MS-Fundamental Equations for Dynamical Analysis of Rod and Pipe String in Oil and Gas Wells

合集下载

Stability and stabilization of nonlinear system-Chapter 8非线性系统稳定性和稳定化

Stability and stabilization of nonlinear system-Chapter 8非线性系统稳定性和稳定化

Chapter8Open ProblemsIn this chapter,we would like to give a list of open and unanswered problems in Mathematical Control Theory.The solutions of these open problems will be very important for the development of modern nonlinear control theory.Expectedly novel mathematical analysis and synthesis tools need to be developed to address these challenging problems.The interested reader should also consult the book[3]for other significant and important open problems in Mathematical Control Theory.Open Problem#1Under what conditions WIOS implies IOS?A qualitative characterization of the IOS property for abstract control systems as discussed in this book has not been available yet.For systems described by ODEs, many qualitative characterizations of the ISS and IOS properties are provided in [21–23].Moreover,Theorem4.1in Chap.4gives a complete qualitative character-ization of the WIOS property:“0-GAOS”+“RFC”+“the continuity with respect to initial conditions and external inputs”implies WIOSA similar qualitative characterization for the IOS property in a general context of abstract dynamical systems as discussed in this book will be very important for control designs and applications.Open Problem#2Development of small-gain techniques for dynamical systems described by Partial Differential Equations(PDEs).Small-gain results have been well studied forfinite-dimensional nonlinear sys-tems described by ordinary differential,or difference,equations(see,e.g.,[8–10] and references therein).However,as of today,there is little research devoted to the development of small-gain techniques for nonlinear systems described by Partial Differential Equations(PDEs).We believe that the small-gain results provided in the present book(Theorems5.1and5.2in Chap.5)will pave the road for the appli-cation of small-gain results to systems described by PDEs.I.Karafyllis,Z.-P.Jiang,Stability and Stabilization of Nonlinear Systems,381 Communications and Control Engineering,DOI10.1007/978-0-85729-513-2_8,©Springer-Verlag London Limited2011Open Problem#3Formulas for the Coron–Rosier methodology.Theorem6.1in Chap.6is an existence-type result.Although its proof is con-structive,it cannot be easily applied for feedback design purposes.The creation of formulas for the Coron–Rosier approach will be very significant for control pur-poses,since the Coron–Rosier approach can allow nonconvex control sets and does not require additional properties for the Control Lyapunov Function.The signifi-cance of the solution of this open problem is also noted in[5].Open Problem#4When is a nonlinear,time-varying,time-delay system stabiliz-able?We have recently provided a positive answer to the above question when the sys-tem only involves state-delay[13].A complete answer to the question of when the nonlinear time-varying system with both state and input delays is stabilizable re-mains open and requires deeper investigation.Nonetheless,it should be mentioned that sufficient,but not necessary,conditions for the solution of the stabilization prob-lem with input delays are proposed in the recent work of Krsti´c[14–16](also see [11]).To our knowledge,a necessary and sufficient condition for stabilizability is missing even for linear time-varying systems with input delays.Open Problem#5Application of small-gain results for distributed feedback design of large-scale nonlinear systems.Large-scale systems are abundant in variousfields of science and engineering and have gained increasing attention due to emerging engineering and biomedical applications.Examples of these applications are from smart grids with green and re-newable energy sources,modern transportation networks,and biological networks. There has been some success with the use of decentralized control strategy for both linear and nonlinear large-scale systems;see[7,19]and many references therein. Clearly more remains to be accomplished in this excitingfield.We feel that small-gain is a very appropriate tool for addressing some of these modern-day challenges. The small-gain results of the present book(Theorems5.1and5.2in Chap.5)make a preliminary step forward toward studying some complex large-scale systems be-yond the past literature of decentralized systems and control.Open Problem#6Extension of the discretization approach for autonomous sys-tems.The discretization approach for Lyapunov functionals was described in Chap.2 (Propositions2.4and2.5).However,as remarked in Chap.2,the discretization ap-proach requires good knowledge of some approximation of the solution map,and its use has been restricted to time-varying systems with special structure(see[1,17, 18]).An extension of the discretization approach for autonomous systems wouldbe an important contribution in stability theory because such a result would al-low the use of positive definite functions with non sign-definite derivative.The re-quired extension of the discretization approach must utilize appropriate differential inequalities in the same spirit as the classical Lyapunov’s approach(without requir-ing knowledge of the solution map or a system with special structure).The recent work in[12]is an attempt in this research direction(see also references therein). However,the problem is still completely“untouched.”Open Problem#7Application of feedback design methodologies to other mathe-matical problems.In this book,we have seen the applications of certain tools of modern nonlinear control theory to problems arising from mathematics and economics.Particularly, we have seen•applications of small-gain results to game theory(see Sect.5.5in Chap.5),•applications to numerical analysis(see Sect.7.3).We believe that feedback design methodologies can be applied with success to other areas of mathematical sciences.Fixed Point Theory(see[6])and Optimization Theory can be benefited by the application of certain tools of modern nonlinear con-trol theory.Corollary5.4in Chap.5already shows that small-gain results can have serious consequences in Fixed Point Theory.Further connections between Fixed Point Theory and Stability Theory are provided by the work of Burton(see[4]and references therein)but are in the opposite direction from what we propose,that is, the work of Burton applies results from Fixed Point Theory to Stability Theory.The efforts for the solution of problems in Game Theory,Numerical Analysis, Fixed Point Theory,and Optimization Theory will necessarily demand the creation of novel results in stability theory and feedback stabilization theory.Therefore,the application of modern nonlinear control theory to other areas of applied mathe-matics will result to a“knowledge feedback mechanism”between Mathematical Control Theory and other areas in mathematics!Open Problem#8Integral input-to-state stability(for short,iISS)in complex dy-namical systems.The external stability results of this book are exclusively targeted at extensions of Sontag’s ISS property and its variants to a very general context of complex dynamic systems.That is,we want to address a wide class of dynamical systems which may not satisfy the semigroup property,motivated by important examples of hybrid sys-tems,switched systems,and time-delay systems.It remains an open and important, but interesting,question to know how much we could do with the iISS property introduced in[2,20].References1.Aeyels,D.,Peuteman,J.:A new asymptotic stability criterion for nonlinear time-variant dif-ferential equations.IEEE Transactions on Automatic Control43(7),968–971(1998)2.Angeli,D.,Sontag,E.D.,Wang,Y.:A characterization of integral input-to-state stability.IEEETransactions on Automatic Control45(6),1082–1097(2000)3.Blondel,V.D.,Megretski,A.(eds.):Unsolved Problems in Mathematical Systems and ControlTheory.Princeton University Press,Princeton(2004)4.Burton,T.A.:Stability by Fixed Point Theory for Functional Differential Equations.Dover,Mineola(2006)5.Coron,J.-M.:Control and Nonlinearity.Mathematical Surveys and Monographs,vol.136.AMS,Providence(2007)6.Granas,A.,Dugundji,J.:Fixed Point Theory.Springer Monographs in Mathematics.Springer,New York(2003)7.Jiang,Z.P.:Decentralized control for large-scale nonlinear systems:A review of recent results.Dynamics of Continuous,Discrete and Impulsive Systems11,537–552(2004).Special Issue in honor of Prof.Siljak’s70th birthday8.Jiang,Z.P.:Control of interconnected nonlinear systems:a small-gain viewpoint.In:deQueiroz,M.,Malisoff,M.,Wolenski,P.(eds.)Optimal Control,Stabilization,and Nonsmooth Analysis.Lecture Notes in Control and Information Sciences,vol.301,pp.183–195.Springer, Heidelberg(2004)9.Jiang,Z.P.,Mareels,I.M.Y.:A small-gain control method for nonlinear cascaded systems withdynamic uncertainties.IEEE Transactions on Automatic Control42,292–308(1997)10.Jiang,Z.P.,Teel,A.,Praly,L.:Small-gain theorems for ISS systems and applications.Mathe-matics of Control,Signals,and Systems7,95–120(1994)11.Karafyllis,I.:Stabilization by means of approximate predictors for systems with delayed in-put.To appear in SIAM Journal on Control and Optimization12.Karafyllis,I.:Can we prove stability by using a positive definite function with non sign-definite derivative?Submitted to Nonlinear Analysis Theory,Methods and Applications 13.Karafyllis,I.,Jiang,Z.P.:Necessary and sufficient Lyapunov-like conditions for robustnonlinear stabilization.ESAIM:Control,Optimization and Calculus of Variations(2009).doi:10.1051/cocv/2009029,pp.1–42,August200914.Krsti´c,M.:Delay Compensation for Nonlinear,Adaptive,and PDE Systems.Systems&Con-trol:Foundations&Applications.Birkhäuser,Boston(2009)15.Krsti´c,M.:Input delay compensation for forward complete and feedforward nonlinear sys-tems.IEEE Transactions on Automatic Control55,287–303(2010)16.Krsti´c,M.:Lyapunov stability of linear predictor feedback for time-varying input delay.IEEETransactions on Automatic Control55,554–559(2010)17.Peuteman,J.,Aeyels,D.:Exponential stability of slowly time-varying nonlinear systems.Mathematics of Control,Signals and Systems15,42–70(2002)18.Peuteman,J.,Aeyels,D.:Exponential stability of nonlinear time-varying differential equationsand partial averaging.Mathematics of Control,Signals and Systems15,202–228(2002)19.Siljak,D.:Decentralized Control of Complex Systems.Academic Press,New York(1991)20.Sontag,E.D.:Comments on integral variants of ISS.Systems Control Letters3(1–2),93–100(1998)21.Sontag,E.D.,Wang,Y.:On characterizations of the input-to-state stability property.Systemsand Control Letters24,351–359(1995)22.Sontag,E.D.,Wang,Y.:New characterizations of the input-to-state stability.IEEE Transac-tions on Automatic Control41,1283–1294(1996)23.Sontag,E.D.,Wang,Y.:Lyapunov characterizations of input to output stability.SIAM Journalon Control and Optimization39,226–249(2001)。

DYNAMICAL SYSTEMS, STABILITY, AND CHAOS

DYNAMICAL SYSTEMS, STABILITY, AND CHAOS

In this expository and resources chapter we review selected aspects of the mathematics of dynamical systems, stability, and chaos, within a historical framework that draws together two threads of its early development: celestial mechanics and control theory, and focussing on qualitative theory. From this perspective we show how concepts of stability enable us to classify dynamical equations and their solutions and connect the key issues of nonlinearity, bifurcation, control, and uncertainty that are common to time-dependent problems in natural and engineered systems. We discuss stability and bifurcations in three simple model problems, and conclude with a survey of recent extensions of stability theory to complex networks.
a The
Greek word for governor is kubernetes, from which the mathematician Norbert Wiener (1894–1964) coined the term cybernetics as a name for the collective field of automated control and information theory.

