七年级数学全册单元测试卷专题练习(解析版)
人教版七年级上册数学全册单元试卷测试卷(含答案解析)
人教版七年级上册数学全册单元试卷测试卷(含答案解析)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.
(1)A 点表示数为________,B 点表示的数为________,AB=________.
(2)若 P 点表示的数是 0,
①运动 1 秒后,求 CD 的长度;
②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.
(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.
【答案】(1)-8;4;12
(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;
②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,
CD=2t+4-3t=4-t,所以AC=2CD
(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,
①当 C=-3 时,CP=4,此时 P=1;
②当 C=-1 时,P=3.
【解析】【解答】解:⑴
故答案为:-8;4;12;
【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。
(2)①由点A、B表示的数及点C、D的运动速度和方向,可得出运动1秒后点C、D分别表示的数,再求出CD的长;②当点D在BP上时,根据t的取值范围,分别用含t的代数式表示出AC、CD的长,就可得出AC、CD的数量关系。
人教版七年级上册数学全册单元试卷测试卷(含答案解析)
人教版七年级上册数学全册单元试卷测试卷(含答案解析)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.
(1)A 点表示数为________,B 点表示的数为________,AB=________.
(2)若 P 点表示的数是 0,
①运动 1 秒后,求 CD 的长度;
②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.
(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.
【答案】(1)-8;4;12
(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;
②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,
CD=2t+4-3t=4-t,所以AC=2CD
(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,
①当 C=-3 时,CP=4,此时 P=1;
②当 C=-1 时,P=3.
【解析】【解答】解:⑴
故答案为:-8;4;12;
【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。
(2)①由点A、B表示的数及点C、D的运动速度和方向,可得出运动1秒后点C、D分别表示的数,再求出CD的长;②当点D在BP上时,根据t的取值范围,分别用含t的代数式表示出AC、CD的长,就可得出AC、CD的数量关系。
七年级数学全册单元测试卷测试与练习(word解析版)
七年级数学全册单元测试卷测试与练习(word解析版)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.
(1)如图①,当点E在线段AC上时,求证:.
(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.
(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.
(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.
【答案】(1)解:∵
∴
∵
∴
∴
(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H
∴
∵
∴
∴
∴
即
(3)解:过点G作交BE于点H
∴
∵
∴
∴
∴
即
故的关系仍成立
(4)不成立| ∠EGF-∠DEC+∠BFG=180°
【解析】【解答】解:(4)过点G作交BE于点H
∴∠DEC=∠EGH
∵
∴
∴∠HGF+∠BFG=180°
∵∠HGF=∠EGF-∠EGH
∴∠HGF=∠EGF-∠DEC
∴∠EGF-∠DEC+∠BFG=180°
∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°
【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,
七年级数学上册全册单元试卷专题练习(解析版)
七年级数学上册全册单元试卷专题练习(解析版)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8
(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,
(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.
【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.
(2)MN=
【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;
(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.
2.已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点
(1)试求a和b的值
(2)点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?
(3)点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,
M、N分别为PD、OQ的中点,问的值是否发生变化,请说明理由.
【答案】(1)解:a=-3,b=9
(2)解:设3秒后,点C对应的数为x
则CA=|x+3|,CB=|x-9|
∵CA=3CB
∴|x+3|=3|x-9|=|3x-27|
当x+3=3x-27,解得x=15,此时点C的速度为
当x+3+3x-27=0,解得x=6,此时点C的速度为
(3)解:设运动的时间为t
七年级数学全册单元测试卷测试卷(解析版)
七年级数学全册单元测试卷测试卷(解析版)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8
(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,
(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.
【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.
(2)MN=
【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;
(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.
2.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.
(1)当时,的值为________.
(2)如何理解表示的含义?
(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.
【答案】(1)5或-3
(2)解:∵ = ,
∴表示到-2的距离
(3)解:∵点、在0到3(含0和3)之间运动,
∴0≤a≤3, 0≤b≤3,
当时, =0+2=2,此时值最小,
故最小值为2;
当时, =2+5=7,此时值最大,
故最大值为7
【解析】【解答】(1)∵,
∴a=5或-3;
故答案为:5或-3;
【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;
(2)此题就是求表示数b的点与表示数-2的点之间的距离;
(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的
七年级上册数学全册单元试卷专题练习(解析版)
七年级上册数学全册单元试卷专题练习(解析版)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图,在数轴上有三个点A、B、C,完成下列问题:
(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.
(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.
(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.
