广东省2019届高考百校联考理科数学试卷(含答案)
2019年普通高等学校招生全国统一考试数学及详细解析(广东卷)
试卷类型:A2019年普通高等学校招生全国统一考试(广东卷)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第一部分 选择题(共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.( 1 ) 若集合}03|{},2|||{2=-=≤=x x x N x x M ,则M ∩N = ( )A .{3}B .{0}C .{0,2}D .{0,3}【答案】B解: ∵由2||≤x ,得22≤≤-x ,由032=-x x ,得30==x x 或, ∴M ∩N }0{=,故选B .( 2 ) 若i b i i a -=-)2(,其中a 、b ∈R ,i 是虚数单位,则22b a += ( )A .0B .2C .25 D .5【答案】D解: ∵ i b i i a -=-)2(,∴i b ai -=-2,⎩⎨⎧==21b a 即 ,522=+b a ,故选D .( 3 ) 93lim 23-+-→x x x =( )A .61-B .0C .61 D .31 【答案】A 解: 6131)3)(3(3933323lim lim lim-=-=-++=-+-→-→-→x x x x x x x x x ,故选A .( 4 ) 已知高为3的直棱锥C B A ABC '''-的底面是边长为1的正三角形 (如图1所示),则三棱锥ABC B -'的体积为 ( ) A .41B .21C .63D .43【答案】D解:∵ ,ABC B B 平面⊥'A'C'AC图1∴43343313131=⋅⋅='⋅=⋅=∆∆-'B B S h S ABC ABC ABC B V . 故选D.( 5 ) 若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A .3 B .23 C .38 D .32【答案】B解: ∵轴上焦点在x ,∴2=a ,∵ 21==a c e ,∴22=c , ∴23222=-==c a b m ,故选B .( 6 )函数13)(23+-=x x x f 是减函数的区间为( )A .),2(∞+B .)2,(∞-C .)0,(-∞D .(0,2)【答案】D解: ∵,63)(2x x x f -='20,063,0)(2<<<-<'x x x x f 解得即令,故选D .( 7 ) 给出下列关于互不相同的直线m 、l 、n 和平面α、β,的四个命题: ①若A l m =⊂αα ,,点m A ∉,则l 与m 不共面;②若m 、l 是异面直线, αα//,//m l , 且m n l n ⊥⊥,,则α⊥n ; ③若βα//,//m l , βα//,则m l //;④若=⊂⊂m l m l ,,αα点A ,ββ//,//m l ,则βα//. 其中为假命题的是A .①B .②C .③D .④ 【答案】C解:③是假命题,如右图所示满足βα//,//m l , βα//,但 m l \// ,故选C .( 8 ) 先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子 朝上的面的点数分别为X 、Y ,则1log 2=Y X 的概率为 ( )A .61 B .365 C .121 D .21 【答案】C解:满足1log 2=Y X 的X 、Y 有(1, 2),(2, 4),(3, 6)这3种情况,而总的可能数有36种,所以121363==P ,故选C .( 9 ) 在同一平面直角坐标系中,函数)(x f y =和)(x g y =的图像lαβm关于直线x y =对称.现将)(x g y =图像沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位,所得的图像是由两条线段组成的折线 (如图2所示),则函数)(x f 的表达式为A .⎪⎩⎪⎨⎧≤<+≤≤-+=20,2201,22)(x xx x x fB .⎪⎩⎪⎨⎧≤<-≤≤--=20,2201,22)(x xx x x fC .⎪⎩⎪⎨⎧≤<+≤≤-=42,1221,22)(x xx x x fD .⎪⎩⎪⎨⎧≤<-≤≤-=42,3221,62)(x xx x x f【答案】A解:将图象沿y 轴向下平移1个单位,再沿x 轴向右平移2个单位得下图A ,从而可以得到)(x g 的图象,故⎪⎩⎪⎨⎧≤<-≤≤-=32,4220,12)(x x x xx g ,∵函数)(x f y =和)(x g y =的图像关于直线x y =∴⎪⎩⎪⎨⎧≤<+≤≤-+=20,2201,22)(x x x x x f ,故选A .(也可以用特殊点检验获得答案)(10)已知数列{}n x 满足212x x =,)(2121--+=n n n x x x , ,4,3=n .若2lim =∞→n x x ,则=1xA .23B .3C .4D .5【答案】B解法一:特殊值法,当31=x 时,3263,1633,815,49,2365432=====x x x x x 由此可推测2lim =∞→n x x ,故选B .解法二:∵)(2121--+=n n n x x x ,∴)(21211-----=-n n n n x x x x ,21211-=-----n n n nx x x x 即, ∴{}n n x x -+1是以(12x x -)为首项,以21-为公比6的等比数列,令n n n x x b -=+1,则11111211)21()21(2)21)((x x x x q b b n n n n n -=-⋅-=--==---+-+-+=)()(23121x x x x x x n …)(1--+n n x x+-+-+-+=121211)21()21()2(x x x x …11)21(x n --+3)21(32)21(1)21(12111111x x x x n n ---+=--⎥⎦⎤⎢⎣⎡---+=∴2323)21(321111lim lim ==⎥⎦⎤⎢⎣⎡-+=-∞→∞→x x xx n x n x ,∴31=x ,故选B . 解法三:∵)(2121--+=n n n x x x ,∴0221=----n n n x x x ,∴其特征方程为0122=--a a ,解得 211-=a ,12=a ,nn n a c a c x 2211+=,∵11x x =,212x x =,∴3211x c -=,3212x c =,∴3)21(3232)21(3211111xx x x x n n n --+=+-⋅-=,以下同解法二.第二部分 非选择题(共100分)二.填空题:本大题共4小题目,每小题5分,共20分.(11)函数xex f -=11)(的定义域是 .【答案】)0,(-∞解:使)(x f 有意义,则01>-x e , ∴ 1<x e ,∴0<x ,∴)(x f 的定义域是)0,(-∞.(12)已知向量)3,2(=,)6,(x =,且b a //,则=x .【答案】4解:∵b a //,∴1221y x y x =,∴x 362=⋅,∴4=x .(13)已知5)1cos (+θx 的展开式中2x 的系数与4)45(+x 的展开式中3x 的系数相等,则=θcos. 【答案】22±解:4)45(+x 的通项为r r rx C )45(44⋅⋅-,1,34==-∴r r , ∴4)45(+x 的展开式中3x 的系数是54514=⋅C , 5)1cos (+θx 的通项为R R x C -⋅55)cos (θ,3,25==-∴R R ,∴5)1cos (+θx 的展开式中2x 的系数是,5cos 235=⋅θC∴ 21cos 2=θ,22cos ±=θ.(14)设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____________;当4>n 时,=)(n f .(用n 表示)【答案】5,)2)(1(21-+n n解:由图B 可得5)4(=f ,由2)3(=f ,5)4(=f ,9)5(=f ,14)6(=f ,可推得∵n 每增加1,则交点增加)1(-n 个, ∴)1(432)(-++++=n n f2)2)(12(--+=n n)2)(1(21-+=n n .三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. ( 15 )(本小题满分12分)化简),,)(23sin(32)2316cos()2316cos()(Z k R x x x k x k x f ∈∈++--+++=πππ并求函数)(x f 的值域和最小正周期.【答案】解: )23sin(32)232cos()232cos()(x x k x k x f ++--+++=πππππ)23sin(32)23cos()23cos(x x x +++++=πππ)23sin(32)23cos(2x x +++=ππ]3sin )23sin(3cos)23[cos(4ππππx x +++= x 2cos 4=∴ ]4,4[)(-∈x f ,ππ==22T , ∴)(x f 的值域是]4,4[-,最小正周期是π.( 16 ) (本小题共14分)如图3所示,在四面体ABC P -中,已知6==BC PA ,342,8,10====PB AC AB PC .F 是线段PB 上一点,341715=CF ,点E 在线段AB 上,且PB EF ⊥. (Ⅰ)证明:CEF PB 平面⊥;(Ⅱ)求二面角F CE B --的大小.图BABPF E(Ⅰ)证明:在ABC ∆中, ∵,6,10,8===BC AB AC ∴,222AB BC AC =+∴△PAC 是以∠PAC 为直角的直角三角形, 同理可证,△PAB 是以∠PAB 为直角的直角三角形,△PCB 是以∠PCB 为直角的直角三角形. 在PCB Rt ∆中,∵,341715,342,6,10====CF PB BC PC ∴,CF PB BC PC ⋅=⋅ ∴,CF PB ⊥ 又∵,,F CF EF PB EF =⊥ ∴.CEF PB 平面⊥(II )解法一:由(I )知PB ⊥CE ,PA ⊥平面ABC∴AB 是PB 在平面ABC 上的射影,故AB ⊥CE ∴CE ⊥平面PAB ,而EF ⊂平面PAB , ∴EF ⊥EC ,故∠FEB 是二面角B —CE —F 的平面角, ∵EFB PAB ∆∆~∴35610cot tan ===∠=∠AP AB PBA FEB , ∴二面角B —CE —F 的大小为35arctan .解法二:如图,以C 点的原点,CB 、CA 为x 、y 轴,建立空间直角坐标系C -xyz ,则)0,0,0(C ,)0,8,0(A ,)0,0,6(B ,)6,8,0(P ,∵)6,0,0(=PA 为平面ABC 的法向量,)6,8,6(--=PB 为平面ABC 的法向量, ∴34343342636,cos -=⋅-=<PB PA , ∴二面角B —CE —F 的大小为34343arccos .