涉及非体积功的热力学基本方程

涉及非体积功的热力学基本方程

第49卷第8期2021年4月广州化工Guangzhou Chemical IndustryVol.49No.8Apr.2021涉及非体积功的热力学基本方程杨嫣,陈山川,谢娟,张改(西安工业大学材料与化工学院,陕西西安710021)摘要:热力学基本方程是物理化学课程中一个重要的知识点。

现行物理化学教材中重点阐述了仅含有体积功的热力学基本方程,而对涉及非体积功的热力学基本方程介绍很少。

对材料类专业的学生来说,学习和研究材料热力学,经常会涉及到非体积功。

因此,学习涉及非体积功的热力学基本方程非常必要。

本文重点讨论了涉及非体积功的表面系统、弹性杆、电、磁介质中的热力学基本方程的推导和应用,并总结了处理这类问题的方法。

关键词:物理化学;热力学;基本方程;非体积功中图分类号:G642文献标志码:A文章编号:1001-9677(2021)08-0139-04 Fundamental Equations in Thermodynamics Involving Non-expansion Work*YANG Yan,CHEN Shan-chuan,XIE Juan,ZHANG Gai(School of Material Science and Chemical Engineering,Xi9an Technological University,Shaanxi Xi'an710021,China) Abstract:Fundamental equation in thermodynamics is one of the key points of Physical Chemistry course・In current Physical Chemistry textbooks,the fundamental equations containing only expansionwork are mainly described, while the ones involving non-expansionwork are rarely introduced.For the students majoring in materials,non-expansionwork is often involved in the processes of studyand research.Therefore,it is necessary to study the fundamental equations in involving non-expansion work.The derivations and applications of the fundamental equations in surface systems,elastic rods,electric and magnetic media were discussed.Moreover,the way to deal with this kind of problem was summarized.Key words:Physical Chemistry;thermodynamics;the fundamental equation;non-expansion work热力学基本方程在处理平衡态热力学问题时非常有用,是物理化学课程内容的重点之一。

Advanced Mathematical Modeling Techniques

Advanced Mathematical Modeling Techniques

Advanced Mathematical ModelingTechniquesIn the realm of scientific inquiry and problem-solving, the application of advanced mathematical modeling techniques stands as a beacon of innovation and precision. From predicting the behavior of complex systems to optimizing processes in various fields, these techniques serve as invaluable tools for researchers, engineers, and decision-makers alike. In this discourse, we delve into the intricacies of advanced mathematical modeling techniques, exploring their principles, applications, and significance in modern society.At the core of advanced mathematical modeling lies the fusion of mathematical theory with computational algorithms, enabling the representation and analysis of intricate real-world phenomena. One of the fundamental techniques embraced in this domain is differential equations, serving as the mathematical language for describing change and dynamical systems. Whether in physics, engineering, biology, or economics, differential equations offer a powerful framework for understanding the evolution of variables over time. From classical ordinary differential equations (ODEs) to their more complex counterparts, such as partial differential equations (PDEs), researchers leverage these tools to unravel the dynamics of phenomena ranging from population growth to fluid flow.Beyond differential equations, advanced mathematical modeling encompasses a plethora of techniques tailored to specific applications. Among these, optimization theory emerges as a cornerstone, providing methodologies to identify optimal solutions amidst a multitude of possible choices. Whether in logistics, finance, or engineering design, optimization techniques enable the efficient allocation of resources, the maximization of profits, or the minimization of costs. From linear programming to nonlinear optimization and evolutionary algorithms, these methods empower decision-makers to navigate complex decision landscapes and achieve desired outcomes.Furthermore, stochastic processes constitute another vital aspect of advanced mathematical modeling, accounting for randomness and uncertainty in real-world systems. From Markov chains to stochastic differential equations, these techniques capture the probabilistic nature of phenomena, offering insights into risk assessment, financial modeling, and dynamic systems subjected to random fluctuations. By integrating probabilistic elements into mathematical models, researchers gain a deeper understanding of uncertainty's impact on outcomes, facilitating informed decision-making and risk management strategies.The advent of computational power has revolutionized the landscape of advanced mathematical modeling, enabling the simulation and analysis of increasingly complex systems. Numerical methods play a pivotal role in this paradigm, providing algorithms for approximating solutions to mathematical problems that defy analytical treatment. Finite element methods, finite difference methods, and Monte Carlo simulations are but a few examples of numerical techniques employed to tackle problems spanning from structural analysis to option pricing. Through iterative computation and algorithmic refinement, these methods empower researchers to explore phenomena with unprecedented depth and accuracy.Moreover, the interdisciplinary nature of advanced mathematical modeling fosters synergies across diverse fields, catalyzing innovation and breakthroughs. Machine learning and data-driven modeling, for instance, have emerged as formidable allies in deciphering complex patterns and extracting insights from vast datasets. Whether in predictive modeling, pattern recognition, or decision support systems, machine learning algorithms leverage statistical techniques to uncover hidden structures and relationships, driving advancements in fields as diverse as healthcare, finance, and autonomous systems.The application domains of advanced mathematical modeling techniques are as diverse as they are far-reaching. In the realm of healthcare, mathematical models underpin epidemiological studies, aiding in the understanding and mitigation of infectious diseases. From compartmental models like the SIR model to agent-based simulations, these tools inform public health policies and intervention strategies, guiding efforts to combat pandemics and safeguard populations.In the domain of climate science, mathematical models serve as indispensable tools for understanding Earth's complex climate system and projecting future trends. Coupling atmospheric, oceanic, and cryospheric models, researchers simulate the dynamics of climate variables, offering insights into phenomena such as global warming, sea-level rise, and extreme weather events. By integrating observational data and physical principles, these models enhance our understanding of climate dynamics, informing mitigation and adaptation strategies to address the challenges of climate change.Furthermore, in the realm of finance, mathematical modeling techniques underpin the pricing of financial instruments, the management of investment portfolios, and the assessment of risk. From option pricing models rooted in stochastic calculus to portfolio optimization techniques grounded in optimization theory, these tools empower financial institutions to make informed decisions in a volatile and uncertain market environment. By quantifying risk and return profiles, mathematical models facilitate the allocation of capital, the hedging of riskexposures, and the management of investment strategies, thereby contributing to financial stability and resilience.In conclusion, advanced mathematical modeling techniques represent a cornerstone of modern science and engineering, providing powerful tools for understanding, predicting, and optimizing complex systems. From differential equations to optimization theory, from stochastic processes to machine learning, these techniques enable researchers and practitioners to tackle a myriad of challenges across diverse domains. As computational capabilities continue to advance and interdisciplinary collaborations flourish, the potential for innovation and discovery in the realm of mathematical modeling knows no bounds. By harnessing the power of mathematics, computation, and data, we embark on a journey of exploration and insight, unraveling the mysteries of the universe and shaping the world of tomorrow.。

material_studio个人经验

material_studio个人经验

Materials Studio是Accelrys专为材料科学领域开发的可运行于PC机上的新一代材料计算软件,可帮助研究人员解决当今化学及材料工业中的许多重要问题。

Materials Studio软件采用Client/Server结构,客户端可以是Windows 98、2000或NT系统,计算服务器可以是本机的Windows 2000或NT,也可以是网络上的Windows 2000、Windows NT、Linux 或UNIX系统。

使得任何的材料研究人员可以轻易获得与世界一流研究机构相一致的材料模拟能力。

Materials Studio是ACCELRYS 公司专门为材料科学领域研究者所涉及的一款可运行在PC上的模拟软件。

他可以帮助你解决当今化学、材料工业中的一系列重要问题。

支持Windows98、NT、Unix以及Linux等多种操作平台的Materials Studio使化学及材料科学的研究者们能更方便的建立三维分子模型,深入的分析有机、无机晶体、无定形材料以及聚合物。

任何一个研究者,无论他是否是计算机方面的专家,都能充分享用该软件所使用的高新技术,他所生成的高质量的图片能使你的讲演和报告更引人入胜。

同时他还能处理各种不同来源的图形、文本以及数据表格。

多种先进算法的综合运用使Material Studio成为一个强有力的模拟工具。

无论是性质预测、聚合物建模还是X射线衍射模拟,我们都可以通过一些简单易学的操作来得到切实可靠的数据。

灵活方便的Client-Server结构还是的计算机可以在网络中任何一台装有NT、Linux或Unix操作系统的计算机上进行,从而最大限度的运用了网络资源。

ACCELRYS的软件使任何的研究者都能达到和世界一流工业研究部门相一致的材料模拟的能力。

模拟的内容囊括了催化剂、聚合物、固体化学、结晶学、晶粉衍射以及材料特性等材料科学研究领域的主要课题。

Materials Studio采用了大家非常熟悉Microsoft标准用户界面,它允许你通过各种控制面板直接对计算参数和计算结构进行设置和分析。

基于多尺度方法的1∶3共振双Hopf分岔分析

基于多尺度方法的1∶3共振双Hopf分岔分析

基于多尺度方法的1∶3共振双Hopf分岔分析王万永;陈丽娟;郭静【摘要】利用改进的多尺度方法对一个电路振子模型1∶3共振附近的动力学行为进行了研究。

应用该方法得到了系统的复振幅方程,进而得到一个振幅与相位解耦的三维实振幅系统,通过分析实振幅方程的平衡点个数及其稳定性,将系统共振点附近的动力学行为进行分类,发现了双稳态等动力学现象,数值模拟验证了理论结果的正确性。