【答案】(1)解:如图所示,
(2)解:如图所示,点E表示的数为:﹣3.5,
∵点C表示的数为:4,
∴CE=4﹣(﹣3.5)=7.5
(3)解:∵第一次操作:有3=(21+1)个点,
第二次操作,有5=(22+1)个点,
第三次操作,有9=(23+1)个点,
∴第六次操作后,OC之间共有(26+1)=65个点;
∵65个点除去0有64个数,
∴这些点所表示的数的和=4×()=130.
【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;
(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.
2.如图1,已知∠AOB=140°,∠AOC=30°,OE是∠AOB内部的一条射线,且OF平分∠AOE.
(1)若∠EOB=30°,则∠COF=________;
七年级数学全册单元测试卷测试题(Word版 含解析)
七年级数学全册单元测试卷测试题(Word版含解析)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图,在数轴上有三个点A、B、C,完成下列问题:
(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.
(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.
(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.
【答案】(1)解:如图所示,
(2)解:如图所示,点E表示的数为:﹣3.5,
∵点C表示的数为:4,
∴CE=4﹣(﹣3.5)=7.5
(3)解:∵第一次操作:有3=(21+1)个点,
第二次操作,有5=(22+1)个点,
第三次操作,有9=(23+1)个点,
∴第六次操作后,OC之间共有(26+1)=65个点;
∵65个点除去0有64个数,
∴这些点所表示的数的和=4×()=130.
【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;
(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.
2.如图
(1)如图1,找到长方形纸片的宽DC的中点E,将∠C过E点折起一个角,折痕为EF,
再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′),请说明∠CEF与∠DEG的关系,并说明理由;
七年级数学全册单元测试卷测试卷(含答案解析)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图 1,已知∠ MON=140°,∠ AOC 与∠ BOC 互余,OC 平分∠ MOB,
(1)在图 1 中,若∠ AOC=40°,则∠ BOC=°,∠ NOB=°. (2)在图 1 中,设∠ AOC=α,∠ NOB=β,请探究 α 与 β 之间的数量关系(必须写出推理的 主要过程,但每一步后面不必写出理由); (3)在已知条件不变的前提下,当∠ AOB 绕着点 O 顺时针转动到如图 2 的位置,此时 α 与 β 之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时 α 与 β 之间的数量关系. 【答案】 (1)解:如图 1,
∵ ∠ AOC=α,∠ NOB=β, ∴ ∠ BOC=90°-α, ∵ OC 平分∠ MOB, ∴ ∠ MOB=2∠ BOC=2(90°-α)=180°-2α, ∵ ∠ BOM=∠ MON+∠ BON, ∴ 180°-2α=140°+β,即 2α+β=40°, 答:不成立,此时此时 α 与 β 之间的数量关系为:2α+β=40. 【解析】【分析】(1)先根据余角的定义计算∠ BOC=50°,再由角平分线的定义计算 ∠ BOM=100°,根据角的差可得∠ BON 的度数;(2)同理先计算∠ MOB=2∠ BOC=2(90°α)=180°-2α,再根据∠ BON=∠ MON-∠ BOM 列等式即可;(3)同理可得∠ MOB=180°2α,再根据∠ BON+∠ MON=∠ BOM 列等式即可.
七年级数学全册单元测试卷测试与练习(word解析版)
七年级数学全册单元测试卷测试与练习(word解析版)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图,数轴上线段AB=4(单位长度),CD=6(单位长度),点A在数轴上表示的数是-16,点C在数轴上表示的数是18.
(1)点B在数轴上表示的数是________,点D在数轴上表示的数是________,线段AD=________;
(2)若线段AB以4个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动,设运动时间为t秒,
①若BC=6(单位长度),求t的值;
②当0<t<5时,设M为AC中点,N为BD中点,求线段MN的长.
【答案】(1)-12;24;40
(2)解:①设运动t秒时,BC=6
当点B在点C的左边时,
由题意得:4t+6+2t=30,
解之:t=4;
当点B在点C的右边时,
由题意得:4t−6+2t=30,
解之:t=6.
综上可知,若BC=6(单位长度),t的值为4或6秒;
②当0
A点表示的数为−16+4t,B点表示的数为−12+4t,
C点表示的数为18−2t,D点表示的数为24−2t,
∵M为AC中点,N为BD中点,
∴点M表示的数为:=1+t,点N表示的数为:
=6+t
∴MN=6+t-(1+t)=5.
【解析】【解答】解:(1)∵AB=4,A在数轴上表示的数是-16,
∴点B在数轴上表示的数为:-16+4=-12
∵点C在数轴上表示的数是18,CD=6,
∴点D在数轴上表示的数为:18+6=24;
∵点A在数轴上表示的数是-16,点D在数轴上表示的数为24,
∴AD=|-16-24|=40
七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文
精选全文完整版(可编辑修改)
七年级数学上册全册单元测试卷测试卷(含答案解析)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.已知 (本题中的角均大于且小于 )
(1)如图1,在内部作,若,求的度数;
(2)如图2,在内部作,在内,在内,且,,,求的度数;
(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.
