有机合成化学-第六章 2
有机合成化学6—反合成分析法
第六章逆合成分析
有机合成设计基础知识
有机合成:利用化学反应,将简单的有机化合物制成比较复杂的有机物的过程。
有机反应是合成的基础,路线设计是合成的关键
要做好有机合成设计,除了对有机单元反应和有机合成技术要熟练掌握外,还要有科学的逻辑思维方法
有机合成路线设计基本原则:
u廉价易得的原料、尽可能少的反应步骤、好的选择性、尽可能高的
产率、温和的反应条件和原子经济性等。
u在工业规模的合成上,尽可能地减少环境污染,采用温和的反
应条件以及易于产品分离的路线等。
Me a a
7.2 逆向切断技巧
在逆合成分析中,简化目标分子的最有效手段是切断,不同的切断方式和切断顺序都将导致不同的合成路线。
1. 优先考虑骨架的形成
2. 碳-杂键优先切断
3. 官能团部位先切断
4. 添加辅助基团后切断
5. 逆推到适当阶段再切断
6. 利用分子的对称性
O
O O
H
H
Ph。
第六章氧化反应
第六章氧化反应从广义上来讲,凡是有机物分子中碳原子失去电子,碳原子总的氧化态增高的反应均称为氧化反应;从狭义上讲,凡使反应物分子中的氧原子数增加,氢原子数减少的反应称为氧化反应。
利用氧化反应除了可以得到各类有机化合物如醇、醛、酮、酸、酯、环氧化物和过氧化物等,还可以制备有机腈和二烯烃等。
有机物的氧化反应都是强放热反应,因此,氧化反应中及时移除反应热是一个很关键的问题。
烃类和其它有机物的氧化反应几乎都是不可逆反应,反应都能进行到底。
有机合成中氧化方法主要有三种,即催化氧化和催化脱氢、化学氧化、电解氧化。
此外,生物氧化在有机合成中的应用也日益受到人们的重视。
生物氧化是一种较缓和的氧化过程。
人类在很早以前就利用微生物进行氧化反应来进行酿酒、制醋。
生物氧化具有高度的选择性,收率高,反应条件温和,三废少等特点。
因此,生物氧化是一种很有发展前景的氧化合成方法。
第一节催化氧化和催化脱氢一、催化氧化在没有催化剂的情况下,有机物在室温下与空气接触,就能发生缓慢的氧化反应,这种现象称为自动氧化。
在实际生产中常常需要使用催化剂,以提高反应的速度和选择性。
在催化剂存在下进行的氧化反就应称为催化氧化。
催化氧化法生产能力大,对环境污染小,且作为氧化剂的空气和氧来源广泛,无腐蚀性。
因此,工业上大吨位产品多采用空气催化氧化法。
氧化反应根据反应温度和反应物聚集状态不同,又可分为液相催化氧化和气相催化氧化反应。
液相催化氧化多在100︒C左右进行反应;气相催化氧化则常在200~400︒C下进行反应。
(一)液相空气氧化液相空气氧化是液态有机物在催化剂存在下,通入空气进行的催化氧化反应。
液相空气氧化反应的实质是在气液两相间进行的,大多采用鼓泡型反应器。
1.反应历程液相空气氧化属于自由基反应历程,其反应历程包括链的引发,链的传递和链的终止三个步骤,其中决定性步骤是链的引发。
下面以烃的氧化为例:(1)链引发 烃类R-H 在光照、热及可变价金属盐或自由基引发剂的作用下发生C-H 键的均裂而生成自由基R ⋅。
第六章 有机化学课后习题答案
第六章卤代烃1.回答下列问题(1).在CH3CH2Cl(I),CH2═CHCl(II),CH≡CCl(III),C6H5Cl(IV)四种一氯代烃中,按C-X键键长次序排列,并讨论其理由。
解: IV< II < III <I(2).将四种化合物(A) CH3CH2CH2F,(B) CH3CH2CH2I ,(C) CH3CH2CH2Br ,(D) CH3CH2CH2Cl的沸点从最高到低排列,并讨论其理由。
解: B> C> D> A(3).四种化合物(A) CH3CHClCH2OH,(B) CH3CHNH2CH2Br ,(C) HC≡CCH2Cl,(D) CH3CONHCH2CH2Cl中,哪些能生成稳定的格氏试剂?为什么?解: D(4).比较(A) CH3CH2CH2CH2Cl,(B) (CH3)2CHCH2Cl,(C)实用文档CH3CH2CH(Cl)CH3,(D) (CH3)3CCl四个氯代烃,它们发生S N2反应情况如何。
解: A> B> C> D(5).将①苄溴,②溴苯,③1–苯基–1–溴乙烷,④1–溴–2–苯基乙烷四个化合物按S N 1 反应的反应活性顺序排列,并讨论其理由。
解: ③>①>④>②(6).不活泼的乙烯型卤代烃能否生成格氏试剂?为什么?解:由于卤原子与双键间的p-π共轭效应,使C-X键之间的键能增加,难以断裂。
(7).化合物:(A)正溴戊烷,(B)叔溴戊烷,(C)新戊基溴,(D)异戊基溴分别与水反应生成相应的醇,讨论它们的反应速率的差异?解: A> D> C> B(8).用极性溶剂代替质子溶剂对(A) S N1,(B) S N2,(C) 烯的亲电加成,(D) 醇的失水反应有何影响?实用文档解: 极性溶剂有利于S N1反应和烯的亲电加成反应的进行,不利于S N2反应和醇的失水反应的发生。