%The dynamical behavior near a 1∶3 resonance of an electric oscillator was investigated. By using the method of multiple scale, the complex amplitude equations of the system were obtained. Then a three dimension real amplitude system in which the amplitudes decouple from the phases was given. Ana-lyzing the number of equilibrium and its stability of the real amplitude equation, the dynamical behavior around the resonant point was classified. Some interesting dynamical phenomenon were found, for exam-ple,the bistability. Numerical simulations for justifying the theoretical analysis were also provided.【期刊名称】《郑州大学学报(理学版)》【年(卷),期】2016(048)003【总页数】5页(P23-27)【关键词】电路振子;1∶3共振;多尺度方法;分岔【作者】王万永;陈丽娟;郭静【作者单位】河南工程学院理学院河南郑州451191;河南工程学院理学院河南郑州451191;郑州铁路职业技术学院公共教学部河南郑州450052【正文语种】中文【中图分类】O175.1在非线性动力学的研究中,内共振由于能够反应系统线性模态之间的相互作用,有着非常重要的研究价值.文献[1]通过研究一个两端固支屈曲梁模型的内共振,构建了该模型在1∶1和1∶3内共振情形下的非线性模态.文献[2]研究了一个悬索模型的1∶2内共振,并讨论了三次非线性和高阶修正项对系统解的影响.文献[3]研究了一个极限环振子系统发生的1∶3共振双Hopf分岔,并研究了非线性对共振附近动力学行为的影响.文献[4]通过利用3∶1内共振的性质设计了一个非线性振动吸振器.文献[5]研究了内共振条件下风力发电机风轮叶片的空气动力学行为.在内共振和双Hopf分岔的研究中,常用的方法有中心流形和规范型方法、多尺度方法、摄动增量法、Liapunov-Schmidt约化和奇异摄动法.这些方法都存在一些问题,例如中心流形方法计算过程复杂,奇异性理论更加数学化,晦涩难懂,而多尺度方法得到的强共振的实振幅方程中,平衡点是非孤立的平衡点[6],因而使稳定性分析和分岔分析无法进行.在本文的研究中,将应用一种改进的多尺度方法,把1∶3共振的规范型化为一个三维的实振幅系统,进而可以研究系统在共振点附近的动力学行为.本文以一个电路振子模型为例,利用改进的多尺度方法研究其1∶3共振点附近的动力学行为.其电路示意图如图1所示[7].其数学模型为[7]:其中:x1=v1,x2=i1,x3=v2,x4=i2是状态变量;η1=1/C1,η2=R,η3=1/L1,ρ1=1/C2,ρ2=1/L2是参数;α1、α2、α3是辅助参数.非线性电路模型的动力学行为是非线性动力学研究的重要内容之一.目前已有不少的文献从实验和理论方面对其进行了研究[8-12],并发现了次谐波振荡、周期解、概周期解、分岔以及混沌等大量的非线性现象[11].本文将应用改进的多尺度方法对该电路系统的1∶3共振进行研究,计算其振幅方程并分析共振点附近的动力学行为.系统(1)在其唯一平衡点(0,0,0,0)处的线性化系统为,其特征方程为λ4+(-α1η1+η2ρ2)λ3+(η1η3+η1ρ2-α1η1η2ρ2+ρ1ρ2)λ3+(η1η2η3ρ2-α1η1ρ1ρ2)λ+η1η3ρ1ρ2=0.为了研究该系统1∶3共振点附近的动力学行为,设其特征方程有两对纯虚根λ1,3=±iω1和λ2,4=±iω2,其中ω1∶ω2=1∶3.可以求得当,时,特征方程(2)有两对纯虚根和.为了得到1∶3共振的规范型方程,将应用改进的多尺度方法对系统(1)进行分析.首先按照如下形式摄动参数设,则系统(1)可写为其多尺度形式的解具有如下形式将式(3)、(5)带入式(4),并对式(4)的右端进行Taylor展开,令两端ε的各次幂的系数相等,可得方程(6)的解具有如下形式其中:Aj(j=1,2)是复振幅,为时间尺度T2的函数;p1和p2是相应于特征值iω1和iω2的右特征向量;c.c. 表示前面各项的复共轭.将式(9)代入式(7),可求得式(7)的解为其中zij是复系数.将式(9)、(10)代入式(8),令长期项的系数为零,可得到A1和A2关于时间尺度T2导数的两个方程.应用左特征向量消去D2A1和D2A2的系数并吸收参数ε[13],可得Cijk和Ciμ με是复系数.在式(11)中,A1和A2为复振幅,为了将式(11)转化为实数振幅方程,通常将A1和A2设为极坐标形式.但是,在强共振条件下,如果将A1和A2设为极坐标形式,将会得到一个实振幅与相位变量耦合的三维系统,其平衡点将是非孤立的平衡点,平衡点的稳定性将无法研究.为了避免这种情况,将复振幅A1和A2设为一种混合形式(极坐标-笛卡尔形式)[13],将式(12)代入式(11),分离其实部和虚部,可得到一个振幅与相位解耦的三维实振幅方程,如下:0.210 018uv2-0.532 248v3+0.080 357 1uη1ε-0.139 382vη1ε-0.21967uη2ε+0.168 86vη2ε+ 0.258 519 u η3ε+1.345 23vη3ε,0.210 018u2v+0.532 248uv2-0.210 018v3+0.139 382uη1ε+0.080 3571vη1ε-0.168 86uη2ε-0.219 67vη2ε-1.345 23uη3ε+0.258 519vη3ε.若设,则相应于原系统的状态变量x的Hopf分岔是振幅变量a1、a2的静态分岔. 由前面的分析可知1∶3共振的振幅方程是由3个变量组成的三维系统,并且含有3个分岔参数.为了分析共振点(η1c,η2c,η3c)附近的动力学行为,可以固定其中一个分岔参数,分析系统在二维参数平面上共振点附近的动力学行为.为此,固定参数η3,在η1-η2平面内对系统的动力学行为进行分类.根据实振幅方程的平衡点个数及每个平衡点稳定性的不同, 将平面η1-η2分为6个不同的区域,如图2所示.在Ⅰ区中,其平凡平衡点E0(0,0)是稳定的平衡点,对应于原系统的原点.当参数进入Ⅱ区,一个稳定的单模态平衡点E1(a10,0)出现,而平凡平衡点E0(0,0)变为不稳定的平衡点.当参数进入Ⅲ区,一个不稳定的平衡点E2(0,a20)出现,而平衡点E1(a10,0)保持其稳定性,平衡点E0(0,0)仍然是不稳定的.在Ⅳ区,一个新的不稳定的双模态平衡点E3(a12,a22)产生,而平衡点E1(a10,0)和E2(0,a20)是稳定的平衡点.在Ⅴ区,双模态平衡点E3(a12,a22)消失,平衡点E1(a10,0)失稳,平衡点E2(0,a20)仍然是稳定的.在Ⅵ区,平衡点E2(0,a20)保持稳定性,平衡点E1(a10,0)消失.其中单模态平衡点E1(a10,0)和E2(0,a20)分别相应于原系统频率为ω1和ω2的周期解,双模态平衡点E3(a12,a22)则相应于原系统的一个概周期解.为了验证理论分析的正确性,对原系统进行数值模拟,模拟的结果如图3~图8所示.可以发现,当参数在共振点附近变化时,系统出现两个不同频率的周期解,其频率比值接近1∶3.同时在分类图的Ⅳ区,两个不同频率的周期解同时出现,系统出现双稳态现象.本文研究了一个电路振子模型中发生的1∶3共振双Hopf分岔,通过应用改进的多尺度方法得到了该1∶3共振的规范型方程,进而分析其共振点附近的动力学行为,发现了周期解、双稳态等动力学现象,并通过数值模拟验证了结果的正确性.本文在揭示电路振子系统动力学现象的同时,应用了一种研究1∶3共振的新方法,该方法通过应用多尺度方法的过程,并将1∶3共振的复振幅设为一种混合形式,可以得到1∶3共振实振幅系统,从而能够研究共振点附近的动力学行为.【相关文献】[1] LACARBONARA W,REGA G,NAYFEH A H.Resonant non-linear normal modes.Part I:analytical treatment for structural one-dimensional systems [J].Int JNon-linear Mech,2003,38(6):851-872.[2] LEE C L, PERKINS N C.Nonlinear oscillations of suspended cables containing atwo-to-one internal resonance [J].Nonlinear Dyn,1992,3(6):465-490.[3] 王万永,陈丽娟.非线性时滞反馈对共振附近动力学行为的影响 [J].信阳师范学院学报(自然科学版),2014,27(1):15-18.[4] JI J C, ZHANG N.Design of a nonlinear vibration absorber using three-to-one internal resonances [J].Mech Syst Signal Processing,2014,42(1/2): 236-246.[5] LI L,LI Y H,LIU Q K,et al. Flap wise non-linear dynamics of wind turbine blades with both external and internal resonances[J].Int J Non-Linear Mech,2014,61(1):1-14.[6] LUONGO A,DI EGIDIO A,PAOLONE A.On the proper form of the amplitude modulation equations for resonant systems [J].Nonlinear Dyn,2002,27(3):237-254.[7] REVEL G,ALONSO D M,MOIOLA J L.Numerical semi-global analysis of a 1∶2 resonant Hopf-Hopf bifurcation [J].Physica D-nonlinear phenomena,2012,247(1):40-53.[8] 徐兴磊,李红.压缩真空态的激发态下介观串并联RLC电路的量子涨落 [J].郑州大学学报(理学版),2007,39(1):67-70.[9] 方天申,董学义.LC串联电路非共振固有振荡与谐波共振的区别 [J].信阳师范学院学报(自然科学版),2007,20(4):429-431.[10] CHUA L O, WU C W, HUANG A, et al.A universal circuit for studying and generating chaos-Ⅱ:Strange attractors[J]. IEEE T Circuits Sys I, 1993, 40(10): 745-761. [11] 张晓芳,陈章耀,毕勤胜.非线性电路系统动力学的研究进展及展望[J].电路与系统学报,2012,17(5):124-129.[12] 苏利捷,魏兆博,杨广德.单相逆变器共模电磁干扰特性研究 [J].郑州大学学报(理学版),2014,46(4):57-62.[13] LUONGO A,PAOLONE A,DI EGIDIO A.Multiple timescales analysis for 1∶2 and 1∶3 resonant Hopf bifurcations [J].Nonlinear dynamics,2003,34(3/4):269-291.。

特斯拉动态引力理论原文

特斯拉动态引力理论原文

Introduction:
There is a new theory of gravity called Dynamic Theory of Gravity [DTG]. Based on classical thermodynamics Ref:[1] [2] [3] [9] it has been shown that the fundamental laws of Classical Thermodynamics also require Einstein’s
p 4 = mv 4 ,
(1a)
where the velocity in the fifth dimension is given by:

γ v4 = , αD

(1b)ቤተ መጻሕፍቲ ባይዱ
and γ is a time derivative where gamma itself has units of mass density or kg/m3, and αo is a density gradient with units of kg/m4. In the absence of curvature, (1) becomes:
(5)
and for orbiting Hubble telescope (ht) of a height h the following expression:
ln[1 + z ht ] = −
M em HL R⊕ G M⊕ − . + c 2 (R + h ) + R R h ⊕ c ⊕ em
Abstract:
In a new theory called Dynamic Theory of Gravity, the cosmological distance to an object and also its gravitational potential can be calculated. We first measure its redshift on the surface of the Earth. The theory can be applied as well to an object in orbit above the Earth, e.g., a satellite such as the Hubble telescope. In this paper, we give various expressions for the redshifts calculated on the surface of the Earth as well as on an object in orbit, being the Hubble telescope. Our calculations will assume that the emitting body is a star of mass M = MX-ray(source) = 1.6×108 Msolar masses and a core radius R = 80 pc, at a cosmological distance away from the Earth. We take the orbital height h of the Hubble telescope to be 450 Km.

《常微分方程》课程大纲

《常微分方程》课程大纲

《常微分方程》课程大纲一、课程简介课程名称:常微分方程学时/学分:3/54先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。

面向对象:本科二年级或以上学生教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。

二、教学内容和要求常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。

(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数)第一章基本概念(2,0)(一)本章教学目的与要求:要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方向场),定解问题等基本概念。

本章教学重点解释常微分方程解的几何意义。

(二)教学内容:1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。

2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。

3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。

4.常微分方程所讨论的基本问题。

第二章初等积分法(4,2)(一)本章教学目的与要求:要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。

本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。

并通过习题课进行初步解题训练,提高解题技巧。

(二)教学内容:1. 恰当方程(积分因子法); 2. 分离变量法3. 一阶线性微分方程(常数变易法)4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)5.应用举例第三章常微分方程基本定理(10,2)(一)本章教学目的与要求:要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。

庞加莱本迪克森定理

庞加莱本迪克森定理

庞加莱本迪克森定理庞加莱本迪克森定理(Poincaré-Bendixson theorem)是拓扑动力系统理论中的一个重要定理,描述了在二维微分方程系统中,闭轨道或者周期轨道的行为。

本文将介绍庞加莱本迪克森定理的背景、定义、证明和应用。

背景在研究动力系统时,我们常常关注系统的稳定性和轨道的行为。

庞加莱本迪克森定理提供了一种方法来判断二维微分方程系统中闭轨道或者周期轨道的存在性和稳定性。

定义在二维微分方程系统中,考虑一个区域D,包含某个点x0。

如果对于任意的ε > 0,存在一个足够小的δ > 0,使得对于所有满足0 < |t - t0| < δ的t,系统的解φ(t, x0)在D内的轨道都与φ(t0, x0)的轨道足够接近,那么我们称φ(t, x0)的轨道是渐近稳定的。