【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD
又∵∠AOD+∠BOC=160°且∠AOB=120°
∴
(2)解:,
设,则,
则,
(3) s或15s或30s或45s
【解析】【解答】(2)解:当OI在直线OA的上方时,
有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,
∠PON= ×60°=30°,
∵∠MOI=3∠POI,
∴3t=3(30-3t)或3t=3(3t-30),
解得t= 或15;
当OI在直线AO的下方时,
∠MON═(360°-∠AOB)═ ×240°=120°,
∵∠MOI=3∠POI,
∴180°-3t=3(60°- )或180°-3t=3( -60°),
解得t=30或45,
综上所述,满足条件的t的值为 s或15s或30s或45s
【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.
2.结合数轴与绝对值的知识回答下列问题:
七年级数学全册单元测试卷测试与练习(word解析版)
七年级数学全册单元测试卷测试与练习(word解析版)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.已知:如图(1)∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β.
(1)如图(2),若α=90°,β=30°,求∠MON;
(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示);
(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O同时逆时针旋转,转速为1°/秒,(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.
【答案】(1)解:∵OM为∠AOD的平分线,ON为∠BOC的平分线,α=90°,β=30°
∴∠MOB=∠AOB=45°
∠NOD=∠BOC=15°
∴∠MON=∠MOB+∠NOD=45°+15°=60°.
(2)解:设∠BOD=γ,∵∠MOD= = ,∠NOB= =
∴∠MON=∠MOD+∠NOB-∠DOB= + -γ=
(3)解:① 为定值,
设运动时间为t秒,则∠DOB=3t-t=2t,
∠DOE= ∠DOB=t,
∴∠COE=β+t,
∠AOD=α+2t,又∵α=2β,
∴∠AOD=2β+2t=2(β+t).
∴
【解析】【分析】(1)根据角平分线的定义,分别求出∠MOB和∠NOD,再根据∠MON=∠MOB+∠NOD,可求出∠MON的度数。
(2)设∠BOD=γ,利用角平分线的定义,分别表示出∠MOD和∠NOB,再利用
∠MON=∠MOD+∠NOB-∠DOB,可求出结果。
七年级数学全册单元测试卷测试卷(含答案解析)
七年级数学全册单元测试卷测试卷(含答案解析)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图
如图1,点C在线段AB上,图中共有3条线段:AB、AC和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的一个“二倍点”.
(1)一条线段的中点________这条线段的“二倍点”;(填“是”或“不是”)
(2)如图2,若线段AB=20cm,点M从点B的位置开始,以每秒2cm的速度向点A运动,当点M到达点A时停止运动,运动的时间为t秒.
问t为何值时,点M是线段AB的“二倍点”.
(3)同时点N从点A的位置开始,以每秒1cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.
【答案】(1)是
(2)解:当AM=2BM时,20﹣2t=2×2t,解得:t= ;
当AB=2AM时,20=2×(20﹣2t),解得:t=5;
当BM=2AM时,2t=2×(20﹣2t),解得:t= ;
答:t为或5或时,点M是线段AB的“二倍点”
(3)解:当AN=2MN时,t=2[t﹣(20﹣2t)],解得:t=8;
当AM=2NM时,20﹣2t=2[t﹣(20﹣2t)],解得:t=7.5;
当MN=2AM时,t﹣(20﹣2t)=2(20﹣2t),解得:t= ;
答:t为7.5或8或时,点M是线段AN的“二倍点”.
【解析】【解答】解:(1)因为线段的中点把该线段分成相等的两部分,
该线段等于2倍的中点一侧的线段长.
所以一条线段的中点是这条线段的“二倍点”
故答案为:是
【分析】(1)由中点可知,这条线段等于中点分出的线段的2倍,进而得出结论;(2)分三种情况:当AM=2BM时,当AB=2AM时,当BM=2AM时,分别列出方程解答即可;
数学七年级上册全册单元试卷测试卷(含答案解析)
数学七年级上册全册单元试卷测试卷(含答案解析)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.
(1)当时,的值为________.
(2)如何理解表示的含义?
(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.
