⅱ卷(非选择题 共 90 分) 二.填空题
ˆx + a ˆ 恒过样本中心 ( x , y ) ,且至少过一个样本点. ˆ =b B.线性回归直线 y
C.存在 x ∈ (0,
π 1 ) ,使 sin x + cos x = . 2 3
1 3
D.函数 f ( x) = x − ( ) 的零点在区间 ( , ) 内.
x
1 2
1 9
B.
3 7
C.
9. 若 α ∈ (0, π ) ,且 2 cos 2α = sin(α +
π ) ,则 sin 2α 的值为 4
1 5
D.
1 3
第 2 页 共 10 页
A. − 1 或
7 8
B.
7 8
C. − 1
D. 1 或 −
7 8
10.下列命题中真命题是 A.命题“存在 x ∈ R, x 2 − x − 2 ≥ 0 ”的否定是:“不存在 x ∈ R, x 2 − x − 2 < 0 ”.
19. 如图 1, 在 直角 梯形 ABCD 中 , ∠ADC = 90° , CD / / AB , AD = CD = 所示. (I)在 CD 上找一点 F ,使 AD / / 平面 EFB ; (II)求点 C 到平面 ABD 的距离.
河北省邯郸市2021届高三摸底考试语文试题及答案解析
河北省邯郸市2021届高三摸底考试语文试题及答案解析三年级摸底考试语文一、现代文阅读(35分)(一)现代文阅读I (本题共5小题,19分)阅读下面的文字,完成1-5题。
材料一:生命教育要让学生觉醒生命意识,懂得生命坚守的意义。
要敬畏自然,天地人和。
中国文化的精髓在“和",强调中和,致中和,天地人和。
要敬畏自然,善待自然万物。
恩格斯在《自然辩证法》中曾指出,“不要过分陶醉于我们人类对自然界的胜利。
对于每一次这样的胜利,自然界都对我们进行报复,我们最初的成果又消失了要敬畏生命,珍爱生命。
生命的诞生是极其神圣的,每个人的生命只有一次,必须珍惜与爱护。
要尊重和热爱生命,提升生命的质量,无论经历什么挫折苦难,遭遇什么不幸,都要勇于面对,坚强地生活下去。
正如法国作家罗曼•罗兰所说,“我心目中的英雄主义,就是在认清了生活的本质之后,依然热爱生活”。
要尊重他者,守望相助。
美国作家海明威在《丧钟为谁而鸣》中发出预警,所有人是一个整体,别人的不幸就是你的不幸。
所以不要问丧钟是为谁而鸣,它就是为你而鸣。
经济全球化时代,各国命运相连、休戚相关,中国人民为抗击疫情、遏制疫情所作出的努力和牺牲,正是构建“人类命运共同体”的伟大实践。
生命教育要给学生提升生命境界的智慧。
总有一种力量让我们泪流满面,总有一种泪水擦亮我们的眼睛、净化我们的灵魂。
生命的意义,不仅在于坚守,更在于开拓。
生命教育要赋予学生这种开拓生命、提升生命境界的智慧、勇气和能力。
古罗马哲学家塞涅卡说:“真正的人生,只有在经过艰难卓越的斗争之后才能实现。
”人的生命,也正是在不断进取、不断探索、不断自我挑战中得到开拓和提升,从而变得深沉而辽阔、厚实而隽永。
生命教育要鼓励学生拓展生命的维度。
生命有“四个维度”:一是生命是有温度的。
生命,是具体、多元、鲜活的,会有高低起伏、顺境逆境,要懂得用时间去疗伤,要学会用哲学、用人文艺术和时代精神去慰藉、去滋养。
二是生命是有宽度的。
河北省2020届高三下学期新时代NT教育模拟自测联考卷Ⅱ数学(文科)试题
2020 这 2020 个 整 数 中 能 被 3 除 余 2 且 被 5 除 余 2 的 数 按 从 小 到 大 的 顺 序 排 成 一 列 , 构
成 数 列 {犪n}, 那 么 此 数 列 的 项 数 为
A.133
B.134
C.135
D.136
9.某密封三棱柱三视 图 如 图 所 示, 若 将 内 部 注 入 水, 且 如 图 所 示
21.(本 小 题 满 分 12 分 ) 已知函数犳(狓)=犲犪狓狓 +12狓2-狓,其中犪>0. (1) 求 函 数 犳(狓)的 单 调 区 间 ; (2) 若犪>犲2 , 证 明 : 当 狓>0 时 ,犳(狓)>0.
请考生在第22、23二题中任 选 一 题 作 答, 如 果 多 做, 则 按 所 做 的 第 一 题 记 分. 解 答 时 请
8.我国古代数学家提出的 “中国剩余定 理” 又 称 “孙子定理”,它在世界数学史 上 具 有 光 辉的一页,堪称数学史上名垂百世的成就,而且一直启发和指引着历代数学家们.定 理涉及的是数的整除问题,其数学思想在近代数学、当代密码学研究及日常生活都有
着广泛应用,为世界数学的发展做出了巨大贡献,现有这样一个整除问题:将 1 到
位置放置 时, 液 面 高 度 为 2. 当 此 三 棱 柱 的 底 面 水 平 放 置 时,
液面的高为
A.1
B.2
C.3
D.43
烄犲狓 -4,狓≥0
10.已 知 函 数 犳(狓)=烅
, 则 函 数 犵(狓)=狓2犳(狓)的 大 致 图 象 是
烆犲-狓 -4,狓<0
A. B. C. D 11.过椭圆3狓62+2狔72 =1上一点 犘 分别向圆犆1:(狓+3)2+狔2=4 和 圆 犆2:(狓-3)2+狔2=1
_数学丨河北省邯郸市大名县一中2023届高三下学期月考数学试卷及答案
第1页共6页◎高三数学月考题一、单选题1.已知{21,N}P x x k x ==-∈∣,{}2log 2Q x x =≤∣,则P Q = ()A .{}113-,,B .{1,3}C .{0,2,4}D .{2,4}2.定义在R 上的偶函数()f x 满足:在[0,)x ∈+∞上单调递减,则满足()()211f x f -<的x 的取值范围是()A .()1,0-B .(1,)(,0)+∞⋃-∞C .(,0)-∞D .()0,13.函数2sin ()||2xf x x =+的部分图象大致为()A .B .C .D .4.(52x x +的展开式中,4x的系数是()A .10B .40C .60D .805.过抛物线24y x =的焦点F 且斜率为1的直线与该拋物线交于AB 两点,则线段AB 的中点到准线的距离为()A .3B .4C .5D .66.已知数列{}n a 满足11a =,1113n n a a +=+,设数列{}1n n a a +的前n 项和为n T ,若()33101k T k *>∈N ,则k 的最小值是()A .16B .17C .18D .19◎第2页共6页7.四面体ABCD 的四个顶点都在球O 的球面上,2AB AD CD ===,BD =,BD CD ⊥,平面ABD ⊥平面BCD ,则球O 的体积为()A.πBπC.πD .2π8.已知点M 是椭圆C :22143x y +=上异于顶点的动点,1F ,2F 分别为椭圆的左、右焦点,O 为坐标原点,E 为1MF 的中点,12F MF ∠的平分线与直线EO 交于点P ,则四边形12MF PF 的面积的最大值为()A .1B .2C .3D.二、多选题(多选漏选不得分)9.已知复数3i1iz +=-,则下列结论中正确的是()A .z 对应的点位于第二象限B .z 的虚部为2C.z =D .5zz =10.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列说法正确的是()A .若//m α,//n α,则//m nB .若//m α,//m β,则//αβC .若m α⊥,n α⊥,则//m nD .若m α⊥,m β⊥,则//αβ11.下列说法正确的是()A .若随机变量()21,N ξσ ,(5)0.75P ξ<=,则()30.25P ξ≤-=B .若随机变量19,3X B ⎛⎫~ ⎪⎝⎭,则()215D X +=C .以模型e kx y c =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.51z x =+,则c ,k 的值分别是e ,0.5D .从10名男生,5名女生中随机选取4人,则其中至少有一名女生的概率为13514415C C C 12.古希腊数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A ,B 的距离之比为定值m (m ≠1)的点的轨迹是圆”.后来,人们将这个圆以他的名字命名为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系xOy 中,()()2,0,4,0A B -,点P 满12PA PB=.设点P 的轨迹为C ,则下第3页共6页◎列结论正确的是()A .C 的方程为22(4)12x y ++=B .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线C .在C 上存在K 使得2KO KA=D .在x 轴上存在异于A ,B 的两个定点D ,E ,使得12PD PE=三、填空题13.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =______.14.已知O 的半径为2,点,,A B C 为该圆上的三点,且2AB =,0BA BC ⋅>uur uuu r,则()OC BO BA ⋅+ 的取值范围是______.15.在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,ABC ∆的面积为S ,()22tan 8a b C S +=,则222sin sin sin A BC+=__________.16.已知函数()e ,01ln ,1x x x f x x x x ⎧<<=⎨≥⎩的图像与直线1l :21sin y α=交于点()11,A x y ,()22,B x y ,其中12x x <,与直线2l :212cos y α=交于两点()33,C x y 、()44,D x y ,其中34x x <,则1234x x x x +的最小值为__________.四、解答题17.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2cos cos cos b A c A a C =+.(1)求A ;(2)若4a =,求ABC 面积的最大值.18.已知数列{}n a 的首项12a =,且*121()n n a a n N +=+∈.(1)求证:数列{}1n a -是等比数列;(2)设2log (1)n n b a =-,求使不等式1245n b b b +++<- 成立的最小正整数n.◎第4页共6页19.如图所示,四棱锥P ABCD -的底面ABCD 是矩形,PB ⊥底面ABCD ,3AB BC ==,3BP =,13CF CP =,13DE DA =.(1)证明:EF P 平面ABP ;(2)求直线PC 与平面ADF 所成角的正弦值.20.抖音(TikTok )是由今日头条推出的一款短视频分享APP ,于2016年9月上线,是一个专注于年轻人音乐短视频创作分享的社区平台.抖音的出现是一把双刃剑,可以鼓励人们表达、沟通和记录,让每一个人看见并连接更大的世界,但同时也出现部分网民长时间沉迷刷抖音的现象,长时间刷抖音会影响用眼健康.为了解网民刷抖音的情况,某研究小组从抖音用户中随机抽取100人,对其平均每天刷抖普的时长进行统计,得到统计表如下:平均每天刷抖音的时长不大于1小时大于1小时且小于3小时不少于3小时人数(男)20256人数(女)201514该研究小组按照用户平均每天刷抖音时长将沉迷刷抖音程度分为重度、中度、轻度、若某人平均每天刷抖音的时长不少于3小时则称为“重度沉迷”;平均每天刷抖音的时长大于1小时且小于3小时,叫称为“中度沉迷”;平均每天刷抖音的时长不大于1小时,则称为“轻度沉迷”.(1)根据调查数据,填写下面列联表,并根据数据判断是否有95%的把握认为性别与是否为“重度沉迷”刷抖音有关系?第5页共6页◎非“重度沉迷”“重度沉迷”合计人数(男)人数(女)合计(2)该研究小组为鼓励用户适度刷抖音,从这100名研究对象中按分层抽样的方式随机抽取20位,分别给与“重度沉迷”“中度沉迷”和“轻度沉迷”的抖音用户50元、100元、150元的购书券奖励.现从这20位抖音用户中随机抽取两人,求这两人所获得购书券总和X 的分布列和期望.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.150.100.050.0250.0100.0010k 2.0722.7063.8415.0246.63510.82821.(本题12分)点(4,3)P 在双曲线2222:1(0,0)x y C a b a b -=>>上,离心率e =(1)求双曲线C 的方程;(2),A B 是双曲线C 上的两个动点(异于点P ),12,k k 分别表示直线,PA PB 的斜率,满足1232k k =,求证:直线AB 恒过一个定点,并求出该定点的坐标.22.已知()ln 2xf x x x =-.(1)讨论()f x 的单调性;(2)设1x 、2x 为两个不相等的正数,且()()12f x f x =,其中12x x <.“以直代曲”是微积分的基本思想和重要方法.请你在①、②两种方法中选择一种(也可以同时选择①②)来证明:212e x x +<.①用直线2xy =代替曲线()y f x =在()0,e 之间的部分;②用曲线()y f x =在2e x =处的切线代替其在()2e,e之间的部分.参考答案:1.B2.B3.B4.D5.B6.B【分析】根据等差数列定义和通项公式可推导得到n a ,由此可得1n n a a +,利用裂项相消法可求得n T ,由33101k T >可构造不等式求得k 的范围,进而得到最小值.