(9). 2–氯环己醇的反式异构体可以跟碱反应转化成环氧化物, 但顺式异构体却不能, 为什么?解: 2–氯环己醇的反式异构体跟碱反应时,进行反式消除,热力学能量低,反应速率快, 顺式异构体则不能。
有机化学-第六章
按与烯烃加成的试剂不同,可把加成反应分成若 干类型进行研究。
一、催化加氢反应
烯烃与氢作用生成烷烃的反应称为加氢反应,又 称氢化反应。
加氢反应的活化能很大,即使在加热条件下也难 发生,而在催化剂的作用下反应能顺利进行,故 称催化加氢。
4.应用 用硼氢化、碱性氧化水解制备醇的另一优点是烯烃的碳 架不发生重排,这在有机合成中很有意义:
5.反应的特点 气体的硼烷和高挥发性的低碳烷基硼对空气极敏感,在 空气中自燃,硼氢化反应需在惰性气体保护下进行。 烯烃硼氢化反应是间接水合生成反马氏产物,是高区域 选择性、高立体选择性、不发生碳架重排的反应。烷基硼 对氧很敏感,遇氧燃烧,但对水很稳定,可以用水洗的方 法纯化烷基硼。
3.质子酸酸性的影响
酸性越强加成反应越快,卤化氢与烯烃加成反应 的活性: HI > HBr > HCl
酸是弱酸如H2O和ROH,则需要强酸做催化剂,如
四、加次卤酸反应
烯烃与卤素的水溶液反应生成β-卤代醇。例:
丙烯与氯的水溶液反应,生成1-氯代-2-丙醇, 又称β-氯醇。后者脱HCl,是工业上制备环氧丙 烷的方法。
写成通式:
三、烯烃与质子酸反应的立体化学——碳原子 的构型
在前面讨论了烯烃与溴的加成反应中,讨论了C原 子的构型,在烯烃与质子酸加成反应中,C原反应得到的活泼中间体及产物的 构型。
烯烃的硼氢化反应
一、硼氢化反应
烯烃与硼烷加成反应生成烷基硼的反应称为烯烃的硼氢 化反应。 这个反应是美国化学家布朗发现的,因此布朗获1979年 Noble化学奖。最简单的硼烷应是甲硼烷(BH3),但硼和 铝一样是缺电子的,甲硼烷很不稳定,两个甲硼烷结合生 成乙硼烷:
精细有机合成化学以及工艺学 第六章 硝化以及亚硝化
15
6.3.6硝化副反应 (1)主要的硝化副反应:氧化、去烃基、置换、 脱羧、开环、聚合等。其中氧化影响最大,生成 硝基酚。 (2)烷基苯硝化时,硝化液颜色发黑变暗,说明 硝酸用量不足或硝化温度过高。 因 为 形 成 了 络 合 物 (C6H5CH3· 2ONOSO3H· 2SO4)。 3H 破坏方法:45~55℃时补加HNO3或混酸 (3)大多数副反应,与体系中存在的氮的氧化物 有关。
-8
1.210
-8
10
结论:苯环上有给电子基,硝化反应速度快,产物 主要是邻、对位 苯环上有吸电子基,硝化速度减慢,产物主要 是间位。 2.芳烃硝化异构产物 带有吸电子的取代芳烃硝化邻位异构体 的生成量比对位异构体多。原因是硝基易同 邻位取代基中带负电荷的原子形成络合物。
CHO 19 72 9 1.3 COOH 18.5 80.5 2.2 CN 17.1 80.7 1 NO 2 9 90 8.2 40.8 NO 2 51 OCH 3
F . N . A. D.V .S . 1 F . N . A. D.V .S . F . N . A. 100 % 1 D.V .S .
22
6.4.2 混算配制 配酸工艺:水、硫酸、硝酸如何混合? 先将浓硫酸先缓慢、后渐快加入到水中, 在40度以下先慢后快加入硝酸。
23
6.4.3硝化操作
(4)非均相混酸硝化
被硝化物和硝化产物在反应温度下都呈液态,且 难溶于混酸时,常采用非均相的混酸硝化。这时 需剧烈搅拌,使有机相充分地分散到酸相中以完 成硝化反应。
(5)有机溶剂中硝化
可避免大量使用硫酸作溶剂。 (6)气相硝化 NO2与苯于80~190℃通过分子筛处理便转化为 硝基苯。
5
6.2硝化理论解释
有机合成:第六章 开环和关环
14
例如:
CH3
(1)
132 C
戊烷
CH3
H CH3 CH3
H
[加热反应,对旋成键(有机化学P479表19-1)]
15
6.4 开环反应 开环反应在有机合成中主要有以下两个方面的应用:
(1)在开环的产物中,被打破的键的每一端的原子上都 带有官能团。即通过开环反应合成双官能团分子; (2)在一个双环或多环分子中,破裂的两个环共用的键 可导致一个中环或大环分子的产生,而这个环难以用其它 方法制备。即通过开环反应合成中环或大环化合物。
反应特点:
(a)在单环化合物的合成中,闭环步骤常包括碳-杂 原子键的形成;
(b)如果系统中含有2个相邻的杂原子,则在闭环步骤 中很少涉及杂原子-杂原子键的形成;
(c)如果目标分子是双环的,并具有与苯环稠合的杂原 子,则原料几乎总是预先形成苯的衍生物。分有: (I)单环化合物的形成; (Ⅱ)苯并稠环化合物的形成。
位或对位二取代为主。
9
6.2.2 1,3-偶极环加成 1,3-偶极环加成也是一个[4π+2π]的过程,故与Diels-
Alder反应有关, 但4π电子不是二烯而是1,3-偶极,四个 电子分布在三个原子上,如重氮烷和叠氮化合物:
重氮烷: RHC N N
RHC N N
RHC N N
RHC N N
叠氮化合物: RN N N
第六章 开环和关环
关环和开环 涉及关环和开环的反应很多.