【答案】(1)5或-3
(2)解:∵ = ,
∴表示到-2的距离
(3)解:∵点、在0到3(含0和3)之间运动,
∴0≤a≤3, 0≤b≤3,
当时, =0+2=2,此时值最小,
故最小值为2;
当时, =2+5=7,此时值最大,
故最大值为7
【解析】【解答】(1)∵,
∴a=5或-3;
故答案为:5或-3;
【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;
(2)此题就是求表示数b的点与表示数-2的点之间的距离;
(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.
2.把一副三角板放成如图所示.
(1)当OD平分∠AOB时,求∠COB;
(2)若摆成如图2,OB、OD重合,OM平分∠AOD,ON平分∠AOC,求∠MON;
(3)将三角板OCD绕O点旋转,把OD旋转到∠AOB的内部或外部,(2)中的条件不变,试问∠MON的角度是否变化?若不变,求出它的值,并说理由.
【答案】(1)解:∵OD平分∠AOB,∠AOB=90°
全国初一初中数学单元试卷带答案解析
全国初一初中数学单元试卷
班级:___________ 姓名:___________ 分数:___________
一、选择题
1.下列各式:①x2≠0;②|x|+1>0;③x+2<-5;④x+y=3;⑤<0,其中是不等式的是( )
A.①②③⑤B.①②③④
C.①②③④⑤D.②③⑤
2.若a>b,则下列不等式中正确的是( )
A.a-b<0B.-5a<-5b
C.a+8<b-8D.<
3.下列说法中正确的是( )
A.y=3是不等式y+4<5的解B.y=3是不等式3y<11的解集
C.不等式3y<11的解集是y=3D.y=2是不等式3y≥6的解
4.不等式组的整数解有()个.
A.1B.2C.3D.4
5.若代数式a的值不大于a+1的值,则a应满足( )
A.a≥-4B.a≤-4C.a>4D.a≤4
6.小丽同学准备用自己节省的零花钱购买一台学生平板电脑,她已存有750元,并计划从本月起每月节省30元,直到她至少存有1 080元,设x个月后小丽至少有1 080元,则可列计算月数的不等式为( )
A.30x+750>1 080B.30x-750≥1 080
C.30x-750≤1 080D.30x+750≥1 080
7.已知点P(2a-1,1-a)在第一象限,则a的取值范围在数轴上表示正确的是()
A.B.
C.D.
二、单选题
1.不等式3x≤2(x﹣1)的解为()
A.x≤﹣1B.x≥﹣1C.x≤﹣2D.x≥﹣2
2.若不等式组有解,则a的取值范围是( )
A.a≤3B.a<3C.a<2D.a≤2
3.小红读一本500页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第六天起平均每天至少要读( )
七年级数学全册单元测试卷测试卷(解析版)
七年级数学全册单元测试卷测试卷(解析版)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.将一副三角板中的两块直角三角尺的直角顶点 O 按如图方式叠放在一起.
(1)如图 1 ,若∠BOD=35°,则∠AOC=________;若∠AOC=135°,则∠BOD=________;
(2)如图2,若∠AOC=140°,则∠BOD=________;
(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由.
(4)三角尺 AOB 不动,将三角尺 COD 的 OD 边与 OA 边重合,然后绕点 O 按顺时针或逆时针方向任意转动一个角度,当∠A OD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.
【答案】(1)145°;45°
(2)40°
(3)解:∠AOC 与∠BOD 互补.
∵∠AOD+∠BOD+∠BOD+∠BOC=180°.
∵∠AOD+∠BOD+∠BOC=∠AOC,
∴∠AOC+∠BOD=180°,
即∠AOC 与∠BOD 互补
(4)解:OD⊥AB 时,∠AOD=30°,
CD⊥OB 时,∠AOD=45°,
CD⊥AB 时,∠AOD=75°,
OC⊥AB 时,∠AOD=60°,
即∠AOD 角度所有可能的值为:30°、45°、60°、75°
【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,
∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,
则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;
人教版数学七年级上册全册单元试卷测试卷(含答案解析)
人教版数学七年级上册全册单元试卷测试卷(含答案解析)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图
(1)观察思考
如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;
(2)模型构建
如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;
(3)拓展应用
8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?
请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.
【答案】(1)解:∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段
(2)解:,
理由:设线段上有m个点,该线段上共有线段x条,
则x=(m-1)+(m-2)+(m-3)+…+3+2+1,
∴倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1),
∴2x= =m(m-1),
∴x=
(3)解:把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,
因此一共要进行场比赛
【解析】【分析】(1)线段AB上共有4个点A、B、C、D,得到线段共有4×(4-1)÷2条;(2)根据规律得到该线段上共有m(m-1)÷2条线段;(3)由每两位同学之间进行一场比赛,得到要进行8×(8-1)÷2场比赛.
2.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E分别是AC 和BC的中点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学全册单元测试卷专题练习(解析版)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.