【详解】1113n na a +=+ ,111a =,∴数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,3为公差的等差数列,()113132n n n a ∴=+-=-,则132n a n =-,()()11111323133231n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,11111111111344771035323231n T n n n n ⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪---+⎝⎭11133131⎛⎫=-= ⎪++⎝⎭n n n ,由33101k T >得:3331101k k >+,解得:332k >,又k *∈N ,min 17k ∴=.故选:B.7.C【分析】根据勾股定理和面面垂直的性质定理得到球心位于BC 中点,再求出半径,利用球的体积公式得到答案.【详解】 四面体ABCD 的顶点都在的球O 的球面上,且2,AB AD CD BD ====BD CD ⊥,222AB AD BD ∴+=,BC = 平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,CD ⊂平面BCD ,CD \^平面ABD ,又AD ⊂ 平面ABD ,CD AD ∴⊥,AC ∴===(2212BC ==,(2222212AB AC +=+=,222AB AC BC ∴+=,AC AB ∴⊥,取BC 中点O ,则1122OA OB OC OD BC =====⋅∴球O 的体积343V π=⋅=.故选:C.8.B【分析】由题,结合角平分线性质与椭圆的性质,()1212122MF PF S MF MF h h =+=,h 为P 到2MF 的距离,又OE 是12F MF △的中位线,故12212sin h F F MF F =⋅∠,结合余弦定理,设2MF t =,即可表示出12MF PF S ,即可讨论最值【详解】由图,224,3a b ==,1c ==,故122F F =,124MF MF +=,又MP 平分12F MF ∠,则P 到1MF 、2MF 的距离相等,设为h ,则()1212122MF PF S MF MF h h =+=设2MF t =,则14MF t =-,()22221243cos 24t t MF F t t +--∠==-,由OE 是12F MF △的中位线,易得12212sin h F F MF F =⋅∠=即12MF PF S =,由椭圆性质易知,存在点M 为椭圆C 上异于顶点的动点,使32t =,此时12MF PF S 最大,且为2故选:B9.CD10.CD11.AC【分析】四个选项分别利用正态曲线的性质,二项分布方差的有关性质,非线性回归方程线性化的方法,考虑对立事件即可求概率,即可判断正误.【详解】随机变量()21,N ξσ ,正态曲线关于1x =对称,则()()35P P ξξ≤-=≥,()51(5)10.750.25P P ξξ≥=-<=-=,即()30.25P ξ≤-=,故A 正确;随机变量19,3X B ⎛⎫⎪⎝⎭,则()()11191233D X np p ⎛⎫=-=⨯⨯-= ⎪⎝⎭,故()()2148D X D X +==,故B 错误;∵e kx y c =,∴两边取对数得()ln ln e ln kxy c c kx ==+,令ln z y =,可得ln z c kx =+,∵0.51z x =+,∴ln 1c =,0.5k =,∴e c =,故C 正确;从10名男生,5名女生中随机选取4人,则其中至少有一名女生的对立事件为选取的4人中没有一名女生,其概率为541041C C ,则其中至少有一名女生的概率为41541310514415C C C 1C C -≠,故D 不正确;故选:AC .12.BD【分析】设点(),P x y ,根据题意可求出C 的方程可判断A ,根据三角形内角平分线的性质可判断B ,求出点K 的轨迹方程与C 的方程联立可判断C ,设,D E .的坐标结合C 的方程可判断D.【详解】设点(),P x y ,则由12PAPB =12=,化简可得()22416x y ++=,故A 错误;当A ,B ,P 三点不共线时,因为12PA PB=,2,4OA OB ==,所以12OA OB=,所以PA OA PB OB=,射线PO 是APB ∠的平分线,故B 正确;设存在()00,K x y ,则()2200416x y ++=,即2200080x x y ++=,因为2KO KA ==所以()2222000042x y x y ⎡⎤+=++⎣⎦,所以220001616033x x y +++=,又因为2200080x x y ++=,所以02x =,又因为02x =不满足()22:416C x y ++=,所以不存在K 满足条件,故C 错误;假设x 轴上存在异于,A B 的两定点,D E ,使得12PD PE=,可设(,0),(,0)D m E n =,由P 的轨迹方程为2280x y x ++=,可得228224,40m n m n -=--=,解得6,12m n =-=-或2,4m n =-=(舍去),即存在(6,0),(12,0)D E --,故D 正确.故选:BD.【点睛】本题考查阿波罗尼斯圆的定义及应用,属于新定义问题;证明角平分线除了可以通过线段的长度比来证明,还可以通过点到线段两边的距离相等来证明;和圆有关的线段长度问题,可以利用坐标法来解决问题.13.15214.(6,-【分析】先以OA 所在直线为x 轴,建立平面直角坐标系,得到(2,0)A ,B ,()2cos ,2sin C θθ,[)0,2θ∈π,根据向量数量积的坐标表示,得到()0,,23πθππ⎡⎫∈⋃⎪⎢⎣⎭,进而可得出结果.【详解】建立如图所示的平面直角坐标系,则(2,0)A ,B ,()2cos ,2sin C θθ,[)0,2θ∈π,又0BA BC ⋅>uu r uu u rcos 1θθ-<,即1sin 62πθ⎛⎫-< ⎪⎝⎭,所以()0,,23πθππ⎡⎫∈⋃⎪⎢⎣⎭,又(0,BO BA +=-,所以()(6,OC BO BA ⋅+∈- .故答案为:(6,-.【点睛】本题主要考查求平面向量数量积的取值范围,可用建系的方法处理,属于常考题型.15.【答案】2【解析】由题意可知()22sin 18sin cos 2C a b ab C C ⎛⎫⎛⎫+=⨯ ⎪ ⎪⎝⎭⎝⎭,()224cos a b ab C +=,由余弦定理:222cos 2a b c C ab +-=,可得2222a b c +=,又由正弦定理可得222222sin sin 2sin a b A Bc C++=。
河北省邯郸市2024届高三下学期学业水平选择性模拟考试 数学试题(含解析)
2024年普通高中学业水平选择性模拟考试数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}124340,A x x x B x y x ⎧⎫⎪⎪=--≤==⎨⎬⎪⎪⎩⎭,则A B = ()A .(]0,1B .[]0,4C .(]0,4D .[]0,12.已知复数z 满足21z =-,则22z z +=()A .1BC .3D3.已知,αβ是两个平面,,m n 是两条直线,且,,m n αβαβ⊥⊂⊂,则“m n ⊥”是“m β⊥”的()A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件4.设函数()12f x x x =++的图像与x 轴相交于点P ,则该曲线在点P 处的切线方程为()A .y x=-B .=1y x --C .0y =D .1y x =-5.由动点P 向圆22:(2)(3)1M x y +++=引两条切线,PA PB ,切点分别为,A B ,若四边形APBM 为正方形,则动点P 的轨迹方程为()A .22(2)(3)4x y +++=B .22(2)(3)2x y +++=C .22(2)(3)4-+-=x y D .22(2)(3)2x y -+-=6.某班联欢会原定5个节目,已排成节目单,开演前又增加了2个节目,现将这2个新节目插入节目单中,要求新节目既不排在第一位,也不排在最后一位,那么不同的插法种数为()A .12B .18C .20D .60.7.已知O 为坐标原点,12,F F 分别是双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点,P 是双曲线C 上一点,若直线1PF 和OP 的倾斜角分别为α和2α,且3tan 4α=,则双曲线C 的离心率为()AB .5C .2D .758.对任意两个非零的平面向量a 和b ,定义:22a b a b a b⋅⊕=+,2a b a b b ⋅= .若平面向量,a b满足0a b >> ,且a b ⊕ 和a b 都在集合|Z,044n n n ⎧⎫∈<≤⎨⎬⎩⎭中,则a b a b ⊕+= ()A .1B .32C .1或74D .1或54二、选择题:本题共3小题,钓小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()sin (0,0,0π)f x M x M ωϕωϕ=+>><<的部分图像如图所示,A ,B 为()f x 的图像与x 轴的交点,C 为()f x 图像上的最高点,ABC 是边长为1的等边三角形,2OB OA =,则()A .()02f =B .直线136x =是()f x 图像的一条对称轴C .()f x 的单调递减区间为()172,2Z 66k k k ⎛⎫++∈ ⎪⎝⎭D .()f x 的单调递增区间为()512π,2πZ 66k k k ⎛⎫-++∈ ⎪⎝⎭10.设拋物线2:2(0)E x py p =>的焦点为F ,过点()0,3P 的直线与抛物线E 相交于点,A B ,与x 轴相交于点,2,10C AF BF ==,则()A .E 的准线方程为=2y -B .p 的值为2C .AB =D .BFC △的面积与AFC △的面积之比为911.已知函数()f x 的定义域为R ,其导函数为()f x ',若函数()23f x -的图象关于点()2,1对称,()()224f x f x x +--=,且()00f =,则()A .()f x 的图像关于点()1,1对称B .()()4f x f x +=C .()10262f '=D .501()2499i f i ==∑三、填空题:本题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.12.已知0b >,函数()42bxxa f x +=是奇函数,则=a ,b =.13.正五角星是一个非常优美的几何图形,其与黄金分割有着密切的联系,在如图所示的五角星中,以,,,,A B C D E 为顶点的多边形为正边边形,设CAD α∠=,则cos cos2cos3cos4αααα+++=,cos cos2cos3cos4αααα=.14.在长方体1111ABCD A B C D -中,15,3,4AB AD AA ===,平面//α平面11A ABB ,则α截四面体11ACD B 所得截面面积的最大值为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图,四棱锥P ABCD -的底面是正方形,设平面PAD 与平面PBC 相交于直线l .(1)证明://l AD .(2)若平面PAB ⊥平面,5,2ABCD PA PB AB ===,求直线PC 与平面PAD 所成角的正弦值.16.已知正项数列{}n a 的前n 项和为n S ,23a =11n n S S S +=(1)求{}n a 的通项公式;(2)若14nn n n S b a a +=,求数列{}n b 的前n 项和n T .17.假设某同学每次投篮命中的概率均为12.(1)若该同学投篮4次,求恰好投中2次的概率.(2)该同学参加投篮训练,训练计划如下:先投(),33n n n +∈≤N 个球,若这n 个球都投进,则训练结束,否则额外再投1003n -个.试问n 为何值时,该同学投篮次数的期望值最大?18.已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()32,0,1,2M N ⎛⎫⎪⎝⎭两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.19.已知函数()()e ,ln xf x mxg x x m x =-=-.(1)是否存在实数m ,使得()f x 和()g x 在()0,∞+上的单调区间相同?若存在,求出m 的取值范围;若不存在,请说明理由.(2)已知12,x x 是()f x 的零点,23,x x 是()g x 的零点.①证明:e m >,②证明:31231e x x x <<.1.B【分析】先化简两个集合,再利用交集运算可得答案.【详解】由2340x x --≤得14x -≤≤,即{}14A x x =-≤≤,{}0B x x =≥,所以[]0,4A B = .故选:B 2.D【分析】设i(,R)z a b a b =+∈,根据条件得到0,1a b ==±,再利用模长的计算公式,即可求出结果.【详解】令i(,R)z a b a b =+∈,则2222i 1z a ab b =+-=-,所以22120a b ab ⎧-=-⎨=⎩,解得0,1a b ==±,所以i z =±,故2212i z z +=-±故选:D.3.A【分析】根据充分条件、必要条件的定义及线面垂直的性质可得结果.【详解】用平面ADFE 代表平面α,平面ABCD 代表平面β,当m n ⊥如图所示时显然m 与平面β不垂直,反之,当m β⊥时,又n β⊂,根据线面垂直的性质有m n ⊥,所以“m n ⊥”是“m β⊥”的必要不充分条件,故选:A.4.C【分析】令()0f x =可计算出切点坐标,结合导数的几何意义可得切线斜率,即可得解.