(17 ) (本小题共14分)在平面直角坐标系xoy 中,抛物线2x y =上异于坐标原点O 的两不同动点A、B满足BO AO ⊥(如图4所示)(Ⅰ)求AOB ∆得重心G (即三角形三条中线的交点)的轨迹方程;(Ⅱ)AOB ∆的面积是否存在最小值?若存在,请求出 最小值;若不存在,请说明理由.y C解法一:(Ⅰ)∵直线AB 的斜率显然存在,∴设直线AB 的方程为b kx y +=,),(),,(2211y x B y x A ,依题意得0,,22=--⎩⎨⎧=+=b kx x y xy b kx y 得消去由,① ∴k x x =+21,② b x x -=21 ③∵OB OA ⊥,∴02121=+y y x x ,即 0222121=+x x x x ,④ 由③④得,02=+-b b ,∴)(01舍去或==b b ∴设直线AB 的方程为1+=kx y∴①可化为 012=--kx x ,∴121-=x x ⑤, 设AOB ∆的重心G 为),(y x ,则33021k x x x =++= ⑥ , 3232)(3022121+=++=++=k x x k y y y ⑦, 由⑥⑦得 32)3(2+=x y ,即3232+=x y ,这就是AOB ∆得重心G 的轨迹方程.(Ⅱ)由弦长公式得2122124)(1||x x x x k AB -+⋅+=把②⑤代入上式,得 41||22+⋅+=k k AB ,设点O 到直线AB 的距离为d ,则112+=k d ,∴ 24||212+=⋅⋅=∆k d AB S AOB ,∴ 当0=k ,AOB S ∆有最小值,∴AOB ∆的面积存在最小值,最小值是1 .解法二:(Ⅰ)∵ AO ⊥BO, 直线OA ,OB 的斜率显然存在, ∴设AO 、BO 的直线方程分别为kx y =,x ky 1-=, 设),(11y x A ,),(22y x B ,依题意可得由⎩⎨⎧==2xy kxy 得 ),(2k k A ,由⎪⎩⎪⎨⎧=-=21xy x ky 得 )1,1(2kk B -, 设AOB ∆的重心G 为),(y x ,则31321k k x x x -=++=① , 31302221k k y y y +=++= ②,由①②可得,3232+=x y ,即为所求的轨迹方程. (Ⅱ)由(Ⅰ)得,42||k k OA +=,4211||k k OB +=, ∴42421121||||21k k k k OB OA S AOB +⋅+⋅=⋅⋅=∆212122++=k k 12221=+≥, 当且仅当221kk =,即1±=k 时,AOB S ∆有最小值,∴AOB ∆的面积存在最小值,最小值是1 .解法三:(I )设△AOB 的重心为G(x , y ) ,A(x 1, y 1),B(x 2 , y 2 ),则⎪⎪⎩⎪⎪⎨⎧+=+=332121y y y x x x …(1) 不过∵OA ⊥OB ,∴1-=⋅OB OA k k ,即12121-=+y y x x , …(2) 又点A ,B 在抛物线上,有222211,x y x y ==, 代入(2)化简得121-=x x ,∴32332)3(31]2)[(31)(3132221221222121+=+⨯=-+=+=+=x x x x x x x x y y y , ∴所以重心为G 的轨迹方程为3232+=x y ,(II )22212122222122212222212121))((21||||21y y y x y x x x y x y x OB OA S AOB +++=++==∆, 由(I )得12212)1(2212221221662616261=⨯=+-=+⋅≥++=∆x x x x S AOB ,当且仅当6261x x =即121-=-=x x 时,等号成立,所以△AOB 的面积存在最小值,存在时求最小值1 .( 18 ) (本小题共12分)箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为t s :.现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过n 次.以ξ表示取球结束时已取到白球的次数. (Ⅰ)求ξ的分布列; (Ⅱ)求ξ的数学期望.【答案】解:(Ⅰ)取出黄球的概率是t s s A P +=)(,取出白球的概率是ts tA P +=)(,则 ts sP +==)0(ξ, 2)()1(t s st P +==ξ, 32)()2(t s st P +==ξ, ……, n n t s st n P )()1(1+=-=-ξ, nn t s st n P )()(1+==-ξ,∴ξ的分布列是(Ⅱ)++⨯++⨯++⨯=322)(2)(10t s st t s st t s s E ξ…n nn n t s t n t s st n )()()1(1+⨯++⨯-+- ①++++=+4332)(2)(t s st t s st E t s t ξ (11)11)()()1()()2(+++-+++-++-+n n n n n n t s nt t s st n t s st n ②①—②得++++++=+43322)()()(t s st t s st t s st E t s s ξ (11)11)()()1()()(+++-+-+--++++n n n n n n n n t s nt t s st n t s nt t s st∴ 11)()1()()()1(-++-++-+--=n nn n n n t s t n t s s nt t s t n s t E ξ∴ξ的数学期望是11)()1()()()1(-++-++-+--=n nn n n n t s t n t s s nt t s t n s t E ξ.( 19 ) (本小题共14分)设函数)(x f 在),(+∞-∞上满足)2()2(x f x f +=-,)7()7(x f x f +=-,且在闭区间[0,7]上,只有0)3()1(==f f . (Ⅰ)试判断函数)(x f y =的奇偶性;(Ⅱ)试求方程0)(=x f 在闭区间]2005,2005[-上的根的个数,并证明你的结论.【答案】 解:(Ⅰ)∵)2()2(x f x f +=-, ∴)52()32(+=-f f即 )5()1(f f =-,∵在[0,7]上,只有0)3()1(==f f , ∴0)5(≠f ,∴)1()1(f f ≠-,∴)(x f 是非奇非偶函数.(Ⅱ)由)2()2(x f x f +=-,令2-=x x ,得 )4()(x f x f -=,由)7()7(x f x f +=-,令3+=x x ,得 )10()4(x f x f +=-,∴)10()(x f x f +=,∴)(x f 是以10为周期的周期函数,由)7()7(x f x f +=-得,)(x f 的图象关于7=x 对称, ∴在[0,11]上,只有0)3()1(==f f , ∴10是)(x f 的最小正周期,∵在[0,10]上,只有0)3()1(==f f , ∴在每一个最小正周期内0)(=x f 只有两个根,∴在闭区间]2005,2005[-上的根的个数是802.( 20 ) (本小题共14分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB 、AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合(如图5所示).将矩形折叠,使A 点落在线段DC 上. (Ⅰ)若折痕所在直线的斜率为k ,试写出折痕所在直线的方程;(Ⅱ)求折痕的长的最大值.。
2019年高考理科数学试卷(广东卷)
2019年普通高等学校招生全国统一考试(广东卷)数学理一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1}2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.54.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B. (1,-1,0) C. (0,-1,1) D. (-1,0,1)6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A 、200,20B 、100,20C 、200,10D 、100,107、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是 A .14l l ⊥ B .14//l l C .14,l l 既不垂直也不平行 D .14,l l 的位置关系不确定8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60 B90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
广东省2019年高考数学试卷(理科)以及答案解析
广东省2019年高考数学试卷(理科)以及答案解析绝密★启用前广东省2019年高考理科数学试卷注意事项:1.考生答卷前,必须在答题卡上填写姓名和准考证号。
2.回答选择题时,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M={x|-4<x<2},N={x|x^2-x-6<0},则M∩N=()A。
{x|-4<x<3}B。
{x|-4<x<-2}C。
{x|-2<x<2}D。
{x|2<x<3}2.设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则()A。
(x+1)^2+y^2=1B。
(x-1)^2+y^2=1C。
x^2+(y-1)^2=1D。
x^2+(y+1)^2=13.已知a=log20.2,b=20.2,c=0.20.3,则()A。
a<b<cB。
a<c<bC。
c<a<bD。
b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比约为0.618,称为黄金分割比例。
某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A。
165cmB。
175cmC。
185cmD。
190cm5.函数f(x)=在[-π,π]的图像大致为()A。
B。
C。
D。
6.我国古代典籍《周易》用“卦”描述万物的变化。
每一重卦由从下到上排列的6个爻组成,爻分为阳爻“ ”和阴爻“ ”,如图为一重卦。
在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A。
B。
C。
D。
7.已知非零向量,满足||=2||,且(-)⊥,则与的夹角为()A。
2019广东高考理科数学试题及答案word版