关环反应主要分三类 1. 分子内的变型:n个原子的链环化成n元环或n-1元环状化 合物,如Dieckmann反应(分子内Claisen酰基化反应); 2. 环加成反应:涉及两个不同分子间的反应,同时形成两 个键,如Diels-Alder反应; 3. 电环化反应:它是分子内反应,但其机理与环加成反应 有关。
有机合成化学:第六章 缩合反应
第六章 缩合反应
上例是由于选择不同的起始原料,而选择不同的合成路线,使 产品成本大大降低。如果没有很好的路线选择时,可以通过优化 反应条件,提高产物的收率,降低成本。从产品收率上讲,能提 高1-5%。我们可能认为没什么意义,可对企业讲,产品成本会降 低2-8%左右。如果一个产品产值上亿时,可估算一下其价值了。 所以,一个化工产品刚上市时价格较高,随着生产时间延长,价 格逐渐降低,很大可能是由于生产工艺和生产条件的改变所致。
-CO2
CH3CH CH2CO2H
H3C
O O O
60~76%
CH3NO2 + H3CCH
C H
CO2C2H5
NaOC2H5 CH3CH CH2CO2C2H5
55%
CH2NO2
第六章 缩合反应 CH3
CN
PhCH CO2C2H5 + H2C
C H
CN
KOH 83%
CN
PhC CH2CH2CN CO2C2H5
LDA
H3C
CH3
第六章 缩合反应
羰基化合物烷基化最大负反应是O-烷基化产物。如:
副产物
第六章 缩合反应
LDA CH3(CH2)3CO2CH3 BrCH2CH
CH2
CH3CH2CH2CH CO2CH3 CH2CH CH2
LDA
CH2CH3
C2H5Br CH3CH2Байду номын сангаас CO2CH3
可以分步引入
90%
5. Knoevenagel反应:
这类反应的特点是一个亚甲基上连接两个吸电子基团,使
得其氢活性明显提高,反应较易进行。一般使用弱碱 (有机胺)
有机化学 第六章 卤代烃
第六章卤代烃卤代烃是一种简单的烃的衍生物,它是烃分子中的一个或多个氢原子被卤原子(F, CL, Br,I)取代而生成的化合物。
一般可以用R-X表示,X代表卤原子。
由于卤代烃的化学性质主要有卤原子决定,因而X是卤代烃的官能团。
根据卤代烃分子中烃基的不同,可以将卤代烃分为卤代烷烃、卤代烯烃、卤代炔烃和卤代芳烃等。
第一节卤代烷烃一.卤代烷烃的分类和命名(一)卤代烷烃的分类1.根据卤代烷烃分子中所含卤原子的种类,卤代烷烃分为:氟代烷:如CH3-F氯代烷:如:CH3-CL溴代烷:如:CH3-Br碘代烷:如:CH3-I2.根据卤代烷烃分子中所好卤原子的数目的多少,卤代烷烃分为:一卤代烷:如:CH3CL, CH3-CH2-Br二卤代烷:如:CH2CL2,多卤代烷:CHCL33. 根据卤代烷烃分子中与卤原子直接相连的碳原子的类型的不同,卤代烷烃可以分为: 伯卤代烷(一级卤代烷) R-CH 2-Br 仲卤代烷(二级卤代烷)CHXR 1R 2叔卤代烷(三级卤代烷)CXR 1R 2R 3(二) 卤代烷烃的命名 1. 普通命名使用范围:结构比较简单的卤代烷常采用普通命名法 命名:原则:根据卤原子的种类和与卤原子直接相连的烷基 命名为“某烷”,或按照烷烃的取代物命名为“卤某烷”。
如:CH 3CL CH 3CH 2Br CH 3CH 2CH 2CH 2I CH CH 3H 3CCH 2CLCHBrH 3CCH 2CH 3CCH 3H 3CCH 3CL甲基氯(氯甲烷)乙基溴(溴乙烷)正丁基碘(正碘丁烷)异丁基氯(异氯丁烷)仲丁基溴(仲溴丁烷)叔丁基氯(叔氯丁烷)2. 系统命名法范围:复杂的卤代烷烃一般采用系统命名法。
原则:将卤原子作为取代基,按照烷烃的命名原则来进行命名。
方法: 1)选择连有卤原子的最长碳链为主链,并根据主链所含碳原子的数目命名为“某烷”作为母体; 2) 将支链和卤原子均作为取代基;3)对于主链不带支链的卤代烷烃,主链编号从距离卤原子最近的一端开始; 4)对于主链带支链的卤代烷烃,主链的编号应遵循“最低系列规则”; 5)把取代基和卤原子的名称按“次序规则”依次写在“某烷”之前(次序按先后顺序写),即得该卤代烷烃的名称。
有机化学 06第六章 卤代烃2
离去基团的影响:
R-Cl
R-Br
R-I
反应速度增大
6.3.2 消除反应 E (Elimination reaction)
βα
醇
R CH CH 2 + NaOH △
HX
RCH=CH 2 + NaX + H 2O
从分子中脱去一个简单小分子,如HX、H2O等,同时 产生不饱和键的反应称为消除反应。
反应中除α碳脱去X外,在β碳上脱去H,故称为β-消 除反应。
C2H5O- + CH3
CH3 C CH3
Br
[C2H5O-
进攻-H
] H
CH3
CH2 C CH3
Br
CH 3 CH3 C =CH2 + C2H5OH + Br-
SN2反应机理
HO- + CH3Br
[ ] H H HO C Br
进攻-C H
CH3OH + Br-
试剂碱性强,升高温度有利于E2反应。
四、亲核取代反应与消除反应的关系
醇溶液
胺RNH2 + HX
RONO2 + Ag X
硝酸酯
亲核取代反应通式:
RCδ+H2 Xδ- + Nu -
RCH2Nu + X -
反应底物
亲核试剂
产物
离去基团
卤代烷
HO- 、CN- 、 OR-、NH3 ONO-2等
醇、腈、 醚、胺 硝酸酯等
卤素离子
由试剂的负离子部分或未共用电子对去进攻而引
发反应,进攻试剂都有较大的电子云密度,能提供一