证明庞加莱本迪克森定理的证明相对复杂,需要借助一些拓扑学的工具和定理。

这里我们简要概述一下证明的思路。

首先,我们需要引入一个重要的概念:极限点。

对于一个动力系统的轨道,如果存在一个点p,对于任意的ε > 0,存在某个时间t,使得轨道上的点φ(t, x0)与p的距离小于ε,那么我们称p是轨道的一个极限点。

接下来,我们可以利用拓扑学中的Brouwer不动点定理,证明在某些条件下,闭轨道或者周期轨道一定存在。

然后,我们通过引入一些额外的条件,例如系统的Lienard方程,来保证闭轨道或者周期轨道是渐近稳定的。

具体的证明过程比较复杂,需要借助一些数学工具和技巧,超出了本文的范围。

如果读者对庞加莱本迪克森定理的证明感兴趣,可以参考相关的拓扑动力系统理论的教材或者研究论文。

应用庞加莱本迪克森定理在动力系统的研究中有广泛的应用。

它可以用来研究振动系统、非线性电路、生物系统等等。

通过判断闭轨道或者周期轨道的存在性和稳定性,我们可以更好地理解和预测系统的行为。

例如,在生物学中,我们可以将庞加莱本迪克森定理应用于描述食物链中的捕食者和被捕食者的相互作用。

连续和离散动力系统中两类方程的复杂动态

连续和离散动力系统中两类方程的复杂动态

湖南师范大学博士学位论文连续和离散动力系统中两类方程的复杂动态姓名:***申请学位级别:博士专业:基础数学指导教师:***20100501摘要本文应用连续和离散动力系统中的分支理论、二阶平均方法、Melnik-OV方法和混沌理论,首次研究连续和离散动力系统中两类方程当参数变化时不动点的分支、三频率共振解的分支和混沌动态.对于连续动力系统,首先运用Melnikov方法和二阶平均方法研究受悬挂轴振动和外力作用的物理单摆在周期扰动下与拟周期扰动下的复杂动态,给出在周期扰动下系统产生混沌运动的准则,在拟周期扰动下,仅能给出当Q=伽+E以n=1,2,3,4时平均系统存在混沌的条件,而当Q=gto,;+e%n=5—15时,用平均方法不能给出混沌产生的条件,这里∥和u之比为无理数.同时通过数值模拟,包括二维参数平面和三维参数空间中的分支图,相应的最大Lyapunov指数图,相图以及Poincax色映射,验证了理论结果的正确性,发现了系统的一些复杂动力学行为,其中包括从周期1轨到周期2轨的分支与周期2轨到周期2轨的逆分支;混沌的突然发生:不带周期窗口的全混沌区域,带复杂周期窗口或拟周期窗口的混沌区域;混沌的突然消失,混沌转变成周期1轨;不带周期窗口的全不变环区域或全拟周期轨区域:不变环或拟周期轨突然转变与周期1轨;从一个周期1轨区域到另一个周期1轨区域或从一个拟周期轨区域到另一个拟周期轨区域的突然跳跃;周期1轨的对称断裂:内部危机;发现了许多新颖的混沌吸引子和不变环,等等.数值模拟结果表明:当调整分支参数乜,6,,o与Q的值时,系统动态从全混沌运动或全不变环或全拟周期轨突然转变为周期轨,这有利于控制物理单摆的运动.其次运用二阶平均方法研究受悬挂轴振动和外力作用的物理单摆的三频率共振动解的分支与混沌,运用二阶平均方法研究了当系统的固有频率咖,外力激励频率u与参数频率Q之比:030:u:Q≈1:1:佗,1:2:佗,1:3:佗,2:1:仉与3:1:礼时共振解的存在与分支.运用Melnikov方法,给出了当uo:∽:Q≈1:m:佗时共振解存在的条件,并通过数值模拟进行了验证.通过数值模拟,又发现了系统的许多动态,如:不带周期窗口的全不变环行为,不变环区域的串联,不带周期窗口的纯混沌行为,带复杂周期窗口的混沌行为,全周期轨区域;不变环转变为周期轨,周期轨转变为混沌,一种不变环转变为另一种不变环等动态的跳跃行为;内部危机等动态.这些动态与在周期扰动和拟周期扰动下的动态具有很大的差异,特别发现:当初始点由鞍点改变成中心时,有更多的新的不变环吸引子被找到.首次用Euler方法将细菌培养呼吸过程模型离散化,运用中心流形定理和分支理论,给出映射发生flip分支,Hopf:分支的条件,Marotto意义下的混沌存在的条件,证明映射没有fold分支.运用数值模拟方法(包括分支图,相图,最大Lyapunov指数图,分形维数),不仅验证了理论分析结论的正确性,还发现了该映射的许多动态,如:从周期2轨到周期8轨的逆倍周期分支,从周期l轨到周期4轨的逆倍周期分支,带周期窗口的混沌行为,不带周期窗口的全混沌行为,不带周期窗口的全不变环行为,从混沌转变为不变环,从不变环转变为混沌,从混沌转变为周期轨,从周期轨转变为混沌等动态的跳跃,周期轨与混沌的交替行为等.对这两个动力系统的研究,所得到的动态行为将丰富非线性动力系统的内容,对其它学科,例如,化学、物理、生物学的研究有一定的应用价值.全文共分三章.第一章是关于动力系统的分支与混沌的预备知识.简要介绍连续和离散动力系统中的中心流形定理,二阶平均方法、Mehaikov方法以及混沌的定义、特征和通向混沌的道路.第二章,深入分析与研究受悬挂轴振动和外力作用的物理单摆的复杂动态.第二节至第四节,研究在周期扰动下与拟周期扰动下系统的的动态,运用二阶平均方法与Melnikov方法,给出系统存在混沌的准则,数值模拟不仅验证了理论分析结果的正确性,发现了系统的一些复杂动力学行为,而且显示当Q=no)+姒n=7时系统也存在混沌.本部分的结果发表在ActaMathematicaApplicataeSinaca,EnglishSeries,V01.(26),No.1(2010),55-78.第五节,研究系统的三频率共振动解的分支与混沌,运用二阶平均方法给出了当系统的固有频率Wo,外力激励频率u与参数频率Q之比:wo:u:Q≈1:1:n,1:2:佗,1:3:竹,2:1:n与3:1:n时共振解的存在条件与分支.运用Melnikov方法,给出了当W0:u:Q≈1:仇:n时共振解存在的条件,并通过数值模拟进行了验证.数值模拟又发现了系统的许多动态,显示了与在周期扰动和拟周期扰动下的动态的差异,发现:当初始点由鞍点改变成中心时,有更多的新的不变环吸引子被找到.本部分的结果已被ActaMathematicaApplicataeSinaca,EnglishSeries接收.第三章,研究离散型细菌培养呼吸过程模型.应用欧拉方法将连续型细菌培养呼吸过程模型离散化,运用中心流形定理和分支理论,给出映射发生flip分支,H0p吩支的条件,存在Maxotto意义下的混沌的条件,证明系统不存在fold分支.运用数值模拟,验证了理论分析结果的正确性,发现了该映射的许多动态.关键词:二阶平均;Melnikov方法;分支;混沌;周期扰动;拟周期扰动;三频率共振;Maxotto混沌.ABSTRACTInthisthesis,weinvestigatesthebifurcationoffixedpointsandresonantSO-hitionsandchaosfortwotypesofequationsincontinuousanddiscretedynamicalsystems,whichalenotconsideredyet,asthebifurcationparametersvarybyap-plyingbifurcationtheories,second-orderaveragingmethod,Melnikovmethodandchaostheoryincontinuousanddiscretedynamicalsystems.Forthecontinuoussystem,thecomplexdynamicsforthephysicalpendulumequationwithsuspensionaxisvibrationsareinvestigated.Firstly'weprovetheconditionsofexistenceofchaosunderperiodicperturbationsbyusingMeinikov’smethod.Byusingsecond-orderaveragingmethodandMelinikov’smethod.wegivetheconditionsofexistenceofchaosinaveragedsystemunderquasi-periodicperturbationsforQ=伽+e%n=1—4,wherel,isnotrationaltoo,andcan’tofchaosfor佗=5—15.andcallshowthechaoticprovetheconditionofexistencebehaviorsforn=5bynumericalsimulations.Bynumericalsimulationsincludingbifurcationdiagrams,phaseportraits,computationofmaximumLyapunovexpo-nentsandPoincalgmap,wecheckuptheeffectoftheoreticalanalysisandexposethecomplexdynamicalbehaviors,includingthebifurcationandreversebifurca-tionfromperiod-onetoperiod—twoorbits;andtheonsetofchaos,andtheentirechaoticregionwithoutperiodicwindows,chaoticregionswithcomplexperiodicwindowsorwithcomplexquasi—periodicwindows;chaoticbehaviorssuddenlydis-appearing,orconvertingtoperiod-oneorbitwhichmeansthatthesystemcanbestabilizedtoperiodicmotionbyadjustingbifurcationparameters口,最f0andfl;andtheonsetofinvarianttomsorquasi-periodicbehaviors,theentireinvari-anttomsregionorquasi-periodicregionwithoutperiodicwindow,quasi-periodicbehaviorsorinvarianttorusbehaviorsm:tddenlydisappearingorconvertingtope-riodicorbit;andthejumpingbehaviorswhichincludingfromperiod—oneorbittoantherperiod-oneorbit,fromquasi—periodicsettoanotherquasi-periodicset;andtheinterleavingoccurrenceofchaoticbehaviorsandinvalianttorusbehaviorsorquasi—periodicbehaviors;andtheinteriorcrisis;andthesymmetrybreakingofIVandinvarianttoms.Inperiod-oneorbit;andthedifferentnicechaoticattractorsparticular,thesystemshowntheentirechaoticregionorinvarianttomsregionorentirequasi-periodicregionsuddenlyconvertingtoperiodicorbitbyadjustingthebifurcationparametersQ,正/0andQ,whichisbeneficialtothecontrolofmotionsofthependulum.bifurcationsofresonantsolu—Secondly,weinvestigatetheexistenceandthetionforw0:u:Q≈1:1:佗,1:2:佗,1:3:n,2:1:tland3:1:扎byusingsecond-orderaveragingmethodandgiveacriterionfortheexistenceofresonantsolutionforw0:u:Q≈1:仇:flisgivenbyusingMelnikov’Smethodandverifythetheoreticalanalysisbynumericalsimulations.Bynumericalsimulation,wesomeotherinterestingdynamicalbehaviors,includingtheentireinvariantexposetomsregion,thecascadeofinvarianttorusbehaviors,theentirechaosregionwith—outperiodicwindows,chaoticregionwithcomplexperiodicwindows,theentirewhichincludinginvarianttorusperiod-oneorbitsregion;thejumpingbehaviorsbehaviorsconvertingtoperiod-oneorbits,fromchaostoinvarianttorusbehaviorsorfrominvarianttomsbehaviorstochaos,fromperiod-onetochaos,frominvarianttomsbehaviorstoanotherinvarianttomsbehaviors;andtheinteriorcrisis;andthedifferentniceinvarianttorusattractorsandchaoticattractors.Thenumericalresultssliowthedifferenceofdynamicalbehaviorsinthephysicalpendulumequa-tionwithsuspensionaxisvibrationsbetweenunderthethreefrequenciesresonantandundertheperiodic/quasi—periodicperturbations.Itexhibitsmanyconditionniceinvarianttorusbehaviorsundertheresonantconditionsandwefindalotofchaoticbehaviorswhicharedifferenttothoseundertheperiodic/quasi—periodicperturbations.Forthediscretesystem,thedynamicalbehaviorsofadiscreetmathematicalmodelforrespiratoryprocessinbacterialcultureareinvestigated.TheconditionsofexistenceforflipbifurcationandHopfbifurcationarederivedbyusingcen-termanifoldtheoremandbifurcationtheory,conditionofexistenceofchaosintheSelz.qeofMarotto’8definitionofchaosisproved.Thebifurcationdiagrams,VLyapunovexponentsandphaseportraitsaregivenfordifferentparametersofthemodel,andthefractaldimensionofchaoticattractorofthemodelisalsocalcu-iated.Thenumericalsimulationresultsnotonlyshowtheconsistencewiththetheoreticalanalysisbutalsodisplaythenewandinterestingcomplexdynamicalbehaviorscomparedwiththecontimlousmodel,includingreversebifilrcationfromperiod—twotoperiod-eightorbitsandfromperiod-oneorbitstoperiod-fourorbits,thecascadesofperiod—doublingbifurcationsfromperiod-oneorbitstoperiod—eightorbitsandfromperiod-threeorbitstoperiod—twelveorbits;andtheonsetofchaos,andtheentirechaoticregionwithoutperiodicwindows,chaoticregionswithcoin-plexperiodicwindows,theentireinvarianttormswithoutperiodicwindows;chaoticbehaviorsconvertingtoperiodicorbits;andthejumpingbehaviorsincludingfromchaostoinvarianttoms,frominvarianttomstochaosandfromperiodicorbitstochaos;andtheinterleavingoccurrenceofperiodicorbitsandinvarianttomsbehaviors;andthedifferentnicechaoticattractorsandinvarianttorus.Thestudyforthemisoffundamentalandevenpracticalinterest.ThedynamicalbehaviorsoftheseSystem8willenrichthecontentofnonlineardynamicalsystemsandwillbeusefulinothersubjectssuchaschemistry,physicsandbiology.Thisthesisconsistsofthreechaptersasthefollowing.Chapter1isaboutpreparationknowledge.Abriefreviewofcentermanifoldtheoremsforcontinummanddiscretedynamicalsystemispresented.Atthe8a工netime,somedefinitionsandcharacteristicsofchaosaswell晒someroutestochaosarementioned.Inchapter2,thephysicalpendulumequationwithsuspensionaxisvib胁tionsisinvestigated.Insection2.2,2.3and2.4,theconditionsofexistenceofchaosunderperiodicperturbationsandunderquasi—periodicperturbationsaregivenbyusingMelnikov’Smethodandsecond—orderaveragingmethod.Bynu-mericalsimulationswenotonlycheckuptheeffectoftheoreticalanalysisandexposethecomplexdynamicalbehaviors,butalsoshowthechaoticbehaviorsa8VIQ=删+f%n=7.Insection2.5,weinvestigatetheexistenceandthebifurca-tionsofresonantsolutionfor峋:u:Q≈1:1:佗,1:2:佗,1:3:佗,2:1:nand3:1:,lbyusingsecond-orderaveragingmethodandgiveacriterionfortheexis-tenceofresonantsolutionfor岫:u:Q≈1:仇:礼isgivenbyusingMeinik_ov’smethodandverifythetheoreticalanalysisbynumericalsimulations.Bymlmericalsimulation,weexposesomeotherinterestingdynamicalbehaviors.Themlmericalresultsshowthedifferenceofdynamicalbehaviorsinthephysicalpendulumequa-tionwithsuspensionaxisvibrationsbetweenunderthethreefrequenciesresonantconditionandundertheperiodic/quasi—periodicperturbations.Itexhibitsmanyniceinvarianttorusbehaviorsundertheresonantconditionsandwefindalotofchaoticbehaviorswhicharedifferenttothoseundertheperiodic/quasi·periodicperturbations.Inchapter3,thedynamicalbehaviorsofadiscreetmathematicalmodelfortherespiratoryprocessinbacterialcultureareinvestigated.TheconditionsofexoistenceforflipbifurcationandHopfbifurcationarederivedbyusingcentermaul-foldtheoremandbifurcationtheory,andweprovethatthereisnofoldbifurcation.ThechaoticexistenceinthesenseofMarotto’Sdefinitionofchaosisproved.Thenumericalsimulationresultsdisplaysomenewandcomplexdynamicalbehaviors.Keywords:second-orderaveragingmethod,Melnikov’8method,bifur-cation,chaos,periodicperturbations,quasi-periodicperturbations,Marotto’Schaos.VII湖南师范大学学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果.除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果.对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明.本人完全意识到本声明的法律结果由本人承担.靴论文作者躲槲"年‘且y日湖南师范大学学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,研究生在校攻读学位期间论文工作的知识产权单位属湖南师范大学.同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅.本人授权湖南师范大学可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文.本学位论文属于·1、保密口,在——年解密后适用本授权书.2、不保密d(请在以上相应方框内打“ ̄/")作者签名:导师签名:147日瓣纱秘片咱日勘沙年6月∥汨连续和离散动力系统中两类方程的复杂动态1.预备知识1.1动力系统概述及其定义动力系统的研究来源于常微分方程定性理论.考虑舻中的常微分方程(组)圣=,(卫),(1.1.1)其中,z=(z。

