2014-2015学年湖南省永州市江华县七年级(下)期末数学试卷(解析版)

合集下载

湘教版数学七年级下册第二学期期末 达标测试卷(含答案)

湘教版数学七年级下册第二学期期末 达标测试卷(含答案)

第二学期期末达标测试卷一、选择题(共10题,每题3分,共30分) 1. 下面四个图形中,是轴对称图形的是( )2. 如图,AB ∥CD ,直线l 分别交AB ,CD 于E ,F ,∠1=56°,则∠2的度数是( )A .56°B .146°C .134°D .124°(第2题) (第6题)3. 已知⎩⎨⎧x =-2,y =2是方程kx +2y =-2的解,则k 的值为( )A .-3B .3C .5D .-5 4. 下列运算正确的是( )A .4a 2-2a 2=2a 2B .(a 2)3=a 5C .a 2·a 3=a 6D .a 3+a 2=a 55. 下列从左到右的变形中,属于因式分解的是( )A .x 2-1=(x +1)(x -1)B .2xy 2=2x ·yC .(-x -1)2=x 2+2x +1D .x 2+2x +2=x (x +2)+26. 如图,三角形DEF 是由三角形ABC 平移得到的,若点A ,D 之间的距离为1,CE =2,则BC =( ) A .3 B .1 C .2 D .不能确定7. 下列多项式乘法,能用平方差公式计算的是( )A .(-3x -2)(3x +2)B .(-a -b )(-b +a )C .(-3x +2)(2-3x )D .(3x +2)(2x -3)8. 某生物兴趣小组按照老师的安排去采集标本,该小组共10人交回的标本数为:3名同学每人5件,2名同学每人6件,4名同学每人7件,1名同学10件.同学们交回的标本件数的众数和中位数分别为( ) A .众数4,中位数3 B .众数7,中位数7 C .众数7,中位数6 D .众数7,中位数6.59. 为响应国家“全民阅读,建设学习型社会”的倡议,某校欲购进《论语》《弟子规》两种图书以供学生阅读.购买《论语》80本、《弟子规》130本,共需要3 040元;购买《论语》60本、《弟子规》150本,共需要2 700元.设《论语》的单价为x 元,《弟子规》的单价为y 元,可列方程组为( ) A.⎩⎨⎧60x +130y =3 040,80x +150y =2 700 B.⎩⎨⎧130x +80y =3 040,60x +150y =2 700 C.⎩⎨⎧80x +150y =3 040,60x +130y =2 700 D.⎩⎨⎧80x +130y =3 040,60x +150y =2 70010. 如图,点E 在CA 的延长线上,DE ,AB 交于点F ,且∠BDE =∠AEF ,∠B=∠C ,∠EF A 比∠FDC 的余角小10°,P 为线段DC 上一动点,Q 为PC 上一点,且满足∠FQP =∠QFP ,FM 为∠EFP 的平分线.下列结论:①CE ∥BD ;②AB ∥CD ;③FQ 平分∠AFP ;④∠QFM =20°.其中结论正确的序号是( )A .①②③④B .①②③C .②③D .①④ 二、填空题(共5题,每题3分,共15分) 11. 已知2m =5,2n =6,则2m +n =________.12. 因式分解:a 3-25a =________.13. 已知一组数据3,4,1,a ,2,a 的平均数为2,则这组数据的中位数是________. 14. 如图,直线a ,b 都与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠5;③∠1=∠4;④∠2+∠3=180°.其中能判定a ∥b 的条件是______________.(把你认为正确的序号填在横线上)3(第14题) (第15题)15. 如图,将三角形ABC 绕点A 逆时针旋转一定角度,得到三角形ADE .若∠CAE=63°,∠E =71°,且AD ⊥BC ,则∠BAC 的度数为________°. 三、解答题(共8题,共75分) 16. (8分)(1)计算:①(2x 2)4-x ·x 3·x 4; ②(x -1)(x 2+x +1).(2)因式分解:①a 2(1-m )+4(m -1); ②(x -y )2-4(x -y -1).17. (8分)解方程组:(1)⎩⎨⎧y =2x ,3x +5y =26; (2)⎩⎨⎧x +2y =7,2x +y =2.18. (8分)先化简,再求值:(a-3b)2+(2a+2b)(a-3b)+(a+b)2.其中a=b+2.19. (8分)在如图所示的方格纸中,(1)作三角形ABC关于MN对称的三角形A1B1C1;(2)说明三角形A2B2C2是由三角形A1B1C1经过怎样的平移得到的.20. (10分)如图,D是三角形ABC的边BC延长线上一点,连接AD,把三角形ACD绕点A顺时针旋转60°恰好得到三角形ABE,其中D,E是对应点.(1)若∠CAD=18°,求∠BAC,∠EAC的度数;(2)若S三角形ABD=9,S三角形ABE=3,求S三角形ABC.21. (10分)为了提高学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩记录如下表:(1)经计算甲的平均成绩是8环,则a=________;(2)甲成绩的中位数是______环,乙成绩的众数是______环;(3)已知甲成绩的方差是1.2,请求出乙成绩的方差,并判断甲、乙两名队员谁的成绩更为稳定.22. (10分)某高校共有5个大餐厅和2个小餐厅.若同时开放1个大餐厅和2个小餐厅,可供1 600名学生就餐;若同时开放2个大餐厅和1个小餐厅,可供2 000名学生就餐.(1)求1个大餐厅和1个小餐厅分别可供多少名学生就餐.(2)餐厅装修升级期间,每个大餐厅只能容纳原来就餐人数的40%,每个小餐厅只能容纳原来就餐人数的30%,若同时开放7个餐厅,能否供1 800名学生同时就餐?请说明理由.23. (13分)如图①,点F,G分别在直线AB,CD上,且AB∥CD.5(1)问题发现:若∠BFE=40°,∠CGE=130°,则∠GEF的度数为________.(2)拓展探究:∠GEF,∠BFE,∠CGE之间有怎样的数量关系?并说明理由.(3)深入探究:如图②,∠BFE的平分线FQ所在直线与∠CGE的平分线相交于点P,试探究∠GPQ与∠GEF之间的数量关系,请直接写出你的结论.答案一、1.A 2.D 3.B 4.A5.A【点拨】x2-1=(x+1)(x-1)符合因式分解的定义,选项A符合题意.6.A7.B8.D9.D10.A【点拨】①因为∠BDE=∠AEF,所以CE∥BD,结论①正确;②因为CE∥BD,所以∠B=∠EAF.因为∠B=∠C,所以∠EAF=∠C,所以AB∥CD,结论②正确;③因为AB∥CD,所以∠AFQ=∠FQP.因为∠FQP=∠QFP,所以∠AFQ=∠QFP,所以FQ平分∠AFP,结论③正确;④因为FM为∠EFP的平分线,所以∠MFP=12∠EFP=12∠EF A+12∠AFP.因为∠AFQ=∠QFP,所以∠QFP=12∠AFP,所以∠QFM=∠MFP-∠QFP=12∠EF A.因为AB∥CD,所以∠EF A=∠FDC.又因为∠EF A比∠FDC的余角小10°,所以∠EF A=(90°-∠FDC)-10°,所以∠EF A=40°,所以∠QFM=20°,结论④正确.综上所述:正确的结论有①②③④.二、11.3012.a(a-5)(a+5)13.1.514.①②④15.82【点拨】因为三角形ABC绕点A逆时针旋转一定角度,得到三角形ADE,所以∠ACB=∠E=71°,∠BAD=∠CAE=63°.因为AD⊥BC,所以∠CAD=90°-∠ACB=90°-71°=19°,所以∠BAC=∠BAD+∠CAD=63°+19°=82°.三、16.解:(1)①原式=16x8-x8=15x8.②原式=x3+x2+x-x2-x-1=x3-1.(2)①原式=a2(1-m)-4(1-m)=(1-m)(a2-4)=(1-m)(a+2)(a-2).②原式=(x-y)2-4(x-y)+4=(x-y-2)2.717.解:(1)⎩⎨⎧y =2x ,①3x +5y =26,②把①代入②,得3x +10x =26,解得 x =2,将x =2代入①,得y =2×2=4,所以方程组的解是⎩⎨⎧x =2,y =4.(2)⎩⎨⎧x +2y =7,①2x +y =2,②①+②,得3x +3y =9,所以x +y =3,③ ①-③,得y =4,②-③,得x =-1, 所以方程组的解是⎩⎨⎧x =-1,y =4.18.解:原式=(a -3b )2+2(a +b )(a -3b )+(a +b )2=[(a -3b )+(a +b )]2 =(2a -2b )2=4(a -b )2.因为a =b +2,所以a -b =2,所以原式=4×22=16. 19.解:(1)如图,三角形A 1B 1C 1即为所求.(2)先向右平移6格,再向下平移2格.(答案不唯一)20.解:(1) 因为把三角形ACD 绕点A 顺时针旋转60°恰好得到三角形ABE ,所以旋转角为60°,所以∠BAC =60°.易得∠DAE =60°.又因为∠CAD =18°, 所以∠EAC =∠EAD -∠CAD =42°.(2)若S 三角形ABD =9,S 三角形ABE =3,由旋转可知S 三角形ACD =S 三角形ABE =3,所以S三角形ABC=S 三角形ABD -S 三角形ACD =9-3=6.21.解:(1)8(2)8;79 (3)乙的平均成绩为110×(6+7+9+7+9+10+8+7+7+10)=8(环), 所以乙成绩的方差为110×[(7-8)2×4+(9-8)2×2+(10-8)2×2+(6-8)2+(8-8)2]=1.8,因为甲和乙的平均成绩都是8环,而甲成绩的方差小于乙成绩的方差,所以甲的成绩更为稳定.22.解:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,依题意,得⎩⎨⎧x +2y =1 600,2x +y =2 000,解得⎩⎨⎧x =800,y =400.答:1个大餐厅可供800名学生就餐,1个小餐厅可供400名学生就餐. (2)能.理由如下:800×5×40%+400×2×30%=1 840(名), 因为1 840>1 800,所以同时开放7个餐厅,能供1 800名学生同时就餐. 23.解:(1)90°(2)∠GEF =∠BFE +180°-∠CGE .理由如下: 如图,过点E 作EH ∥AB , 所以∠FEH =∠BFE . 因为AB ∥CD ,EH ∥AB , 所以EH ∥CD ,所以∠HEG =180°-∠CGE ,所以∠GEF =∠FEH +∠HEG =∠BFE +180°-∠CGE .(3)∠GPQ +12∠GEF =90°.。

2014-2015学年七年级下学期期末数学试题及答案

2014-2015学年七年级下学期期末数学试题及答案

2014——2015学年第二学期期末考试参考答案七年级数学一、(每小题3分,共24分)1-----5 DABDD 6-----8 DBA二、(每小题3分,共21分)9.、2、3 12. 113. 89° 14. -5,-5 15. 26三、(本大题共8个小题,满分75分)16.(8分)(1)-122(2)-6-17.(7分) a=-3, b=-218. (8分) -1<x ≤314,画图略. 19. (10分)(1)S △ABC =12×≈6-1.5×1.414≈3.9(2)画图略.A’ (-5,2)、B’(2)、C’(0,5).20. (10分)解:设甲每天完成的零件数为x 个,乙每天完成的零件数为y 个,列方程组为:⎩⎨⎧=++-=++43032362430222y y x y x x 解得:⎩⎨⎧==4470y x 答:甲每天完成的零件数为70个,乙每天完成的零件数为44个.21. (10分)(1)∵∠1=∠4=1:2 ∠1=36° ∴∠4=72°又∵A B ∥CD ∴∠1+∠2+∠4=180°∴∠2=180°-36°-72°=72°又∵∠2+∠3=180° ∴∠3=180°-72°=108°(2) ∵AB ∥CD ∴∠ABE=∠4=72°∵∠2=72° ∴AB 平分∠EBG22. (10分)(1)500 (2)按先后顺序依次为A 80 C 160 D60 (3)4400023. (12分)(1)设购进A 型号的电脑x 台,那么购进B 型号的电脑(25-x )台,根据题意得:4000x+2500(25-x)≤80000 解得:x≤1123∵A型号的电脑购进不能低于8台,∴8≤x≤112 3∴电脑城有4种购进电脑的方案:①A型号购进8台时B型号购进17台②A型号购进9台时B型号购进16台③A型号购进10台时B型号购进15台④A型号购进11台时B型号购进14台.(2)∵A型号电脑的利润低,∴A型号电脑进的越少,B型号电脑进的越多时利润就越大,∴按方案①进货利润最大.最大利润为:8×800+17×1000=23400(元)。