写出下列反应的主要产物
CH3
Br NaOH ,C2H5OH
第6章-电化学合成-02-有机电化学合成1
CH4 + I-
溴苯在汞阴极上可还原为苯:
Br + H+ + 2e-
+ Br-
卤代烃被还原的活性次序为:
RI > RBr > RCl > RF
20
三元环、四元环等高张力环的烃类是较难合成的有机化合 物,通过卤代烃电还原可以制备一些高张力的环烃,如:
X
X + 2e-
+ 2 Br-
X
CH2X + 2e-
12
2
隔膜材料
大多数电化学反应器都需要使用隔膜来分隔阴极和阳极区 间,以避免两极所生成的产物混合,防止副反应和次级反应 发生而影响产物的纯度、产率和电流效率,避免发生危及安 全的事故。
种类
隔膜材料主要有两大类:非选择性隔膜和选择性隔膜。 • 非选择性隔膜属机械性多孔材料,纯粹靠机械作用传输, 不能完全阻止因浓度梯度存在而产生的渗透作用。 • 选择性隔膜又叫离子交换膜,分为阳离子交换膜和阴离子 交换膜。
近十年来,我国也有许多科研工作者涉足这一领域,做了大量 研究开发工作。20世纪60年代开始进行有机电合成的研究,如 糠醛的电氧化、顺丁烯二酸的电还原等。70年代实现了胱氨酸 电解还原制取L-半胱氨酸的工业化。我国有机电化学合成科学 和技术与世界的差距正在逐步缩小。
4
有机电化学合成的原理
有机电化学合成主要研究有机分子或催化媒质在“电极/溶液”界面上电荷相
9
分类
按电解槽结构分类:箱式电解槽、压滤机式或板框式电解槽、 特殊结构的电解槽; 按电解槽工作方式分类:间歇式电解槽、柱塞流电化学反应 器、连续搅拌箱式反应器或返混式反应器 。
10
电极材料
电极材料作为一种特殊的功能性材料,不仅涉及到反应过程 中的能耗,而且直接影响反应的产率及产品质量,甚至决定整 个反应体系的成败。
有机化学课后习题及答案(第六章)
6章思考题6.1 试解释实验中所遇到的下列问题:(1)(1)金属钠可用于除去苯中所含的痕量H2O,但不宜用于除去乙醇中所含的水。
(2)(2)为什么制备Grignard试剂时用作溶剂的乙醚不但需要除去水分,并且也必须除净乙醇(乙醇是制取乙醚的原料,常参杂于产物乙醚中)。
(3)(3)在使用LiAlH4的反应中,为什么不能用乙醇或甲醇作溶剂?6.2 叔丁基醚[(CH3)3C]2O既不能用Williamson法也不能用H2SO4脱水法制得,为什么?6.3 苯酚与甲苯相比有以下两点不同的物理性质:(a)苯酚沸点比甲苯高;(b)苯酚在水中的溶解度较甲苯大。
你能解释其原因吗?6.4 解释下列现象(1)(1)从2-戊醇所制得的2-溴戊烷中总含有3-溴戊烷。
(2)(2)用HBr处理新戊醇(CH3)2C-CH2OH时只得到(CH3)2CBrCH2CH3。
解答6.1 答(1)乙醇的活泼氢能与Na发生反应,苯与Na无反应。
(2)RMgX不仅是一种强的亲核试剂,同时又是一种强碱,可与醇羟基中的H结合,即RMgX可被具活性氢的物质所分解,如(3)LiAlH4既是一种强还原剂,又是一种强碱,它所提供H-与醇发生反应,如6.2叔丁基醚用H2SO4脱水法合成时,主要产生烯烃。
6.3 答甲苯和苯酚的相对分子质量相近,但是甲苯的沸点110.6℃,而苯酚的沸点181.8℃,这是由于苯酚可以形成分子间氢键;甲苯不溶于水,而苯酚易溶于水,是由于苯酚与水分子之间会形成氢键:6.4习题6.1比较下列各组化合物与卢卡斯试剂反应的相对速度:(1) 正戊醇, 2-甲基-2-戊醇, 二乙基甲醇(2) 苄醇, 对甲基苄醇, 对硝基苄醇(3)(3)苄醇, α-苯基乙醇, β-苯基乙醇6.26.2区别下列各组化合物:(1) CH2=CHCH2OH, CH3CH2CH2OH , CH3CH2CH2Br, (CH3)2CHI(2) CH3CH(OH)CH3, CH3CH2CH2OH , C6H5OH , (CH3)3COH , C6H5OCH3(3) α-苯基乙醇, β-苯基乙醇, 对乙基苯酚, 对甲氧基甲苯6.36.3写出下列各反应主要产物:6.4合成题:(1)(1)甲醇, 2-丁醇→ 2-甲基丁醇(2)(2)正丙醇, 异丙醇→ 2-甲基-2-戊醇(3)(3)甲醇, 乙醇→正丙醇, 异丙醇(4)(4)2-甲基丙醇, 异丙醇→ 2,4-二甲基-2-戊烯(5)(5)丙烯→ 甘油→ 三硝酸甘油酯(6)(6)苯, 乙烯, 丙烯→ 3-甲基-1-苯基-2-丁烯(7)(7)乙醇→ 2-丁醇(8)(8)叔丁醇→ 3, 3-二甲基-1-丁醇(9)(9)乙烯→ 三乙醇胺(10)(10)丙烯→ 异丙醚(11)(11)苯, 甲醇→ 2,4-二硝基苯甲醚(12)(12)乙烯→ 正丁醚(13)(13)苯→ 间苯三酚(14)(14)苯→ 对亚硝基苯酚(15)(15)苯→ 2,6-二氯苯酚(16)(16)苯→ 对苯醌二肟6.5某醇C5H12O氧化后生成酮,脱水则生成一种不饱和烃, 将此烃氧化可生成酮和羧酸两种产物的混合物, 试推测该醇的结构.6.6有一化合物(A)的分子式为C5H11Br, 和NaOH水溶液共热后生成C5H12O(B). B具有旋光性.能和钠作用放出氢气, 和浓硫酸共热生成C5H10(C). C经臭氧化和在还原剂存在下水解, 则生成丙酮和乙醛. 试推测A, B, C的结构, 并写出各步反应式.6.7新戊醇在浓硫酸存在下加热可生成不饱和烃. 将这不饱和烃经臭氧化后, 在锌粉存在下水解, 可得到一种醛和一种酮. 