绝密★使用前试卷类型:A2019年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相对应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相对应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式V=Sh,其中S为柱体的底面积,h为柱体的高。
锥体的体积公式为V=1/3Sh其中S为锥体的底面积,h为锥体的高。
第I卷选择题(共40分)一、选择题:本大题共8小题,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i为虚数单位,则复数56i i-=()A.65i+B.65i-C.65i-+D.65i--2.设集合{1,2,3,4,5,6}U=,{1,2,4}M=,则U M=ð()A.U B.{1,3,5}C.{3,5,6}D.{2,4,6} 3.若向量(2,3)BA =,(4,7)CA =,则BC =()A.(2,4)--B.(2,4)C.(6,10)D.(6,10)-4.下列函数中,在区间(0,)+∞上为增函数的是()A.ln(2)y x=+B.y=C.12xy⎛⎫= ⎪⎝⎭D.1y xx=+5.已知变量x,y满足约束条件211yx yx y≤⎧⎪+≥⎨⎪-≤⎩;则3z x y=+的最大值为()A.12B.11C.3D.1-6.某几何体的三视图如图1所示,它的体积为( )A .12πB .45πC .57πD .81π 7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是 ( )A .49B .13C .29D .198.对任意两个非零的平面向量α和β,定义αβαβ=ββ。
2019年高考真题——理科数学(广东卷)解析版
2019年普通高等学校招生全国统一考试(广东卷)数学(理科)逐题详解参考公式:台体的体积公式()1213V S S h =++,其中12,S S 分别是台体的上、下底面积,h 表示台体的高.一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A . {}0B .{}0,2C .{}2,0-D .{}2,0,2-【解析】D ;易得{}2,0M =-,{}0,2N =,所以M N ={}2,0,2-,故选D .2.定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .1【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C . 3.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( )A . ()2,4B .()2,4-C .()4,2-D .()4,2【解析】C ;2442iz i i+==-对应的点的坐标是()4,2-,故选C . 4.已知离散型随机变量X 的分布列为X 1 23 P35 310 110则X 的数学期望EX = ( )A . 32B .2C .52D .3【解析】A ;33115312351010102EX =⨯+⨯+⨯==,故选A . 5.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A . 4B .143C .163D .6【解析】B ;由三视图可知,该四棱台的上下底面边长分别为1和2的正方形,高为2,故()2211412233V =⨯=,,故选B . 6.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【解析】D ;ABC 是典型错误命题,选D .正视图俯视图侧视图第5题图7.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 ( )A .214x = B .22145x y -= C .22125x y -=D .212x = 【解析】B ;依题意3c =,32e =,所以2a =,从而24a =,2225b c a =-=,故选B . 8.设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈【解析】B ;特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分 (一)必做题(9~13题)9.不等式220x x +-<的解集为___________.【解析】()2,1-;易得不等式220x x +-<的解集为()2,1-. 10.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______.【解析】1-;求导得1y k x '=+,依题意10k +=,所以1k =-.11.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为【解析】7;第一次循环后:1,2s i ==;第二次循环后:2,3s i ==;第三次循环后:4,4s i ==;第四次循环后:7,5s i ==;故输出7. 12. 在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.【解析】20;依题意12910a d +=,所以()571113346a a a d a d +=+++. AE D CBO第15题图或:()57383220a a a a +=+=13. 给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定条不同的直线.【解析】6;画出可行域如图所示,其中z x y =+取得最小值时的整点为(0,1,取得最大值时的整点为()0,4,()1,3,()2,2,()3,1及()4,0共5个整点.故可确定516+=条不同的直线.(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14.(坐标系与参数方程选讲选做题)已知曲线C的参数方程为x t y t⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________. 【解析】sin 4πρθ⎛⎫+= ⎪⎝⎭;曲线C 的普通方程为222x y +=,其在点()1,1处的切线l 的方程为2x y +=,对应的极坐标方程为cos sin 2ρθρθ+=,即sin 4πρθ⎛⎫+= ⎪⎝⎭.15. (几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC =_________. 【解析】ABC CDE ∆∆,所以AB BCCD DE=,又 BC CD =,所以212BC AB DE =⋅=,从而BC =.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求6f π⎛⎫-⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.【解析】(Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1 7 92 0 1 53 0第17题图'A因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+ ⎪⎝⎭cos 2sin 2θθ=-72417252525⎛⎫=---=⎪⎝⎭. 17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人. 根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀 工人的概率.【解析】(Ⅰ) 样本均值为1719202125301322266+++++==;(Ⅱ) 由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人.(Ⅲ) 设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A =1148212C C C 1633=.18.(本小题满分14分)如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE ==O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=.(Ⅰ) 证明:A O '⊥平面BCDE ;(Ⅱ) 求二面角A CD B '--的平面角的余弦值..CO BDEA CDOBE'A图1图2【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD==由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥, 理可证A O OE '⊥, 又ODOE O =,所以A O '⊥平面BCDE .(Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.结合图1可知,H 为AC 中点,故OH =,从而A H '== 所以cos OH A HO A H '∠=='所以二面角A CD B '--. 向量法:以O 点为原点,建立空间直角坐标系O xyz -则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,n =- 由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,3n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦值19.(本小题满分14分)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<. 【解析】(Ⅰ) 依题意,12122133S a =---,又111S a ==,所以24a =;(Ⅱ) 当2n ≥时,32112233n n S na n n n +=---, ()()()()321122111133n n S n a n n n -=-------两式相减得()()()2112213312133n n n a na n a n n n +=----+---整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121a a-=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以()111na n n n=+-⨯=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<;当3n ≥时,()21111111n a n n n n n =<=---,此时 222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++<. 20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PAPB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值. 【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,结合0c >, 解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '=设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x , 所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --=同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y = 所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.。