2014-2015学年七年级下期末考试数学试卷及答案

2014-2015学年七年级下期末考试数学试卷及答案

2014-2015学年七年级下期末考试数学试卷及答案一、选择题(每小题3分、共30分)1.中国园林网4月22日消息: 为建设生态滨海,2013年天津滨海新区将完成城市绿化面积共8 210 000m 2.将8210 000用科学记数法表示应为(A )482110⨯ (B )582.110⨯ (C )68.2110⨯ (D )70.82110⨯ 2.下列各组长度的三条线段能组成三角形的是( ) A.1cm ,2cm ,3cm B.1cm ,1cm ,2cm C.1cm ,2cm ,2cm ; D.1cm ,3cm ,5cm ; 3.下列乘法中,不能运用平方差公式进行运算的是( )A 、(x+a)(x-a)B 、(b+m)(m-b)C 、(-x-b)(x-b)D 、(a+b)(-a-b) 4. 如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( )A .∠A=∠C B .AD=CB C .BE=DF D .AD ∥BC5、在△ABC 中,∠ABC 与∠ACB 的平分线相交于O ,则∠BOC 一定( )A、大于90° B、等于90° C、小于90° D、小于或等于90° 6、将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是( )A . 502B . 503C . 504D . 5057、下面是一名学生所做的4道练习题:①(-3)0=1;②a 3+a 3=a 6;③44144m m -=; ④(xy 2) 3=x 3y 6,他做对的个数是( )A .0B .1C . 2D .3AO8、如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;A . 1B . 2C . 3D . 49、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)第40分钟时,汽车停下来了(4)在第30分钟时,汽车的速度是90千米/时;.A 1个B 2个C 3个D 4个10、如图,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是( )二、填空题(每小题2分,共20分) 11、已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为___________. 12、将 “定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e 的概率为___________.13、计算: -22+20-|-3|×(-3)-1 =;14、 =⨯-200220035)2.0( 。

湖南省永州市七年级下学期期末数学试卷(五四学制)

湖南省永州市七年级下学期期末数学试卷(五四学制)

湖南省永州市七年级下学期期末数学试卷(五四学制)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016七下·广饶开学考) 二元一次方程x+y=5的正整数解有()个.A . 4B . 5C . 6D . 7个2. (2分) (2019八下·罗湖期中) 一元一次不等式组的解集是x>a ,则a与b的关系为()A . a≥bB . a>bC . a≤bD . a<b3. (2分)一个等腰三角形的一个内角为90°,那么这个等腰三角形的一个底角为()A . 90°B . 45°C . 50°D . 22.5°4. (2分)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是()A . 两种客车总的载客量不少于500人B . 两种客车总的载客量不超过500人C . 两种客车总的载客量不足500人D . 两种客车总的载客量恰好等于500人5. (2分)(2020·南充模拟) 下列说法正确的是()A . 可能性很大的事件,在一次试验中一定发生B . 可能性很小的事件,在一次试验中可能发生C . 必然事件,在一次试验中有可能不会发生D . 不可能事件,在一次试验中也可能发生6. (2分) (2019七下·迁西期末) 如图,,,则、、的关系为A .B .C .D .7. (2分)如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在丙区域内的概率是()A . 1B .C .D .8. (2分) (2016九上·南浔期末) 如图,已知在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A,D为圆心,大于 AD的长为半径在AD两侧作弧,交于M,N两点;第二步,连结MN,分别交AB,AC于点E,F;第三步,连结DE,DF.若BD=6,AF=5,CD=3,则BE的长是()A . 7B . 8C . 9D . 109. (2分)下列命题是真命题的是()A . 有一个角相等的两个等腰三角形相似B . 两边对应成比例且有一个角相等的两个三角形相似C . 四个内角都对应相等的两个四边形相似D . 斜边和一条直角边对应成比例的两个直角三角形相似10. (2分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔A . 1B . 2C . 3D . 411. (2分) (2020七下·巴中期中) 已知方程组的解满足,则k的值为()A .B .C .D .12. (2分)如图,一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西20º的方向行驶40海里到达C地,则A、C两地相距()A . 40海里B . 30海里C . 50海里D . 60海里二、填空题 (共6题;共6分)13. (1分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=70°,则∠AED′等于________14. (1分)某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________个.15. (1分) (2020八下·蓬溪期中) 若函数y=kx+b的图象平行于直线y=2x,且过点(2,﹣4),则该函数的表达式是________ .16. (1分) (2018八上·泰兴期中) 如图,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于点D,PD=3,则PC等于________.17. (1分)如图:函数y=2x和y=ax+4的图象交于点A(m,2),不等式2x<ax+4的解集为________ .18. (1分)某校举行“中国梦•劳动美”知识竞赛,其评分规则如下:答对一题得5分,答错一题得﹣5分,不作答得0分.已知试题共20道,满分100分,凡优秀(得分80分或以上)者才有资格参加决赛.小明同学在这次竞赛中有2道题未答,但刚好获得决赛资格.设小明答对x道题,答错y道题,则可列出满足题意的方程组为________ .三、解答题 (共7题;共57分)19. (10分) (2015七下·绍兴期中) 用适当方法解下列方程组.(1)(2).20. (6分) (2016七下·威海期末) 如图,点M,N分别在∠AOB的边OA,OB上,且OM=ON.(1)利用尺规作图:过点M,N分别作OA,OB的垂线,两条垂线相交于点D(不用写作法,只保留作图痕迹);(2)连接OD,若∠AOB=70°,则∠ODN的度数是________.21. (6分)(2019·莲湖模拟) 为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为________,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.22. (5分) (2018八上·武汉期中) 已知△ABN和△ACM的位置如图所示,∠1=∠2,AB=AC,AM=AN,求证:∠M=∠N.23. (10分)(2017·南漳模拟) 某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?24. (10分) (2020九上·镇海期中) 如图,A,B,C是⊙O上的点,其中 =2 ,过点B画BD⊥OC.于点D.(1)求证:AB=2BD.(2)若AB=2 ,CD=1,求图中涂色部分的面积.25. (10分)已知直线L经过点A(﹣2,0),B(0,3)(1)求直线L的解析式.(2)在x轴上有一点P,且△ABP是等腰三角形,求点P的坐标.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共7题;共57分)答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:。

湘教版七年级下册期末数学试卷(含答案)

湘教版七年级下册期末数学试卷(含答案)

七年级下册期末数学试卷一.选择题(本大题共9小题,每小题2分,共18分)1.“认识交通标志,遵守交通规则”,下列交通标志中,是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.a•a2=a2B.(x3)2=x5C.(2a)2=4a2D.(x+1)2=x2+13.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.4a2﹣8a=a(4a﹣8)C.a+2a+2=(a﹣1)2+1D.x2﹣2x+1=(x﹣1)24.下列运算正确的是()A.(m+n)(﹣m+n)=n2﹣m2B.(a﹣b)2=a2﹣b2C.(a+m)(b+n)=ab+mn D.(x﹣1)2=x2﹣2x﹣15.下列说法错误的是()A.平移不改变图形的形状和大小B.对顶角相等C.在同一平面内,垂直于同一条直线的两条直线平行D.同位角相等6.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.众数B.平均数C.中位数D.方差7.如图.直线a∥b,直线L与a、b分别交于点A、B,过点A作AC⊥b于点C.若∠1=50°,则∠2的度数为()A.130°B.50°C.40°D.25°8.如图,下列条件中,能判定AD∥BC的是()A.∠C=∠CBE B.∠A+∠ADC=180°C.∠ABD=∠CDB D.∠A=∠CBE9.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m﹣n)2D.m2﹣n2二、填空题(本大题共9小题,每小题2分,共18分)10.计算:(﹣2a)2﹣a2=.11.是二元一次方程2x+ay=5的一个解,则a的值为.12.若a+4b=10,2a﹣b=﹣1,则a+b=.13.如图是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是(填“甲”或“乙”).14.已知多项式x2+mx+25是完全平方式,且m<0,则m的值为.15.因式分解:(x﹣3)﹣2x(x﹣3)=.16.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是.17.如图,将△ABC绕着点C按顺时针方向旋转20°后,B点落在B位置,A点落在A′位置,若AC⊥BC,则∠BCA′的度数是.18.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E交AF 于点G,若∠CEF=70°,则∠GFD′=°.三、解答题(本大题共9小题,19~23每小题6分,24~26每小题6分,27小题10分,共64分)19.先化简,再求值:2x(2x﹣y)﹣(2x﹣y)2,其中x=,y=﹣1.20.解方程组.21.如图,在正方形网格中,有格点三角形ABC(顶点都是格点)和直线MN.(1)画出三角形ABC关于直线MN对称的三角形A1B1C1(2)将三角形ABC绕点A按逆时针方向旋转90°得到三角形AB2C2,在正方形网格中画出三角形AB2C2.(不要求写作法)22.推理填空:如图,∠1+∠2=180°,∠A=∠C,试说明:AE∥BC.解:因为∠1+∠2=180°,所以AB∥(同旁内角互补,两直线平行)所以∠A=∠EDC(),又因为∠A=∠C(已知)所以∠EDC=∠C(等量代换),所以AE∥BC()23.某中学有15位学生利用暑假参加社会实践活动,到某公司销售部做某种商品的销售员,销售部为帮助学生制定合理的周销售定额,统计了这15位学生某周的销售量如下:45013060504035周销售量(件)人数113532(1)求这15位学生周销售量的平均数、中位数、众数;(2)假设销售部把每位学生的周销售定额规定为80件,你认为是否合理?为什么?如果不合理,请你从表中选一个较合理的周销售量作为周销售定额,并说明理由.24.我市某中学决定到超市购买一定数量的羽毛球拍和羽毛球,已知买1副羽毛球拍和1个羽毛球要花费35元,买2副羽毛球拍和3个羽毛球要花费75元,求购买10副羽毛球拍和20个羽毛球共需多少元?25.如图,直线a∥b,直线AB与a,b分别相交于点A,B,AC⊥AB,AC交直线b于点C.(1)若∠1=60°,求∠2的度数;(2)若AC=3,AB=4,BC=5,求a与b的距离.26.先仔细阅读材料,冉尝试解决问题完全平方公式a2±2ab+b2=(a±b)2及(a±b)2的值具有非负性的特点在数学学习中有着广泛的应用,例如求多项式2x2+12x﹣4的最小值时,我们可以这样处理:解:原式=2(x2+6x﹣2)=2(x2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x取什么数,都有(x+3)2的值为非负数,所以(x+3)2的最小值为0,当x=﹣3时,2(x+3)2﹣22的最小值是﹣22,所以当x=﹣3时,原多项式的最小值是﹣22.解决问题:(1)请根据上面的解题思路探求:多项式x2+4x+5的最小值是多少,并写出此时x的值;(2)请根据上面的解题思路探求:多项式﹣3x2﹣6x+12的最大值是多少,并写出此时x的值.27.如图,MN∥OP,点A为直线MN上一定点,B为直线OP上的动点,在直线MN与OP之间且在线段AB的右方作点D,使得AD⊥BD.设∠DAB=α(α为锐角).(1)求∠NAD与∠PBD的和;(提示过点D作EF∥MN)(2)当点B在直线OP上运动时,试说明∠OBD﹣∠NAD=90°;(3)当点B在直线OP上运动的过程中,若AD平分∠NAB,AB也恰好平分∠OBD,请求出此时α的值参考答案与试题解析一.选择题(本大题共9小题,每小题2分,共18分)1.解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.2.解:A、a•a2=a3,故此选项错误;B、(x3)2=x6,故此选项错误;C、(2a)2=4a2,正确;D、(x+1)2=x2+2x+1,故此选项错误.故选:C.3.解:A、原式=(x+2)(x﹣2),不符合题意;B、原式=4a(a﹣2),不符合题意;C、原式不能分解,不符合题意;D、原式=(x﹣1)2,符合题意,故选:D.4.解:∵(m+n)(﹣m+n)=n2﹣m2,故选项A正确,∵(a﹣b)2=a2﹣2ab+b2,故选项B错误,∵(a+m)(b+n)=ab+an+bm+mn,故选项C错误,∵(x﹣1)2=x2﹣2x+1,故选项D错误,故选:A.5.解:A、平移不改变图形的形状和大小,正确;B、对顶角相等,正确;C、在同一平面内,垂直于同一条直线的两条直线平行,正确;D、两直线平行,同位角相等,错误;故选:D.6.解:由于总共有9个人,且他们的分数互不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自已的成绩和中位数.故选:C.7.解:∵AC⊥b,∴∠ACB=90°,∵∠1=50°,∴∠ABC=40°,∵a∥b,∴∠ABC=∠2=40°.故选:C.8.解:A、∵∠C=∠CBE,∴AB∥CD,故本选项错误;B、∵∠A+∠ADC=180°,∴AB∥CD,故本选项错误;C、∵∠ABD=∠CDB,∴AB∥CD,故本选项错误;D、∵∠A=∠CBE,∴AD∥BC,故本选项正确.故选:D.9.解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2﹣4mn=(m﹣n)2.故选:C.二、填空题(本大题共9小题,每小题2分,共18分)10.解:(﹣2a)2﹣a2=4a2﹣a2=3a2,故答案为:3a2.11.解:将代入二元一次方程2x+ay=5,得2+3a=5,解得a=1,故答案为:1.12.解:∵a+4b=10①,2a﹣b=﹣1②,①+②可得:3a+3b=9,即:a+b=3.故答案为:3.13.解:由图中知,甲的成绩为7,8,8,9,8,9,9,8,7,7,乙的成绩为6,8,8,9,8,10,9,8,6,7,=(7+8+8+9+8+9+9+8+7+7)÷10=8,=(6+8+8+9+8+10+9+8+6+7)÷10=7.9,甲的方差S甲2=[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]÷10=0.6,乙的方差S乙2=[2×(6﹣7.9)2+4×(8﹣7.9)2+2×(9﹣7.9)2+(10﹣7.9)2+(7﹣7.9)2]÷10=1.49,则S2甲<S2乙,即射击成绩的方差较小的是甲.故答案为:甲.14.解:∵x2+mx+25是一个完全平方式,∴x2+mx+25=(x+5)2或x2+mx+25=(k﹣5)2,∴m=±10.∵m<0,∴m的值为﹣10.故答案是:﹣10.15.解:(x﹣3)﹣2x(x﹣3)=(x﹣3)(1﹣2x).故答案为:(x﹣3)(1﹣2x).16.解:∵直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,∴点P到b的距离是5﹣2=3,故答案为:3.17.解:∵AC⊥BC,∴∠ACB=90°,∵∠ACB=∠A′CB′=90°,∴∠BCB′=∠ACA′=20°,∴∠BCA′=90°+20°=110°,故答案为110°.18.解:矩形纸片ABCD中,AD∥BC,∵∠CEF=70°,∴∠EFG=∠CEF=70°,∴∠EFD=180°﹣70°=110°,根据折叠的性质,∠EFD′=∠EFD=110°,∴∠GFD′=∠EFD′﹣∠EFG,=110°﹣70°,=40°.故答案为:40.三、解答题(本大题共9小题,19~23每小题6分,24~26每小题6分,27小题10分,共64分)19.解:2x(2x﹣y)﹣(2x﹣y)2=4x2﹣2xy﹣4x2+4xy﹣y2=2xy﹣y2,当x=,y=﹣1时,原式=2××(﹣1)﹣(﹣1)2=﹣2.20.解:①×2+②得:7x=14,即x=2,将x=2代入①得:y=﹣1,则方程组的解为.21.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△AB2C2即为所求.22.解:因为∠1+∠2=180°,所以AB∥DC(同旁内角互补,两直线平行)所以∠A=∠EDC(两直线平行,同位角相等),又因为∠A=∠C(已知)所以∠EDC=∠C(等量代换),所以AE∥BC(内错角相等,两直线平行)故答案为:DC,两直线平行,同位角相等;内错角相等,两直线平行.23.解:(1)这15位学生周销售量的平均数=(450×1+130×1+60×3+50×5+40×3+35×2)÷15=80,中位数为50,众数为50;(2)不合理.因为15人中有13人销售量达不到80,周销售额定为50较合适,因为50是众数也是中位数.24.解:设购买1副羽毛球拍需要x元,购买1个羽毛球需要y元,根据题意得:,解得:,∴10x+20y=10×30+20×5=400.答:购买10副羽毛球拍和20个羽毛球共需400元.25.解:(1)∵直线a∥b,∴∠3=∠1=60°,又∵AC⊥AB,∴∠2=90°﹣∠3=30°;(2)如图,过A作AD⊥BC于D,则AD的长即为a与b之间的距离.∵AC⊥AB,∴×AB×AC=×BC×AD,∴AD==,∴a与b的距离为.26.解:(1)x2+4x+5=x2+4x+4+1=(x+2)2+1,当x=﹣2时,多项式x2+4x+5的最小值是1;(2)﹣3x2﹣6x+12=﹣3(x2+2x+1)+3+12=﹣3(x+1)2+15,当x=﹣1时,多项式﹣3x2﹣6x+12的最大值是15.27.解:(1)如图,过点D作EF∥MN,则∠NAD=∠ADE.∵MN∥OP,EF∥MN,∴EF∥OP.∴∠PBD=∠BDE,∴∠NAD+∠PBD=∠ADE+∠BDE=∠ADB.∵AD⊥BD,∴∠ADB=90°,∴∠NAD+∠PBD=90°.(2)由(1)得:∠NAD+∠PBD=90°,则∠NAD=90°﹣∠PBD.∵∠OBD+∠PBD=180°,∴∠OBD=180°﹣∠PBD,∴∠OBD﹣∠NAD=(180°﹣∠PBD)﹣(90°﹣∠PBD)=90°.(3)若AD平分∠NAB,AB也恰好平分∠OBD,则有∠NAD=∠BAD=α,∠NAB=2∠BAD =2α,∠OBD=2∠OBA.∵OP∥MN,∴∠OBA=∠NAB=2α,∴∠OBD=4α.由(2)知:∠OBD﹣∠NAD=90°,则4α﹣α=90°,解得:α=30°.1、只要朝着一个方向努力,一切都会变得得心应手。