试写出反应历程及各步反应产物的构造式.6.8分离下列各组化合物:(1)(1)乙醚中混有少量乙醇(2)(2)戊烷, 1-戊炔和1-甲氧基-3-戊醇6.9 下列各醚和过量的浓氢碘酸反应, 可生成何种产物?(1)(1)甲丁醚(2)(2)2-甲氧基己烷(3)(3)2-甲基-1-甲氧基戊烷6.10有一化合物的分子式为C6H14O, 常温下不与金属钠反应, 和过量的浓氢碘酸共热时生成碘烷, 此碘烷与氢氧化银作用则生成丙醇. 试推测此化合物的结构, 并写出反应式.6.11 有一化合物的分子式为C7H16O, 并且:(1)(1)在常温下它不和金属钠反应;(2)(2)它和过量浓氢碘酸共热时生成C2H5I和C5H11I . 后者与氢氧化银反应生成的化合物的沸点为138℃.试推测原化合物的结构, 并写出各步反应式.6.12有一化合物的分子式为C20H21O4N, 与热的浓氢碘酸反应可生成碘甲烷. 当此化合物4.24 mg与氢碘酸反应, 所生成的碘甲烷通人硝酸银的醇溶液, 得到11.62mg碘化银. 问此化合物含有几个甲氧基?6.13 写出环氧乙烷与下列试剂反应的方程式:(1)(1)有少量硫酸存在下的甲醇(2)(2)有少量甲醇钠存在下的甲醇6.14 推测下列反应的机理。
第六章 氧化反应
• 环氧化反应中取代基较多的双键比取代基少 的更易反应。富电子的双键比缺电子的双键 易反应。
O t-BuOOH, PhH Mo(CO)6, reflux
CHO
t-BuOOH Ti(Ⅳ), SiO2 O
CHO
• 对于含烯丙醇结构的烯烃,在金属催化剂 存在下,叔丁基过氧化氢可区域选择性或 立体选择性的环氧化反应。
• α,β-不饱和腈在过氧化氢碱性介质中,首先在氰 基上加成,随之在双键上的环氧化反应得到环氧 酰胺,叔丁基过氧化氢碱性条件环氧化α,β-不饱 和腈可以得到环氧腈
NH C N H2O2, NaOH OOH O O NH2
Ph C N Ph t-BuOOH NaOH Ph Ph O C N
• 过氧羧酸是最常用的环氧化试剂。是用相应 的羧酸与过氧化氢反应制取。过氧羧酸大多 不稳定,现用现配。 • 过氧羧酸与烯烃反应是合成环氧化物最简便 的方法。尤其对孤立双键、单独用过氧化氢 或过氧醇(不存在金属催化剂)不易被环氧 化,而用过氧羧酸很容易反应,其环氧化烯 烃的反应机理是过氧羧酸对碳-碳双键的氢 电性进攻
• 6-3-4 高碘酸 • 高碘酸或高碘酸盐水溶液是1,2-二醇氧化裂解 试剂。溶剂为甲醇、乙醇、乙酸、二氧六环等。 能定量的反应,根据高碘酸的消耗,推知多元 醇中相邻羟基的数目,根据产物推知原化合物 的结构。
H H R C C CH2CH2 COOH OHOH KIO4/H2SO4 EtOH/H2O RCHO + CHO-CH2CH2COOH
O
Ph (1) O3 (2) Zn, AcOH
O
Ph CHO
O
(1) O3, Et2O, 0 de AcO H (2) LiAlH4, 0 de OAc
大学有机化学第六章
第六章单环芳烃•要求深刻理解和熟练掌握的内容:苯的结构;单环芳烃的化学性质,苯环上的亲电取代反应机理及定位规律的理论解释。
•要求一般理解和掌握的内容:单环芳烃的来源和制法•难点:•苯环上亲电取代反应定位规律的理论解释第六章单环芳烃•大多数芳烃含有苯的六碳环结构,少数非苯芳烃的结构和性质与苯环相似,也称芳烃.•芳烃的性质特点:(1)不易发生加成反应,(2)不易氧化,(3)而容易起取代反应.(1)单环芳烃•芳烃可分为以下三类:(2)多环芳烃(3)非苯芳烃苯的分子式: (C6H6)一苯环的结构1. 凯库勒结构式性质特点:苯不易发生加成,不易氧化,但容易发生取代反应。
苯的凯库勒式结构+H 2∆H=-120kJ/mol+3H 2∆H=-208kJ/mol (2)苯的氢化(3)1,3-环己二烯脱氢-H 2∆H=-23kJ/mol苯的稳定性证明(1) 环己烯催化加氢:四、单环芳烃的物理性质芳香烃不溶于水,但溶于有机溶剂。
一般芳香烃均比水轻。
沸点随相对分子质量升高而升高。
熔点除与相对分子质量有关外,还与结构有关,通常对位异构体由于分子对称,熔点较高。
苯亲电取代反应的能量示意图反应进程势能+E +EE H+六、苯环上亲电取代反应的定位效应1. 定位规律A.烷基苯的取代反应CH3CH3NO2NO2CH3混酸℃3057%40%甲苯的硝化比苯容易,新引入的取代基主要进入原取代基的邻对位。
实验现象:B.硝基苯的取代反应发烟HNO3+H2SO4NO2NO2NO295℃93.2%硝基苯的硝化比苯困难,新引入的取代基主要进入原取代基的间位。
II6有机胺的合成
NH 4Cl
or FeCl2
4 Ar-NH2 + 3Fe3O4
芳胺可水蒸汽蒸馏(苯胺与取代苯胺等) 溶于水,且可蒸馏或为固体的芳胺(邻苯二胺、对氨基酚等) 含-SO3H或-COOH的芳胺 难溶于水,且挥发性小的芳胺
催化加氢还原
Ar-NO2
H2
Raney Ni(Cu)
Ar-NO2
NH2NH2
Pd or FeCl3
+
Li
NH
n-C8H17Br N
N
89%
多卤代烃的氨解用于制备N-杂环化合物
Br(CH2)nBr NH3
(CH2)n NH
Br(CH2)nBr (CH2)n N
Br Br NH3
Br Br Br NH3
Br
N N
(CH2)n Br
卤代芳烃的氨解反应较困难
* Cl NaNH2
* NH3
Cl
+ 2NH3
CH3H HC C C N
CH3
H2/Pd
H
N
73%
卤代烷的氨解用于合成-氨基酸, 生成的铵盐阻止 了进一步N-烷基化反应.