(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;
(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的符合题意性;
(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?
请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.
【答案】(1)解:∵以点A为左端点向右的线段有:线段AB、AC、AD,
以点C为左端点向右的线段有线段CD、CB,
以点D为左端点的线段有线段DB,
∴共有3+2+1=6条线段
(2)解:设线段上有m个点,该线段上共有线段x条,
则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,
∴x= m(m﹣1)
(3)解:把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,
直线上45个点所构成的线段条数就等于握手的次数,
因此一共要进行 ×45×(45﹣1)=990次握手.
【解析】【分析】(1)从左向右依次固定一个端点A、C、D找出线段,最后求和即可;(2)根据数线段的特点列出式子化简即可;(3)将实际问题转化成(2)的模型,借助(2)的结论即可得出结论.
2.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上.点P、点Q 是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.
(1)当点P、Q分别在线段AC、BC的中点时,线段PQ=________厘米;
(2)若AC=6厘米,点P、点Q分别从点C、点B同时出发沿射线BA方向运动,当运动时间为2秒时,求PQ的长;
(3)若AC=4厘米,点P、Q分别从点C、点B同时出发在直线AB上运动,则经过多少时
间后线段PQ的长为5厘米.
【答案】(1)6
(2)解:如图2,当t=2时,BQ=2×2=4,
则CQ=6-4=2.
因为CP=2×1=2,所以PQ=CP+CQ=2+2=4(厘米)
(3)解:设运动时间为t秒.
①如图3,当点P、Q沿射线BA方向运动,若点Q在点P的后面,
得:t+8-2t=5,
解得t=3,
②如图4,当点P、Q沿射线BA方向运动,若点Q在点P前面,
得:2t-8-t=5,解得t=13.
③如图5,当点P、Q在直线上相向运动,点P、Q在相遇前,
得:t+2t=3,解得t=1.
④如图6,当点P、Q在直线上相向运动,点P、Q在相遇后,
得:t+2t=13,解得t= .
综合可得t=1,3,13, .所以经过1,3,13,秒后PQ的长为5厘米.
【解析】【解答】(1)如图1,因为AB=12厘米,点C在线段AB上,
所以,当点P、Q分别在线段AC、BC的中点时,线段PQ= AB=6.故答案为:6;
【分析】(1)由线段中点的定义可得CP= AC,CQ= CB,所以PQ= AC+ CB= AB,把AB的值代入计算即可求解;
(2)由路程=速度时间可求出BQ和CQ、CP的值,则PQ=CP+CQ可求解;
(3)由题意可分4种情况求解:
① 当点P、Q沿射线BA方向运动,若点Q在点P的后面,由图可列关于时间的方程求解;
②
当点P、Q沿射线BA方向运动,若点Q在点P前面,由图可列关于时间的方程求解;
③
当点P、Q在直线上相向运动,点P、Q在相遇前,由图可列关于时间的方程求解;
④ 当点P、Q在直线上相向运动,点P、Q在相遇后,由图可列关于时间的方程求解。
3.课题学习:平行线的“等角转化功能.
(1)问题情景:如图1,已知点是外一点,连接、,求的度数.
天天同学看过图形后立即想出:,请你补全他的推理过程.解:(1)如图1,过点作,∴ ________, ________.
又∵,∴ .
解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将,,“凑”在一起,得出角之间的关系,使问题得以解决.
(2)问题迁移:如图2,,求的度数.
(3)方法运用:如图3,,点在的右侧,,点在的左侧,,平分,平分,、所在的直线交于点,点在与两条平行线之间,求的度数.
【答案】(1)∠EAB;∠DAC
(2)解:过C作CF∥AB,
∵AB∥DE,∴CF∥DE∥AB,
∴∠D=∠FCD,∠B=∠BCF,
∵∠BCF+∠BCD+∠DCF=360°,
∴∠B+∠BCD+∠D=360°,
(3)解:如图3,过点E作EF∥AB,
∵AB∥CD,∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,
∴∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°
∴∠BED=∠BEF+∠DEF=30°+35°=65°.
【解析】【解答】解:(1)根据平行线性质可得:因为,所以∠EAB,∠DAC;
【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D∠BCF+∠BCD+∠DCF;(2)过C作CF∥AB,根据平行线性质可得;(3)
如图3,过点E作EF∥AB,根据平行线性质和角平分线定义可得∠ABE= ∠ABC=30°,
∠CDE= ∠ADC=35°,故∠BED=∠BEF+∠DEF.
4.(探索新知)
如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.
(1)若AC=3,则AB=________;
(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC________DB;
(3)(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.