七年级下学期期末考试数学试卷(附答案解析)

七年级下学期期末考试数学试卷(附答案解析)

七年级下学期期末考试数学试卷(附答案解析)一、选择题(本大题10小题,每小题3分共30分)1.数4的算术平方根是()A.2 B.﹣2 C.±2 D.2.下列图形中,∠1与∠2互为邻补角的是()A.B.C.D.3.下列各数中是无理数的是()A.B.C.D.3.144.在下列调查中,适宜采用全面调查的是()A.了解某省中学生的视力情况B.了解某班学生的身高情况C.检测一批电灯泡的使用寿命D.调查一批汽车的抗撞击能力5.在乡村振兴活动中,某村通过铺设水管将河水引到村庄C处,为节省材料,他们过点C向河岸l作垂线,垂足为点D,于是确定沿CD铺设水管,这样做的数学道理是()A.两点之间,线段最短B.过一点有且只有一条直线与已知直线垂直C.垂线段最短D.两条直线相交有且只有一个交点6.第三象限内的点P到x轴的距离是5,到y轴的距离是6,那么点P的坐标是()A.(5,6)B.(﹣5,﹣6)C.(6,5)D.(﹣6,﹣5)7.李老师设计了一个关于实数运算的程序:输入一个数,乘以后再减去,输出结果.若小刚按程序输入2,则输出的结果应为()A.2 B.C.﹣D.38.下列语句中,是真命题的是()A.如果|a|=|b|,那么a=bB.一个正数的平方大于这个正数C.内错角相等,两直线平行D.如果a>b,那么ac>bc9.若a﹣b<0,则下列不等式正确的是()A.3a>3b B.﹣2a>﹣2b C.a﹣1>b﹣1 D.3﹣a<3﹣b10.已知关于x,y的二元一次方程组,下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣1;②当x为正数,y为非负数时,﹣<a≤;③无论a取何值,x+2y的值始终不变.A.①②B.②③C.①③D.①②③二、填空题(本大题7小题,每小题4分,共28分)11.(4分)计算:|﹣|=.12.(4分)在平面直角坐标系中,将点A(3,m﹣2)在x轴上,则m=.13.(4分)根据如表数据回答259.21的平方根是.x16 16.1 16.2 16.3x2256 259.21 262.44 265.6914.(4分)已知二元一次方程2x﹣3y﹣5=0的一组解为,则2a﹣3b+3=.15.(4分)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明想得分不少于90分,他至少要答对题.16.(4分)如图,将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F.若∠EFC=70°,则∠ACF=°.17.(4分)为组织研学活动,王老师把班级里50名学生计划分成若干小组,若每组只能是4人或5人,则有种分组方案.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)在等式y=kx+b中,当x=3时,y=3;当x=﹣1时,y=1.求k,b的值.19.(6分)解不等式组,并将不等式组的解集在数轴上表示出来.20.(6分)在平面直角坐标系中,点P(﹣5,2)和点Q(m+1,3m﹣1),当线段PQ与x轴平行时,求线段PQ的长.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)某校为了解学生的体育锻炼情况,围绕“你最喜欢的一项体育活动”进行随机抽样调查,从而得到一组数据,如图是根据这组数据绘制的两个统计图.请结合统计图,解答下列问题:(1)该校对名学生进行了抽样调查:在扇形统计图中,“羽毛球”所对应的圆心角的度数为度;(2)补全条形统计图;(3)若该校共有2400名学生,请你估计全校学生中最喜欢跳绳活动的人数约为多少人.22.(8分)如图,DE⊥AC,FG⊥AC,∠1=∠2,∠B=∠3+50°,∠CAB=60°.(1)求证:BC∥AG;(2)求∠C的度数.23.(8分)为鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分技第二阶梯电价收费,如图是涛涛家2021年4月和5月所交电费的收据(度数均取整数).(1)该市规定的第一阶梯电费和第二阶梯电费单价分别为多少?(2)涛涛家6月份家庭支出计划中电费不超过120元,她家最大用电量为多少度?五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)小明同学在数学活动中,将一副三角板按如图1所示的方式放置,其中点B在线段EC上,点D在线段AC上,AB与DE相交于点F,∠C=90°,∠A=30°,∠E=45°.(1)求∠BFD的度数;(2)如图2,当小明将三角板DCE绕点C转动到ED⊥AB时,求∠BCE的度数;(3)小明思考:在转动三角板DCE的过程中,当0°<∠BCE<180°,且点E在直线BC的上方时,是否存在DE与三角板ABC的一条边互相平行?若存在,请你帮小明直接写出∠BCE 所有可能的值;若不存在,请说明理由.25.(10分)如图,在平面直角坐标系中,正方形ABCO的边长为1,边AO,CO分别在坐标轴的正半轴上,连接OB,以点O为圆心,对角线OB为半径画弧交x轴的正半轴于点D.(1)填空:线段OB的长为,点D的坐标为;(2)将线段AD向左平移到A′D′位置,当OA'=AD′时,求点D′的坐标;(3)在(2)的条件下,求点D′到直线OB的距离.参考答案与解析一、选择题1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.【解答】解:A.两个角不存在公共边,故不是邻补角,故A不符合题意;B、两个角不存在公共边,故不是邻补角,故B不符合题意;C、两个角不存在公共边,故不是邻补角,故C不符合题意;D、两个角是邻补角,故D符合题意.故选:D.3.【解答】解:A.是分数,属于有理数,故本选项不合题意;B.是无理数,故本选项符合题意;C.,是整数,属于有理数,故本选项不合题意;D.3.14是有限小数,属于有理数,故本选项不合题意;故选:B.4.【解答】解:A.了解某省中学生的视力情况,适合抽样调查,不符合题意;B.了解某班学生的身高情况,适合采用全面调查,符合题意;C.检测一批节能灯的使用寿命,具有破坏性,适合抽样调查,不符合题意;D.调查一批汽车的抗撞击能力,具有破坏性,适合抽样调查,不符合题意;故选:B.5.【解答】解:因为CD⊥l于点D,根据垂线段最短,所以CD为C点到河岸l的最短路径.故选:C.6.【解答】解:∵第三象限的点P到x轴的距离是5,到y轴的距离是6,∴点P的横坐标是﹣6,纵坐标是﹣5,∴点P的坐标为(﹣6,﹣5).故选:D.7.【解答】解:2﹣=.故选:B.8.【解答】解:A、如果|a|=|b|,那么a=b或a=﹣b,原命题是假命题;B、一个正数的平方不一定大于这个正数,如0.1,原命题是假命题;C、内错角相等,两直线平行,是真命题;D、如果a>b,c<0时那么ac<bc,原命题是假命题;故选:C.9.【解答】解:由a﹣b<0可得a<b,A.∵a<b,∴3a<3b,故本选项不合题意;B.∵a<b,∴﹣2a>﹣2b,故本选项符合题意;C.∵a<b,∴a﹣1<b﹣1,故本选项不合题意;D.∵a<b,∴﹣a>﹣b,∴3﹣a>3﹣b,故本选项不合题意;故选:B.10.【解答】解:解方程组得:,①∵x、y互为相反数,∴x+y=0,∴+=0,解得:a=﹣1,故①正确;②∵x为正数,y为非负数,∴,解得:﹣<a≤,故②正确;③∵x=,y=,∴x+2y=+2×==,即x+2y的值始终不变,故③正确;故选:D.二、填空题11.【解答】解:|﹣|=.故答案为:.12.【解答】解:∵点A(3,m﹣2)在x轴上,∴m﹣2=0,解得:m=2.故答案为:2.13.【解答】解:由表中数据可得:259.21的平方根是:±16.1.故答案为:±16.1.14.【解答】解:∵二元一次方程2x﹣3y﹣5=0的一组解为,∴2a﹣3b﹣5=0,∴2a﹣3b=5,∴2a﹣3b+3=5+3=8,故答案为:815.【解答】解:设应答对x道,则:10x﹣5(20﹣x)>90,解得:x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.故答案为:13.16.【解答】解:∵将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,∴∠E=∠B=90°,∠CAB=∠CAE,∵AB∥CD,∠EFC=70°,∴∠BAE=∠EFC=70°,∠CAB=∠ACF,∴∠CAB=∠BAE=35°,∴∠ACF=∠CAB=35°.故答案为:35.17.【解答】解:设4人小组有x组,5人小组有y组,由题意可得:4x+5y=50,∵x,y为自然数,∴,,,∴有3种分组方案,故答案为:3.三、解答题(一)18.【解答】解:根据题意,得,①﹣②,得4k=2,解得:k=,把k=代入②,得﹣+b=1,解得:b=.19.【解答】解:由2x≥x﹣1,得:x≥﹣1,由x+2>4x﹣1,得:x<1,则不等式组的解集为﹣1≤x<1,将不等式组的解集表示在数轴上如下:20.【解答】解:当线段PQ与x轴平行时,3m﹣1=2,解得:m=1,∴Q点坐标为(2,2),∴PQ=2﹣(﹣5)=2+5=7,即线段PQ的长为7.四、解答题(二)21.【解答】解:(1)因为抽样中喜欢足球的学生有12名,占30%,所以共抽样调查的学生数为:12÷30%=40(名).喜欢羽毛球的2名,占抽样的:2÷40=5%.其对应的圆心角为:360°×5%=18°.故答案为:40,18.(2)∵喜欢篮球的占40%,所以喜欢篮球的学生共有:40×40%=16(名).补全的条形图:(3)∵样本中有5名喜欢跳绳,占抽样的5÷40=12.5%,所以该校喜欢跳绳的学生有2400×12.5%=300(名).答:全校学生中最喜欢跳绳活动的人数约为300名.22.【解答】(1)证明:∵DE⊥AC,FG⊥AC,∴DE∥FG,∴∠2=∠AGF,∵∠1=∠2,∴∠1=∠AGF,∴BC∥AG;(2)解:由(1)得,BC∥AG,∴∠B+∠BAC=180°,即∠B+∠3+∠CAB=180°,∵∠B=∠3+50°,∠CAB=60°,∴∠B+(∠B﹣50°)+60°=180°,∴∠B=85°,∴∠C=180°﹣∠B﹣∠CAB=180°﹣85°﹣60°=35°.23.【解答】解:(1)设该市规定的第一阶梯电费单价为x元,第二阶梯电费单价为y元,依题意,得:,解得:.答:该市规定的第一阶梯电费单价为0.5元,第二阶梯电费单价为0.6元.(2)设涛涛家6月份的用电量为m度,依题意,得:200×0.5+0.6(m﹣200)≤120,解得:m≤233,∵m为正整数,∴m的最大值为233.答:涛涛家6月份最大用电量为233度.五、解答题(三)24.【解答】解:(1)如图1中,∵∠A=30°,∠CDE=45°,∴∠ADF=180°﹣45°=135°,∴∠AFD=180°﹣∠A﹣∠ADF=180°﹣30°﹣135°=15°,∴∠BFD=180°﹣∠AFD=180°﹣15°=165°.(2)如图2中,设AB交CE于J.∵DE⊥AB,∴∠EFJ=90°,∵∠E=45°,∴∠EJF=90°﹣45°=45°,∴∠BJC=∠EJF=45°,∵∠B=60°,∴∠ECB=180°﹣∠B﹣∠BJC=180°﹣60°﹣45°=75°.(3)如图3﹣1中,当DE∥BC时,∠BCE=∠E=45°.如图3﹣2中,当DE∥AC时,∠ACE=∠E=45°,∴∠BCE=∠ACB+∠ACE=90°+45°=135°.如图3﹣3中,当DE∥AB时,延长BC交DE于J.∴∠CJD=∠ABC=60°,∵∠CJD=∠E+∠ECJ,∠E=45°,∴∠ECJ=15°,∴∠BCE=180°﹣∠ECJ=180°﹣15°=165°,综上所述,满足条件的∠BCE的值为45°或135°或165°.25.【解答】解:(1)∵四边形OABC是正方形,且边长为1,∴OA=AB=1,根据勾股定理得,OB=,∴OD=,∴D(,0),故答案为:,(,0);(2)∵线段AD向左平移到A′D′,∴AD=A′D′,∵OA'=AD′,∴OD′=OA'+A′D′=(OA'+A′D′+AD′+AD)=OD=,∴D(,0),(3)设点D′到直线OB的距离为h,则S△OBD′=OB•h=OD′•BA,即h=×1,∴点D′到直线OB的距离为h=.。