X NH3
R COOH
NH 3 R COO
伯卤代烃与六亚甲基四胺反应生成季铵卤, 而后在乙醇 浓盐酸中加热分解成伯胺, 卤代烃最好是碘代烷,若用溴 代烷或氯代烷时, 需加碘离子. 这种方法用于合成-氨 基酸和-氨基酮等.
PhNH2
PhCH=NPh H PhCH2-NPh H2O PhCH2NHPh
酚的氨解反应
OH
+ NH3
Al2O3-SiO 2 385 oC, 15 atm
NH2
OH
+ NH3
第六章+氧化反应(2)
ArCHOCrCl2 OH ArCHO 2H 2 CrO3
HOCrOCl2
ArCH(OCrCl2 OH)2 Etard复合体
2. 氧化形成酮、羧酸
苄位亚甲基被氧化成相应的酮,常用的氧化剂或催化剂有两类: 铈的络合物和铬(Ⅵ)的氧化物或铬酸盐。如硝酸铈铵(CAN), 反应在酸性介质中进行,一般用硝酸作反应介质,收率较高。
一、苄位C-H键的氧化 苄位C-H键被氧化生成相应的芳香醇、醛、酮或 羧酸,氧化反应产率较高。
1. 氧化生成醛
醛基特别是苯甲醛易被进一步氧化,要使反应停滞在醛基阶 段,需用选择性氧化剂,较好的氧化剂有硝酸铈铵(CAN), 三氧化铬-乙酐,以及钴乙酸盐和铈乙酸盐等。
(1)硝酸铈铵(CAN):CAN和50%AcOH一起,可将甲苯芳 烃的苄位C-H键氧化成芳醛;CAN还可与其他酸混合作为选择性 氧化剂,常用的酸有高氯酸、乙酸等。通常条件下,多甲基芳烃 仅一个甲基被氧化。此时,选择适宜的温度是重要的。
O CH 2 CH CH3 3 CH 3 Collins 试剂 (15eq.) CH 2Cl2 , r.t. CH 3 CH 3 CH 2 CH 3 (95%)
PCC(25eq.) BzO C 6H 6, reflux, 24 h (89%) BzO O
以上两种试剂同样适用于芳烃苄位基的氧化,另外,在一些反 应中,用Collins试剂试剂进行氧化时发生烯丙双键的移位,是由 于铬酸氧化按自由基机理进行的,中间体烯丙基自由基会转位。
O CH 3 KMnO4 /KOH 0 oC
O COOH
三、烯丙位活性C-H键的氧化
烯丙位的甲基、亚甲基或次甲基在一些氧化剂作用下可被氧 化成相应的醇(酯)、醛或酮,而双键不被氧化或破坏,但 可能发生双键位置的迁移。 在这些氧化反应中,烯丙基自由基或正离子是构成烯丙位上 烃基氧化的中间体。
有机化学第06章 芳烃(2)
特点:
①这些取代基与苯环直接相连的原子一般都是饱和的或带
有孤电子对或带负电荷(苯环、乙烯基除外);
②大都是给电子取代基,除卤素外,这类定位基均能使苯
环上电子云密度升高,使苯环活化。因此这些定位基又称
活化基;
③这些取代苯(除卤苯外)的亲电取代反应活性比苯高,
反应速度比苯快。
(2)间位定位基 (第二类定位基) X
2
I + 2Cu
+ 2CuI
二、性质
与苯性质相似,将其中的一个苯基看作是另一个苯基的取 代基。
CH3
混酸 Δ
NO2
混酸 Δ
NO2
CH3
NO2+
NO2
+
CH3
NO2 NO2
CH3
若其中一个苯环上含间位定位基时,则发生异环取代; 若是邻对位定位基,则发生同环取代。
6.9稠环芳烃
一、 萘及其衍生物
1、化学性质
Δ ,~90%
O
O 9,10-蒽醌 OO
K2Cr2O7+H2SO4 或CrO3 + HAC
9,10-菲 醌
二、定位规律的理论解释 1、电子效应 1)邻、对位定位基对苯环的影响
δ- H
δ-
2)从共振论观点
进攻邻位 :
CH3H +
E
CH
δ- H
CH 3 H +E
CH3
进攻对位 : +
HE
CH3 +
HE
X
+Y
Y
间位定位能力由强到弱的次序大致如下:
+
NR3
NO2 , CCl3 , CN , SO3H,
有机原理06.还原反应
低
RCHO RCH2NH2 RCH=CHR’(Z,cis) 氢化 RCH2CH2R’ RCH2OH RCHOHR’ ArCH3 氢解 RCH2OH + R’OH RCH2NHR’ RCH2NH2
R
炔烃的加氢
顺式加氢 Lindlar 催化剂:Pd/CaCO3, 喹啉 反式加氢 Na, 液氨 炔烃 + H2 Lindlar Catalyst ( Pd/ BaSO4/ quinoline) 部分毒化用于还原反应活性高的官能团 cis olefins (Lindlar Reduction) 酰氯+ H2, Pd/BaSO4 醛 (Rosemund Reduction) Org. Rxn. 1948, 4, 362 烯烃