2019年全国高考广东省数学(理)试卷及答案【精校版】
2019年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分. 1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N =A. {0,1}B. {1,0,2}-C. {1,0,1,2}-D. {1,0,1}-2.已知复数Z 满足(34)25i z +=,则Z=A. 34i -+B. 34i --C. 34i +D. 34i -3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值A.5B.6C.7D.84.若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A. 焦距相等 B. 实半轴长相等 C. 虚半轴长相等 D. 离心率相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,A.200,20B.100,20C.200,10D.100,107.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则 A.14l l ⊥ B.14//l l C.14,l l 既不垂直也不平行 D.14,l l 的位置关系不确定8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
10.曲线25+=-xe y 在点)3,0(处的切线方程为 。
2019年全国高考广东省数学(理)试卷及答案【精校版】
2019年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.1.已知集合{1,0,1}M,{0,1,2}N ,则M N A.{0,1}B.{1,0,2}C.{1,0,1,2}D.{1,0,1}2.已知复数Z 满足(34)25i z ,则Z= A.34i B.34iC.34iD.34i 3.若变量,x y 满足约束条件121y xx y zx y y 且的最大值A.5B.6C.7D.8 4.若实数k 满足09k ,则曲线221259x y k 与曲线221259xy k 的A. 焦距相等B.实半轴长相等 C. 虚半轴长相等 D. 离心率相等5.已知向量1,0,1a ,则下列向量中与a 成60夹角的是A.(-1,1,0) B.(1,-1,0) C.(0,-1,1)D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,A.200,20B.100,20C.200,10D.100,107.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ,则A.14l l B.14//l l C.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定8.设集合12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ,那么集合A 中满足条件“1234513x x x x x ”的元素个数为A.60 B.90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521x x 的解集为。
10.曲线25x e y 在点)3,0(处的切线方程为。
小学生3500名初中生4500名高中生2000名小学初中30高中10年级50O 近视率/%。
2019年广东普通高等学校招生统一考试数学试卷(附解答)
2019年广东普通高等学校招生统一考试数 学 试 题说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[sin(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=正棱台、圆台的侧面积公式S台侧=21(c ′+c )l其中c ′、c 分别表示上、下底面周长,lV=h S S S S )(31+'+'其中S ′、S 分别表示上、下底面积,h 表示高.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式31--x xA .{x|x<1}B .{x|xC .{x|x<1或x>3}D .{x|1<x<3}2.若一个圆锥的轴截面是等边三角形,其面积为3π B.33π6πD.9π3.极坐标方程ρ2cos2θA B C .椭圆 D4.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则aA .(0,21) 21] 21,+∞) D.(0,+∞) 5.已知复数z=i 62+,则argZ1是A .3πB.35π C.6π611π6.函数y=2-x+1(x>0)A .y=log211-x ,x y=-log211-x ,xC.y=log211-x ,x∈(1,2)D.y=-log211-x ,x∈(1,2]7.若0<α<β<4π,sinα+cosα=a,sinβ+cosβ=b,则A .a>b B.a<bab<1 ab>28.在正三棱柱ABC —A 1B1C1中,若AB=2BB1,则AB 1与C1B所成的角的大小A .60° 45° 120°9.设f(x)、g(x①若f(x)单调递增,g(x)单调递增,则f(x)-g(x ②若f(x)单调递增,g(x)单调递减,则f(x)-g(x ③若f(x)单调递减,g(x)单调递增,则f(x)-g(x ④若f(x)单调递减,g(x)单调递减,则f(x)-g(xA . ①③10.对于抛物线y2=4x上任意一点Q ,点P (a ,0)都满足|PQ|≥|a|,则a 的A .(-∞,0)B .(-∞,2)C .[0,2]D .(0,11记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则A .P 3>P 2>P 1 P 3>P 2=P 1P 3=P2>P1 D.P 3=P 2=P 112.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为A B.24(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组 成共有 种可能(用数字作答)14.双曲线116922=-y x 的两个焦点为F1、F2,点P 在双曲线上,若PF1⊥PF2,则点P 到x轴的距离为15.设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q=16.圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为 三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)求函数y=(sinx+cosx)2+2cos2x的最小正周期. 18.(本小题满分12分)已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk =2550. (Ⅰ)求a及k的值;(Ⅱ)求)111(lim 21nn S S S +++∞→ 19.(本小题满分12分)如图,在底面是直角梯形的四棱锥S—ABCD 中,∠ABC=90°,SA⊥面ABCD ,SA =AB =BC=1,AD=21. (Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. 20.(本小题满分12分)设计一幅宣传画,要求画面面积为4840 cm 2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm空白,左、右各留5cm空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?如果要求λ∈]43,32[,那么λ为何值时,能使宣传画所用纸张面积最小?21.(本小题满分14分)已知椭圆1222=+y x 的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相 交于A 、B 两点,点C 在右准线l 上,且BC∥xAC 经过线段EF 的中点.22.(本小题满分14分) 设f(x)是定义在R 上的偶函数,其图象关于直线xx1,x2∈[0,21],都有f(x1+x2)=f(x1)·f(x2),且f (1)=a>0. (Ⅰ)求f)41(),21(f ;(Ⅱ)证明f(x)是周期函数; (Ⅲ)记an=f(2n+n21),求)(ln lim n n a ∞→.参考答案一、选择题1.C 2.A 3.D 4.A 5.B 6.A 7.B 8.B 9.C 10.B 11.D 12.D 二、填空题13.4900 14.51615.1 16.2n (n -1) 三、解答题17.解:y=(sinx+cosx)2+2cos2x=1+sin2x+2cos2x=sin2x+cos2x+2 5分=2)42sin(2++πx 8分所以最小正周期T=π. 10分 18.解:(Ⅰ)设该等差数列为{an},则a 1=a,a2=4,a3=3a,Sk=2550. 由已知有a +3a =2×4,解得首项a 1=a=2,公差d =a 2-a1=2. 2分 代入公式S k=k·a1+d k k ⋅-2)1(得255022)1(2=⋅-+⋅k k k ∴k2+k-2550=0解得k =50,k =-51(舍去)∴a =2,k =50. 