【详解】令102x x +=+,即()210x x ++=,即()210x +=,解得=1x -,故()1,0P -,()()2112f x x '=-+,则()()2011112f '-=-=-+,则其切线方程为:()()()111f x y f ='--+,即0y =.故选:C.5.B【分析】根据正方形可得动点P 的轨迹是以M .【详解】因为四边形APBM 为正方形,且1MA MB ==,所以M P =,故动点P 的轨迹是以M 22(2)(3)2x y +++=.故选:B6.C【分析】根据题意,分为当新节目插在中间的四个空隙中的一个和新节目插在中间的四个空隙中的两个,结合排列数与组合数的计算,即可求解.【详解】根据题意,可分为两类:①当新节目插在中间的四个空隙中的一个时,有1242C A 428=⨯=种方法;②当新节目插在中间的四个空隙中的两个时,有24A 4312=⨯=种方法,由分类计数原理得,共有81220+=种不同的差法.故选:C.7.B【分析】由已知计算可得所以直线1PF 的斜率为3tan 4α=,直线OP 的斜率为247,设(,)P x y ,由324,47y y x c x ==+,解得724,2525c cx y ==,代入双曲线方程计算即可求得结果.【详解】由题意得22322tan 4tan 21tan 314a αα⨯==-⎛⎫- ⎪⎝⎭247=,所以直线1PF 的斜率为3tan 4α=,直线OP 的斜率为247,设(,)P x y ,则有324,47y y x c x ==+,解得724,2525c cx y ==,代入双曲线方程,得222272425251c c a b ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=,又222b c a =-,所以()()222222227242525c c c a a a c a ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭,化简可得:2422472025c a c a ⎛⎫-+= ⎪⎝⎭,c e a =,所以242721025e e ⎛⎫-+= ⎪⎝⎭,解得5e =或57e =(1e >,舍).故选:B 8.D【分析】根据0a b >> ,得到222a b a b +>,再利用题设中的定义及向量夹角的范围,得到12a b ⊕< ,12a b > ,再结合条件,即可求出结果.【详解】因为113|Z,04,,,14424n n n ⎧⎫⎧⎫∈<≤=⎨⎬⎨⎬⎩⎭⎩⎭,设向量a 和b 的夹角为θ,因为0a b >> ,所以222a b a b +>,得到2222cos cos cos =22a b a b a b a b a b a b a bθθθ⋅⊕==<⋅++,又[]0,πθ∈,所以cos 122θ≤,又a b ⊕ 在集合|Z,044n n n ⎧⎫∈<≤⎨⎬⎩⎭中,所以cos 124θ>,即1cos 2θ>,得到14a b ⊕= ,又因为22cos 1cos cos 2a b a a b a b b b b θθθ⋅⋅===>>,所以34a b = 或1,所以1a b a b ⊕+= 或54,故选:D.9.BC【分析】由图可得()ππ3f x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的图象与性质分析各个选项即可.【详解】对于A ,由图可得:()f x 的最小正周期为2,所以2π2ω=,即πω=,易得2M =,所以()()π2f x x ϕ=+,因为2OB OA =,所以1,03A ⎛⎫- ⎪⎝⎭,2,03B ⎛⎫⎪⎝⎭,1,62C ⎛⎫ ⎪ ⎪⎝⎭,由五点作图法可得:ππ62ϕ+=,即π3ϕ=,所以()ππ3f x x ⎛⎫=+ ⎪⎝⎭,所以()304f =,故A 不正确;对于B ,由于1313π()π+)62632f ==,为最大值,所以直线136x =是()f x 图象的一条对称轴,故B 正确;对于C ,令ππ3π2π+π2π+232k x k ≤+≤()k ∈Z ,解得;()Z 172266k x k k +≤≤+∈,所以单调递减区间为()172,2Z 66k k k ⎛⎫++∈ ⎪⎝⎭,故C 正确;对于D ,令πππ2ππ2π+232k x k -≤+≤()k ∈Z ,解得;()5122Z 66k x k k -+≤≤+∈,所以()f x 的单调递增区间为()512,2Z 66k k k ⎛⎫-++∈ ⎪⎝⎭,故D 不正确,故选:BC ,10.BD【分析】设直线AB 的方程为3y kx =+,()()1122,,,A x y B x y ,利用根与系数的关系及抛物线的性质进行计算,从而判定各选项.【详解】设直线AB 的方程为3y kx =+,()()1122,,,A x y B x y ,联立232y kx x py=+⎧⎨=⎩,可得2260x pkx p -=-,所以122x x pk +=,126x x p =-,因为22x py =,所以22x y p =,故22212122236944x x p y y p p ===,因为2,10AF BF ==,由抛物线定义可得,122p y =-,2102py =-,则210922p p ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,解得2p =或22p =,因为1202py =->,所以2p =,则E 的准线方程为=1y -,故B 正确,A 错误;又E 的方程为24x y =,1212p y =-=,21092py =-=,把11y =代入24x y =可得21144x y ==,222436x y ==,不妨设()()2,1,6,9A B -,则AB =C 错误;设F 到直线AB 的距离为d ,BFC △的面积12BFC S BC d =,AFC △的面积12AFC S AC d = ,则BFC △的面积与AFC △的面积之比219BFC AFC BC S yS AC y === ,故D 正确.故选:BD.11.ACD【分析】根据函数的图象变换及其对称性,可得判定A 正确;结合()()22f x f x +-=和()()224f x f x x +--=,化简得到()()48f x f x =+-,可判定B 不正确;令()()2g x f x x =-,得到()()4g x g x =+,得到函数()g x 和()g x '是以4为周期的周期函数,结合()()()1026222g g f '=''=-,可判定C 正确;结合()()11,22f f ==,()35f =,()48f =,得到()()()()12344g g g g +++=-,结合()()2g x f x x =-是以4为周期的周期函数,进而求得501()i f i =∑的值,即可求解.【详解】对于A 中,设函数()y f x =的图象关于(,)a b 对称,则()3y f x =-关于(3,)a b +对称,可得()23y f x =-关于3(,)2a b +对称,因为函数()23f x -的图像关于点()2,1对称,可得32,12a b +==,解得1,1a b ==,所以函数()y f x =的图象关于(1,1)对称,所以A 正确;对于B 中,由函数()y f x =的图象关于(1,1)对称,可得()()22f x f x +-=,因为()()224f x f x x +--=,可得()()242f x f x x ++=+,则()()244(2)2410f x f x x x +++=++=+,两式相减得()()48f x f x -+=-,即()()48f x f x =+-,所以B 不正确;对于C 中,令()()2g x f x x =-,可得()()()442(4)428g x f x x f x x +=+-+=+--,因为()()48f x f x =+-,所以()()4g x g x =+,所以函数()g x 是以4为周期的周期函数,由()()2g x f x x =-,可得()()2g x f x ''=-,所以()()102610262g f ''=-,因为函数()g x 是以4为周期的周期函数,则()g x '是以4为周期的周期函数,所以()()()1026222g g f '=''=-,由()()224f x f x x +--=,可得()()212(1)4f x f x +⨯--⨯-'=',即()()224f x f x ''++-=,令0x =,可得()()224f f ''+=,所以()22f '=,所以()20g '=,所以()1026(1026)2(2)22f f f '''=+=+=,所以C 正确;对于D 中,因为()00f =,且函数()f x 关于(1,1)对称,可得()()11,22f f ==,又因为()()224f x f x x +--=,令1x =,可得()()314f f -=,所以()35f =,再令2x =,可得()()408f f -=,所以()48f =,由()()2g x f x x =-,可得()()()()11,22,31,40g g g g =-=-=-=,可得()()()()12344g g g g +++=-又由函数()()2g x f x x =-是以4为周期的周期函数,且()()2f x g x x =+,所以()()()()()()501()125012502(1250)i f i f f f g g g ==+++=+++++++∑ ()()()()()()121234122(1250)g g g g g g ⎡⎤=⋅+++++++++⎣⎦ 50(150)12(4)12242299+=⨯--+⨯=-,所以D 正确.故选:ACD.【点睛】知识结论拓展:有关函数图象的对称性的有关结论(1)对于函数()y f x =,若其图象关于直线x a =对称(0a =时,()f x 为偶函数),则①()()f a x f a x +=-;②()()2f a x f x +=-;③()()2f a x f x -=.(2)对于函数()y f x =,若其图象关于点(),0a 对称(0a =时,()f x 为奇函数),则①()()f a x f a x +=--;②()()2f a x f x +=--;③()()2f a x f x -=-.(3)对于函数()y f x =,若其图象关于点(),a b 对称,则①()()2f a x f a x b ++-=;②()()22f a x f x b ++-=;③()()22f a x f x b -+=.12.1-1【分析】根据题意,由奇函数的性质和定义,利用特殊值法求出a 、b 的值,验证可得答案.【详解】根据题意,函数()42bxxa f x +=是奇函数,其定义域为R ,则有(0)0f =,(1)(1)f f -=-,即0114024422b b a a a --⎧+=⎪⎪⎨++⎪=-⎪⎩,解得11a b =-⎧⎨=⎩,当1a =-,1b =时,()14222xx x x f x --+-==,其定义域为R ,且()22()x x f x f x --=-=-,即()f x 为奇函数,故1a =-,1b =;故答案为:1-;113.0116##0.0625【分析】由正五角星的性质,求得36CAD α∠== ,进而根据诱导公式及二倍角公式计算即可.【详解】正五角星可分割成5个3角形和1个正五边形,五个3角形各自角度之和180正五边形的内角和()180521803540⨯-=⨯= ;每个角为5401085= ,三角形是等腰三角形,底角是五边形的外角,即底角为18010872-=o o o ,三角形内角和为180 ,那么三角形顶角,即五角星尖角18072236-⨯= ,即36CAD α∠== .cos cos2cos3cos4cos36cos72cos108cos144αααα+++=+++()()cos36cos72cos 18072cos 18036=++-+-cos36cos72cos72cos360=+--= ;()2cos cos2cos3cos4cos36cos72cos108cos144cos36cos72αααα==因为cos 36cos 72︒︒⋅2sin 36cos36cos72sin 72cos72sin14412sin 362sin 364sin 364︒︒︒︒︒︒︒︒︒⋅⋅⋅====,所以1cos cos2cos3cos416αααα=.故答案为:0;116.14.10【分析】结合题意画出对应图形后,设111B T B C λ=,则有TR TM VN VS TW TU VU VWλ====,则有22NVS SWR NSRM UVWT S S S S =-- 平行四边形平行四边形,借助λ表示出面积,结合二次函数的性质即可得.【详解】平面α截四面体11ACD B 的截面如图所示,设111B T B C λ=,则TR TM VN VS TW TU VU VWλ====,所以四边形NSRM 为平行四边形,且//,//MR UW MN TV ,在矩形UVWT 中,()4,5,5,51UV VW TM MU λλ====-,()4,41TR RW λλ==-,则22NVS SWRNSRM UVWT S S S S =-- 平行四边形平行四边形()2221112020120202202010222λλλ⎡⎤⎛⎫⎡⎤=-+-=--+≤-⨯=⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦,当且仅当12λ=时,等号成立.故答案为:10.