多体动力学基础公式介绍之二Magg‘s Equations

多体动力学基础公式介绍之二Magg‘s Equations
VOL. 13, NO. 1, 13
Role of Maggi's Equations in Computational Methods for Constrained Multibody Systems
Andrew Kurdila,* John G. Papastavridis,t and Manohar P. KamatJ Georgia Institute of Technology, Atlanta, Georgia
This paper presents a unified theoretical basis for a class of methods that generate the governing equations of constrained dynamical systems by eliminating the constraints. By using Maggi's equations in conjunction with a common projective theory from numerical analysis, it is shown that members of the class are precisely characterized by the basis they choose for the null-space of the variational form of the constraints. For each method considered, the specific basis chosen for the null-space of the variational constraints is derived, as well as a dual basis for the orthogonal complement. The latter basis is of particular interest since it is shown that its knowledge theoretically enables one to generalize certain methods of the class to calculate constraint forces and torques. Practical approaches based on orthogonal transformations to effect this strategy are also outlined. In addition, since the theory presented herein stresses a common, fundamental structure to the various methods, it is especially useful as a means of comparing and evaluating individual numerical algorithms. The theory presented makes clear the relationship between certain numerical instabilities that have been noted in some methods that eliminate a priori constraint contributions to the governing equations by selecting an independent subset of unknowns. It is also briefly indicated how this formalism can be extended, in principle, to the wider class of nonlinear nonholonomic constraints.

刚体空间运动的动力学方程的联合推导

刚体空间运动的动力学方程的联合推导

DOI: 10.12677/ijm.2019.83022
200
力学研究
肖国峰
矩阵左乘运算,得
( ) ∑ mk ρck × (ω × ρck ) = Icω
(26)
k
式(26)左端第三项,利用 Jacobi 恒等式,有
( ) ( ) ρck × ω× (ω× ρck ) + ω× (ω× ρck ) × ρck = 0
Open Access
1. 引言
刚体空间一般运动的动力学描述[1],是由平移(动力学)方程和旋转(动力学)方程等两个方程的“组合” 来进行描述的,平移方程和旋转方程合称为描述刚体一般运动的刚体动力学方程。
刚体动力学方程的形式推导大致经历了三个阶级。第一阶段,动力学方程由惯性参考系中描述质点 系质心平移运动的质心运动定理[2],和连体参考系中描述刚点定点旋转运动的坐标形式的欧拉方程进行 组合来进行描述的[3] [4]。第二阶段,Wittenburg [5]推导出惯性系中基于任意基点的旋转方程。这样,平 移方程和旋转方程就都可以在惯性系中进行统一描述。第三阶段,Featherstone [6]、李洲圣[7]推导了惯性 系中基于任意点的平移方程。
United Derivation of Dynamical Equations for Rigid Body Spatial Motion
Guofeng Xiao
State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan Hubei

非线性系统线性化综述翻译

非线性系统线性化综述翻译

⾮线性系统线性化综述翻译┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊⾮线性系统线性化综述程代展,李志强(中国科学院数学与系统科学研究院,北京100190)摘要:⾮线性系统的线性化是设计⾮线性系统控制的强有⼒⼯具。

这⼀⽅法已经在飞⾏器控制、电⼒系统的安全控制、化学反应器控制、经济系统、⽣物学系统和机器⼈控制等领域得到⼴泛应⽤。

本⽂阐述了⾮线性系统线性化的发展历史以及有深刻意义的结果。

⾸先回顾从⾮线性系统的近似线性化到精确线性化的发展。

主要内容Poincare线性化、系统能通过状态反馈线性化的充要条件和算法。

然后介绍各种不同的线性化⽅法:动态反馈线性化,近似线性化,Cralema3/l线性化等。

本⽂主要⽬的是对⾮线性系统线性化的历史,现状和⼀些重要问题进⾏⼀个较完整全⾯的介绍,从⽽提供从事线性化理论与应⽤研究的基础。

关键词:线性化;Poincare定理;状态反馈;⾮正则;部分线性化1 介绍⾮线性系统线性化处理与⾮线性(控制)系统是最有效的⽅法之⼀. 它已被⼴泛⽤于研究很长⼀段时间, 已获得许多有价值的理论成果. 线性化也已被⼴泛⽤于各种⼯程问题。

例如,飞机控制,动⼒系统,化学反应,经济系统,⽣物系统,神经⽹络,空调系统,⽣态系统,机器⼈控制系统等。

垂直起降飞⾏器模型不是静态状态反馈线性化⽽是动态状态反馈线性化。

双旋翼直升机模型的飞⾏控制器的设计。

局部线性化的设计⽅法主要运⽤静态反馈线性和较低的⼦系统层次实现。

输⼊输出反馈线性化⽅法被⽤来设计⼀个分散的⼤型电⼒系统的⾮线性控制器,事实证明,输⼊输出线性化类型的反馈可以接近反应器任意设定点的运动轨迹,即使有参数的不确定性。