6分 (Ⅱ)由d n n a n S n ⋅-+⋅=2)1(1得S n=n(n+1), )11-1()31-21()21-11( )1(132121111121++++=+++⨯+⨯=+++n n n n S S S n111+-=n 9分 1)111(lim )111(lim 21=+-=+++∴∞→∞→n S S S n n n 12分19.解:(Ⅰ)直角梯形ABCD 的面积是M 底面=AB AD BC ⋅+)(21=43125.01=⨯+ 2分∴四棱锥S —ABCD 的体积是414313131=⨯⨯=⨯⨯=底面M SA V 4分(Ⅱ)延长BA 、CD 相交于点E ,连结SE ,则SE 是所求二面角的棱 6分 ∵AD∥BC,BC=2AD∴EA=AB=SA,∴SE⊥SB∵SA⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线.又BC⊥EB,∴BC⊥面SEB ,故SB 是SC 在面SEB 上的射影, ∴CS ⊥SE,所以∠BSC是所求二面角的平面角 10分 ∵SB=SB BC BC AB SA ⊥==+,1,222∴tg∠BSC=22=SB BC 即所求二面角的正切值为2212分 20.解:设画面高为xcm,宽为λxcm,则λx2=4840 1分 设纸张面积为S ,则有S=(x+16)(λx+10)=λx2+(16λ+10)x+160, 3分 将x=λ1022代入上式得S=5000+44)58(10λλ+5分当8)185(85,5==λλλ即时,S 取得最小值, 此时,高:x=884840=λc m,宽:λx=558885=⨯cm 8分 如果λ∈[43,32],可设433221≤≤λλ ,则由S 的表达式得S(λ1)-S(λ2)=44)5858(102211λλλλ--+=)58)((104421121λλλλ-- 10分由于058,85322121 λλλλ-≥故 因此S(λ1)-S(λ2)<0,所以S (λ)在区间[43,32]内单调递增. 从而,对于λ∈[43,32],当λ=32时,S (λ)取得最小值答:画面高为88λ∈[43,32],当λ=32时,所用纸张面积最小. 12分 21.证明:依设,得椭圆的半焦距c=1,右焦点为F (1,0),右准线方程为x=2,点E 的坐标为(2,0),EF 的中点为N (23,0) 3分 若AB 垂直于x 轴,则A (1,y1),B(1,-y1),C(2,-y1), ∴AC 中点为N (23,0),即AC 过EF 中点N. 若AB 不垂直于x 轴,由直线AB 过点F ,且由BC ∥x 轴知点B 不在x 轴上,故直线AB 的方程为y=k(x-1),k≠0.记A (x1,y1)和B(x2,y2),则C (2,y2)且x1,x2满足二次方程1)1(2222=-+x k x 即(1+2k2)x2-4k2x+2(k2-1)=0,∴x1+x2=22212221)1(2,214k k x x k k +-=+ 10分又x21=2-2y21<2,得x1-23≠0, 故直线AN ,CN 的斜率分别为k1=32)1(2231111--=-x x k x y )1(2232222-=-=x k y k ∴k1-k2=2k·32)32)(1()1(1121-----x x x x∵(x1-1)-(x2-1)(2x1-3) =3(x1+x2)-2x1x2-4=0)]21(4)1(412[2112222=+---+k k k k∴k1-k2=0,即k1=k2,故A 、C 、N 三点共线.所以,直线AC 经过线段EF 的中点N. 14分。
2019年高考理科数学试卷(广东卷)
2019年普通高等学校招生全国统一考试(广东卷)数学理一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N则MNA .{1,0,1} B. {1,0,1,2}C. {1,0,2}D. {0,1}2.已知复数Z 满足(34)25,i z 则Z=A .34i B. 34iC.34i D.34i3.若变量,x y 满足约束条件121yx x yzxy y且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7C.6D.54.若实数k 满足09,k 则曲线221259xy k与曲线221259xyk 的A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等5.已知向量1,0,1,a 则下列向量中与a 成60夹角的是A .(-1,1,0)B. (1,-1,0)C. (0,-1,1)D. (-1,0,1)6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A 、200,20B 、100,20C 、200,10D 、100,107、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ,则下列结论一定正确的是A .14l lB .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定8.设集合12345=,,,,1,0,1,1,2,3,4,5iA x x x x x x i,那么集合A中满足条件“1234513x x x x x ”的元素个数为A .60 B90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521x x 的解集为。
2019年高考试题-理科数学(广东卷)解析版
2019年高考试题-理科数学(广东卷)解析版注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。
在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。
考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。
只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。
数学〔理科〕解析参考公式:台体的体积公式()1213V S S h =+,其中12,S S 分别是台体的上、下底面积,h 表示台体的高.【一】选择题:本大题共8小题,每题5分,共40分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1、设集合{}2|20,M x x x x=+=∈R ,{}2|20,N x x x x =-=∈R ,那么MN =( )A .{}0B 、{}0,2 C 、{}2,0- D 、{}2,0,2- 【解析】D ;易得{}2,0M =-,{}0,2N =,所以M N ={}2,0,2-,应选D 、2、定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B 、3C 、2D 、1【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,应选C 、3、假设复数z 满足24iz i =+,那么在复平面内,z 对应的点的坐标是( )A .()2,4 B 、()2,4-C 、()4,2-D 、()4,2【解析】C ;2442iz i i +==-对应的点的坐标是()4,2-,应选C 、 4、离散型随机变量X 的分布列为X 1 23 P35 310 110那么X 的数学期望EX = ( )A . 32B 、2C 、52D 、3【解析】A ;33115312351010102EX =⨯+⨯+⨯==,应选A 、 5、某四棱台的三视图如下图,那么该四棱台的体积是 ( )A . 4B 、143正视图俯视图 侧视图第5题图C 、163D 、6【解析】B ;由三视图可知,该四棱台的上下底面边长分别为1和2的正方形,高为2,故()2211412233V =+⨯=,,应选B 、 A.假设αβ⊥,m α⊂,n β⊂,那么m n ⊥ B 、假设//αβ,m α⊂,n β⊂,那么//m nC 、假设m n ⊥,mα⊂,n β⊂,那么αβ⊥ D 、假设m α⊥,//m n ,//n β,那么αβ⊥【解析】D ;ABC 是典型错误命题,选D 、7、中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是()A.2214x -= B 、22145x y -=C 、22125x y -= D 、2212x -= 【解析】B ;依题意3c =,32e =,所以2a =,从而24a =,2225b c a =-=,应选B 、 8、设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立假设(),,x y z 和(),,z w x 都在S 中,那么以下选项正确的选项是()A.(),,y z w S ∈,(),,x y w S ∉ B 、(),,y z w S ∈,(),,x y w S ∈ C 、(),,y z w S ∉,(),,x y w S ∈ D 、(),,y z w S ∉,(),,x y w S ∈ 【解析】B ;特殊值法,不妨令2,3,4x y z ===,1w =,那么()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S=∈,应选B 、如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.【二】填空题:此题共7小题,考生作答6小题,每题5分,共30分 (一)必做题(9~13题)9、不等式220x x +-<的解集为___________、【解析】()2,1-;易得不等式220x x +-<的解集为()2,1-. 10、假设曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,那么k =【解析】1-;求导得1y k x '=+,依题意10k +=,所以1k =-. 11、执行如下图的程序框图,假设输入n 的值为4,那么输出s 的值为.AED CBO第15题图【解析】7;第一次循环后:1,2s i ==;第二次循环后:2,3s i ==; 第三次循环后:4,4s i ==;第四次循环后:7,5s i ==;故输出7.12.在等差数列{}n a 中,3810a a +=,那么573a a +=_____.【解析】20;依题意12910a d +=,所以()57111334641820a a a d a d a d +=+++=+=.或:()57383220a a a a +=+=13.给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈是z x y =+在D 上取得最大值或最小值的点},那么T 中的点共确定条不同的直线.【解析】6;画出可行域如下图,其中z x y =+取得最小值时的整点为()0,1,取得最大值时的整点为()0,4,()1,3,()2,2,()3,1及()4,0共5个整点.