人教版七年级下册2014—2015学年下学期期末.doc

人教版七年级下册2014—2015学年下学期期末.doc

2014—2015学年下学期期末七年级数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,共36分,答案请填在题后答题栏内;第Ⅱ卷为非选择题,共64分.Ⅰ、Ⅱ卷合计100分,考试时间为90分钟.第Ⅰ卷(选择题 共36分)一.选择题(每小题3分,共36分)1.已知以下四个汽车标志图案,其中轴对称图形的个数是( ).A . 1个B .2个C .3个D .4个 2一副三角板如图叠放在一起,∠α的度数为( ). A .95° B .100° C .105° D .120°3.我们学习了怎样作一个角等于已知角,小迪发现实际的作图过程就是作一个三角形与原来的三角形全等.那么,你能说出它运用的是哪个判定三角形全等的方法呢?( ) A . AAS B . ASA C . SSS D . SAS4.一辆汽车在笔直的公路上行驶,在两次转弯后,仍在原来的方向上平行前进,那么这两次转弯的角度可以是( ) A .先右转80°,再左转100°B .先左转80° ,再右转80°C .先左转80°,再左转100° D .先右转80°,再右转80° 5.下列事件属于必然事件的是( ).A .在1个标准大气压下,水加热到100°C 沸腾B .明天我市最高气温为56℃C .中秋节晚上能看到月亮D .下雨后有彩虹6.某地区植树造林2009年达到2万公顷,预计从2010年开始,以后每年比前一年多植树2万公顷(2010年为第一年),则年植树面积y (万亩)与年数x (年)的关系是( ). A . y =2+0.5x B . y =2+x C. y =2+2x D. y =2x7.随机投掷一枚均匀的硬币,前9次都是正面朝上,第10次投掷时, ( ).第2题A .正面朝上的概率大B .反面朝上的概率大C .正面朝上和反面朝上的概率一样大D .一定是反面朝上8.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度y (cm )与燃烧时间x (小时)的关系用下图中( )图象表示.9. 下列说法正确的是( )A .三角形三条高都在三角形内B . 三角形的角平分线是射线C .三角形的三条角平分线可能在三角形内,也可能在三角形外D .三角形三条中线相交于一点10.若下列各组值代表线段的长度,则不能构成三角形的是( ). A . 3,8,4 B . 4,9,6 C . 15,20,8 D . 9,15,811. 如图,△ABC 和△ADE 关于直线l 对称,下列结论:①△ABC ≌△ADE ;②直线l 垂直平分DB ;③∠C =∠E ;④BC 与DE 的延长线的交点一定落在直线l 上.其中错误..的有( ). A .0个B.1个C.2个D.3个12.若∠A 和∠B 的两边分别平行,且∠A 比∠B 的2倍少30°, 则∠B 的度数为( ).A .30°B .70°C .30°或70°D .100°选择题答题栏: 第Ⅱ卷(非选择题 共64分)题号一二三总 分题号 1 2 3 4 5 6 7 8 9 10 11 12 答案得分19202122232425二.填空题(每小题3分,共18分)13.在体育达标跳绳项目测试中,1min 跳160次为达标,•小敏记录了他预测时的成绩,1min 跳的次数分别为145,155,140,162,164,•则他在该预测中达标的概率是_________.14.如图所示,一个四棱柱的底面是一个边长为10cm 的正方形,它的高变化时,棱柱的体积也随着变化。