状态空间精确线性化⽅法应⽤于Kaldor和Bonhoeffer-Van Der Pohl⾮线性控制系统的⾮线性反馈控制律的设计。

线性化的应⽤分别列举了⽣物系统和物理系统这两个系统的综合分析。

作为多输⼊多输出双线性系统的⼀个V AV AC电⼚的动态模型推导和制定。

机械工程学专业词汇英语翻译(E)2

机械工程学专业词汇英语翻译(E)2

机械工程学专业词汇英语翻译(E)2energy line 能量线energy loss 能量损耗energy metabolism 能量代谢energy migration 能量迂移energy momentum flux 能量动量通量energy momentum tensor 能量动量张量energy of absorption 吸收能energy of attachment 附着能energy of combustion 燃烧能energy of interaction 相互酌能energy of thermal motion 热运动能量energy of turbulence 湍淋energy of vibration 振动能量energy operator 能量算符energy oscillation 能量振荡energy output 能量输出energy principle 能量原理energy relaxation 能量弛豫energy resolution 能量分辨率energy source 能源energy spectrum 能谱energy spectrum equation of turbulence 湍淋谱方程energy storage 蓄能energy surface 能面energy transfer 能量传输energy unit 能单位engine power 发动机功率engine speed 发动机转速engineering fluid mechanics 工程铃力学engineering system of units 工程单位制engineering unit 工程单位engler degree 恶勒度engler viscosimeter 断粘度计enlargement 放大enlargement of pipe 管扩张enlargement scale 放大标度enrichment 浓缩entering 入射enthalpy 焓enthalpy of combustion 燃烧焓enthalpy of mixing 混合焓entrainment 卷入entrance loss 进口损失entrance pressure 进口压力entrance velocity 进口速度entropic efficiency 熵效率entropic wave 熵波entropy 熵entropy balance equation 熵平衡方程entropy elasticity 熵弹性entropy equation 熵方程entropy flow 熵流entropy increase 熵增加entropy inequality 熵不等式entropy layer 熵层entropy of evaporation 汽化熵entropy of formation 形成熵entropy of melting 熔融熵entropy of mixing 混合熵entropy wave 熵波envelope surface 包络面envelope velocity 包络速度environment 环境environment temperature 周围温度environmental aerodynamics 环境空气动力学environmental conditions 环境条件epicenter 震中epicycloidal motion 外摆线运动equal armed lever 等臂杠杆equal energy source 等能源equalization 均衡equalization of concentration 浓度均衡equalization of potential 位势均衡equally distributed 均匀分布的equating 均衡equation of compatibility 协到程equation of continuity 连续性原理equation of equilibrium 平衡方程equation of five moments 五力矩方程equation of heat balance 热平衡方程equation of hydrodynamics 铃动力学方程equation of hydrostatics 铃静力学方程equation of motion 运动方程equation of radiative transfer 辐射传递方程equation of the vibrating string 弦振动方程equations of gravitational field 引力场方程equations of gyroscopic motion 陀螺仪运动方程equatorial moment of inertia 轴惯性矩equiangular 等角的equiangular spiral 等角螺线equidensity 等密度equidimensional 等量纲的equidistribution 等分布equilbrium state 平衡态equilibrant force 补偿力equilibrating force system 平衡力系equilibrium 平衡equilibrium conditions 平衡条件equilibrium constant 平衡常数equilibrium criterion 平衡判据equilibrium diagram 平衡状态图equilibrium flow 平衡流equilibrium form 平衡形式equilibrium gradient 平衡梯度equilibrium momentum 平衡动量equilibrium of couples 力偶平衡equilibrium of forces 力平衡equilibrium partial pressure 平衡分压力equilibrium point 平衡点equilibrium process 平衡过程equilibrium state 平衡态equilibrium structure 平衡结构equilibrium surface 平衡面equilibrium surface tension 平衡表面张力equilibrium system 平衡系equilibrium tide 平衡潮equilibrium time 平衡时间equilibrium value 平衡值equilibrium vapor pressure 平衡蒸气压equipartition law 均分定律equipartition of energy 能量均分equiphase surface 等相面equipollent vectors 等效矢量equipotential line 等位线equipotential surface 等位面equivalence of mass and energy 质能等效equivalence principle 等效原理equivalence relation 等价关系equivalent bonds 等效结合equivalent couple 等值力偶equivalent damping 等价阻尼equivalent diameter 等效直径equivalent force systems 等效力系equivalent load 等效负载equivalent mass 等效质量equivalent permeability 当量渗透性equivalent roughness 等效粗度equivalent stopping power 等效阻止本领equivalent stress 等效应力equivalent system 等效系统equivalent thickness 等效厚度equivalent turbulence 等效湍寥equivalent twisting moment 等量扭矩equivoluminal wave 等容波erection load 装配负载erection stress 架设应力erg 尔格ergodic hypothesis 脯历经假说ergodic property 脯历经性ergodic random process 脯历经随机过程ergodic theorem 脯历经定理ergodic theory 脯历经理论erosion corrosion 侵蚀性腐蚀error function 误差函数error limit 误差限度error of division 分度误差error of graduation 分度误差error of mean square 均方误差error of measurement 测量误差escape velocity 脱离速度escape velocity from galaxy 脱离银河系的速度escape velocity from solar system 脱离太阳系的速度essential boundary condition 本质边界条件estimation 估计etalon 标准euler angle 欧拉角euler d'alembert principle 欧拉达朗伯原理euler dynamical equations 欧拉动力学方程euler equation 欧拉方程euler equation for turbomachine 欧拉涡轮机方程euler equations of hydrokinetics 欧拉铃运动方程euler gas dynamical equations 欧拉气体动力学方程euler lagrange equation 欧拉拉格朗日方程euler number 欧拉数euler static balance equation 欧拉静平衡方程euler stress tensor 欧拉应力张量euler stretching tensor 欧拉伸长张量euler theorem 欧拉定理euler turbine formula 欧拉涡轮机公式euler variable 欧拉变量eulerian coordinates 欧拉坐标eulerian correlation 欧拉相关eulerian derivative 欧拉导数eulerian difference method 欧拉差分法eulerian free period 欧拉自由周期evacuation 抽真空evanescent mode 衰减模式evanescent wave 衰减波evaporation 汽化evaporation coefficient 蒸发系数evaporation heat 蒸发热evaporation loss 蒸发损失evaporative cooling 蒸发冷却evection 出差evection tide 出差潮汐even fracture 平坦断口evolute 渐开线exact solution 精确解exactitude 精确exceptional plane 特战面excess air 过剩空气excess entropy 过剩熵excess head 超压水头excess heat 过剩热excess load 过负荷excess noise factor 过量噪声因数excess pressure of sound 声超压excess velocity 超速excessive pressure 超压exchange 交换exchange coefficient 交换系数exchange collision 交换碰撞exchange deformation 交换形变exchange diffusion 交换扩散exchange energy 交换能exchange energy density 交换能密度exchange force 交换力exchange frequency 交换频率exchange potential 交换势exchange rate 交换速率exchange resonance 交换共振exchange tensor 交换张量excitation 激发excitation energy 激发能量excitation level 激发级excitation of boundary layer 边界层激发excitation spectrum 激发谱excitation state 激发态excitation wave 激发波excited atom 受激原子excited state 激发态exciter 激振器exciting force 激发力executive device 执行机构exhaust nozzle 排气喷嘴exhaust pipe 排气管exhaust port 排出口exhaust pressure 排气压力exhaustion 排气exit 出口exit angle 出口角exit boundary point 出口边界点exit flow 出射流exit loss 出口损失exit momentum 出口动量exit pressure 出口压力exit temperature 出口温度exit track 出口轨道exit turn 出口转弯exit velocity 出口速度exosphere 外大气层exothermic 发热的expand 展开expansibility 膨胀性expansion 膨胀expansion coefficient 膨胀系数expansion crack 膨胀裂缝expansion curve 膨胀曲线expansion mach wave 膨胀马赫波expansion orbit 扩展轨道expansion parameter 展开参数expansion ratio 膨胀比expansion tank 膨胀水箱expansion vessel 膨胀水箱expansion wave 膨胀波expansion work 膨胀功expansive force 膨胀力expectation 期望值expected life 预期寿命expected value 期望值expected wind speed 期望风速experiment 实验experimental aerodynamics 实验空气动力学experimental check 实验检验experimental condition 实验条件experimental data 实验数据experimental error 实验误差experimental facility 实验装置experimental material 检验材料experimental method 实验法experimental point 实验点experimental result 实验结果experimental section 实验段experimental set up 实验装置experimental tests 实验检验experimental value 实验值explosion 爆炸explosion center 爆炸中心explosion chamber 燃烧室explosion equivalent 爆炸当量explosion forming 爆炸成形explosion heat 爆炸热explosion index 爆炸指数explosion limit 爆炸极限explosion line 爆破线explosion pressure 爆发压力explosion product 爆炸产物explosion theory 爆炸理论explosion wave 爆炸波explosion work 爆发功explosive 炸药explosive compaction 爆炸压实explosive force 爆炸力explosive gas 爆炸气explosive material 爆炸材料explosive power 爆炸力explosive reaction 爆炸反应explosive sintering 爆炸烧结explosive theory 爆炸理论explosive welding 爆炸焊接explosive working 爆炸加工explosiveness 爆炸性exponential curve 指数曲线expulsion 排出expulsive force 斥力extended tip 伸展翼梢extensibility 可延展性extension 延伸extension fissure 膨胀裂缝extensional oscillation 纵向振荡extensional vibration 纵向振荡extensional wave 膨胀波extensometer 伸长计exterior 外部exterior ballistics 膛外弹道学exterior pressure 外压力external constraint 外部约束external crack 外表裂纹external damping 外阻尼external effect 外效应external energy 外能external excitation 外加激发external force 外力external gravitational field 外引力场external heat of evaporation 外蒸发热external load 外加载external potential energy 外势能external power 外功率external pressure 外部压力external radiation 外辐射external resistance 外阻力external rotation 外转动external virtual work 外虚功external work 外功extinction 消光extra high pressure 超高压extract 提出物extraction of gas 放气extraction turbine 抽汽式涡轮机extraordinary wave 异常波extrapolation method 外推法extreme 极值extreme fiber stress 最外纤维应力extremity 端extremum 极值extremum conditions 极值条件extrinsic load 外加载extrusion 挤压。

非线性动力学讲义02(绪论2)-1-岳宝增

非线性动力学讲义02(绪论2)-1-岳宝增

工程中的非线性动力学问题千差万别,然而解决 的途径往往具有共同性。其共同的前提是建立系统的 数学模型。建立系统数学模型的方法可分为两类。一 类是理论建模,从已知的原理、定律和定理出发,通 过机理分析发现工程问题的内在动力学规律,推导出 相关参数的解析关系。另一类是实验建模,直接从工 程系统运行和试验数据辨识出所涉及参数的关系。在 工程系统的数学模型的基础上,可以对系统进行分析、 仿真、优化和控制。非线性动力学作为一门力学的分 支学科,重点讨论系统模型的分析,但对系统的实验 建模也略有涉及。
动力学系统又可分为有限维和无穷维两类。 有限维系统(finite-dimensional system)的 状态可以用有限个参数表示。例如,由彼此分 离的有限个质量元件、弹簧和阻尼器构成的有 限自由度力学系统。无穷维系统(infinitedimensional system)的状态必须用无穷多个 参数表示。例如,由弦、杆、梁、板、壳等具 有分布质量的可变形元件构成的无穷多自由度 力学系统。相应地,状态变化的规律既可能表 示为常微分方程或偏微分方程。
四.非线性动力学的内容、方法和意义
对非线性现象的研究需要多个学科的交叉。纯粹 和应用数学理论如动态系统理论、奇异性理论、摄 动理论等,理论和实验力学概念和方法如工程现象 的力学建模、应用力学规律解释动力学行为、固体 和流体系统实验研究等,以及电子计算机的数值和 符号运算,均为分析非线性问题的重要工具。在多 学科交叉的基础上,形成了非线性动力学这一新的 分支学科。
P
ml
d 2
dt2
Fmg sin来自mx x, 0动力学系统还可分为连续时间和离散时间两类。 连续时间系统(continuous-tims system)的时间是 连续变化的,即时间在实数轴或其中某个区间上取 值。离散时间系统(discrete-time system)的时间 是不连续变化的,即时间在整数集合或其中某个子 集上取值。为在不会引起混淆时可分别简称为连续 系统(continuous system)和离散系统(discrete system)。相应地,状态变化的规律既可能表示为连 续形式的微分方程或微分积分方程,也可能用关于状 态变量的离散方程(差分方程)表示。

《结构力学(Ⅰ)》课程教学大纲

《结构力学(Ⅰ)》课程教学大纲

《结构⼒学(Ⅰ)》课程教学⼤纲《结构⼒学(Ⅰ)》课程教学⼤纲⼀、课程性质与⽬的《结构⼒学》课程是⼟建、⽔利类专业本科⽣的⼀门重要的专业基础课程。

本课程的任务是在学习理论⼒学和材料⼒学等课程的基础上进⼀步掌握有关杆系结构受⼒分析的基本概念、基本原理和基本⽅法,了解各类结构的受⼒性能,为学习有关专业课程以及进⾏结构设计和科学研究打好⼒学基础,培养结构分析与计算等⽅⾯的能⼒。

课程的⽬的主要有:1、了解杆系结构的构造规律。

2、掌握静定和超静定结构内⼒分析的概念、原理与⽅法,掌握结构位移的计算⽅法。

3、了解结构矩阵分析⽅法。

本课程采⽤英语教学。

⼆、课程基本要求1、使学⽣具备系统的结构⼒学知识,对常见的杆系结构具有选择计算简图的初步能⼒,并能根据具体问题选择恰当的分析、计算⽅法,为学习有关专业课程,为毕业后从事结构设计、施⼯和科研⼯作打好理论基础。

2、提⾼学⽣的结构分析能⼒,具有对各种静定、超静定结构进⾏计算的能⼒,具有对计算结果进⾏校核以及对内⼒分布的合理性作出判断的能⼒,初步具备使⽤电⼦计算机进⾏结构分析的能⼒。

3、培养学⽣的综合分析能⼒和科学作风。

三、课程基本内容(⼀)绪论1.结构⼒学的研究对象及任务。

2.荷载的分类。

结点及⽀座的分类。

3.结构的计算简图及其分类。

4.结构⼒学的基本假设。

(⼆)平⾯体系的⼏何构造分析1.⼏何构造分析的⽬的。

⾃由度的概念。

2.平⾯体系的⾃由度计算。

3.平⾯体系的⼏何构造分析。

4.瞬变体系的特征。

5.静定与超静定结构的⼏何构造特征。

(三)静定结构1.多跨静定梁和静定刚架的⼏何构造。

在直接荷载及结点荷载作⽤下的内⼒分析以及内⼒图的绘制。

2.拱的基本受⼒特征。

三铰拱的内⼒计算⽅法。

三铰拱的压⼒线与合理拱轴线。

3.静定平⾯桁架的⼏何构造及其分类。

⽤结点法及截⾯法计算桁架的内⼒。

结点法与截⾯法的联合应⽤。

各类平⾯梁式桁架的⽐较。

组合结构的计算。

4.静定结构的⼀般性质。

(四)静定结构的影响线1.移动荷载和影响线的概念。

《常微分方程与动力系统》课程教学说明

《常微分方程与动力系统》课程教学说明

上海交通大学 致远学院 2016年秋季学期《常微分方程与动力系统》课程教学说明一.课程基本信息1.开课学院(系):致远学院2.课程名称:《常微分方程与动力系统》 (An Introducation to Differential Equations and Dynamical Systems)3.学时/学分:48学时/ 3学分4.先修课程:数学分析、高等代数、空间解析几何;或线性代数、高等数学。