故可确定516+=条不同的直线.〔二〕选做题〔14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分〕14.(坐标系与参数方程选讲选做题)曲线C的参数方程为x t y t ⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,那么l的极坐标方程为_____________.【解析】sin 4πρθ⎛⎫+= ⎪⎝⎭;曲线C 的普通方程为222x y +=,其在点()1,1处的切线l 的方程为2x y +=,对应的极坐标方程为cos sin 2ρθρθ+=,即sin 4πρθ⎛⎫+= ⎪⎝⎭.15.(几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .假设 6AB =,2ED =,那么BC =_________.【解析】ABC CDE ∆∆,所以AB BCCD DE =,又 BC CD =,所以212BC AB DE =⋅=,从而BC =.【三】解答题:本大题共6小题,总分值80分,解答须写出文字说明、证明过程或演算步骤. 16、〔本小题总分值12分〕函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ)求6f π⎛⎫- ⎪⎝⎭的值;(Ⅱ)假设3cos 5θ=,3,22πθπ⎛⎫∈⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭、 【解析】(Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;1 7 92 0 1 53 0第17题图(Ⅱ)222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-,所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=-所以23f πθ⎛⎫+ ⎪⎝⎭cos2sin 2θθ=-72417252525⎛⎫=---=⎪⎝⎭. 17、〔本小题总分值12分〕某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如下图,其中茎为十位数,叶为个位数.(Ⅰ)根据茎叶图计算样本均值; (Ⅱ)日加工零件个数大于样本均值的工人为优秀工人. 根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ)从该车间12名工人中,任取2人,求恰有1名优秀 工人的概率. 【解析】(Ⅰ)样本均值为1719202125301322266+++++==;(Ⅱ)由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人.(Ⅲ)设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,那么()P A =1148212C C C 1633=.18、〔本小题总分值14分〕如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE ==O 为的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=.(Ⅰ)(Ⅱ).【解析】AD 连结OD =所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥,又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ)传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.图1x 向量法图结合图1可知,H为AC中点,故2OH=,从而2A H'==所以cosOHA HOA H'∠==',所以二面角A CD B'--.向量法:以O点为原点,建立空间直角坐标系O xyz-那么(A',()0,3,0C-,()1,2,0D-所以(CA'=,(1,DA'=-设(),,n x y z=为平面A CD'的法向量,那么n CAn DA⎧'⋅=⎪⎨'⋅=⎪⎩,即3020yx y⎧=⎪⎨-+=⎪⎩,解得y xz=-⎧⎪⎨=⎪⎩,得(1,1,n=-由(Ⅰ)知,(OA'=为平面CDB的一个法向量,所以cos,3n OAn OAn OA'⋅'===',即二面角A CD B'--的平面角的余弦值为5.19、〔本小题总分值14分〕设数列{}n a的前n项和为n S.11a=,2121233nnSa n nn+=---,*n∈N.(Ⅰ)求2a的值;(Ⅱ)求数列{}n a的通项公式;(Ⅲ)证明:对一切正整数n,有1211174na a a+++<.【解析】(Ⅰ)依题意,12122133S a=---,又111S a==,所以24a=;(Ⅱ)当2n≥时,32112233n nS na n n n+=---,()()()()321122111133n nS n a n n n-=-------两式相减得()()()2112213312133n n na na n a n n n+=----+---整理得()()111n nn a na n n++=-+,即111n na an n+-=+,又21121a a-=故数列nan⎧⎫⎨⎬⎩⎭是首项为111a=,公差为1的等差数列,所以()111nan nn=+-⨯=,所以2na n=.(Ⅲ)当1n=时,11714a=<;当2n=时,12111571444a a+=+=<;当3n ≥时,()21111111n a n n n n n=<=---,此时 222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-<综上,对一切正整数n ,有1211174n a a a +++<. 20、〔本小题总分值14分〕抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB,其中,AB 为切点.(Ⅰ)求抛物线C 的方程;(Ⅱ)当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ)当点P 在直线l 上移动时,求AF BF ⋅的最小值. 【解析】(Ⅰ)依题意,设抛物线C 的方程为24x cy =,2=结合0c >, 解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ)抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==),那么切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=. (Ⅲ)由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时,AF BF ⋅取得最小值,且最小值为92.21、〔本小题总分值14分〕设函数()()21xf x x e kx =--(其中k ∈R ).(Ⅰ)当1k =时,求函数()f x 的单调区间; (Ⅱ)当1,12k ⎛⎤∈⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M . 【解析】(Ⅰ)当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表:右表可知,函数f x 的递减区间为0,ln 2,递增区间为,0-∞,ln 2,+∞. (Ⅱ)()()()1222x x x x f x e x e kx xe kx x e k '=+--=-=-, 令()0f x '=,得10x =,()2ln 2x k =, 令()()ln 2g k k k =-,那么()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤⎥⎝⎦上递增, 所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈ 所以当()()0,ln 2x k ∈时,()0f x '<;当()()ln 2,x k ∈+∞时,()0f x '>; 所以()(){}(){}3max 0,max 1,1k M f f k k e k ==--- 令()()311kh k k e k =--+,那么()()3k h k k e k '=-,令()3kk e k ϕ=-,那么()330kk e e ϕ'=-<-<所以()k ϕ在1,12⎛⎤⎥⎝⎦上递减,而()()1313022e ϕϕ⎛⎫⎫⋅=-< ⎪⎪⎝⎭⎭所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时,()0k ϕ>,当()0,1k x ∈时,()0k ϕ<, 所以()k ϕ在01,2x ⎛⎫⎪⎝⎭上单调递增,在()0,1x 上单调递减.因为17028h ⎛⎫=>⎪⎝⎭,()10h =, 所以()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=”.综上,函数()f x 在[]0,k 上的最大值()31kM k e k =--.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学考试(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合2{|321},{|320}A x x B x x x =-<=-≥,则A B =( )A .(1,2]B .91,4⎛⎤ ⎥⎝⎦C .31,2⎛⎤ ⎥⎝⎦D .(1,)+∞2.已知复数z 满足(3)(1i)64i z +-=-(i 为虚数单位),则z 的共轭复数所对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知72sin cos ,2sin cos 55αααα+=--=-,则cos2α=( ) A .725B .725-C .1625D .1625-4.如图1为某省2018年1~4月快递义务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误..的是( )A .2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件B .2018年1~4月的业务量同比增长率超过50%,在3月最高C .从两图来看,2018年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长 5.在ABC △中,内角,,A B C 所对的边分别是,,a b c ,若,4,24ABC C a S π===△,则232sin 3sin sin a c bA C B+-=+- ( )A 5B .5C .27D .136.