湘教版七年级下册数学期末考试试卷及答案

湘教版七年级下册数学期末考试试卷及答案

湘教版七年级下册数学期末考试试题一、单选题1.若12x y =-⎧⎨=⎩是方程3x +ay =1的一个解,则a 的值是( )A .1B .﹣1C .2D .﹣22.下列各式计算正确的是( ) A .(a 2)3=a 5B .a 4⋅a 2=a 8C .a 6÷a 3=a 2D .(ab)3=a 3b 33.二元一次方程组{x +y =2x −y =−2的解是( )A .{x =0y =2B .{x =2y =0C .{x =1y =4D .{x =1y =14.下图是我国几家银行的标志,其中是轴对称图形的是( )A .B .C .D .5.如果35×9=3n ,则n 的值为( ) A .6B .7C .8D .96.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠37.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是8.4环,方差分别是s2甲=0.5,s2乙=0.7,s2丙=0.9,s2丁=1.5.在这次射击测试中,成绩最稳定的是( ) A .甲B .乙C .丙D .丁8.如果二次三项式x 2+ax +2可分解为(x −1)(x +b),则a +b 的值为( ) A .−2B .−5C .3D .59.在同一平面内,设a 、b 、c 是三条互相平行的直线,已知a 与b 的距离为4cm ,b 与c 的距离为1cm ,则a 与c 的距离为( )A .1cmB .3cmC .5cm 或3cmD .1cm 或3cm二、填空题10.计算:232a a a ⋅-=____________. 11.因式分解:2xy 2xy x ++=______.12.已知方程210x y +-=,用含x 的代数式表示y 的形式为____________. 13.一组数据:2,2,1,4,4,4的中位数是____________. 14.若32x y -=且36x y -=,则y x -的值为____________.15.如图,三角形ABC 绕点A 逆时针旋转90︒到三角形AB C ''的位置.已知35BAC ︒∠=,则B AC '∠=____________度.16.如图,直线a b ∥,三角板的直角顶点A 落在直线a 上,两条边分别交直线b 于B ,C 两点.若125︒∠=,则2∠=____________度.17.如图,AD BC ∥,4AD BC ==,且三角形ABC 的面积为6,则点C 到AD 的距离是____________.18.将长方形ABCD 纸片按如图所示方式折叠,使得50A EB ''︒∠=,其中EF ,EG 为折痕,则AEF ∠+BEG ∠=____________度.三、解答题 19.解方程组:237,3 1.x y x y -=⎧⎨+=-⎩①②20.先化简,再求值: (x +2)(x -2)+x(4-x),其中x =14.21.如图,三角形ABC 和直线MN ,且三角形ABC 的顶点在网格的交点上.(1)画出三角形ABC 向上平移4小格后的三角形111A B C ; (2)画出三角形ABC 关于直线MN 对称的三角形222A B C (以上作图不要求...写作法)22.推理填空:如图,DE BC ∥,ADE EFC ∠=∠,将说明12∠=∠成立的理由填写完整.解:因为DE BC ∥(已知),所以ADE ABC =∠∠(________________) 又因为ADE EFC ∠=∠(已知), 所以ABC EFC ∠=∠(等量代换),所以________________(同位角相等,两直线平行), 所以12∠=∠(________________________________)23.小欣打算购买气球装扮好朋友小岩的生日派对现场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于布置的需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为多少元24.为准备参加某市2019年度中小学生机器人竞赛,学校对甲、乙两支机器人制作小队所创作的机器人分别从创意、设计、编程与制作三方面进行量化,各项量化满分100分,根据量化结果择优推荐.它们三项量化得分如下表:(1)如果根据三项量化的平均分择优推荐,哪队将被推荐参赛?(2)根据本次中小学生机器人竞赛的主题要求,如果学校根据创意、设计、编程与制作三项量化得分按532::的比例确定每队最后得分的平均分择优推荐,哪队将被推荐参赛?并对另外一队提出合理化的建议.25.如图,BF ,DE 分别是ABD ∠,BDC ∠的平分线,且BF DE ⊥,垂足为点E ,BF 交DC 于点F.(1)试说明AB CD ∥;(2)若55DBF ︒∠=,试求EFD ∠的度数.26.阅读某同学对多项式()()2242464x x xx -+-++进行因式分解的过程,并解决问题:解:设24x x y -=,原式(2)(6)4y y =+++(第一步)2816y y =++(第二步) 2(4)y =+(第三步)()2244x x =-+(第四步)(1)该同学第二步到第三步的变形运用了________(填序号); A .提公因式法 B .平方差公式C .两数和的平方公式D .两数差的平方公式(2)该同学在第三步..用所设的的代数式进行了代换,得到第四步的结果,这个结果能否进一步因式分解?________(填“能”或“不能”).如果能,直接写出最后结果________. (3)请你模仿以上方法尝试对多项式()()22661881x x xx ++++进行因式分行解.27.如图,点O 为直线AB 上一点,过点O 作射线OC ,使135BOC ︒∠=.将一个含45︒角的直角三角板OMN 的一个顶点放在点O 处,斜边OM 与直线AB 重合,另外两条直角边ON ,MN 都在直线AB 的下方.(1)将图1中的三角板OMN 绕着点O 逆时针旋转90︒,如图2所示,请问OM 是否平分CON ∠请说明理由;(2)将图2中的三角板OMN 绕点O 逆时针继续旋转到图3的位置所示,使得ON 在AOC ∠的内部,请探究AOM ∠与CON ∠之间的数量关系,并说明理由;(3)将图1中的三角板OMN 绕点O 按每秒2.5︒的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直角边ON 所在直线恰好平分锐角AOC ∠,则t 的值为________(直接写出结果).参考答案1.C 【解析】 【详解】解:由题意得321y -+=,解得2y =,故选C. 2.D 【解析】 【分析】根据幂的乘方与积的乘方,同底数幂的除法的运算方法,以及合并同类项的方法,逐项判断即可. 【详解】解:A. (a 2)3=a 6,故A 错误; B. a 4⋅a 2=a 6,故B 错误; C. a 6÷a 3=a 3,故C 错误;D. (ab)3=a 3b 3,故D 正确. 故选D. 【点睛】此题主要考查了幂的乘方与积的乘方,同底数幂的除法的运算方法,以及合并同类项的方法,要熟练掌握. 3.A 【解析】 【分析】方程组利用加减消元法求出解即可. 【详解】解: {x +y =2①x −y =−2②①+②得:2x=0, 解得:x=0, ①-②得:2y=4, 解得:y=2,则方程组的解为{x =0y =2,故选:A . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 4.C 【解析】 【分析】根据轴对称图形的定义判断即可. 【详解】解:A 、不是轴对称图形,故本选项错误; B 、不是轴对称图形,故本选项错误; C 、是轴对称图形,故本选项正确; D 、不是轴对称图形,故本选项错误.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.B【解析】【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:∵35×9=35×32=37=3n,∴n=7.故选B.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握相关运算法则是解题关键.6.D【解析】【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进行判断即可.【详解】由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b,故选D.【点睛】本题主要考查了平行线的判定,熟记平行线的判定方法是解题的关键. 解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放型题目,能有效地培养“执果索因”的思维方式与能力.7.A【解析】【分析】根据方差越大,波动性越大,越不稳定进行判断.【详解】解:∵s2甲<s2乙<s2丙<s2丁,∴在本次测试中,成绩最稳定的是甲.【点睛】[(x1−x̅)2+(x2−本题考查方差:一般地设n个数据,x1,x2,…x n的平均数为x̅,则方差S2=1nx̅)2+⋯+(x n−x̅)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.B【解析】【分析】利用多项式的乘法运算法则展开,然后根据对应项的系数相等列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:(x−1)(x+b)=x2+(b-1)x-b,∵二次三项式x2+ax+2可分解为(x−1)(x+b),∴a=b-1,-b=2,∴a=-3,b=-2.∴a+b=-5.故选B.【点睛】本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,根据对应项系数相等列式是解题的关键.9.C【解析】分析:分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.详解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4-1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a 与c 的距离=4+1=5(cm ),综上所述,a 与c 的距离为3cm 或5cm .故选:C .点睛:本题考查了平行线之间的距离,从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.平行线间的距离处处相等.注意分类讨论. 10.3a【解析】【分析】先算乘法,再合并即可.【详解】解:232a a a ⋅-=32a -3 a =3a .故答案为:3a .【点睛】熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.2(1)x y +【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】xy 2+2xy+x ,=x (y 2+2y+1),=x (y+1)2.故答案为:x (y+1)2.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.21y x =-+【解析】【分析】把x 看做已知数求出y 即可.【详解】解:方程2x+y-1=0,解得:y=-2x+1,故答案为:-2x+1.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .13.3【解析】【分析】根据中位数的定义解答.需将这组数据从小到大重新排列.【详解】解:将这组数据从小到大重新排列后为1,2,2,4,4,4.最中间的那两个数是2,4,所以中位数是3.故答案为:3.【点睛】本题考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.14.2-【解析】【分析】将两方程相加可得4x-4y=8,再两边都除以4得出x-y 的值,继而由相反数定义或等式的性质即可得出答案.【详解】解:由题意知:3236x y x y -=⎧⎨-=⎩①②, ①+②,得:4x-4y=8,则x-y=2,-=-2,∴y x故答案为:-2.【点睛】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.15.55【解析】【分析】根据旋转的性质,可得∠BAB’=90°,再利用角的和差关系即可【详解】解:∵三角形ABC绕点A逆时针旋转90︒到三角形AB C''的位置.∴∠BAB’=90°,∵35∠=,BAC︒∴B AC∠=90°-35°=55°.'∠=∠BAB’-BAC故答案为55.【点睛】本题考查了旋转的性质,熟练运用旋转的性质解决问题是本题的关键.16.65【解析】【分析】先根据两角互余的性质求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:∵∠BAC=90°,∠1=25°,∴∠3=90°-∠1=90°-25°=65°.∵直线a∥b,∴∠2=∠3=65°.故答案为:65.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.17.3【解析】【分析】过A作AE⊥BC于D,则AE的长就是C与AD之间的距离,根据三角形的面积公式求出AE 即可.【详解】解:过点A作AE⊥BC于点E,过点C作CF⊥AD于点F,则1⨯⨯=6BC AE2∵BC=4,∴14AE⨯⨯=62解得:AE=3.∵AE⊥BC,CF⊥AD,∴AE CF.∥,∵AD BC∴四边形AECF为平行四边形,∴CF=AE=3.即点C到AD的距离是3.故答案为3.【点睛】本题考查了两条平行线间的距离和三角形的面积,关键是正确作辅助线后能求出AD的长.18.65【解析】【分析】根据翻折的定义可以得到各角之间的关系,从而可以得到∠AEF+∠BEG 的度数,从而可以解答本题.【详解】解:由题意可得,∠A’EA=2∠AEF,∠BEB’=2∠BEG.∴AEF ∠+BEG ∠=12(∠A’EA+∠BEB’). ∵∠A’EA+∠BEB’+∠A’EB’=180°,50A EB ''︒∠=∴∠A’EA+∠BEB’=130°,∴AEF ∠+BEG ∠=12⨯130°=65°. 故答案为65.【点睛】本题考查翻折变换、矩形的性质,解题的关键是明确题意,找出所求问题需要的条件. 19.21x y =⎧⎨=-⎩【解析】【分析】方程组利用加减消元法求出解即可;【详解】解:①+②得:36x =,解得:2x =,把2x =代入②得:1y =-,因此,原方程组的解为21x y =⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.-3.【解析】【分析】根据平方差公式和单项式乘以多项式,然后再合并同类项即可对题目中的式子化简,然后将x=14代入化简后的式子,即可求得原式的值.【详解】解:原式=x2-4+4x-x2=4x-4.当x=14时,原式=4×14-4=-3.故答案为:-3.【点睛】本题考查整式的混合运算—化简求值.21.(1)见解析;(2)见解析【解析】【分析】(1)根据图形平移的性质画出△A1B1C1即可;(2)根据轴对称的性质画出△A2B2C2即可.【详解】【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.22.两直线平行,同位角相等DB EF∥两直线平行,内错角相等.【解析】【分析】根据平行线的性质得出∠ADE=∠ABC,求出∠ABC=∠EFC,根据平行线的判定得出DB∥EF,根据平行线的性质得出即可;解:(1)∵DE∥BC(已知)∴∠ADE=∠ABC(两直线平行,同位角相等),∵∠ADE=∠EFC (已知),∴∠ABC=∠EFC,∴DB∥EF(同位角相等,两直线平行),∴∠1=∠2 (两直线平行,内错角相等),故答案为:(1). 两直线平行,同位角相等(2). DB EF∥(3). 两直线平行,内错角相等.【点睛】本题考查了角平分线定义和平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.23.18元【解析】【分析】要求出第三束气球的价格,先求出笑脸形和爱心形的气球的单价就可以求出结论.【详解】解设一个笑脸气球x元,一个爱心气球y元.根据题意,得316320 x yx y+=⎧⎨+=⎩①②解得:72112xy⎧=⎪⎪⎨⎪=⎪⎩,因此711 22221822x y+=⨯+⨯=.答:第三束气球的价格为18元.【点睛】此题考查二元一次方程组解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.24.(1)乙队;(2)甲队【分析】(1)根据平均数的求法,分别求出即可;(2)根据加权平均数的求法,分别求出即可.【详解】解:(1)因为1(857064)733x =⨯++=甲队,1(726684)743x =⨯++=乙队,所以乙队将被推荐参赛;(2)因为850.5700.3640.276.3x =⨯+⨯+⨯=甲队,720.5660.3840.272.6x =⨯+⨯+⨯=乙队.所以甲队将被推荐参赛.建议:加强机器人创意方面的开发(答案不唯一)【点睛】本题主要考查了平均数和加权平均数的求法,掌握其计算公式是解题的关键.25.(1)见解析;(2)55︒【解析】【分析】(1)利用同旁内角互补可求得AB CD ∥;(2)利用平行线的性质和角平分线的性质可求出结果.【详解】解:(1)因为BF DE ⊥(已知),所以90BED ︒∠=(垂直的定义),又因为180BED DBE BDE ︒∠+∠+∠=,所以90DBE BDE ︒∠+∠=,又因为BF ,DE 分别是ABD ∠,BDC ∠的平分线,所以22180ABD CDB DBE BDE ︒∠+∠=∠+∠=,所以AB CD ∥(同旁内角互补,两直线平行).(2)因为BF 是ABD ∠的角平分线,所以55ABF DBF ︒∠=∠=,又因为AB CD ∥,所以55EFD ABF ︒∠=∠=(两直线平行,内错角相等).【点睛】本题考查了平行线的判定及其性质,角平分线的性质,掌握相关知识是解题的关键. 26.(1)C ;(2)能,4(2)x -;(3)4(3)x +【解析】【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x 2+6x )看作整体进而分解因式即可.【详解】解:(1)C ;(2)能,4(2)x -;(3)设26x x y +=原式(18)81y y =++21881y y =++2(9)y =+()2269x x =++ 4(3)x =+【点睛】此题主要考查了公式法分解因式,熟练利用完全平方公式分解因式是解题关键,注意分解因式要彻底.27.(1)OM 平分CON ∠,理由见解析;(2)AOM CON ∠=∠,理由见解析;(3)9秒或81秒【解析】【分析】(1)利用旋转的性质可得∠BOM 的度数,然后计算∠MOC 的度数判断OM 是否平分∠CON ; (2)利用∠AOM=45°-∠AON 和∠NOC=45°-∠AON 可判断∠AOM 与∠CON 之间的数量关系; (3)ON 旋转22.5度和202.5度时,ON 平分∠AOC ,然后利用速度公式计算t 的值.【详解】解:(1)OM 平分CON ∠,理由如下:已知135BOC ︒∠=,因为OM 旋转90︒,所以OM BO ⊥,所以1359045COM BOC BOM ︒︒︒∠=∠-∠=-=,即45COM NOM ︒∠=∠=,所以OM 平分CON ∠.(2)AOM CON ∠=∠理由如下:因为45NOM ︒∠=,所以45AOM AON ︒∠=-∠,因为18013545AOC ︒︒︒∠=-=,所以45CON AON ︒∠=-∠,所以AOM CON ∠=∠.(3)9秒或81秒. 理由如下: T=12×45°÷2.5°=9(秒)或t=(180°+22.5°)÷2.5°=81(秒).故答案为9秒或81秒..【点睛】本题考查了角的计算:熟练掌握角平分线的定义和旋转的性质.。