【点睛】关键点点睛:本题关键点是得到所得截面后,借助割补法表示出该截面面积,并结合二次函数的性质求解.15.(1)证明见解析;(2)4515【分析】(1)利用线面平行的判定定理和性质定理即可证明;(2)利用面面平行的性质确定PO ⊥平面ABCD ,建立直角坐标系,利用坐标法结合线面角公式即可求解.【详解】(1)因为四棱锥P ABCD -的底面是正方形,所以//BC AD ,又BC ⊂平面PBC ,AD ⊄平面PBC ,所以//AD 平面PBC ,因为AD ⊂平面PAD ,平面PBC ⋂平面PAD l =,所以//l AD ;(2)因为PA PB =,取AB 的中点O ,连接PO ,则PO AB ⊥,因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,则PO ⊥平面ABCD ,所以以O 坐标原点建立如图坐标系,因为5,2PA PB AB ===,ABCD 是正方形,所以2PO =,则()0,0,2P ,()1,0,0A ,()1,2,0C -,()1,2,0D ,()1,0,2AP =- ,()0,2,0AD = ,()1,2,2PC =-- ,设平面PAD 的法向量为(),,n x y z = ,则20n AP x z ⋅=-+= ,20n AD y ⋅== ,取2x =,0y =,1z =,即()2,0,1n = ,设直线PC 与平面PAD 所成角为θ,则sin cos ,15PC n PC n PC nθ⋅=== ,所以直线PC 与平面PAD16.(1)21n a n =-(2)21n nT n n =++【分析】(1)首先求出11a =,可证明数列为首项为1,公差为1的等差数列,得到2n S n =,利用1n n n a S S -=-得到{}n a 的通项公式;(2)由(1)知,2144(21)(21)n n n n S n b a a n n +==-+,化简可得111122121n b n n ⎛⎫=+- ⎪-+⎝⎭,利用分组求和以及裂项相消即可求出数列{}n b 的前n 项和n T .【详解】(1)当1n ==11a =,1==,则数列为首项为1,公差为1的等差数列;n =,则2n S n =,当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,12111a =⨯-=满足条件,所以{}n a 的通项公式为21n a n =-(*)n ∈N (2)由(1)知,2144(21)(21)n n n n S n b a a n n +==-+,所以2224111111114141(21)(21)22121n n b n n n n n n ⎛⎫==+=+=+- ⎪---+-+⎝⎭,故11111111112335212122121n n T n n n n n n n ⎛⎫⎛⎫=+-+-++-=+-=+ ⎪ ⎪-+++⎝⎭⎝⎭ ,即21n n T n n =++17.(1)38;(2)5n =.【分析】(1)根据给定条件,利用独立重复试验的概率公式计算即得.(2)该同学投篮的次数为X ,求出X 的可能值及对应的概率,求出期望的函数关系,作差结合数列单调性推理即得.【详解】(1)依题意,该同学投篮4次,恰好投中2次的概率2224113C ()(1)228p =-=.(2)设该同学投篮的次数为X ,则X 的可能值为,10031002n n n n +-=-,,33n n +∈≤N ,于是11(),(1002)122n nP X n P X n ===-=-,数学期望113100()(1002)(12100222n n n n E X n n n -=⋅+-⋅-=-+,令3100()2100,2n n f n n n +-=-+∈N ,则1397(1)2982n n f n n +-+=-+,2110332(1)()2n n n f n f n ++--+-=,显然数列2{10332}n n +--是递减的,当4n ≤时,2103320n n +-->,(1)()f n f n +>,当5n ≥时,2103320n n +--<,(1)()f n f n +<,即有(1)(2)(3)(4)(5)(6)(7)f f f f f f f <<<<>>> ,因此(5)f 最大,所以当5n =时,该同学投篮次数的期望值最大.18.(1)2214x y +=(2)存在,3个【分析】(1)设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,根据条件得到41314m m n =⎧⎪⎨+=⎪⎩,即可求出结果;(2)设直线DA 为1y kx =+,直线DB 为11y x k=-+,当1k =时,由椭圆的对称性知满足题意;当21k ≠时,联立直线与椭圆方程,求出,A B 的坐标,进而求出AB 中垂线方程,根据条件中垂线直经过点(0,1)D ,从而将问题转化成方程42710k k -+=解的个数,即可解决问题.【详解】(1)由题设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,因为椭圆过()2,0,1,2M N ⎛⎫ ⎪ ⎪⎝⎭两点,所以41314m m n =⎧⎪⎨+=⎪⎩,得到1,14m n ==,所以椭圆C 的方程为2214x y +=.(2)由(1)知(0,1)D ,易知直线,DA DB 的斜率均存在且不为0,不妨设(0)DA k k k =>,1DB k k =-,直线DA 为1y kx =+,直线DB 为11y x k=-+,由椭圆的对称性知,当1k =时,显然有DA DB =,满足题意,当21k ≠时,由22114y kx x y =+⎧⎪⎨+=⎪⎩,消y 得到221()204k x kx ++=,所以2814A k x k =-+,222281411414A k k y k k -=-+=++,即222814(,)1414k k A k k --++,同理可得22284(,)44k k B k k -++,所以()2222222222222414(4)14(4)(14)1414888(144)5414AB k k k k k k k k k k k k k k k k k k ----+-+--++===++++++,设AB 中点坐标为00(,)x y ,则2220228812(1)1442(4)(14)k k k k k k x k k -+-++==++,22222022144151442(4)(14)k k k k k y k k --+-++==++,所以AB 中垂线方程为222222215512(1)()(4)(14)1(4)(14)k k k k y x k k k k k -+=--++-++,要使ADB 为AB 为底边的等腰直角三角形,则直AB 中垂线方程过点(0,1),所以222222215512(1)1(0)(4)(14)1(4)(14)k k k k k k k k k -+=--++-++,整理得到42710k k -+=,令2t k =,则2710t t -+=,4940∆=->,所以t 有两根12,t t ,且121270,10t t t t +=>=>,即2710t t -+=有两个正根,故有2个不同的2k 值,满足42710k k -+=,所以由椭圆的对称性知,当21k ≠时,还存在2个符合题意的三角形,综上所述,存在以D 为顶点,AB 为底边的等腰直角三角形,满足条件的三角形的个数有3个.【点睛】关键点点晴:本题的关键在于第(2)问,通过设出直线DA 为1y kx =+,直线DB 为11y x k=-+,联立椭圆方程求出,A B 坐标,进而求出直线AB 的中垂线方程,将问题转化成直线AB 的中垂线经过点(0,1)D ,再转化成关于k 的方程的解的问题.19.(1)存在,且(],0m ∈-∞(2)①证明见解析②证明见解析【分析】(1)结合导数与函数单调性的关系,分0m ≤与0m >进行讨论即可得;(2)①利用导数得到()f x 的单调性后,借助零点的存在性定理可得()ln ln 0f m m m m =-<,解出即可得;②构造函数()()e (0),(1)ln x x m x x n x x x x=>=>,结合导数得到函数的单调性,画出相应图象,可得从而得到12ln x x =,23e x x =,从而可得31232x x x x =,结合2x 的范围即可得解.【详解】(1)由题意得()()()0,,e ,1x m x m x f x m g x x x∞-∈+=-=-='',当0m ≤时,()()0,0f x g x ''≥≥,所以()f x 和()g x 在()0,∞+上都单调递增,符合题意;当0m >时,若()f x 和()g x 在()0,∞+上的单调区间相同,则()f x 和()g x 有相同的极值点,即ln m m =,令()ln h m m m =-,则()111m h m m m-=-=',当()0,1m ∈时,()0h m '>,当()1,m ∞∈+时,()0h m '<,所以()h m 在()0,1上单调递增,在()1,∞+上单调递减,则()()11h m h ≤=-,所以ln m m =无解,综上,当(],0m ∞∈-时,()f x 和()g x 在()0,∞+上的单调区间相同;(2)①由题意,()f x 有两个零点,()e x f x m '=-,若0m ≤,则()0f x '≥,所以()f x 在R 上单调递增,不符合题意,若0m >,则当(),ln x m ∞∈-时,()()0,f x f x '<单调递减,当()ln ,x m ∞∈+时,()()0,f x f x '>单调递增,且当x →-∞时,()f x ∞→-,当x →+∞时,()f x ∞→+,所以()ln ln 0f m m m m =-<,解得e m >,得证;②令()()0,0f x g x ==,得e ,ln xmx x m x ==,即e 0,0ln x x m m x x =>=>,令()()e (0),(1)ln x x m x x n x x x x=>=>,则()()()22e 1ln 1,(ln )x x x m x n x x x ''--==,当()0,1x ∈时,()()0,m x m x '<单调递减,当()1,x ∞∈+时,()()0,m x m x '>单调递增,当()1,e x ∈时,()()0,n x n x '<单调递减,当()e,x ∞∈+时,()()0,n x n x '>单调递增,在同一坐标平面内作出函数()e (0)x m x x x=>与函数()ln x n x x =(1)x >的图象,它们有公共点()22,A x y,如图,故12301e x x x <<<<<,且有12321223e e ln ln x x x x x x x x ===,由1212e ln x x x x =,得12ln 12e e ln x x x x =,即()()12ln m x m x =,又20ln 1x <<,所以12ln x x =,由2323e ln x x x x =,得2233e lne ln x x x x =,即()()23e x n n x =,又2e e x >,所以23e x x =,由2222e ln x x x x =,得222231e ln x x x x x =⋅=,即2132x x x =,故()3312321,e x x x x =∈.【点睛】关键点点睛:本题最后一问关键点在于构造函数()()e (0),(1)ln x x m x x n x x x x=>=>,结合导数得到函数的单调性,从而得到31232x x x x =.。
河北省邯郸市2015届高三上学期摸底考试数学文试题 扫描版含答案
邯郸市2015届高三摸底考试文科数学答案一、选择题1-5 CDBAC 6-10 BCBBD 11-12 AD 二、填空题13.π 14. 15. ⎥⎦⎤⎢⎣⎡3,1623 16.②④三、解答题17. 解:(1)设公比为q ,由题意:q>1, 11=a ,则2a q =,23a q =,∵1223+=s s,∴1)(221321++=++a a a a a ,……………2分则1)1(212++=++q q q 解得:2=q 或1-=q (舍去),……………4分∴12n n a -=……………5分(2)121212n n n b n a n -=-+=-+……………7分 则()[]()12......21112.....31-++++-+++=n n n T10分18. 解(1)在三角形ABC中B ac S sin 21=,由已知B ac S cos 23=可得B ac B ac cos 23sin 21=∴=∴为三角形内角,B 3tan B 0﹤B ﹤π∴3B π=-------------6分(2)4cos 2222=+=+=+acBac b ac c a c a a c ac b B 332=∴=π 由正弦定理可得 C A B sin sin 3sin 2= 41sin sin 3=∴=C A B π--------------12分 19.解:(1)设常喝碳酸饮料肥胖的学生有x 人,34,6x x +==------------- 3分(2)由已知数据可求得:2230(61824)8.5227.8791020822K ⨯-⨯=≈>⨯⨯⨯因此有99.5%的把握认为肥胖与常喝碳酸饮料有关。
------------- 7分 (3)设常喝碳酸饮料的肥胖者男生为A 、B 、C 、D ,女生为E 、F ,则任取两人有 AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种。
河北2020届高三新时代NT教育模拟数学(文)试题样卷(PDF版无答案)
.