已知平面向量,a b 满足2,1a b ==,且()()432a b a b -⋅+=,则向量,a b 的夹角θ为( ) A .6π B .3π C .2π D .23π 7.为了得到2cos 2y x =-的图象,只需把函数32cos 2y x x =-的图象( )A .向左平移3π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度 D .向右平移6π个单位长度 8.已知抛物线21:2(0)C x py y =>的焦点为1F ,抛物线22:(42)C y p x =+的焦点为2F ,点01(,)2P x 在1C 上,且134PF =,则直线12F F 的斜率为( ) A .12-B .14-C .13-D .15-9.如图,B 是AC 上一点,分别以,,AB BC AC 为直径作半圆.从B 作BD AC ⊥,与半圆相交于D .6,22AC BD ==,在整个图形中随机取一点,则此点取自图中阴影部分的概率是( )A .29B .13C .49D .2310.某几何体的三视图如图所示,则该几何体的各条棱中,最长的棱与最短的棱所在直线所成角的正切值为( ) A 5B 6C 7D .2252111.已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,12,F F 分别是双曲线的左、右焦点,点(,0)M a -,(0,)N b ,点P 为线段MN 上的动点,当12PF PF ⋅取得最小值和最大值时,12PF F △的面积分别为12,S S ,则12S S =( ) A .4B .8C .23D .312.已知函数()ln (0,1)xxf x a e x a a a =+->≠,对任意12,[0,1]x x ∈,不等式21()()2f x f x a --≤恒成立,则a 的取值范围为( ) A .21,2e ⎡⎤⎢⎥⎣⎦B .[,)ee +∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .2[,]ee e二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.在42x x ⎛⎫+ ⎪⎝⎭的展开式中,含2x -的项的系数是 .14.已知实数,x y 满足12,3321,14,2y x y x y x ⎧-+⎪⎪--⎨⎪⎪+⎩≥≤≤ 则目标函数3z x y =-的最大值为 .15.已知(),()f x g x 分别是定义在R 上的奇函数和偶函数,且(0)0g =,当0x ≥时,()()f x g x -=222x x x b +++(b 为常数),则(1)(1)f g -+-= .16.在四面体A BCD -中,2AB AC AD BC BD =====,若四面体A BCD -的外接球的体积23V =,则CD = . CABDMN O三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分) 已知数列{}n a 的前n 项和为n S ,满足11S =,且对任意正整数n ,都有111n n n S n S S n +++=-+. (1)求数列{}n a 的通项公式; (2)若2nn n a b =,求数列{}n b 的前n 项和n T . 18.(12分)某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:A 类(不参加课外阅读),B 类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),C 类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时).调查结果如下表:A 类B 类C 类 男生 x 5 3 女生y33(1)求出表中x ,y (2)与性别有关;男生 女生 总计 不参加课外阅读 参加课外阅读总计(3)从抽出的女生中再随机抽取3人进一步了解情况,记X 为抽取的这3名女生中A 类人数和C 类人数差的绝对值,求X 的数学期望.附:22()()()()()n ad bc K a b c d a c b d -=++++.20()P K k ≥0.10 0.05 0.01 0k2.7063.8416.63519.(12分)如图,在五面体ABCDFE 中,底面ABCD 为矩形,//EF AB ,BC FD ⊥,过BC 的平面交棱FD 于P ,交棱FA 于Q .(1)证明://PQ 平面ABCD ;(2)若,,2,CD BE EF EC CD EF BC tEF ⊥===,求平面ADF 与平面BCE 所成锐二面角的大小.ABCDEF PQ20.(12分)已知F 为椭圆2222:1(0)x y C a b a b+=>>的右焦点,点(2,3)P 在C 上,且PF x ⊥轴.(1)求C 的方程;(2)过F 的直线l 交C 于,A B 两点,交直线8x =于点M .判定直线,,PA PM PB 的斜率是否依次构成等差数列?请说明理由.21.(12分)设函数()(1)1xxf x xe a e =+-+.(1)求函数()f x 的单调区间;(2)若函数()f x 在(0,)+∞上存在零点,证明:2a >. 22.[选修4—4:坐标系与参数方程](10分) 在直角坐标系xOy 中,曲线1C 的参数方程为5cos 55sin x y αα=⎧⎨=+⎩(α为参数).M 是曲线1C 上的动点,将线段OM 绕O 点顺时针旋转90︒得到线段ON ,设点N 的轨迹为曲线2C .以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线12,C C 的极坐标方程; (2)在(1)的条件下,若射线(0)3πθρ=≥与曲线12,C C 分别交于,A B 两点(除极点外),且有定点(4,0)T ,求TAB △的面积.23.[选修4—5:不等式选讲](10分) 已知函数()22(0)f x x m x m m =+-->. (1)当12m =时,求不等式1()2f x ≥的解集; (2)对于任意的实数x ,存在实数t ,使得不等式()34f x t t +-<+成立,求实数m 的取值范围.高三数学考试(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合2{|321},{|320}A x x B x x x =-<=-≥,则A B =( )A .(1,2]B .91,4⎛⎤ ⎥⎝⎦C .31,2⎛⎤ ⎥⎝⎦D .(1,)+∞1.答案:C解析:因为3{|1},02A x x B x x ⎧⎫=>=⎨⎬⎩⎭≤≤,所以312AB x x ⎧⎫=<⎨⎬⎩⎭≤.2.已知复数z 满足(3)(1i)64i z +-=-(i 为虚数单位),则z 的共轭复数所对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.答案:D 解析:因为64i32i 1iz -=-=+-,所以2i z =-. 3.已知72sin cos ,2sin cos 55αααα+=--=-,则cos2α=( )A .725B .725-C .1625D .1625-3.答案:A解析:因为7sin cos 522sin cos 5αααα⎧+=-⎪⎪⎨⎪-=-⎪⎩,所以3sin 5α=-,从而27cos 212sin 25αα=-=.4.如图1为某省2018年1~4月快递义务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误..的是( )A .2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件B .2018年1~4月的业务量同比增长率超过50%,在3月最高C .从两图来看,2018年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长 4.答案:D解析:选项A ,B 显然正确;对于选项C ,2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C 是正确的;对于选项D ,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D 错误.5.在ABC △中,内角,,A B C 所对的边分别是,,a b c ,若,4,24ABC C a S π===△,则232sin 3sin sin a c bA C B+-=+- ( )A 5B .5C .27D .135.答案:B 解析:112,4,sin 424222ABC C a S ab C b π====⨯⨯⨯=△,得2b =2222cos 10c a b ab C =+-=,即10c =232252sin 3sin sin sin a c b cR A C B C+-===+-.6.已知平面向量,a b 满足2,1a b ==,且()()432a b a b -⋅+=,则向量,a b 的夹角θ为( ) A .6πB .3π C .2π D .23π 6.答案:D解析:因为()()224343112,2,1a b a b a b a b a b -⋅+=-+⋅===,所以1a b ⋅=-, 由cos 2cos 1a b a b θθ⋅=⋅==-,得1cos 2θ=-,所以23πθ=. 7.为了得到2cos 2y x =-的图象,只需把函数32cos 2y x x =-的图象( )A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向右平移6π个单位长度7.答案:D解析:因为32cos 22cos 22cos 236y x x x x ππ⎛⎫⎛⎫=-=-+=-+ ⎪ ⎪⎝⎭⎝⎭,要得到函数2cos 2y x =-,只需将32cos 2y x x =-的图象向右平移6π个单位长度即可. 8.已知抛物线21:2(0)C x py y =>的焦点为1F ,抛物线22:(42)C y p x =+的焦点为2F ,点01(,)2P x 在1C 上,且134PF =,则直线12F F 的斜率为( ) A .12-B .14-C .13-D .15-8.答案:B 解析:因为134PF =,所以13224p +=,解得22121211.:,:4,(0,),(1,0)24p C x y C y x F F ===,所以直线12F F 的斜率为114014=--.9.如图,B 是AC 上一点,分别以,,AB BC AC 为直径作半圆.从B 作BD AC ⊥,与半圆相交于D .6,2AC BD == )A .29B .13C .49D .239.答案:C解析:连接,AD CD ,可知ACD △是直角三角形,又BD AC ⊥,所以2BD AB BC =⋅,设(06)AB x x =<<,则有8(6)x x =-,得2x =,所以2,4AB BC ==,由此可得图中阴影部分的面积等于2223122222ππππ⎛⎫⨯⨯⨯-+= ⎪⎝⎭,故概率241992P ππ==⨯. 