2014-2015学年新人教版七年级2

2014-2015学年新人教版七年级2

2014-2015人教版七年级数学下册期末考试卷E 及答案一、精心选一选(本大题共8个小题,每小题3分共24分) 1. 如图所示,四幅汽车标志设计中,能通过平移得到的是( )奥迪 本田大众 铃木A B C D2. 下列各式中,正确的是( )A.±4 B.=-3 D=-4 3. a ﹣b <0,则下列各式中错误的是( )A .a <bB .﹣a >﹣bC .a +c <b +cD .c a <cb4.如图,一把直尺沿直线断开并发生平移, 点E 、D 、B 、F 在同一条直线上,若∠ADE = 125°, 则∠DBC 的度数为( )A .65°B .55°C .75°D .125° 5. 以下调查中,适宜全面调查的是( )①调查某批次的汽车的抗撞击力 ②了解某班学生的身高情况③调查春节联欢晚会的收视率 ④选出某班跑得最快的学生参加全市比赛.6.某校七年级(2)班40名同学为“抗旱救灾”捐款,共捐款100元。

捐款情况如表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚。

若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( )A .⎩⎨⎧=+=+663227y x y xB .⎩⎨⎧=+=+1003227y x y x....................10-98-76-54-32-1C .⎩⎨⎧=+=+662327y x y x D .⎩⎨⎧=+=+1002327y x y x7. 点A (4-m ,m 21-)在第三象限,则m 的取值范围是( ) A.21>m B.4<m C.421<<m D.4>m8. 将一组整数按如图所示的规律排列下去. 若有序数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示的数为8,则(7, 4)表示的数是( )A. 32B.24C.25D. -25一、细心填一填(本大题共8小题,每小题3分,共24分)9.在“We like maths .”这个句子的所有字母中,字母“e ”出现的频数是______________ 10.在722, 3.14159, 7, -8, 32, 0.6, 0, 36, 3π中是无理数的个数有 个. 11.关于x 的方程2x +3k =1的解为正数,则k 的取值范围是_____________.12.小亮解方程组 2212.x y x y +=⎧⎨-=⎩●的解为 5x y =⎧⎨=⎩,★,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为_____________.13.解三元一次方程组的基本思想是:通过“消元”先消去一个未知数,将方程组转化为二元一次方程组,则方程组⎪⎩⎪⎨⎧=-=+=-3221z x z y y x 经“消元”后可得到的二元一次方程组.......为 .(只要写一个即可)14. 下列四个命题:①b a >,则22bc ac >;②不等式2)2(22+>+m x m 的解集是1>x ;③点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为()3,4-;④已知x 、y 满足方程组⎩⎨⎧=+=+,42,52y x y x 则x -y 的值为1 ,其中正确的有 (把正确结论的序号都填上).15.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,ED ′的延长线与BC 交于点G .若∠EFG=55°,则∠BGE=_______°.16.已知点O (0,0)、B(1,2),点A 在坐标轴上,且三角形OAB 的面积为2,则点A 的坐标是___________________________.三.解答题 17. (1) (6分)解方程组:⎩⎨⎧==+8y 2-332x y x .(2) (6分)解不等式组,并把解集在数轴上表示出来.18. (7分)如图1,直线a ,b 所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数吗?(1)请在图2的画板内画出你的测量方案图(简要说明画法过程);(温馨提示:必须要有方案图,所有的线不能画到画板外,只能画在画板内) (2)说出该画法依据的数学道理.19.(7分)阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用12-来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:y x +=+53,其中x 是整数,且10<<y ,求y x -的相反数.四、解答与应用(共34分)20.(8分)如图,长方形OABC 中,O 为平面直角坐标系的原点,A 点的坐标为(4,0),C 点的坐标为(0,6),点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O —C —B —A —O 的路线移动(即:沿着长方形移动一周).(1) 当点P 移动了4秒时,描出此时P 点的位置,并求出点P 的坐标. (2)在移动过程中,当点P 到x 轴距离为5个单位长度时,求点P 移动的时间.21.(8分)取一副三角板按图(1)拼接,固定三角板ADC(∠ACD=30°),将三角板ABC(∠ACB=45°)绕点A依顺时针方向旋转一定角度得到△ABC′,如图所示.请问:(1)如图(2),当∠CAC′=15°时,请你判断AB与CD的位置关系,并说明理由;(2)如图(3),当∠CAC′为多少度时,能使CD∥BC′?22.(9分)为了解决农民工子女就近入学问题,赣州市章贡区某小学计划2014年秋季学期扩大办学规模.学校决定开支8万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.23.(9分)吸烟有害健康,为配合“戒烟”运动,章贡区某中学组织同学们在东外社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图:根据统计图解答下列问题:(1)同学们一共调查了 人?(2)扇形统计图中,表示支持“替代品戒烟”的扇形的圆心角的度数为 . (3)请将条形统计图补充完整.(4)若该社区有10000名居民,请你估计该社区喜欢“药物戒烟”的居民人数约是 人.五、拓展与探究(12分)24.二元一次方程x -2y =0的解有无数个,其中它有一个解为⎩⎨⎧==12y x ,所以在平面直角坐标系中就可以用点(2,1)表示它的一个解。

2014—2015七年级下册期末数学试题

2014—2015七年级下册期末数学试题

2014—2015 学年度第二学期期末学业水平检测七年级数学试题(考试时间:120 分钟 分值:120 分)注意事项: 1、 答题前,考生务必将自己的姓名、考号、考试科目等填写在试题上; 2、 选择题每题选出答案后,都必须用 2B 铅笔把答题卡上对应题目的答案标号【ABCD】涂 黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用 0.5mm 碳素笔答在答题 卡的相应位置上; 3、 考试时,不允许使用科学计算器. 题号 得分 评卷人一二 19 20 21三 22 23 24 25总分得分评卷人一、选择题:本大题共 10 小题,在每小题给出的四个选项中, 只有一项是正确的,请把正确的选项选出来. 每小题选对得 3 分, 选错、不选或选出的答案超过一个均记零分. ) B. 3 C.  9 D. 91. 81 的平方根是( A.  32. 直线 y   x  1 经过的象限是( A.第一、二、三象限 C.第二、三、四象限 3. 下列命题中是真命题的是( )) B.第一、二、四象限 D.第一、三、四象限1 2 3A.如果 a 2  b 2 ,那么 a  b B.对角线互相垂直的四边形是菱形 C.旋转前后的两个图形,对应点所连线段相等 D.线段垂直平分线上的点到这条线段两个端点的距离相等(第 4 题图)4. 如图, 将三角形纸板的直角顶点放在直尺的一边上,1  20, 2  40 , 则 3 等于( ) B. 30  ) C. 20  D. 15 A. 50 5. 算式( 6+ 10× 15)× 3之值为何? (七年级数学试题第 1 页 (共 1 页)A.2 42B.12 5C.12 13D.18 26. 已知果农贩卖的西红柿,其重量与价钱成线型函数关系,今小华向果农买一 竹篮的西红柿,含竹篮秤得总重量为 15 公斤,付西红柿的钱 250 元.若他再加 买 0.5 公斤的西红柿,需多付 10 元,则空竹篮的重量为多少公斤?( A.1.5 B.2 C.2.5 D.3 )7. 如图数轴上有 A、B、C、D 四点,根据图中各点的位置,判断那一点所表示 的数与 11﹣2 39最接近? ( )A.A B.B C.C D.D 8. 图为歌神 KTV 的两种计费方案说明. 若晓莉和朋友们打算在此 KTV 的一间包 厢里连续欢唱 6 小时, 经服务生试算后,告知他们选择包厢计费方案会比人数计 费方案便宜,则他们至少有多少人在同一间包厢里欢唱? ( )A.6 B.7 C.8 D.9 9. 2014 年某市有 28000 名初中毕业生参加了升学考试, 为了了解 28000 名考生 的升学成绩,从中抽取了 300 名考生的试卷进行统计分析,以下说法正确的是 ( ) A.28000 名考生是总体 B.每名考生的成绩是个体 C.300 名考生是总体的一个样本 D.以上说法都不正确 10. 如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话 纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何? ( )七年级数学试题第 2 页 (共 2 页)(第 10 题图) A.向北直走 700 公尺,再向西直走 100 公尺 B.向北直走 100 公尺,再向东直走 700 公尺 C.向北直走 300 公尺,再向西直走 400 公尺 D.向北直走 400 公尺,再向东直走 300 公尺 答题卡:1 2 3 4 [A] [B] [C] [D] [A] [B] [C] [D] [A] [B] [C] [D] [A] [B] [C] [D] 5 6 7 8 [A] [B] [C] [D] [A] [B] [C] [D] [A] [B] [C] [D] [A] [B] [C] [D] 9 [A] [B] [C] [D] 10 [A] [B] [C] [D]得分评卷人二、填空题:本大题共8小题,每小题 4 分,共 32 分.只要 求填写最后结果. . .11. 点 P(m,1-2m)在第四象限,则 m 的取值范围是 12. 写出一个大于 2 小于 3 的无理数(第 13 题图)(第 16 题图)(第 18 题图)13. 如 图 , 已 知 AB,CD,EF 互 相 平 行 , 且 ∠ ABE =70° ,∠ ECD = 150° ,则∠ BEC =________. 14. 已知点 O(0,0)B(1,2)点 A 在坐标轴上,S 三角形 OAB=2,求满足条件的点 A 的坐标 . 七年级数学试题 第 3 页 (共 3 页)15. 计算:= __________.16. 如图所示,周长为 34cm 的长方形 ABCD 被分成 7 个大小完全一样的小长方 形,求每个小长方形的面积是多少? . 17. 要了解我市中小学生的视力情况,你认为最合适的调查方式是___________. 18. 如图,在平面直角坐标系中 ,有若干个整数点,其顺序按图中“→”方向排列 , 如(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1)„根据这个规律探索可得, 第 100 个点的坐标为 __________.得分评卷人三、解答题:本大题共 7 小题,共 58 分.解答要写出必要的文 字说明、证明过程或演算步骤.19.(本题满分 8 分) (1)64(x+1)3+27=0(2)20.(本题满分 10 分)(1)解方程组:七年级数学试题第 4 页 (共 4 页)x2 <1,  (2) 解不等式组: 3 把解集在数轴上表示出来,并将解集中的整数解表  2(1  x)≤5.示出来.21.(本题满分 8 分)东营市某中学开展以“我最喜欢的职业”为主题的调查活动, 通过对学生的随机抽样调查得到一组数据, 如图是根据这组数据绘制成的不完整 统计图.人数80 60 40 20 0 教 师 医 生 公 务 员 军 人 其 职业 他 (第 21 题图) 其他 _ 军人 10% 教师 医生 15% 公务员 20%(1)求出被调查的学生人数;(2)把折线统计图补充完整; (3)求出扇形统计图中,公务员部分对应的圆心角的度数;(4) 若从被调查的学生中任意抽取一名, 求抽取的这名学生最喜欢的职业是 “教 师”的概率.七年级数学试题第 5 页 (共 5 页)22.(本题满分 8 分)阅读下列材料:1, y<0 ,试确定 x  y 的取值范围”有如下解法: 解答“已知 x  y  2 ,且 x>解x  y  2,  x  y  2 、y  2> 1.1, 又 x>  y>-1.又y<0, 1<y<0 。

湖南七年级数学下册期末试卷附答案

湖南七年级数学下册期末试卷附答案

湖南七年级数学下(Xia)册期末试卷附答案姓(Xing)名:_______________班(Ban)级:_______________考(Kao)号:_______________题号一、选择题二、填空题三、计算题四、简答题五、综合题总分得分一、选择(Ze)题(每(Mei)空3分,共24 分)1、已(Yi)知,则(Ze)为()A.15 B.14C.16 D.172、如图3,直线AB、CD相交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT=()A.30°B.45°C. 60°D. 120°3、下列命题中,不正确的是()A.在同一平面内,过一点有而且只有一条直线与已知直线垂直B.经过直线外一点,有而且只有一条直线与这条直线平行C.垂直于同一直线的两条直线垂直D.平行于同一直线的两条直线平行4、下列为二元一次方程的是 ( ) 评卷人得分(A) ; (B) ;(C) ; (D)5、已知方(Fang)程是二元一次方程,则(Ze)m+n的值()A.1B. 2C.-3D.36、下列各式(Shi)为完全平方式的是()A.a2+2ab-b2 B.a2b-2ab+ab=2C.4(a+b)2-20(a+b)2+25 D.-2a2+4ab+2b27、下列运算结果正(Zheng)确的是()A .B .C .D .8、一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被(Bei)他涂上颜色部分的面积为()A.33分(Fen)米 2 B.24分(Fen)米2C.21分(Fen)米 2 D.42分米2二、填空题评卷人得分(每空3 分,共24 分)9、已知是方程的解,则m=____________.10、如图,⊿ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF = 度。