3犪 , 2
%2犫犮+2犮犫.
Ri'A.槡2B源自2C.2槡2D.4
12.!"O)犳(狓)狓∈犚 E犳(狓)+犪犳(-狓)=犲狓, n犪>0 X犪≠1, % 犳(狓)
Z)3
A.0
B.1
C.2
D. ¡¢
?II7 (X@AB C90D)
Y 、 Z [ B : C 4 G B , H G B 5 D (16 B ? 2 N [ 2 D , ? Y N [ 3 D ), C 20 D . 13.£¤ 犃→犅=(1,2),犃→犆=(-1,3),% 犆→犅= .
17.(12)&½V)7{犪狀}.U狀 VW3犛狀,狀∈犖 , 槡犛狀 '犪狀 W1.ÉÊnV.
(1) [)7{犪狀}.ËVÌÍ犪狀;
(2)
&犫狀
=犪狀
+
(1 2
)犪狀+1(狀∈犖
),
[
)
7
{犫狀}U
狀
V
W
犜狀
.
18.(12) ±oÎCR0ÏÐÑÒÓ3ÔÕ.11Ö15×Ø6YÕ.3Ö15×.3® ÙÑÒUÚÛÜݤÞß,càÑÒU120áâÑ Ò Ó . 120á . Û Ü Ý ¤ ã ) 犃犙犐 .iäåæç,æçèébêN ë C P ì ^.F í î ¢,ï 犃犙犐 . ì Ðð3[0,50)j,ÛÜݤ3ñ;ìÐð3[50,100)j ,Û Ü Ý ¤ 3 ò;ì Ð ð3[100,150)j ,ÛÜÝ ¤ 3 ó ô. õ & Ô á . 犃犙犐 . i ö 150, X Y á . 犃犙犐 3¢i.
!"★#$%
2020&'()*+,-./012345647
河北省邯郸市2024年数学(高考)部编版真题(押题卷)模拟试卷
河北省邯郸市2024年数学(高考)部编版真题(押题卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题中国古代数学名著《算法统宗》中有一道题:“今有七人差等均钱,甲乙均五十八文,戊己庚均六十文,问乙丁各若干?”,意思是甲、乙、丙、丁、戊、己、庚这七个人,所分到的钱数成等差数列,甲、乙两人共分到58文,戊、己、庚三人共分到60文,问乙、丁两人各分到多少文钱?则下列说法正确的是()A.乙分到28文,丁分到24文B.乙分到30文,丁分到26文C.乙分到24文,丁分到28文D.乙分到26文,丁分到30文第(2)题关于函数,,为自然数集,下列说法正确的是()A.函数只有最大值没有最小值B.函数只有最小值没有最大值C.函数没有最大值也没有最小值D.函数有最小值也有最大值第(3)题设集合,,则()A.B.C.D.第(4)题已知角的顶点为坐标原点,始边为轴非负半轴,若角的终边过点,则()A.B.C.D.第(5)题设集合,,则()A.B.C.D.第(6)题已知向量满足,则()A.8B.C.D.4第(7)题三棱锥中,为等边三角形,,,二面角的大小为150°,则三棱锥的外接球的表面积为A.B.C.D.第(8)题设等比数列的前项和为,若,则等于()A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知F是抛物线的焦点,点在抛物线W上,过点F的两条互相垂直的直线,分别与抛物线W交于B,C和D,E,过点A分别作,的垂线,垂足分别为M,N,则()A.四边形面积的最大值为2B.四边形周长的最大值为C.为定值D.四边形面积的最小值为32第(2)题如果定义在上的函数满足:对任意,有,则称其为“好函数”,所有“好函数”形成集合.下列结论正确的有()A.任意,均有B.存在及,使C.存在实数M,对于任意,均有D.存在,对于任意,均有第(3)题如图,已知三棱柱,平面,,,,分别是,的中点,则下列说法正确的是()A.平面B.平面C.直线与直线的夹角为D.若,则平面与平面的夹角为三、填空(本题包含3个小题,每小题5分,共15分。
河北省邯郸市2024高三冲刺(高考数学)统编版摸底(强化卷)完整试卷
河北省邯郸市2024高三冲刺(高考数学)统编版摸底(强化卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知双曲线,则该双曲线的渐近线方程为()A.B.C.D.第(2)题已知,,点为圆上任意一点,则面积的最大值为()A.5B.C.D.第(3)题已知当时,,基于上述事实,若对任意的,都有,则()参考数据:,,.A.19656B.-19656C.-19710D.19710第(4)题已知二项式,的展开式中第四项的系数最大,则a的值为()A.1B.2C.3D.4第(5)题给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行,②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面,③如果两条直线都平行于一个平面,那么这两条直线互相平行,④如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.其中真命题的个数是().A.B.C.D.第(6)题过抛物线C:的焦点F作直线,,其中与C交于M,N两点,与C交于P、Q两点,则()A.1B.2C.3D.4第(7)题已知,且,则()A.B.C.D.第(8)题已知,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列函数中,既是偶函数又存在零点的是()A.B.C.D.第(2)题如图,正四棱柱中,,动点P满足,且.则下列说法正确的是()A.当时,直线平面B.当时,的最小值为C.若直线与所成角为,则动点P的轨迹长为D.当时,三棱锥外接球半径的取值范围是第(3)题如图,函数的图象称为牛顿三叉戟曲线,函数满足有3个零点,,,且,则()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题某同学参加课外航模兴趣小组活动,学习模型制作.将一张菱形铁片进行翻折,菱形的边长为1,,E是边上一点,将沿着DE翻折到位置,使平面面,则点A与之间距离最小值是______.第(2)题已知两条不同的直线,,两个不重合的平面,,给出下面五个命题:①,;②,,;③,;④,;⑤,,.其中正确命题的序号是_________.(将所有正确命题的序号都填在横线上)第(3)题记的内角A,B,C的对边分别为a,b,c,面积为,,,则________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在三棱维中,平面,,.侧棱与平面所成的角为,为的中点.(1)求证:平面;(2)若为中点,求二面角的余弦值.第(2)题已知圆的方程:(1)若直线与圆C没有公共点,求m的取值范围;(2)当圆被直线截得的弦长为时,求m的值.第(3)题记的内角所对的边分别为a,b,c,.(1)求的面积;(2)延长至点D,使,求的长.第(4)题在平面直角坐标系中,点,,四边形的对角线交于点,且,,记动点的轨迹为.(1)求的方程;(2)过点的直线与交于两点,直线与的另一个交点为,直线与的另一个交点为,试判断三点是否共线,并说明理由.第(5)题已知函数有两个极值点,且.(1)求的取值范围;(2)证明:.。
河北省邯郸市2023届高三上学期摸底数学试题
绝密★启用前邯郸市2023届高三年级摸底考试试卷数学本试卷共4页,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、班级、考场号、座位号、考生号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}2220,log 0A xx x B x x =-<=∣∣,则图中阴影部分表示的集合为( )A.{0}xx >∣ B.{01}x x <∣ C.{12}x x <∣ D.{01x x <<∣或2}x 2.设复数i1iz =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函数()y f x =的图象在点()()3,3P f 处的切线方程是27y x =-+,则()()33f f -'=( )A.2-B.2C.3-D.34.某高中2022年的高考考生人数是2021年高考考生人数的1.5倍.为了更好地对比该校考生的升学情况,统计了该校2021年和2022年高考分数达线情况,得到如图所示扇形统计图:下列结论正确的是( )A.该校2022年与2021年的本科达线人数比为6:5B.该校2022年与2021年的专科达线人数比为6:7C.2022年该校本科达线人数增加了80%D.2022年该校不上线的人数有所减少5.已知向量()()4,3,,1a b m =--=,且夹角的余弦值为35-,则m =( ) A.0 B.1- C.0或247- D.247- 6.“01x <<”是“111x x +>+”的( ) A.充分不必要条件 B.必要不充分条件 C.既不充分也不必要条件 D.充要条件7.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求三角形面积的公式,可以看出我国古代已具有很高的数学水平.设,,a b c 分别为ABC 内角,,A B C 的对边,S 表示ABC 的面积,其公式为222222142a b c S a b ⎡⎤⎛⎫+-⎢⎥=- ⎪⎢⎥⎝⎭⎣⎦.若2,sin sin sin 2sin a b c cb A B C A++==++,则ABC 面积S 的最大值为( )2 B.1 C.23 28.从正方体的8个顶点和中心中任选4个,则这4个点恰好构成三棱锥的概率为( )A.4163 B.3863C.23D.57二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,有选错得0分,部分选对得2分.9.已知函数()f x 的局部图象如图所示,下列函数()f x 的解析式与图象符合的可能是( )A.()245f x x =B.()4f x x =C.()sin f x x x =D.()21xf x x =+ 10.已知双曲线222:1(0)3x y C a a -=>的左、右焦点分别为12,F F ,离心率为2,P 为C 上一点,则( ) A.双曲线C 的实轴长为2B.双曲线C 的一条渐近线方程为3y x =C.122PF PF -=D.双曲线C 的焦距为411.已知{}n a 为等差数列,n S 为其前n 项和,则下列结论一定成立的是( ) A.若15a a =,则12n a a a ===B.若53a a >,则12n S S S <<<C.若32a =,则22158a a +D.若488,4a a ==,则1266S =12.如图,在正方体1111ABCD A B C D -中,动点E 在线段11A C 上,则( )A.直线11A C 与BC 所成的角为30B.对任意的点E ,都有BD ⊥平面ACEC.存在点E ,使得平面ABE ∥平面11CC D DD.存在点E ,使得平面ABE ⊥平面CDE三、填空题:本题共4小题,每小题5分,共20分.13.若抛物线24y x =的准线与圆22:()1C x a y -+=相切,则a =__________. 14.已知()52345601234561(1)x x a a x a x a x a x a x a x +-=++++++,则03a a +的值为__________.15.如图,在正四棱台ABCD EFGH -中,43,3AB EF ==E ABCD -的体积为48,则该四棱台的体积为__________. 16.设函数()sin sin (0)3f x x x πωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π上有且仅有3个极值点,则ω的取值范围是__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)在①22223sin b c a ac B +-=;①222sin sin sin 3sin sin B C A B C +-=这两个条件中任选一个,补充在下面的问题中并作答.