载体铂催化剂:Pt/C 酸能促进铂的催化氢化。 缺点:价格昂贵。
(3)钯催化剂
对烯烃、炔烃加氢活性高,还原酮、腈、硝基 化合物,还原氨化反应等,氢解活性也很强。 为最常用的催化剂之一, 可制成氧化钯、钯黑和载体钯(Pd/C)
钯碳催化剂(10%)的制备 在200ml烧杯中加入5.0氯化钯,65ml水和8.8mL浓 盐酸,加热助溶。呈棕色溶液,待用。在1000ml三 口瓶中放人250g粉状活性碳(化学纯)和200mL水。 加热煮沸15 min。在搅拌下加入上述棕色氯化钯溶 液。在剧烈搅拌下,维持温度在90-95oC之间,徐 徐加入22m1甲醛(40%)。加毕,继续搅拌15min。 然后冷却到20oC以下,在搅拌下慢慢加入30%氢氧 化钾水溶液,使反应混合液的pH=5~6。再搅拌 20mL 过滤,水洗二、三次,转移到烧杯中,用5% 硝酸浸泡过夜,或更长时间。过滤,水洗至中性, 取出干燥,密闭保存,待用。
还原硝基化合物:
还原肟:
有机合成:第六章 开环和关环
6.1.4 中环和大环的形成 要形成中环(8~11元环)和大环(≥12元环),必须应
用特殊的方法——通常为高度稀释技术:非环前体非常慢 地加到反应介质中,以致于其浓度很低(10 -3 ≤ M),使 分子间反应的可能性大大减少,同时分子内的各种构象互 变更容易,有利于分子内反应。
从反应类型分,形成中环和大环的反应主要有: (1)缩合反应; (2)偶姻反应; (3)有机金属化合物反应。
hv
(1)
+ CH2N2
(2)
21
6.5 总结 环状化合物的合成方法 (一)非芳香环化合物 (1)饱和的“五元”、“六元”环:可通过一般的亲 电试剂和亲核试剂相互作用得到(可参见第四、第五章的 方法)。 (2)饱和中环和大环:使用特殊方法①高度稀释技术, ②偶姻反应。 (3)部分饱和环:①上述(1)、(2)的方法,②周 环反应,③不饱和状态通过消除反应产生,④芳香化合物 或其它物种的部分氧化。
反应特点:
(a)在单环化合物的合成中,闭环步骤常包括碳-杂 原子键的形成;
(b)如果系统中含有2个相邻的杂原子,则在闭环步骤 中很少涉及杂原子-杂原子键的形成;
(c)如果目标分子是双环的,并具有与苯环稠合的杂原 子,则原料几乎总是预先形成苯的衍生物。分有: (I)单环化合物的形成; (Ⅱ)苯并稠环化合物的形成。
O C
O C O
O
AlCl3
O C
HO2C
H2, 压 力
催化剂
O
O C
CO2H
(返回)
37
单环(杂芳香环)化合物的形成 含氧的芳杂环的形成,闭环过程常涉及到烯醇作亲核试
剂, 而质子化的羰基则作亲电试剂,反应过程:
H2C
CH2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Diels-Alden
第一节 拟合成分析法
(2)切断(dis)、连接(con)、重排(rearr)
disconnection connection rearrangement
CN CN dis
+
CHO CHO
O
con
OH C NH rearr N
第一节 拟合成分析法
(3)官能团的转化
官能团的互变
(functional group interconversion )
O FGI
OH
官能团的添加functional
group addition
O FGA
O
官能团的消除functional
group removal
O OH FGR
O
在不改变TM骨架的前提下,变换官能团 (种类/位置)以简化官能团
第一节 拟合成分析法
Ph
dis
Ph O
Cl
+
H2N
Ph
O
Ph
合成:略
第二节 拟合成分析法介绍 (1)在不同部位将分子切割
(2)在逆合成转变将分子切割
第二节 拟合成分析法介绍
(3)添加辅助官能团后再切断
使用情况:直接切断有困难,可先在某一部位添 加某种官能团
条件:辅助官能团易被除去
第二节 拟合成分析法介绍
(4)优先在杂原子(O,N,S)处切断
O
第二节 拟合成分析法介绍
(5)利用分子的对称性
有些TM包含或隐含对称结构.