14-15第二学期期末七年级数学答案

14-15第二学期期末七年级数学答案

2014-2015学年第二学期期末七年级数学答案 第1页(共2页)2014—2015学年第二学期期末考试七年级数学试题参考答案及评分标准一、选择题(每小题2分,共30分)二、填空题(每小题2分,共10分)16.﹣3 17.70 18.125° 19.24 20.5,6 三、解答题(本大题共6个小题,共60分.解答应写出文字说明或演算步骤) 21. (每个4分,共16分)解:(1)5 (2)1 (3)⎩⎨⎧-==12y x (4)12- x22.(本题满分8分)解:(1)A 1(0,3);B 1(﹣3,﹣4);C 1(5,1) -----------------各1分共3分图略------------------------------------------------------------5分(2)3-----------------------------------------------------------------------------------------------8分23.(本题满分8分) 证明:(1) ∵BD ⊥AC ,EF ⊥AC∴∠CFE=∠CDB=90°∴BD ∥EF ----------3分 (2) ∵GF ∥BC ∴∠2=∠CBD∵∠1=∠2 ∴∠CBD=∠1 ∴GF ∥BC -----6分 ∵MD ∥BC ∴MD ∥GF∴∠AMD=∠AGF. ------------------------------8分 24.(本题满分10分)解:(1)∵40÷20%=200,80÷40%=200,∴此次调查的学生人数为200;--------2分 (2)由(1)可知C 条形高度错误,应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50, 即C 的条形高度改为50; C ; ----------------------6分 (3)D 的人数为:200×15%=30;如图 -------------8分 (4)600×(20%+40%)=360(人), -------------10分(第23题图)A C FD M HBG 122014-2015学年第二学期期末七年级数学答案 第2页(共2页)25.(本题满分10分)解:(1)设买x 台A 型,则买 (10-x)台B 型,根据题意得:105)10(1012≤-+x x ------------------------------------------------------3分解得:25≤x答:可买10台B 型;或 1台A 型,9台B 型;或2台A 型,8台B 型.-------5分 (2) 设买x 台A 型,则由题意可得200(10)204240x x +-≥-----------------------------------8分解得 1≥x当x=1时,花费 102910112=⨯+⨯ (万元);当x=2时,花费 104810212=⨯+⨯ (万元) 答:买1台A 型,9台B 型设备时最省钱. ------------------------------10分26.(本题满分10分) 解:(1)设:甲队工作一天商店应付x 元,乙队工作一天商店付y 元. 由题意得-----------------------------------------------------------3分解得答:甲、乙两队工作一天,商店各应付300元和140元.----------------5分 (2)单独请甲队需要的费用:300×12=3600元. 单独请乙队需要的费用:24×140=3360元.答:单独请乙队需要的费用少.-------------------------------------------------7分 (3)请两队同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元; 乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元; 甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元; 因为5120<6000<8160, 所以甲乙合作损失费用最少.答:甲乙合作施工更有利于商店.------------------------------------------10分15.解:由题中规律可得出如下结论:设点P m 的横坐标的绝对值是n ,则在y 轴右侧的点的下标分别是4(n ﹣1)和4n ﹣3,在y 轴左侧的点的下标是:4n ﹣2和4n ﹣1;判断P 99的坐标,就是看99=4(n ﹣1)和99=4n ﹣3和99=4n ﹣2和99=4n ﹣1这四个式子中哪一个有负整数解,从而判断出点的横坐标.由上可得:点P 第99次跳动至点P 99的坐标是(﹣25,50) 20.解:根据题意得:3≤[]<4,解得:5≤x <7,则满足条件的所有正整数为5,6.。

湖南省永州市七年级下学期期末考试数学试题

湖南省永州市七年级下学期期末考试数学试题

湖南省永州市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)图中的小船通过平移后可得到的图案是()A .B .C .D .2. (2分) (2019七上·道外期末) 正数5的算术平方根是()A .B .C .D .3. (2分) (2019七下·钦州期末) 下列调查中,适合用全面调查方式的是()A . 了解市场上酸奶的质量情况B . 了解一批签字笔的使用寿命情况C . 了解某条河流的水质情况D . 了解某校七年级甲班学生期中数学考试的成绩4. (2分) (2018八上·海曙期末) 下列语句是命题的是()A . 延长线段ABB . 过点A作直线a的垂线C . 对顶角相等D . x与y相等吗?5. (2分) (2011八下·建平竞赛) 根据下列表述,能确定位置的是()A . 某电影院2排B . 南京市大桥南路C . 北偏东30°D . 东经118°,北纬40°6. (2分) (2019七下·廉江期末) 若m<n,则下列不等式不成立的是()A .B .C .D .7. (2分)(2017·崇左) 如图所示BC∥DE,∠1=108°,∠AED=75°,则∠A的大小是()A . 60°B . 33°C . 30°D . 23°8. (2分)不等式4x<11的正整数解是()A . 1;2;3B . 0;1;2C . 1;2;﹣1D . 1;29. (2分) (2019七上·东阳期末) 若单项式与单项式是同类项,那么这两个单项式的和是()A .B .C .D .10. (2分) (2017八下·宾县期末) 实数a,b在数轴上对应点的位置如图所示,化简|a|+ 的结果是()A . ﹣2a+bB . 2a﹣bC . ﹣bD . b11. (2分)在频数分布表中,各小组的频数之和()A . 小于数据总数B . 等于数据总数C . 大于数据总数D . 不能确定12. (2分)(2014·防城港) 下列命题是假命题的是()A . 四个角相等的四边形是矩形B . 对角线相等的平行四边形是矩形C . 对角线垂直的四边形是菱形D . 对角线垂直的平行四边形是菱形二、填空题 (共6题;共8分)13. (1分)如图所示,是象棋棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4, -1)上,则“炮”所在的点的坐标是________14. (1分) (2018七下·黑龙江期中) 等腰三角形的两边长分别是3和7,则其周长为________.15. (1分) (2019七上·大东期末) 若则 ________.16. (1分)(2018·绥化) 为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品每种体育用品都购买,其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.17. (1分) (2018八下·句容月考) 大润发超市对去年全年每月销售总量进行统计,为了更清楚地看出销售总量的变化趋势应选用________统计图来描述数据.18. (3分)如图,在6×4的正方形网格中,点A、B、C、D、E、F都在格点上.连接点A、B得线段AB.(1)连接C、D、E、F中的任意两点,共可得________ 条线段,在图中画出来;(2)在(1)中所连得的线段中,与AB平行的线段是________ ;(3)用三角尺或量角器度量、检验,AB及(1)中所连得的线段中,互相垂直的线段有几对?(请用“⊥”表示出来)________ .三、解答题 (共6题;共56分)19. (10分)(2018·商河模拟) 如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.20. (5分)求下列各式中的x.①x2=25②(x﹣3)3=27.21. (5分) (2017八上·鄞州月考) 如图,在△ABC 中,∠B=32°,∠C =48°,AD⊥BC于点D,AE平分∠BAC 交BC于点E,DF⊥AE于点F,求∠ADF的度数.22. (15分) (2017八下·嘉祥期末) 已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.23. (10分) (2017七下·平南期末) 某班将举行“防溺水安全知识竞赛”活动,班主任安排班长购买奖品,下面是班长买回奖品时与班主任的对话情况:班长:买了两种不同的奖品共50件,单价分别为3元和5元,我领了200元,现在找回35元班主任:你肯定搞错了!班长:哦!我把自己口袋里的15元一起当作找回的钱款了.班主任:这就对了!请根据上面的信息,解决下列问题:(1)计算两种奖品各买了多少件?(2)请你解释:班长为什么不可能找回35元?24. (11分) (2019七下·随县月考) 问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为________度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC 与α、β之间的数量关系.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共56分) 19-1、19-2、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。

永州市七年级数学试卷七年级苏科下册期末复习题(及答案)

永州市七年级数学试卷七年级苏科下册期末复习题(及答案)

永州市七年级数学试卷七年级苏科下册期末复习题(及答案)一、幂的运算易错压轴解答题1.(1)已知,,求的值;(2)已知,,求的值.2.解答题(1)若3a=5,3b=10,则3a+b的值.(2)已知a+b=3,a2+b2=5,求ab的值.3.一般地,n个相同的因数a相乘a•a•…•a,记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n 叫做以a为底b的对数,记为log n b(即log n b).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算下列各对数的值:log24=________;log216=________;log264=________.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义说明上述结论.二、平面图形的认识(二)压轴解答题4.如图①,将两个边长为1的小正方形分别沿对角线剪开,拼成正方形ABCD.(1)正方形ABCD的面积为________,边长为________,对角线BD=________;(2)求证:;(3)如图②,将正方形ABCD放在数轴上,使点B与原点O重合,边AB落在x轴的负半轴上,则点A所表示的数为________,若点E所表示的数为整数,则点E所表示的数为________5.如图1,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)求证:∠BAG=∠BGA;(2)如图2,若∠ABG=50°,∠BCD的平分线交AD于点E、交射线GA于点F.求∠AFC的度数;(3)如图3,线段AG上有一点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,请直接写出的值.6.在中,,点,分别是边,上的点,点是一动点.记为,为,为 .(1)若点在线段上,且,如图1,则 ________;(2)若点在边上运动,如图2所示,请猜想,,之间的关系,并说明理由;(3)若点运动到边的延长线上,如图3所示,则,,之间又有何关系?请直接写出结论,不用说明理由.三、整式乘法与因式分解易错压轴解答题7.若一个数能表示成某个整数的平方的形式,则称这个数为完全平方数,完全平方数是非负数.例如:0=02, 1=12, 4=22, 9=32, 16=42, 25=52, 36=62, 121=112…. (1)若28+210+2n是完全平方数,求n的值.(2)若一个正整数,它加上61是一个完全平方数,当减去11是另一个完全平方数,写出所有符合的正整数.8.效学活动课上老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:________,方法2:________;(2)观察图2,请你写出代数式:(a+b)2, a2+b2, ab之间的等量关系________;(3)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=13,求ab的值;②已知(2019-a)2+(a-2018)2=5,求(2019-a)(a-2018)的值.9.著名的瑞士数学家欧拉曾指出:可以表示为四个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为四个整数平方之和,即,这就是著名的欧拉恒等式,有人称这样的数为“不变心的数”.实际上,上述结论可概括为:可以表示为两个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为两个整数平方之和.【阅读思考】在数学思想中,有种解题技巧称之为“无中生有”.例如问题:将代数式改成两个平方之差的形式.解:原式﹒(1)【动手一试】试将改成两个整数平方之和的形式.(12+52)(22+72)=________;(2)【解决问题】请你灵活运用利用上述思想来解决“不变心的数”问题:将代数式改成两个整数平方之和的形式(其中a、b、c、d均为整数),并给出详细的推导过程﹒四、二元一次方程组易错压轴解答题10.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品.(1)若万元,求领带及丝巾的制作成本是多少?(2)若用元钱全部用于制作领带,总共可以制作几条?(3)若用元钱恰好能制作300份其他的礼品,可以选择条领带和条丝巾作为一份礼品(两种都要有),请求出所有可能的、的值.11.为了响应“绿水青山就是金山银山”的环保建设,提高企业的治污能力某大型企业准备购买A,B两种型号的污水处理设备共8台,若购买A型设备2台,B型设备3台需34万元;购买A型设备4台,B型设备2台需44万元.(1)求A,B两种型号的污水处理设备的单价各是多少?(2)已知一台A型设备一个月可处理污水220吨,B型设备一个月可处理污水190吨,若该企业每月处理的污水不低于1700吨,请你为该企业设计一种最省钱的购买方案.12.如果A,B都是由几个不同整数构成的集合,由属于A又属于B的所有整数构成的集合叫做A,B的交集,记作A∩B.例如:若A={1,2,3},B={3,4,5},则A∩B={3};若A={0,﹣62,37,2},B={2,﹣1,37,﹣5,0,19},则A∩B={37,0,2}.(1)已知C={4,3},D={4,5,6},则C∩D={________};(2)已知E={1,m, 2},F={6,7},且E∩F={m},则m=________;(3)已知P={2m+1,2m﹣1},Q={n,n+2,n+4},且P∩Q={m,n},如果关于x的不等式组,恰好有2019个整数解,求a的取值范围.五、一元一次不等式易错压轴解答题13.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:;等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:若,,则;若,,则;若,,则;若,,则 .(1)反之:若,则或;若,则________或________.(2)根据上述规律,求不等式的解集.(3)直接写出分式不等式的解集________.14.学校准备购进一批篮球和排球,买2个篮球和3个排球共需230元,买3个篮球和2个排球共需290元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年湖南省永州市江华县七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分。