5.上课时间:星期五 6-8节(12:55-15:40)6.上课地点:东下院 1017.期末考试时间:2017-01-(02-13)考试周8.任课教师:肖冬梅, xiaodm@9.办公室及电话:数学楼2305,54743151转230510.助教:何鸿锦,hehongjin000@11.答疑(office hour):星期三晚18:30 – 20:30,数学楼2305室二.课程主要内容(如何可以,请提供中英文)除期中考试2学时+习题课2学时外,其余全是课堂教学第一章基本概念(3学时)主要内容:1.1什么是微分方程?什么是常微分方程?常微分方程的分类1.2什么是常微分方程解?什么是特解?什么是通解?1.3常微分方程建模:初始值问题和边界值问题1.4关于常微分方程和解的几何看法:向量场、积分曲线重点与难点:常微分方程和解的几何观点,方向场和积分曲线的作图第二章一阶常微分方程的初等解法(6学时)主要内容:2.1 变量分离法2.2 一阶线性常微分方程2.3 全微分方程(或恰当方程)和积分因子2.4 替代法和某些可解的常微分方程重点与难点:全微分方程和积分因子,变换的技巧第三章基本理论(8学时)主要内容:3.1 解的存在定理、解的存在与唯一性定理3.2 解的延拓3.3 解的连续性与可微性3.4 比较原理重点与难点:解的存在与唯一性第四章线性微分系统(7学时)主要内容:4.1解的性质:线性迭加原理和推广的线性迭加原理;解空间4.2常系数线性系统4.3平面线性系统的分类4.4周期系数的线性微分系统 – Floquet 理论重点与难点:线性微分系统解空间的结构第五章高阶线性常微分方程(6学时)主要内容:5.1解的性质:线性迭加原理和推广的线性迭加原理5.2二阶线性常微分方程:强迫调和振子5.3无阻力强迫与共振重点与难点:强迫与共振第六章非线性自治微分系统(连续动力系统)(8学时)主要内容:6.1动力系统:相空间与轨道6.2线性化6.3相平面上定性分析:平衡点、极限环6.4李雅普诺夫稳定与李雅普诺夫第二方法6.5平衡点的分支:鞍结分支与Hopf 分支重点与难点:动力系统的概念与轨道的定性分析第七章离散动力系统(6学时)主要内容:7.1离散的逻辑斯蒂克方程7.2不动点和周期点;吸引性与排斥性7.3分支与混沌重点与难点:不动点和周期点;吸引性与排斥性;混沌的概念Course Outline:Chapter 1 Basic concepts1.1What is DE? What is ODE? The classifications of ODEs1.2Solution: particular solution, general solution1.3Modeling via ODE: initial value problem (or Cauchy problem) and boundary valueproblem1.4Geometric view on ODE and solution: slope fields(direction field), integral curvesChapter 2 Analytic methods for solving first-order ODE2.1 Separation of variables2.2 The first-order linear differential equation2.3 Exact differential equation and integrating factors2.4 Use of substitutions and some solvable ODEsChapter 3 Fundamental Theorems3.1 Existence and uniqueness theorem3.2 Extendability of solution3.3 Continuity and differentiability of solution3.4 Principle of comparisonChapter 4 Systems of linear ODEs4.1Foundamental theory: the linearity principle and the extended linearity principle;Thespace of solutions4.2Linear system with constant coefficients4.3Classification of planar linear systems4.4Linear system with periodic coefficients --- Floquet theoryChapter 5 High order linear ODE5.1 Foundamental theory: the linearity principle and the extended linearity principle 5.2 Second-order linear ODE: forced Harmonic oscillators5.3 Undamped forcing and resonanceChapter 6 System of nonlinear autonomous ODEs6.1Dynamical system: phase space and orbits6.2Linearization6.3Qualitative analysis: equilibrium, limit cycle in the phase plane6.4Liapunov stability and Liapunov’s second method6.5Bifurcation of equilibrium: saddle-node bifurcation and Hopf bifurcationChapter 7 Discrete dynamical systems7.1the discrete Logistic equation7.2Fixed points and periodic points; attracting and repelling7.3Bifurcation and chaos三.课程考核方式及说明30%为平时成绩(课堂或课间提问,平时作业,大作业等)70%为考试成绩(期中+期末)四.教材与参考书1.《常微分方程教材》(第二版),丁同仁、李承治,高等教育出版社,20042.《Differential Equations》 (Fourth Edition), Paul Blanchard、Robert L. Devaney、Glen R.Hall, Brooks/Cole,20123.《Differential Equations, Dynamical Systems – An introduction to Chaos》(SecondEdition), Morris W. Hirsch, Stephen Smale, Robert L. Devaney, 2007.4.Introduction to ODE and DS, Weinan E, Preprint, 2009。

ms分子模拟软件在有机化学立体异构教学中的应用

ms分子模拟软件在有机化学立体异构教学中的应用

第48卷第4期2020年2月广 州 化 工Guangzhou Chemical IndustryVol.48No.4Feb.2020MS 分子模拟软件在有机化学立体异构教学中的应用*郑 倩1,潘 睿1,向 卉2,何书引3(1四川师范大学化学与材料科学学院,四川 成都 610066;2重庆德普外国语学校,重庆 400000;3成都美视国际学校,四川 成都 610042)摘 要:以2-溴丁烷分子为例,介绍了Material Studio(MS)分子模拟软件中Visualizer㊁Forcite㊁Conformers 三个功能模块在有机分子空间构象及卤代烷E2消除反应中的教学应用,帮助学生辨析有机化学中有关构型异构㊁构象异构等易混淆的抽象概念,充分认识卤代烷消除反应中的立体化学现象,从定性㊁定量的角度为深入理解由于立体异构所导致的有机物化学反应行为机理奠定基础㊂关键词:Material Studio 软件;有机化学;立体异构;消除反应 中图分类号:G633.8,O6-39  文献标志码:B 文章编号:1001-9677(2020)04-0108-03*基金项目:四川省哲学社会科学重点研究基地 四川省教师教育研究中心资助项目(TER2018-005);四川师范大学2019质量工程教学改革重点项目(20190019);金课建设项目;四川师范大学2019年度大学生 创新创业训练计划”项目(2019175)㊂通讯作者:潘睿㊂Application of Material Studio Software in Stereo-isomerism ofOrganic Chemistry Teaching *ZHENG Qian 1,PAN Rui 1,XIANG Hui 2,HE Shu -yin 3(1Chemistry and Materials Science College,Sichuan Normal University,Sichuan Chengdu 610066;2Depu Foreign Language School,Chongqing 400000;3Chengdu Meishi International School,Sichuan Chengdu 610042,China)Abstract :Taking 2-bromobutane as an example,Material Studio (MS)software with three functional modules:Visualizer,Forcite and Conformer,was applied in the conformation and E2elimination reaction teaching.The dynamic and consecutive visualization of the molecular conformation and potential energy was expected to clarify abstract conceptions and promote the comprehension of reaction mechanism in the stereo -chemistry from the qualitative and quantitative point of view.Key words :Material Studio software;Organic Chemistry;stereo-isomerism;elimination reaction在高中有机化学中,立体异构涉及了有机物分子微观结构在三维空间的立体式呈现,是有机化学概念的重要组成部分,涵盖了有机物分子的构型异构与构象异构,是锯架式,费歇尔投影式㊁纽曼式等有机物立体结构表达式的概念基础㊂其教学目的是促进学生对有机物立体结构的认知,是从三维空间理解分子结构㊁反应行为及化学性质相互关系,掌握有机立体化学反应机理的重要理论基础[1]㊂然而,在前置教学章节中,关于有机化合物结构的特征仅从平面二维的角度(比如:路易斯构造式㊁短线构造式㊁键线构造式或缩简构造式)使学生有了初步认识,并未涉及相关结构的三维空间立体呈现㊂在后续有机物立体异构的教学中,如果延续二维平面图片结合文字解释的教学方式,常常会使学生难以在头脑中形成立体的三维空间模型,并产生概念上的理解模糊及辨析困难㊂在课堂教学中,常用到的实体分子球棍模型虽然能够在一定程度上帮助学生对构型异构中的顺反异构及光学异构进行认知和理解,但该模型局限于其具有的静态性特征,对于对立体异构中的构象异构则不便于进行C-C 单键的连续性转动,同时也不能对构象进行势能数据的计算㊂同样,为广大化学教师所熟悉的ChemSketch㊁ChemWindow㊁Gaussian 等教学辅助软件虽然能够实现分子构象动态的连续性可视化演示及离散的能量计算,但由于其构象与势能数据不能进行实时的一一关联与对应演示,对消除反应中有关立体化学的定性㊁定量反应机理缺乏必要的直接性和直观性的解析[2]㊂Material Studio(MS)是由世界领先的BIOVIA 计算科学公司开发研制出的一款分子模拟计算软件,在集合了量子力学(Quantum Mechanics)㊁分子力学(Molecular Mechanics)㊁分子动力学(Molecular Dynamics)和蒙特卡洛(Monte Carlo)等多种计算理论的基础上,实现了微观原子㊁分子结构的构建,能够准确地计算出分子能量变化的动力学轨迹并进行可视化分析㊂该软件在360°全景分子结构展示的基础上,增添了连续性的动画演示及与之一一对应的势能表征曲线谱图,使化合物分子三维立体结构实现从抽象㊁晦涩的文字语言解释到直观㊁形象的连第48卷第4期郑倩,等:MS 分子模拟软件在有机化学立体异构教学中的应用109 续性动态演示的转变,并从定性㊁定量的角度进行了完整呈现,增添了直接性㊁直观性的机理解析[3-4]㊂基于有机化学立体异构的知识点所需,本文以教材中典型的2-溴丁烷化合物为例,依次介绍MS 软件中所涉及的3个功能模块:Visualizer㊁Forcite 以及Conformers 在分子空间构象及E2消除反应中定性㊁定量的可视化教学辅助应用㊂1 MS 软件相关功能模块介绍1.1 VisualizerVisualizer 提供的是MS 软件图形化界面,也是整个平台的核心,其功能包括:搭建㊁调整各类三维可视的分子结构模型,在建模的基础上进行数据的二维㊁三维显示并给出相关矢量图[5]㊂1.2 ForciteForcite 是分子力学和分子动力学计算程序,用于对单个分子及分子三维聚集体系的结构优化㊁能量计算,并对分子体系的结构参数㊁热力学性质㊁动力学性质以及统计学性质进行分析[5]㊂1.3 ConformersConformers 是以多种力场为基础,高效搜索各类分子(包括环状分子)构象的计算程序,用于建立分子构象与其能量㊁偶极矩及回转半径之间的关系,在有机物反应机理㊁催化等诸多研究领域具有广泛的应用性[5]㊂2 MS 软件在有机化学立体异构教学中的应用2.1 分子的构建与优化打开MS 软件File 功能菜单,创建一个空白项目名称为2BB project,选择3D Atomistic Document 新建一个结构性文件,命名为2BB.xsd,如图1a 所示㊂在当前创建文件的窗口中,使用工具栏中的sketch 工具绘制2BB 分子结构(此部分操作与chemsketch 相同,便于上手),绘制完成后点击clean 按钮对该分子结构进行初始的分子键长及键角的自动调整,如图1右所示㊂图1 2BB 分子结构的文件创建及化学结构在MS 软件中的绘制Fig.1 2BB structure project construction and molecular structurevisualization in MS software从软件界面的顶端打开Modules 菜单,选择Forcite 模块下的Calculation 选项,在对话框中用鼠标点击Setup,在随即跳出Task 下拉列表中选中Dynamics 选项,依次进行运算时间㊁步长及结构输出的设定㊂设定完成后,关闭对话框,点击run 运行,此时软件开始执行分子动力学能量优化运算㊂在软件运算过程中,当前窗口会自动跳出分子结构能量及程序计算优化的动态变化曲线㊂当计算结束,在窗口的左端树形文件图中会随即生成新的文件夹2BB Forcite Dynamics,其中包含了在优化过程中的所有轨迹运行文件及优化后的稳定结构,用于后续构象的能量计算㊂2.2 分子的空间构象及势能计算由于有机物分子构象是通过C-C 单键旋转所形成原子或原子团在空间的相对位置差异,因此在软件构建的分子结构中,可以通过考察关键位置单键的扭转(torsion)来确定其在空间自由旋转所对应的可能构象数及其势能的高低㊂以2BB.xsd 分子结构为当前活动窗口,从菜单Modules 下拉菜单中选择Conformers 计算模块,打开Conformers 中的Calculation 对话框,点击Torsions 按钮,在跳出的表格中列出了2BB 分子中经过C-C单键旋转所形成的扭转角,如图2左所示㊂在本文的示例分子中,勾取C-C-C-C(1)扭转角进行构象势能计算,其位置对应于图2b 中的虚线所示㊂图2 2BB 分子C-C 单键旋转形成的扭转角C-C-C-C(1)Fig.2 2BB molecular C-C-C-C(1)torsion angle formed bysingle C-C rotation在显示选中的蓝色C-C-C-C(1)扭转角设置区域设置输出步长Steps 值为60,其余对应设置由软件自行更新完成,关闭对话框后,点击Run 开始运行构象及势能的计算程序㊂当上述运算程序完成后,软件将自动生成一个名为2BBConformers Calculation 的新文件夹㊂打开该文件夹,找到名为2BB.std 的文档,双击后在当前软件窗口的左侧会出现列表,从左至右依次显示出构象名㊁扭转角度数及对应的势能值㊂选中旋转角度数及对应的势能值所属列,单击菜单栏中的Quick Plot 生成图表按钮,则会出现如图3的扭转角度与势能曲线图,其中横坐标为2BB 形成不同构象中C-C-C-C(1)扭转角的度数,纵坐标为其对应的势能值㊂2.3 卤代烷E 2消除反应中优势构象的确定在图3曲线中依次分布扭转角度数及所对应的势能值大小,双击选中曲线中的任意点,则软件自动在左侧列表中以蓝色区域显示该点所对应的C-C-C-C(1)扭转角度数及其能量值,双击列表中蓝色区域的构象名称,在当前窗口自动跳出该扭转角度数所对应的2BB 瞬时构象三维立体图示,移动鼠标,该构象随即可进行360°可控的全景展示㊂根据势能曲线分布高低,在图3中依次出现了三个相对极大值点D㊁E 和F,对应的构象分别是frame 2,frame 4和frame110 广 州 化 工2020年2月6㊂要形成这三种构象,2-溴丁烷分子需要更多的能量进行扭转且翻越相应能垒,势必会造成一定的困难导致其构象形成的概率较低㊂同时,在曲线中出现的三个势能相对极小值点A㊁B 和C 点,对应的构象分别是frame 1,frame 3和frame 5,其势能相对较低且为负值,表明这三种构象相对较稳定㊂在图3中,选择曲线中的极小值点A,在列表中蓝色区域标识出该极小值所对应的构象所具有的相关数据,其对应的扭转角度为-172.45°,势能为-9.73kcal /mol,基于空间位阻及能量的考量可得出frame 1是最稳定的构象㊂单击该构象名frame 1,则在当前窗口跳出该势能所对应的三维立体构象,经观察发现,此时的2-溴丁烷构象位于反式共平面,该构象经E2消除反应得到产物为反-2-丁烯㊂图3 2BB 分子中C-C-C-C(1)扭转角度数及其势能曲线图Fig.3 Torsional angle vs potential energy plot of C-C-C-C (1)in 2BB molecule 与此类似,在曲线中选择另两个相对极小值点B 和C,重复进行上述操作,在当前窗口跳出对应的三维立体构象分别为frame 3和frame 5,对应的扭转角度分别为-76.45°和61.55°,势能分别为-8.67和-6.00kcal /mol,其能量相较frame 1更高且同样需翻越相应的能垒进行扭转,进而导致其形成的概率相对较低㊂经观察,frame 3和frame 5构象中两个甲基位于顺式共平面,经E2消除反应得到产物为顺-2-丁烯㊂结合文献中实验所测得的结果:2-溴丁烷采用E2消除反应中生成的反-2-丁烯和顺-2-丁烯产量比例约为3︓1,如图4[6]所示㊂由此验证了在2-溴丁烷E2消除反应中,反式共平面㊁势能最低的frame 1构象是优势构象㊂图4 2-溴丁烷中E2消除反应及产物比例Fig.4 Schematic representation of E2elimination reactionin 2-bromobutane and the yields of butene3 结 语MS 分子模拟软件相较其他类型信息化教学工具的突出优势在于:基于360°全景分子结构的展示,实现分子瞬时构象的能量计算并增添连续性的动画演示及与之一一对应的势能表征曲线谱图,能够将有机物分子的组成-结构-能量相关知识点进行有效的关联及整合,在增加直观性的同时,帮助学生深入理解与辨析有机物的分子构型㊁分子构象等易混淆概念,深化物质微观结构与宏观性质之间的化学本质相关性,为学生后续掌握有机立体化学反应机理,从三维空间理解分子结构㊁反应行为及化学性质的相互关系提供有效的教学辅助作用㊂参考文献[1] 李延伟,姚金环,杨建文,等.量子化学计算软件在物质结构教学中的应用[J].中国现代教育装备,2012(5):8-9.[2] 王辉,曾卓.立体化学教学中空间感观能力的培养[J].大学化学,2016,31(11):22-27.[3] 潘睿.Material Studio 7.0分子模拟软件在结构化学晶体结构教学中的应用[J].化学教育,2018,39(12):90-94.[4] 张翼,段吉国,靳刚,等.用3DS MAX 解决立体化学教学难点[J].计算机与应用化学,2004,21(3):505-507.[5] 创腾科技有限公司.Material Studio [EB /OL ].http://www. /product /proinfo /29.html.2019-3-9.[6] 周文富.有机化学总复习指导[M].厦门:厦门大学出版社,2005:209-211.(上接第70页)[6] 王文平,郭祀远,李琳,等.考马斯亮蓝法测定野木瓜多糖中蛋白质的含量[J].食品研究与开发,2008,29(1):115-116.[7] 张毛莉,罗仓学.石榴皮中总酚含量测定方法的比较[J].食品工业科技,2011,32(5):383-384,388.[8] 李春阳,许时婴,王璋.DPPH 法测定葡萄籽原花青素清除自由基的能力[J].食品与生物技术学报,2006,25(2):102-106.[9] 王玲,唐德强,王佳佳,等.铁皮石斛原球茎与野生铁皮石斛多糖的抗菌及体外抗氧化活性比较[J].西北农林科技大学学报(自然科学版),2016,44(6):167-172,180.[10]鲍素华,查学强,郝杰,等.不同分子量铁皮石斛多糖体外抗氧化活性研究[J].食品科学,2009,30(21):123-127.[11]韩强,林惠芬,朱玲莉.几种中药提取物对酪氨酸酶活性的抑制[J].香料香精化妆品,1998(4):22-24.[12]王晗,朱华平,李文钊,等.桑葚提取物中花青素分析及其体外抗氧化活性研究[J].食品与发酵工业,2019,45(15):170-175.[13]陈清西,林建峰,宋康康.酪氨酸酶抑制剂的研究进展[J].厦门大学学报(自然科学版),2007,46(2):274-282.[14]邹先伟,蒋志胜.植物源酪氨酸酶抑制剂研究进展[J].中草药,2004,35(6):702-705.。