在ABC 中,内角,,A B C 所对的边分别是,,a b c ,__________. (1)求角A ;(2)若8,10a b c =+=,求ABC 的面积.18.(本题满分12分)设n S 是等比数列{}n a 的前n 项和,且3614,126S S ==. (1)求数列{}n a 的通项公式;(2)记()1n n b n a =-,数列{}n b 的前n 项和为n T ,求n T .19.(本题满分12分)暑假期间,某学校建议学生保持晨读的习惯,开学后,该校对高二、高三随机抽取200名学生(该学校学生总数较多),调查日均晨读时间,数据如表: 日均晨读时间/分钟 [)0,10 [)10,20 [)20,30 [)30,40 [)40,50 []50,60人数51025505060将学生日均晨读时间在[]30,60上的学生评价为“晨读合格”.(1)请根据上述表格中的统计数据填写下面22⨯列联表,依据0.05α=的独立性检验,能否认为“晨读合格”与年级有关联? 项目 晨读不合格 晨读合格 合计 高二 高三 15 100 合计抽取2名学生,记所抽取的2人中晨读合格的人数为随机变量ξ,求ξ的分布列和数学期望.参考公式:()()()()22()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.参考数据:α0.1 0.05 0.01 0.005 0.001 x α2.7063.8416.6357.87910.828P ABCD -为梯形,22,,AB AD DC AB DC AB AD ==⊥∥,平面PCB ⊥平面ABCD .(1)证明:PB AC ⊥;(2)若PCB 为正三角形,求二面角B PA C --的正弦值.21.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,上、顶点分别为12,,M N NF F 321MF NF 的四条边的平方和为16.(1)求椭圆C 的方程;(2)若1a b >>,斜率为k 的直线l 交椭圆C 于,A B 两点,且线段AB 的中点H 在直线12x =上,求证:线段AB 的垂直平分线与圆2214x y +=恒有两个交点. 22.(本题满分12分)已知函数()()ln 0f x x a x a =-≠. (1)讨论函数()f x 的单调性;(2)若()()ln xg x xe a x x =-+,且a e >,证明:()g x 有且仅有两个零点.(e 为自然对数的底数)高三年级摸底考试试卷数学全解全析1.【命题说明】本题依托集合的概念和不等式的基本性质,考查图示法表示集合的关系、交集的定义、解不等式,考查运算能力和数形结合思想.【学科素养】本题重在运算与推理,重点考查数学运算和直观想象的核心素养.C 由题可得{}{02},1A xx B x x =<<=∣∣,由题图可得阴影部分为{12}A B x x ⋂=<∣. 2.【命题说明】本题依托复数的概念,考查复数的运算和共扼复数的概念,考查运算能力. 【学科素养】本题重在运算,重点考查数学运算的核心素养.D 因为i 11i 1i 22z ==++, 所以11i,22z z =-在复平面内对应的点11,22⎛⎫- ⎪⎝⎭位于第四象限.3.【命题说明】本题依托导数的概念,考查求导法则和导数的几何意义,考查运算能力和数形结合思想.【学科素养】本题重点考查数学运算和直观想象的核心素养.D 函数()f x 的图象在点()()3,3P f 处的切线的斜率就是在该点处的导数,即()3f '就是切线27y x =-+的斜率,所以()32f '=-,又()32371f =-⨯+=,所以()()()33123f f -=--='.4.【命题说明】本题依托扇形统计图数据,考查了对扇形统计图的理解与应用,考查灵活应用所学知识解答实际问题的能力,考查运算能力和数形结合思想. 【学科素养】本题重点考查数据分析的核心素养.C 不妨设2021年的高考人数为100,则2022年的高考人数为150.2021年本科达线人数为50,2022年本科达线人数为90,得2022年与2021年的本科达线人数比为9:5,本科达线人数增加了80%,故选项A 不正确,选项C 正确;2021年专科达线人数为35,2022年专科达线人数为45,所以2022年与2021年的专科达线人数比为9:7,选项B 错误;2021年不上线人数为15,2022年不上线人数也是15,不上线的人数无变化,选项D 错误. 5.【命题说明】本题依托平面向量的概念,考查平面向量数量积的理解与应用,考查运算能力.【学科素养】本题重点考查数学运算的核心素养. A 由已知222(4)(3)5,1,43a b m a b m =-+-==+⋅=--,所以243cos ,0551a b m a b a bm ⋅-===-<⨯+,解得0m =或247-(舍去).23551m =-⨯+之后,不用解方程,可用试值法,将240,1,7m =--代入,易得0m =符合题意.6.【命题说明】本题依托不等式,考查充分条件和必要条件的判断,考查灵活应用充分条件和必要条件的定义解答问题的能力,考查运算能力. 【学科素养】本题重点考查数学运算和逻辑推理的核心素养.A 因为21111001111x x x x x x x +>⇒-+>⇒>⇒>-+++且0x ≠,充分性成立,所以“01x <<”是“111x x +>+”的充分不必要条件. 7.【命题说明】本题依托古代三角形问题,考查正弦定理在解三角形中的应用,考查二次函数求最值问题,考查转化思想.【学科素养】本题重点考查数学运算和逻辑推理的核心素养. C 由正弦定理得sin sin sin sin 2sin a a b c c A A B C A++==++,得2c a =,因为2,b ABC =的面积22222242119204424a b c S a b a a ⎡⎤⎛⎫+-⎢⎥=-=-+- ⎪⎢⎥⎝⎭⎣⎦2109a =,即10a =ABC 的面积S 有最大值为23. 8.【命题说明】本题依托正方体的点、线、面位置关系,考查古典概型的概率求解,考查运算能力和空间想象能力.【学科素养】本题重点考查数学运算和直观想象的核心素养.D 从正方体的8个顶点和中心中任取4个,有49126n C ==个结果,4个点恰好构成三棱锥分两种情况:①从正方体的8个顶点中取4个点,共有4870C =个结果,在同一个平面的有6612m =+=个,构成三棱锥有701258-=个;①从正方体的8个顶点中取3个与中心构成三棱锥有346832C +=个,故从正方体的8个顶点和中心中任选4个,则这4个点恰好构成三棱锥的个数为583290+=,故所求概率9051267P ==. 9.【命题说明】本题依托函数图象,考查函数性质,函数单调性、奇偶性、极值等问题,考查数形结合思想.【学科素养】本题重点考查逻辑推理和数学抽象的核心素养. AC 对于A ,()()2244()55f x x x f x -=-==为偶函数,图象为开口向上的抛物线,()4115f =<,与题干图象相符;对于()4B,f x x =为偶函数,但()11f =,与题干图象不相符;对于()()()()C,sin sin f x x x x x f x -=--==为偶函数,由()sin cos f x x x x +'=,当02x π<<时,()()0,f x f x '>单调递增,且()1sin11f =<,与题干图象相符;对于()()2D,()1xf x f x x --==--+为奇函数,与题干图象不相符.10.【命题说明】本题依托双曲线方程,考查双曲线性质、定义,考查数形结合思想. 【学科素养】本题重点考查数学运算和逻辑推理的核心素养.ABD 由双曲线方程知:离心率为232c a e a+===,解得1a =,故22:13y C x -=,实半轴长为1,实轴长为22a =,A 正确;因为可求得双曲线渐近线方程为3y x =,故一条渐近线方程为3y x =,B 正确;由于P 可能在C 的不同分支上,则有12||||||2PF PF -=,C 错误;焦距为22224,D c a b =+=正确.11.【命题说明】本题依托等差数列概念,考查等差数列的通项公式、前n 项和的性质,考查基本不等式综合应用,考查转化思想.【学科素养】本题重点考查数学运算和数学抽象的核心素养.ACD 设等差数列的公差为d ,因为15a a =,所以114a a d =+,所以0d =,则12n a a a ===,故A 正确;因为53a a >,所以1142a d a d +>+,所以{}0,n d a >为递增数列,但12n S S S <<<不一定成立,如1231232,1,0,2,3,3a a a S S S =-=-==-=-=-,故B 不正确;因为2222151532282a a a aa +⎛⎫+== ⎪⎝⎭,当且仅当152a a ==时取等号,故C 正确;因为418138,74,a a d a a d =+=⎧⎨=+=⎩解得11,11,d a =-⎧⎨=⎩,则1248880a a d =+=-=,得1121212662a aS +=⨯=,故D 正确.【知识总结】结论:(1)等差、等比数列的性质:若()*2,,,,m n p q t m n p q t +=+=∈N ,①若{}n a 为等差数列,则有2m n p q t a a a a a +=+=; ①若{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.(2)设等差数列{}n a 的公差为d ,当0d =时,为常数列;当0d >时,递增;当0d <时,递减.12.【命题说明】本题依托正方体,考查线面、面面位置关系的证明与判定,异面直线所成角的定义等问题,考查数形结合与转化思想.【学科素养】本题重点考查数学运算、直观想象和逻辑推理的核心素养. BC 因为11AC AC ∥,所以直线11A C 与BC 所成的角为45,故A 错误; 因为BD ⊥平面11ACC A ,故BD ⊥平面ACE ,故B 正确; 当点E 在1A 处时,平面ABE ∥平面11CC D D ,所以存在点E ,使得平面ABE ∥平面11CC D D ,故C 正确.如图,过点E 作11MN A B ∥,则MN 为平面ABE 与平面CDE 的交线,在正方体中,11A B ⊥平面11BCC B ,所以MN ⊥平面11BCC B ,所以BN MN ⊥,CN MN ⊥,所以BNC ∠即为平面ABE 与平面CDE 所成的夹角, 因为点N 一定在以BC 为直径的圆外,所以90BNC ∠<,所以不存在点E ,使得平面ABE ⊥平面CDE ,故D 错误.(设正方体的棱长为11,B N x =,则11tan ,tan 1B BN x C CN x ∠∠==-,所以()()()1122111tan tan 1111324x x BNC B BN C CN x x x x x ∠∠∠+-=+===---+⎛⎫-+⎪⎝⎭,当12x =时,tan BNC ∠取得最大值,为43,此时BNC ∠为锐角,故D 错误.)13.【命题说明】本题依托抛物线和圆的方程,突出考查了抛物线性质和圆的切线,试题设计灵活,强调综合运用所学知识来解决问题的能力.【学科素养】本题重在运算,重点考查数学运算和直观想象的核心素养.【解析】抛物线24y x =的准线为1x =-,圆22:()1C x a y -+=的圆心为(),0a ,半径1r =,与准线1x =-相切,得2a =-或0. 答案:2-或014.【命题说明】本题依托二项式定理,突出考查利用二项式展开式的通项求系数,考查学生对这些知识的理解掌握水平,试题设计灵活,强调综合运用所学知识来解决问题的能力. 【学科素养】本题重在运算,重点考查数学运算的核心素养.