每小题只有一个正确选项,请将正确选项代号填涂到答题卡对应题目的标号处)1.(3分)在下列方程组中,不是二元一次方程组的是()A.B.C.D.2.(3分)如图,直线AB和CD相交于点O,∠AOD+∠BOC=204°,那么∠1的度数为()A.88°B.100°C.78°D.109°3.(3分)下列各式中,正确的是()A.﹣a6•(﹣a)2=a B.3a2•4ab=7a3b C.(﹣2x2)3=﹣6x6 D.(﹣a﹣b)2=(a+b)24.(3分)能用平方差公式进行计算的是()A.(2a﹣b)(﹣b+2a)B.(a﹣2b)(2a+b)C.(﹣2a﹣b)(2a+b)D.(﹣2a﹣b)(﹣2a+b)5.(3分)一次作业中,小敏做了如下四道因式分解题,你认为她做得不完整的是()A.a3﹣a=a(a2﹣1)B.m2﹣2mn+n2=(m﹣n)2C.x2y﹣xy2=xy(x﹣y) D.x2﹣y2=(x﹣y)(x+y)6.(3分)(﹣2)100+(﹣2)101的结果是()A.2100B.﹣2100C.﹣2 D.27.(3分)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠58.(3分)如图,已知点O在直线AB上,CO⊥DO,若∠1=155°,则∠3的度数为()A.35°B.45°C.55°D.65°9.(3分)下列大学的校徽图案是轴对称图形的是()A.浙江大学B.北京大学C.中国人民大学D.清华大学10.(3分)已知一组数据2,x,4,6的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.6二、填空题(本大题共6个小题,每小题3分。

请将答案填写到答题卡指定的横线上。

)11.(3分)计算:(b2﹣4a2)•(﹣4ab)=.12.(3分)若x2+kx+是一个完全平方式,则k=.13.(3分)因式分解:﹣4x2+10x=.14.(3分)如图,直线AB∥CD,BC∥DE,若∠B=55°,则∠D=.15.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB 绕点O按逆时针方向旋转而得,则旋转的角度为.16.(3分)已知一组数据为1,4,2,5,3,那么这组数据的方差是.三、解答题(本大题共9小题,共72分,解答题要求写出证明步骤或解答过程)17.(10分)解方程组:(1)(2).18.(8分)计算:(1)(x﹣2)(x+1)﹣(x﹣1)2(2)(5x+6y﹣1)(5x+1﹣6y)19.(6分)先化简,再求值:(x+2)(x﹣2)﹣5x(x﹣1)﹣(2x+1)2,其中x=﹣2.20.(8分)因式分解:(1)4a(x﹣y)﹣2b(y﹣x)(2)x4﹣16.21.(5分)如图,网格中的小房子的图案正好处于网格右下角的位置,请你把它平移,使它正好位于左上角的位置(不能出格)22.(8分)如图,∠1=∠2,CF⊥AB,DE⊥AB,求证:FG∥BC.23.(10分)某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取2个、1个才能配成一套,要在80天内生产最多的成套产品,问:甲、乙两种零件各应生产多少天?24.(10分)某校七年级学生开展踢毽子比赛活动,每班派5名同学参加,按团体总分多少排列名次,在规定的时间内每人踢100个以上(含100)为优秀.下表是甲班和乙班成绩最好的5名学生的比赛数据(单位:个)统计发现两班总分相等,S,此时有同学建议,可以通过考查数据中的其他信息作为参考,请你解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)根椐以上信息,你认为应该把冠军奖状发给哪一个班?简述理由.25.(7分)如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长是多少?(2)请用两种不同的方法求图(2)阴影部分的面积;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?三个代数式:(m+n)2,(m﹣n)2,mn.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.2014-2015学年湖南省永州市江华县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分。

每小题只有一个正确选项,请将正确选项代号填涂到答题卡对应题目的标号处)1.(3分)在下列方程组中,不是二元一次方程组的是()A.B.C.D.【解答】解:A、B、C、符合二元一次方程组的定义;D中的第一个方程是分式方程,故D错误.故选:D.2.(3分)如图,直线AB和CD相交于点O,∠AOD+∠BOC=204°,那么∠1的度数为()A.88°B.100°C.78°D.109°【解答】解:∵∠AOD+∠BOC=204°,∠BOC=∠AOD,∴∠BOC=×204°=102°,∴∠AOC=180°﹣102°=78°.故选:C.3.(3分)下列各式中,正确的是()A.﹣a6•(﹣a)2=a B.3a2•4ab=7a3b C.(﹣2x2)3=﹣6x6 D.(﹣a﹣b)2=(a+b)2【解答】解:A、﹣a6•(﹣a)2=﹣a8,故此选项错误;B、3a2•4ab=12a3b,故此选项错误;C、(﹣2x2)3=﹣8x6,故此选项错误;D、(﹣a﹣b)2=(a+b)2,正确.故选:D.4.(3分)能用平方差公式进行计算的是()A.(2a﹣b)(﹣b+2a)B.(a﹣2b)(2a+b)C.(﹣2a﹣b)(2a+b)D.(﹣2a﹣b)(﹣2a+b)【解答】解:能用平方差公式进行计算的是(﹣2a﹣b)(﹣2a+b)=4a2﹣b2,故选:D.5.(3分)一次作业中,小敏做了如下四道因式分解题,你认为她做得不完整的是()A.a3﹣a=a(a2﹣1)B.m2﹣2mn+n2=(m﹣n)2C.x2y﹣xy2=xy(x﹣y) D.x2﹣y2=(x﹣y)(x+y)【解答】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故选:A.6.(3分)(﹣2)100+(﹣2)101的结果是()A.2100B.﹣2100C.﹣2 D.2【解答】解:(﹣2)100+(﹣2)101=(﹣2)100×(1﹣2)=﹣2100.故选:B.7.(3分)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5【解答】解:∠1的同位角是∠5,故选:D.8.(3分)如图,已知点O在直线AB上,CO⊥DO,若∠1=155°,则∠3的度数为()A.35°B.45°C.55°D.65°【解答】解:∵∠1=155°,∴∠2=180°﹣155°=25°,∵CO⊥DO,∴∠COD=90°,∴∠3=90°﹣∠2=90°﹣25°=65°;故选:D.9.(3分)下列大学的校徽图案是轴对称图形的是()A.浙江大学B.北京大学C.中国人民大学D.清华大学【解答】解:A、不是轴对称图形,故错误;B、是轴对称图形,故正确;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选:B.10.(3分)已知一组数据2,x,4,6的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.6【解答】解:数据2,x,4,6的众数为4,即的4次数最多;即x=4.则其平均数为:(2+4+4+6)÷4=4.故选:B.二、填空题(本大题共6个小题,每小题3分。

请将答案填写到答题卡指定的横线上。

)11.(3分)计算:(b2﹣4a2)•(﹣4ab)=﹣2ab3+16a3b.【解答】解:(b2﹣4a2)•(﹣4ab)=﹣2ab3+16a3b.故答案为:﹣2ab3+16a3b.12.(3分)若x2+kx+是一个完全平方式,则k=±.【解答】解:∵是一个完全平方式,∴=(x±)2=x2±x+,∴k=±,故答案为:±.13.(3分)因式分解:﹣4x2+10x=﹣2x(2x﹣5).【解答】解:﹣4x2+10x=﹣2x(2x﹣5).故答案为:﹣2x(2x﹣5).14.(3分)如图,直线AB∥CD,BC∥DE,若∠B=55°,则∠D=125°.【解答】解:∵AB∥CD,∠B=55°,∴∠C=∠B=55°.∵BC∥DE,∴∠D=180°﹣∠C=180°﹣55°=125°.故答案为:125°.15.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB 绕点O按逆时针方向旋转而得,则旋转的角度为90°.【解答】解:如图:∵△COD是由△AOB绕点O按逆时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.16.(3分)已知一组数据为1,4,2,5,3,那么这组数据的方差是2.【解答】解:平均数=(1+2+3+4+5)÷5=3,S2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.故答案为:2.三、解答题(本大题共9小题,共72分,解答题要求写出证明步骤或解答过程)17.(10分)解方程组:(1)(2).【解答】解:(1),把①代入②得:2+2y+y=2,解得:y=0,把y=0代入①得:x=1,则方程组的解为;(2),①×2+②×5得:29x=203,即x=7,把x=7代入①得:y=﹣2,则方程组的解为.18.(8分)计算:(1)(x﹣2)(x+1)﹣(x﹣1)2(2)(5x+6y﹣1)(5x+1﹣6y)【解答】解:(1)原式=x2﹣x﹣2﹣x2+2x﹣1=x﹣3;(2)原式=[5x﹣(1﹣6y)][5x+(1﹣6y)]=25x2﹣(1﹣6y)2=25x2﹣1+12y﹣36y2.19.(6分)先化简,再求值:(x+2)(x﹣2)﹣5x(x﹣1)﹣(2x+1)2,其中x=﹣2.【解答】解:原式=x2﹣4﹣5x2+5x﹣(4x2+4x+1)=x2﹣4﹣5x2+5x﹣4x2﹣4x﹣1=﹣8x2+x﹣5,当x=﹣2时,原式=﹣8×4﹣2﹣5=﹣32﹣2﹣5=﹣39.20.(8分)因式分解:(1)4a(x﹣y)﹣2b(y﹣x)(2)x4﹣16.【解答】解:(1)4a(x﹣y)﹣2b(y﹣x)=4a(x﹣y)+2b(x﹣y)=2(x﹣y)(2a+b);(2)x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).21.(5分)如图,网格中的小房子的图案正好处于网格右下角的位置,请你把它平移,使它正好位于左上角的位置(不能出格)【解答】解:如图所示:.22.(8分)如图,∠1=∠2,CF⊥AB,DE⊥AB,求证:FG∥BC.【解答】证明:∵CF⊥AB,DE⊥AB,∴∠BED=∠BFC=90°,∴DE∥CF,∴∠1=∠BCF,∵∠1=∠2,∴∠2=∠BCF,∴FG∥BC.23.(10分)某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取2个、1个才能配成一套,要在80天内生产最多的成套产品,问:甲、乙两种零件各应生产多少天?【解答】解:设甲种零件应生产x天,则乙种零件应生产(80﹣x)天,120x=100(80﹣x)×2,解得:x=50,则80﹣x=30.答:甲种零件应生产50天,乙种零件应生产30天.24.(10分)某校七年级学生开展踢毽子比赛活动,每班派5名同学参加,按团体总分多少排列名次,在规定的时间内每人踢100个以上(含100)为优秀.下表是甲班和乙班成绩最好的5名学生的比赛数据(单位:个)统计发现两班总分相等,S,此时有同学建议,可以通过考查数据中的其他信息作为参考,请你解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)根椐以上信息,你认为应该把冠军奖状发给哪一个班?简述理由.【解答】解:(1)甲班的优秀率为:×100%=60%,乙班的优秀率为:×100%=40%;(2)甲班比赛数据的中位数是100;乙班比赛数据的中位数是99;(3)应该把团体第一名的奖状给甲班,理由如下:因为甲班的优秀率比乙班高;甲班的中位数比乙班高;甲班的方差比乙班低,比较稳定,综合评定甲班比较好.25.(7分)如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长是多少?(2)请用两种不同的方法求图(2)阴影部分的面积;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?三个代数式:(m+n)2,(m﹣n)2,mn.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.【解答】解:(1)阴影部分的正方形边长是m﹣n.(2)阴影部分的面积就等于边长为m﹣n的小正方形的面积,方法1:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,即(m﹣n)2=(m+n)2﹣4mn;方法2:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,即(m﹣n)2=(m+n)2﹣2m•2n=(m+n)2﹣4mn;(3)(m+n)2=(m﹣n)2+4mn.(4)(a﹣b)2=(a+b)2﹣4ab=49﹣4×5=29.。

相关文档
最新文档