微分方程书籍

微分方程书籍

微分方程书籍
以下是一些推荐的微分方程书籍:
1.《微分方程与动力系统》(Differential Equations and Dynamical Systems) by Lawrence Perko。

这本书详细介绍了微分方程及其应用,内容涵盖了线性和非线性方程、常微分方程和偏微分方程等诸多主题。

2. 《微分方程》(Differential Equations)by Paul Blanchard, Robert Devaney, and Glen Hall。

这本书是一本深入浅出的微分方程教材,适合初学者使用。

它详细介绍了常微分方程的基本理论、求解方法和应用。

3. 《微分方程导论》(An Introduction to Ordinary Differential Equations)by Earl A. Coddington。

这本书是一本经典的微分方程教材,对常微分方程的基本概念、定理和求解方法进行了详细的介绍。

4. 《偏微分方程》(Partial Differential Equations)by Lawrence C. Evans。

这本书详细介绍了偏微分方程及其应用,包括常见的一阶和二阶偏微分方程以及波动方程、热传导方程、亥姆霍兹方程等高阶方程。

5. 《微分方程与边值问题》(Differential Equations with Boundary-Value Problems)by Dennis G. Zill and Warren S. Wright。

这本书是一本适合工程、物理和数学专业学生使用的微分方程教材,它讲解了常微分方程的基本概念、定理和求解方法,并
包括了许多实际应用的例子和练习。

abb变频器的计算公式

abb变频器的计算公式

Technical guide No. 7 - Basic formulas
AC motor - Power
Motor’s efficiency is output power divided by input power:
/
η = Pout
Pin
Electric power input
Thermal power losses
Technical guide No. 7 Basic formulas
Road show 3 Jukka Juottonen
Technical guide No. 7 - Basic formulas
Purpose and targets of the presentation
Purpose of the presentation
AC motor - Mechanical laws of rotational motion AC
Example: AC motor’s and load’s total moment of inertia is 3 kgm2.
Constant load torque is 50 Nm.
3 kgm2
Technical guide No. 7 - Basic formulas
AC motor - Power
Motor’s mechanical output power can be calculated from speed and torque:
P
out[kW]
=
T[Nm]*n[rpm] 9550
P out[W] = T[Nm]*ω[rad / s] ω[rad / s] = 2π * n[rpm]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPE 56044 Fundamental Equations for Dynamical Analysis of Rod and Gas Wells
Zifend Li, China University of Geoscience, PRC
Copyright 1999, Society of Petroleum Engineers This manuscript was provided to the Society of Petroleum Engineers for distribution and possible publication in an SPE Journal. The contents of this paper (1) are subject to correction by the author(s) and (2) have not undergone SPE peer review for technical accuracy. Thus, SPE makes no claim about the contents of the work. Permission to copy or use is restricted to an abstract of not more than 300 words. Write SPE Librarian, P.O. Box 833836, Richardson, TX 75083-3836 USA– Facsimile: 972-952-9435 Email: papers@
2 kb =
Abstract A large number of string materials, such as drillstring, pumping rod, tubing, coiled tubing, casing, etc., are used in oil and gas drilling and production. Proper mechanical analyses of these strings are important. This paper analyses motions of these strings, establishes fundamental equations for dynamical analysis of these strings in oil and gas wells. These fundamental equations have successfully unified all the differential equations used in dynamical analysis of rod and pipe string in oil and gas wells. All the differential equations present used in calculation of tension and torque in directional wells, analysis of drillstring vibration, analysis of bottom hole assembly (BHA), analysis of buckling behavior of pipe and casing strings and analysis of sucker rod pumping system can be obtained just by proper simplifying these fundamental equations. Thus, these equations have broad uses in drilling and production. Applications of these fundamental equations in drilling and production have been presented. Introduction Since the pioneering work by Lubinski et al1, the drilling and production industry has gradually come to accept and appreciate the importance of analysis of BHA, drillstring, casing, tubing, pumping rod, etc. A large number of differential equations have been established for special analysis1-17 . But no fundamental equations that unify these differential equations have been established. As an attempt, this paper establishes the fundamental equations for dynamical analysis of drillstring, BHA, casing, tubing, pumping rod, etc. in oil and gas wells. Motions of Strings in Oil and Gas Wells Elastic strings in oil and gas wells include drillstring, tubing string, coiled tubing, casing string, pumping rod string, etc. Each string has its own motion state (Table 1). The drillstring has the most complex motional state, which includes rotation,
whirling motion, longitudinal motion, longitudinal vibration, torsional vibration, lateral vibration. Fundamental Equations Hypotheses. (1)The rod and pipe strings behaves as linear elastic bodies; (2)The rod and pipe strings have annular sections and arbitrary properties that remain constant in a segment; (3)The effect of shear stress on the deformation may be ignored. Coordinate Systems. Two separate right-handed coordinate systems may be employed (Fig.1). (1) Fixed global coordinate system ONED with fixed base i, j, k. The ONED system is fixed with respect to compass directions, i.e., original point O at wellhead, N directs north, E directs east, D directs vertical down. (2) Natural coordinate systems (et , en, eb). This is defined by the rod or pipe string centerline trajectory, where vector r represents a point in the centerline, et is tangent base vector, en is normal base vector, eb is binomial base vector. Geometry Equations. If the centerline of the rod or pipe is r =r (l,t), where l is the arc length measured from a starting point before deformation, t is the time, and s= s (l, t) is the arc length measured from the starting point after deformation, the Frenet-Serren formulas is: ∂r et = ∂s ∂e t = kb en ∂s ......................................(1) ∂e n = kn eb − kbet ∂s ∂e b = −k n e n ∂s where, kb is curvature, kn is torsion:
相关文档
最新文档