【解析】令001x a =⇒=-,由题得5(1)x -的展开式的通项为515C (1)r r r r T x -+=-,令52r -=,得3r =,令53r -=,得2r =,所以3322355C (1)C (1)0a =-+-=,所以031a a +=-. 答案:1-15.【命题说明】本题依托四棱台和四棱锥,突出考查四棱台体积的求解,考查学生对四棱台知识的理解掌握水平,试题设计灵活,强调综合运用所学知识来解决问题的能力. 【学科素养】本题重在运算,重点考查数学运算和直观想象的核心素养.【解析】方法一:由题意,设点E 到平面ABCD 的距离为h ,由四边形ABCD 面积为2(43)48S ==,得四棱锥E ABCD -的体积为11484833hS h ==⨯,得3h =.所以棱台体积为()()113484824324339933V h S S S S =+=⨯⨯+⨯=下下上上.方法二:由题意,设点E 到平面ABCD 的距离为h ,由四边形ABCD 面积为2(43)48S ==,得四棱锥E ABCD -的体积为11484833hS h ==⨯,得3h =.由棱台定义知,延长,,,EA FB GC HD 交于一点(图略),设为P ,设棱锥P ABCD -的高为x ,则棱锥P EFGH -的高为3x +,由三角形相似可得439x AB x EF ==+,得125x =,于是棱台体积1(3V x =+3)11271122434839933535S xS -=⨯⨯-⨯⨯=下上. 答案:39916.【命题说明】本题依托三角函数解析式,突出考查利用正弦型函数在区间上的极值点个数判断正弦型函数的基本性质,考查三角变换公式,强调综合运用所学知识来解决问题的能力.【学科素养】本题重在运算,重点考查了数学抽象和逻辑推理的核心素养. 【解析】()3331sin sin sin 3cos 3sin 3226f x x x x x x x x ππωωωωωωω⎫⎛⎫⎛⎫=++=+=+=+⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎭,当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦, 令6t x πω=+,则,66t ππωπ⎡⎤∈+⎢⎥⎣⎦, 作出函数3sin ,066y t t ππωπω⎛⎫=+>⎪⎝⎭的图象如图所示: 由于函数()f x 在[]0,π上有且仅有3个极值点,则57262ππωππ+<,解得71033ω<. 答案:710,33⎡⎫⎪⎢⎣⎭【名师指点】解本题的关键在于换元6t x πω=+,将问题转化为函数3sin y t =在区间,66ππωπ⎡⎤+⎢⎥⎣⎦上的极值点个数问题,数形结合来求解. 17.【命题说明】本题考查利用正、余弦定理解三角形的方法,考查三角变换公式及对三角形面积公式的理解与应用能力,强调综合运用所学知识来解决问题的能力. 【学科素养】本题重在运算,重点考查数学运算和逻辑推理的核心素养.【分析】(1)选择①:利用正弦定理边角互化,结合余弦定理可求得tan A 的值,结合角A 的取值范围可求得角A 的值;选择②:由正弦定理、余弦定理可求得cos A 的值,结合角A 的取值范围可求得角A 的值; (2)利用余弦定理可求得bc 的值,结合三角形面积公式可得出ABC 的面积. 【解析】(1)选择①:因为22223sin b c a ac B +-=, 由余弦定理可得2cos 23sin bc A ac B =, 所以结合正弦定理可得sin cos 3sin sin B A A B =. 因为()0,B π∈,则sin 0B >,所以cos 3sin A A =,即3tan 3A =, 因为()0,A π∈,所以6A π=; 选择①:因为222sin sin sin 3sin sin B C A B C +-=, 由正弦定理得2223b c a bc +-=,由余弦定理得2223cos 2b c a A bc +-==因为()0,A π∈,所以6A π=; (2)由(1)知6A π=,又已知8,10a b c =+=, 由余弦定理得,(22222cos ()23a b c bc A b c bc =+-=+-, 即(6410023bc =-,所以23bc =+所以ABC 的面积为(11sin sin 923226bc A bc π==-. 18.【命题说明】本题依托等比数列概念,突出考查数列的求和方法,考查学生对错位相减法的理解与应用能力,强调综合运用所学知识来解决问题的能力. 【学科素养】本题重在运算,重点考查数学运算和逻辑推理的核心素养. 【分析】(1)根据3614,126S S ==,得到1,a q 的值,得到{}n a 的通项公式. (2)首先根据(1)得到()1n n b n a =-,再利用错位相减法求n T 即可. 【解析】(1)设等比数列{}n a 的公比为q ,显然1q ≠,由3614,126S S ==, 得()()3611361114,12611a q a q S Sqq--====--,相除得319q +=,得2q =,所以12a =,所以数列{}n a 是以2为首项,以2为公比的等比数列,即2nn a =;(2)由(1)可得()()112nn n b n a n =-=-,所以()()23112222212n n n T n n -=⨯+⨯++-⨯+-⨯……①,()()2211122222122n n n T n n --=⨯+⨯++-⨯+-⨯……①, ①-①,得()22112222122n n nn T n ---=++++--⨯,得()()1212112212n n nT n ---=--⨯-, 所以()1422n n T n +=+-⨯.【方法指导】本题主要考查数列的求和,常见的数列求和方法如下: 1.公式法:直接利用等差、等比数列的求和公式计算即可; 2.分组求和法:把需要求和的数列分成熟悉的数列,再求和即可; 3.裂项相消法:通过把数列的通项公式拆成两项之差,再求和即可;4.错位相减法:当数列的通项公式由一个等差数列和一个等比数列的乘积构成时,可使用此方法求和.19.【命题说明】本题依托数据统计、频率分布,突出考查列联表的填写、2χ的计算、二项分布的概率计算公式及其随机变量的分布列和数学期望,强调综合运用所学知识来解决问题的能力.【学科素养】本题重在运算,重点考查数学运算、数据分析的核心素养. 【解析】(1) 项目 晨读不合格 晨读合格 合计 高二 25 75 100 高三 15 85 100 合计40160200220.05200(25851575) 3.125 3.84110010040160x χ⨯⨯-⨯==<=⨯⨯⨯,所以依据0.05α=的独立性检验,不能认为“晨读合格”与年级有关联.(2)题表中学生晨读合格的概率为16042005=, 所以42,5B ξ⎛⎫~ ⎪⎝⎭,所以()02024110C 5525P ξ⎛⎫⎛⎫==⋅⋅=⎪ ⎪⎝⎭⎝⎭, ()11124181C 5525P ξ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,()22241162C 5525P ξ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,ξ的分布列为 ξ12P125 825 1625所以()255E ξ=⨯= 或()181680122525255E ξ=⨯+⨯+⨯=. 20.【命题说明】本题依托四棱锥,考查棱锥中的线面位置关系及求二面角,强调综合运用所学知识来解决问题的能力.【学科素养】本题重在运算、联想与推理,重点考查数学运算、直观想象和逻辑推理的核心素养.【分析】(1)设222AB AD DC ===,可得AC BC ⊥,利用平面PCB ⊥平面ABCD ,可得AC ⊥平面PCB ,则AC PB ⊥;(2)取BC 的中点O 为坐标原点,以OP 的方向为z 轴正方向,过点O 分别作AB 和AD 的平行线,分别为x 轴和y 轴,建立空间直角坐标系Oxyz ,分别求得平面ABP 的法向量和平面ACP 的法向量,进而利用数量积求解即可.也可以直接寻找两平面所成角的平面角,在三角形中运用余弦定理求解.【解析】(1)由题意,设222AB AD DC ===,又,AB DC AB AD ⊥∥,得2AC BC ==2AB =,所以AC BC ⊥,又平面PCB ⋂平面ABCD CB =,且平面PCB ⊥平面,ABCD AC ⊂平面ABCD , 所以AC ⊥平面PCB ,故AC PB ⊥. (2)方法一(向量法):取BC 的中点O 为坐标原点,以OP 的方向为z 轴正方向,过点O 分别作AB 和AD 的平行线,分别为x 轴和y 轴,建立如图所示空间直角坐标系O xyz -,由PCB 为正三角形,2BC =,得6PO =, 则3111116,,0,,,0,,,0,222222A B C P ⎛⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭, 则()()3162,0,0,,,,1,1,0222AB AP AC ⎛⎫=-=--=-- ⎪ ⎪⎝⎭,设()111,,n x y z =为平面ABP 的法向量,则有0n AB n AP ⎧⋅=⎪⎨⋅=⎪⎩,即111120316022x x y z -=⎧⎪⎨--+=⎪⎩,可取()0,6,1,n =, 设()222,,m xy z =为平面ACP 的法向量,则有0m AC m AP ⎧⋅=⎪⎨⋅=⎪⎩,即222220316022x y x y z --=⎧⎪⎨--+=⎪⎩,可取61,,m ⎛=- ⎝⎭, 所以6673cos ,873n m n m n m-⋅===⨯, 设二面角B PA C --的平面角为α,则22742sin 1(cos ,)177n m α⎛⎫=-=--= ⎪ ⎪⎝⎭,故二面角B PA C --42. 方法二(几何法):如图,取PA 的中点M ,连接CM ,在平面PAB 中作MN PA ⊥,连接CN ,由(1)知2AC BC ==PCB 为正三角形,所以2PC BC PB ===,所以PC AC =, 所以CM PA ⊥,又MN PA ⊥,所以CMN ∠为二面角B PA C --的平面角. 因为AC ⊥平面PCB ,所以AC PC ⊥,所以222,1PA PC AC CM AM +===,在ABP 中,2,2PB AB PA ===,所以2224423cos 284PA AB PB BAP PA AB ∠+-+-===⋅,所以7774sin tan tan cos 3AM BAP BAP MN AM BAP AN BAP ∠∠∠∠===⋅===,在ACN 中,45CAN ∠=,所以22102cos CN AC AN AC AN CAN ∠=+-⋅⋅=在MNC 中,22222271017cos 2721MN CM CN CMN MN CM ∠+-+-⎝⎭⎝⎭===⋅⨯⨯, 所以2742sin 17CMN ∠⎛⎫=-= ⎪ ⎪⎝⎭,即二面角B PA C --42. 21.【命题说明】本题依托椭圆方程,考查椭圆方程的求法、直线与圆锥曲线相交、根与系数的关系(或点差法)的应用以及直线与圆恒有两个交点问题,强调综合运用所学知识来解决问题的能力.【学科素养】本题重在运算、联想与推理,重点考查数学运算、直观想象和逻辑推理的核心素养.【分析】(1)根据题意12NF F 3,结合四边形21MF NF 的四条边的平方和为16,即()22416b c+=,求出,a b 即可得结果;(2)联立直线与椭圆的方程,结合根与系数的关系(或点差法),根据中点坐标公式化简,列出线段AB 的垂直平分线方程,判断定点在圆内即可得结果. 