利用分子的对称性来简化合成路线
例
分 析
OH
dis 2 MgCl
+ CH3COOC2H5
合成:略
第二节 拟合成分析法介绍
4 几类重要化合物的合成 路线设计
(1)单官能团化合物 (2)双官能团化合物
(1)单官能团化合物
ROH的合成路线 RNH2的合成路线 RCOOH的合成路线
第一节 拟合成分析法
使用逆合成法的理由 理由很简单,因为在很多情况下,有机合成工作者,一开始 面临的任务往往仅是给出要合成的产物。这样,除了由产物回 推原料以外,别无他法可取。有时,即使给了原料,也需要分 析产物的结构,而后结合所给原料,以设计出合成路线来。 “逆合成法”是采用“结构分析”的“逻辑推理法”,能够 在回推的过程中,将结构复杂的“目标分子”,逐步化简。只 要每一步回推得合理,联系起来就必然得出合理的合成路线来。 但是,必须指出:在纸面上看来合理的路线,并不一定就 是该时、该地、生成上适合的路线。还需要通过实践的检验, 才能最后确定它在生成上的适用价值。有机合成是紧密与生产 实践相结合的,一条路线的确定,还需要其他客观因素的制约。
第一节 拟合成分析法
合成设计的学说 生源分析学说(剑桥学派)---TOS ������ 代表人物:Robinson、Johnson ������ 代表作品:甾体的全合成 反合成分析理论(哈佛学派)---TOS ������ 代表人物:Corey、Stork ������ 代表作品:1965年以后的多数合成 纵向合成分析(哈佛大学)---DOS ������ 代表人物:Schreiber(2000年) ������ 应用:复杂结构的分子多样性问题
第二节 拟合成分析法介绍 (1)优先考虑碳骨架的形成 碳骨架的形成 官能团的引入
C-C键形成的位置 就在官能团所在的 或受影响的部位上.
设计合成路线基本过程
要形成C-C键,前体分 子必须要有成键反应所 要求的官能团
2
CHO
OH
CHO
第二节 拟合成分析法介绍
例
分 析
Ph
H N
Ph
FGA
Ph O
H N
四元环
五元环 六元环
活性亚甲基两次烷基化 电环化2+2环加成 分子内羟醛缩合
酮酯缩合
Diels-Arden
中环和大环
Robinson
Frider-Crafts
三元环 合成依据:
插入反应
CH2I2 RCOOOH O
插入试剂: carben及其衍生物
CH2N2, N2CHCOR N2CHCOOEt
O O
+
O R1
O
R2
R1
R2
-
O R1
+ ˉ
O R2
α-β羰基化合物,
具活性亚甲基结构
O
例
试设计
COOCH3
的合成路线
分析
O
dis
O
O
+
OMe
COOCH3
O
dis
O
+
dis
CH2(COOC 2H5)2
+
HCHO
合成1
O N H OMe N O N O OMe H
+
TM OH2
合成2
O
烯胺
+
H HCHO
(4)反合成子(retron)
反合成子: 反合成分析中进行某一转化所必须的结构单元
转化所必须 的结构单元 转化将要得到 的结构单元
为区别合成子/合成中间体,引入
反合成子概念
Diels-Alden环加成反应
Robinson成环反应
O
第一节 拟合成分析法
(5)合成树
A(TM)
合 成 路 线 的 构 成
OH OH
例 试设计
Ph
FGI Ph
的合成路线
分 析
TM
dis
O
+
CH2Cl
O
合 成
CH2Cl
Ph3P
PPh3 BuLi
Ph
OsO4
TM
O
例 试设计 的合成路线
OH OH
O dis 2
分 析
TM
O
rearr
合 成
OH OH Na-Hg H2SO 4
O
2
TiCI4
a- 羟基酮
O
转化依据:
a.
+
R
官能团转化的目的
•TM
更易合成的前体化合物或易得的原料
•为作dis,con,rearr等反合成分析所必须
•添加导向基(活化基、钝化基、阻断基、保护基),
以提高化学选择性、区域选择性、立体选择性
反合成分析,就是通过切断(dis)、连接(con)、
重排(rearr)等骨架转换及官能团转换实现的
第一节 拟合成分析法
目标分子
中间体
原料
目标分子的结构剖析(Targic molecular)
考 察 TM 的 结 构 特 性
分子大小-判明是否有对称性,减少反应步骤
种类和性质
官能团分析
形成方法和引入 的先后次序 开链骨架的分 枝或拐弯处
敏感基团后引入 若敏 感基 团先 引入 官能团保护
骨架的构造
环的种类、大小、连接方式
ROH的合成路线
Ph
例 试设计
Ph OH
的合成路线
分析
Ph Ph OH COOC 2H5
+
2
PhMgCl
合成:略
RNH2的合成路线
RNH2的合成较为独特, 不同于类似的 其他化合物.
R-X + NH3
R-CN R-NO2 RCH2NH2
RNH2
(缺点…)
RCOCI/RCHO
[H ]
20/3O胺
Cu-Zn
分子内烷基化
例 试设计
O
的合成路线
分析
dis O Cl O dis FGI COOEt
+
N2 CH-COOEt
四元环
合成依据: 活泼亚甲基二次烷基化 光化学2+2
例 试设计
COOH
的合成路线
五元环
合成依据: 二羰基化合物分子内羟醛缩合, 酮酯缩合
例 试设计
O
的合成路线
分析
O TM HO O
O
H
1,4二官能团化合物
O CHO
+
+
-
合成:略
Br
NR2
O
例
试设计
的合成路线
分析
O O con CHO
六元环
合成依据: Diels-Alder反应 Robinson成环 Fridel-Craftrs反应
等价基团替代
-结构剖析的核心
立体化学特征
第一节 拟合成分析法
2 反向合成法基本概念
(1) 合成元 (合成子)与合成等效剂 (2) 切断、连接、重排 (3) 官能团的 转化(互变/添加/消除) (4) 反合成子 (5) 合成树
第一节 拟合成分析法
(1)合成元 (合成子systhon)
合成子是有机合成反应中的基本单位,是反合成分 析中转化所得的结构单元
第一节 拟合成分析法
“逆合成法”是有机合成路线设计最简单、最基本的方法。其他一些更 复杂的合成路线设计方法,都是建立在本方法的基础之上的。
概念
Work backwards from the target compound to generate a set of intermediate which can be made from the available starting materials.
C
AN CNa
水 合
TM
b. TM利用双分子酯的偶姻反应(酮 醇缩合) 得到.
O FGI OH OH dis O
+
HC
CNa
O Na 二 甲 苯
(CH2)n
COOC2H5
(CH2)n
COOC2H5
OH2
OH