【解析】(1)由12NF F 31232c b ⨯⨯=, 又四边形21MF NF 的四条边的平方和为16, 所以2224,3,1a b c ===或2224,1,3a b c ===,即椭圆C 的方程为22143x y +=或22 1.4x y +=(2)方法一:设()()1122,,,A x y B x y ,由于1a b >>,得椭圆C 的方程为22143x y +=, 设直线l 的方程为y kx m =+,结合图形(图略)知,当斜率0k =时,线段AB 的中点H 在y 轴上,不在直线12x =上,故0k ≠, 由221,43x y y kx m ⎧+=⎪⎨⎪=+⎩, 得()2223484120kxkmx m +++-=,由()()()222222Δ6443441248430k m k mm k =-+-=--->,得2234m k <+.由122834kmx x k +=-+,设线段AB 的中点H 为()00,x y ,得0241342km x k =-=+,即2348k km +=-, 所以0038y kx m k=+=-. 所以线段AB 的垂直平分线的方程为31182y x k k ⎛⎫+=-- ⎪⎝⎭. 即118y x k ⎛⎫=-- ⎪⎝⎭,故线段AB 的垂直平分线恒过点1,08⎛⎫ ⎪⎝⎭.因为2211108644⎛⎫+=< ⎪⎝⎭,故点1,08⎛⎫ ⎪⎝⎭在圆2214x y +=内,所以线段AB 的垂直平分线与圆2214x y +=恒有两个交点. 方法二:由于1a b >>,得椭圆C 的方程为22143x y +=,设直线l 的方程为y kx m =+,结合图形(图略)知,当斜率0k =时,线段AB 的中点H 在y 轴上,不在直线12x =上,故0k ≠, 设()()112201,,,,,,,2A x y B x y H y A B ⎛⎫ ⎪⎝⎭点代入椭圆方程得221122221,431,43x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②①-②得,()()()()1212121211043x x x x y y y y +-++-=,将1212120121,2,y y x x y y y k x x -+=+==-,代入上式化简,得038y k=-, 所以线段AB 的垂直平分线的方程为31182y x k k ⎛⎫+=-- ⎪⎝⎭. 即118y x k ⎛⎫=-- ⎪⎝⎭, 故线段AB 的垂直平分线恒过点1,08⎛⎫ ⎪⎝⎭.因为2211108644⎛⎫+=< ⎪⎝⎭,故点1,08⎛⎫ ⎪⎝⎭在圆2214x y +=内,所以线段AB 的垂直平分线与圆2214x y +=恒有两个交点. 22.【命题说明】本题依托指数函数和对数函数,考查利用导数求函数单调区间,考查利用导数研究函数的零点存在性问题,强调综合运用所学知识来解决问题的能力. 【学科素养】本题重在运算与推理,重点考查数学运算和逻辑推理的核心素养. 【解析】(1)由题意可得函数()f x 的定义域为()()0,,1a x af x x x∞'-+=-=, 当0a >时,令()0f x '>,得x a >,所以()f x 在(),a ∞+上单调递增;令()0f x '<,得0x a <<, 所以()f x 在()0,a 上单调递减; 当0a <时,因为()0f x '>恒成立, 所以()f x 在()0,∞+上单调递增;(2)()()()e ln e ln e(0)xxxg x x a x x x a x x =-+=->,令e x t x =,则()1e 0xt x '=+>在0x >时恒成立,所以e x t x =在0x >时单调递增,且()0,t ∞∈+, 所以()()e ln exxg x x a x =-有两个零点等价于()ln f t t a t =-有两个零点.因为e a >,由(1)知,()f t 在(),a ∞+上单调递增,在()0,a 上单调递减, 所以()()min ()ln 1ln f t f a a a a a a ==-=-, 因为e a >,所以()0f a <. 下面证明当e a >时,()2ee0aaf a =->,设()2e xh x x =-,则()e 2xh x x ='-,令()e 2xm x x =-,又()e 2xm x '=-,当e x >时,()e 20xm x ='->恒成立,所以()m x 单调递增,得()ee 2e 2e 0xh x x >-'=->,故()2e xh x x =-在()e,∞+上单调递增,得2e 2e e e 0x x ->->,即()2e e0aaf a =->,又因为()110f =>, 所以()f t 在()()1,,,eaa a 上各存在一个零点,所以e a >时,函数()f t 有且仅有两个零点, 即当e a >时,函数()g x 有且仅有两个零点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省邯郸市2020届高三下学期第一次模拟考试
数学(文)试题
第I 卷
一、选择题:本大题共12小题每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A={x|-3<x<4},B={y|y=10x },则A∩B=
A.∅
B. [0,4)
C. (0,4)
D. (-3,0) 2.若复数z 的虚部为3,且4,z z +=则2z
= A. -5+12i B.5+12i C. -5- 12i D.5- 12i
43.log =
1.4A 3.8B 1.3C 1.2
D 4.在平行四边形ABCD 中,若4,C
E ED =u u u r u u u r ,则BE u u u r =
4.5
A A
B AD -+u u u r u u u r 4.5B AB AD -u u u r u u u r 4.5
C AB A
D -+u u u r u u u r
3.4D AB AD -+u u u r u u u r 5.某校拟从甲、乙两名同学中选一人参加疫情知识问答竞赛,于是抽取了甲、乙两人最近同时参加校内竞赛的十次成绩,将统计情况绘制成如图所示的折线图.根据该折线图,下面结论正确的是
A.甲、乙成绩的中位数均为7
B.乙的成绩的平均分为6.8
C.甲从第四次到第六次成绩的下降速率要大于乙从第四次到第五次的下降速率
D.甲的成绩的方差小于乙的成绩的方差
6.设a,b,c 分别为△ABC 内角A,B,C 的对边.已知a=25,c=3,tan(B+π4
)=-3,则b= .7
B.7 .17C D.17 7.若双曲线221mx y +=的离心率等于实轴长与虚轴长的乘积,则m=
1.5A - B.-5 1.15C - D.-15
8.已知AB 是圆柱上底面的一条直径,C 是上底面圆周上异于A,B 的一点,D 为下底面圆周上一点,且 AD ⊥圆柱的底面,则必有
A.平面ABC ⊥平面BCD
B.平面BCD ⊥平面ACD
C.平面ABD ⊥平面ACD
D.平面BCD ⊥平面ABD
9.已知x,y 满足约束条件0,262,x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩
,若实数λ满足y=λx+λ,则正数λ的取值范围为
2.[,)3A +∞ 2.(0,]3
B 1.[,)2
C +∞ 1.(0,]2
D 10.直线1经过抛物线2:2(0)C y px p =>的焦点F 且与C 交于A,B 两点,1与C 的准线交于点D.若
4BD BF =-u u u r u u u r ,则l 的斜率为
A.±2 .B ± C.±4 .D ±
11.已知函数241,0()22,0,
x x x x f x x -⎧--+≤=⎨->⎩若关于x 的方程(()())0f x f x m --=恰有5个不同的实根,则m 的取值范围为
A.(1,2) .(2,5){1}B ⋃ C.{1,5} D.[2,5)∪{1}
12.已知定义域为R 的函数()f x 满足11(),()4022
f f x x '=
+>),其中()f x '为f(x)的导函数,则不等式f(sinx)一cos2x ≥0的解集为 .[2,2],33A k k k π
π
ππ-++∈Z .[2,2],66B k k k π
π
ππ-++∈Z
2.[2,2],33C k k k ππππ++∈Z 5.[2,2],66
D k k k ππππ++∈Z 第II 卷
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.
13.小周今年暑假打算带父母去国外旅游,他决定从日本泰国、法国、加拿大、韩国、墨西哥、英国这7个国家中随机选取1个国家,则他去旅游的国家来自亚洲的概率为____.
14.在等比数列{}n a 中,13429()a a a a =++,则公比q=_____.
15.已知函数()sin 2cos 22f x x x α
=+的图象关于直线12x π
=对称,则()4f π
=____.
16.知三棱锥P-ABC 每对异面的棱长度都相等,且△ABC , 3 , 4,则三棱锥P -ABC 外
接球的体积为____. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必
考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.(12分)
在数列{},{}n n a b 中,,1n n n n a b n b a =+=-+.
(1)证明:数列{a n +3b n }是等差数列.
(2)求数列2}3{
n n n b a +)的前n 项和S n.
18.(12分)
如图,正三棱柱111ABC A B C -的每条棱的长度都相等,D,F 分别是棱11,A B B C 的中点,E 是棱11B C 上一点,且DE//平面11.A BC
(1)证明:CE//平面1.AB F
(2)求四棱锥A- B 1FCE 的体积与三棱柱111ABC A B C -的体积之比.
19.(12分)
某总公司在A,B 两地分别有甲、乙两个下属公司同时生产某种新能源产品(这两个公司每天都固定生
产50件产品),所生产的产品均在本地销售.产品进入市场之前需要对产品进行性能检测,得分低于80分的定为次品,需要返厂再加工;得分不低于80分的定为正品,可以进入市场.检测员统计了甲、乙两个下属公司100天的生产情况及每件产品盈利亏损情况,数据如下表所示:
(1)分别求甲、乙两个公司这100天生产的产品的正品率(用百分数表示);
(2)试问甲乙两个公司这100 天生产的产品的总利润哪个更大?说明理由.
20.(12分)
已知函数3()x
f x x e =.
(1)求f(x)的单调区间;
(2)若不等式2()m f x x ≥对x ∈R 恒成立,求m 的取值范围.
.
21.(12分) 已知椭圆2
2:12
x C y +=的右焦点为F,直线l 与C 交于M,N 两点. (1)若l 过点F,点M,N 到直线y=2的距离分别为12,d d ,且12143
d d +=,求l 的方程;
(2)若点M的坐标为(0,1),直线m过点M交C于另一点,
N'当直线l与m的斜率之和为2时,证明:直线NN'过定点.
(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做则按所做的第一个题目计分.
22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C:y=k|x-3|.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线E的极
坐标方程为
27
6(cos2sin) e
ρθθ+=+.
(1)求E的直角坐标方程(化为标准方程);
(2)若曲线E与C恰有4个公共点,求k的取值范围.
23.[选修4-5:不等式选讲](10分)
已知函数f(x)=|2x-5|-|2x+1|.
(1)求不等式f(x)>1的解集;
(2)若不等式f(x)+|4x+2|>|t-m|-|t+4|+m对任意x∈R,任意t∈R恒成立,求m的取值范围.。