10.某几何体的三视图如图所示,则该几何体的各条棱中,最长的棱与最短的棱所在直线所成角的正切值为( ) A 5B 6C 7D .2252110.答案:C解析:如图,可知最长的棱为长方体的体对角线22AC =1BD =,异面直线AC 与BD 所成的角为ACE ∠,由三视图中的线段长度可得,5,1,2,7AB BD CE CD AE =====tan 7ACE ∠=ABCD E11.已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,12,F F 分别是双曲线的左、右焦点,点(,0)M a -,(0,)N b ,点P 为线段MN 上的动点,当12PF PF ⋅取得最小值和最大值时,12PF F △的面积分别为12,S S ,则12S S =( ) A .4 B .8C .23D .311.答案:A 解析:由2ce a==,得2,3c a b a ==,故线段MN 所在直线的方程为3()y x a =+,又点P 在线段MN 上,可设(33)P m m a ,其中[,0]m a ∈-,由于12(,0),(,0)F c F c -,即12(2,0),(2,0)F a F a -,得12(2,33),(2,33)PF a m m a PF a m m a =----=--,所以221246PF PF m ma a ⋅=+-223134()44m a a =+-.由于[,0]m a ∈-,可知当34m a =-时,12PF PF ⋅取得最小值,此时3P y =, 当0m =时,12PF PF ⋅取得最大值,此时3P y a =,则213434S aS a ==. 12.已知函数()ln (0,1)x xf x a e x a a a =+->≠,对任意12,[0,1]x x ∈,不等式21()()2f x f x a --≤恒成立,则a 的取值范围为( ) A .21,2e ⎡⎤⎢⎥⎣⎦B .[,)ee +∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .2[,]ee e12.答案:B解析:因为()ln xxf x a e x a =+-,所以()ln ln (1)ln xxxxf x a a e a a a e '=+-=-+.当1a >时,对任意的[0,1]x ∈,10,ln 0x a a ->≥,恒有()0f x '>;当01a <<时,10,ln 0xa a -<≤,恒有()0f x '>,所以()f x 在[0,1]x ∈是单调递增的.那么对任意的12,[0,1]x x ∈,不等式21()()f x f x -2a -≤恒成立,只要max min ()()2f x f x a --≤,max ()(1)ln f x f a e a ==+-,min ()(0)112f x f ==+=,所以2ln 2a a e a -+--≥,即ln ,e a e a e ≥≥.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.在42x x ⎛⎫+ ⎪⎝⎭的展开式中,含2x -的项的系数是 .13.答案:32 解析:44214422rrrr r rr T C xC x x --+⎛⎫==⋅ ⎪⎝⎭,令422r -=-,得3r =,所以含2x -的项的系数为334232C ⋅= 14.已知实数,x y 满足12,3321,14,2y x y x y x ⎧-+⎪⎪--⎨⎪⎪+⎩≥≤≤ 则目标函数3z x y =-的最大值为 .14.答案:4-解析:作可行域如图所示,由图可知,当3z x y =- 过点(1,1)B -时,z 取得最大值4-.15.已知(),()f x g x 分别是定义在R 上的奇函数和偶函数,且(0)0g =,当0x ≥时,()()f x g x -=222x x x b +++(b 为常数),则(1)(1)f g -+-= .15.答案:4-解析:由()f x 为定义在R 上的奇函数可知(0)0f =,所以0(0)(0)20f g b -=+=,得1b =-, 所以(1)(1)4f g -=,于是(1)(1)(1)(1)[(1)(1)]4f g f g f g -+-=-+=--=-.16.在四面体A BCD -中,2AB AC AD BC BD =====,若四面体A BCD -的外接球的体积823V π=,则CD = . 16.答案:22解析:设CD 的中点为M ,AB 的中点为N ,则四面体A BCD -的外接球球心O 在线段MN 上,设四面体A BCD -的外接球半径为r ,由348233V r π==,得2r =2CD x =,在Rt OAN △中, 22211ON OA AN =-=-=,在Rt ADN △中,223DN AD AN =-=Rt DMN △中, 2223MN DN DM x =-=-231OM MN ON x =-=-,在Rt ODM △中,222OM OD DM =-,由222(31)2x x -=-,解得2x =22CD =CABDMN O三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17—21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分) 已知数列{}n a 的前n 项和为n S ,满足11S =,且对任意正整数n ,都有111n n n S n S S n +++=-+. (1)求数列{}n a 的通项公式; (2)若2nn n a b =,求数列{}n b 的前n 项和n T . 17.解析:(1)由11S =,得11a =.……………………………………………………………………1分又对任意正整数n , 111n n n S n S S n +++=-+都成立,即11(1)(1)(1)n n n S n n n S n S ++++=+-+, 所以1(1)(1)n n nS n S n n +-+=+,所以111n n S Sn n+-=+,………………………………………………3分即数列n S n ⎧⎫⎨⎬⎩⎭是以1为公差,1为首项的等差数列.……………………………………………………4分 所以nS n n=,即2n S n =,得121(2)n n n a S S n n -=-=-≥,………………………………………5分 又由11a =,所以21()n a n n N *=-∈.…………………………………………………………………6分解法2:由1111n n n n S n S S a n ++++=-=+,可得11(1)(1)n n S n n n a ++++=+,当2n ≥时,(1)n n S n n na +-=,两式相减,得112(1)n n n a n n a na +++=+-,整理得12n n a a +-=, 在111n n S n a n +++=+中,令2n =,得2212Sa +=,即22122a a ++=,解得23a =,212a a ∴-=, 所以数列{}n a 是首项为1,公差为2的等差数列,12(1)21n a n n ∴=+-=-.(2)由(1)可得2122n n n n a n b -==,……………………………………………………………………7分 所以231135232122222n n nn n T ---=+++++, ①……………………………………………………8分则234111352321222222n nn n n T +--=+++++, ②……………………………………………………9分 -①②,得2341112222212222222n n n n T +-=+++++-,……………………………………………10分整理得1113221323222222n n n n n n T ++-+=--=-,…………………………………………………………11分所以2332n nn T +=-.……………………………………………………………………………………12分 18.(12分)某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:A 类(不参加课外阅读),B 类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),C 类(参加课外阅读, A 类 B 类 C 类 男生 x 5 3 女生y33(1)求出表中x ,y 的值;(2)与性别有关;男生 女生 总计 不参加课外阅读 参加课外阅读总计(3)从抽出的女生中再随机抽取3人进一步了解情况,记X 为抽取的这3名女生中A 类人数和C 类人数差的绝对值,求X 的数学期望.附:22()()()()()n ad bc K a b c d a c b d -=++++.20()P K k ≥0.10 0.05 0.01 0k2.7063.8416.63518.解析:(1)设抽取的20人中,男、女生人数分别为12,n n ,则122012001220002080082000n n ⨯⎧==⎪⎪⎨⨯⎪==⎪⎩,……1分所以12534x =--=,………………………………………………………………………………2分8332y =--=.………………………………………………………………………………………3分(2)列联表如下:男生 女生 总计 不参加课外阅读 4 2 6 参加课外阅读8 6 14 总计128205分2K 的观测值220(4628)100.159 2.70612814663k ⨯⨯-⨯==≈<⨯⨯⨯, 所以没有90%的把握认为“参加阅读与否”与性别有关.……………………………………………7分 (3)X 的可能取值为0,1,2,3,则311132333819(0)56C C C C P X C +===,……………………………………………………………………8分 3121122133322323383(1)7C C C C C C C C P X C +++===,………………………………………………………9分 21212333383(2)14C C C C P X C +===,………………………………………………………………………10分 33381(3)56C P X C ===,……………………………………………………………………………………11分所以193131510123567145656EX =⨯+⨯+⨯+⨯=.………………………………………………………12分 19.(12分)如图,在五面体ABCDFE 中,底面ABCD 为矩形,//EF AB ,BC FD ⊥,过BC 的平面交棱FD 于P ,交棱FA 于Q .(1)证明://PQ 平面ABCD ;(2)若,,2,CD BE EF EC CD EF BC tEF ⊥===,求平面ADF 与平面BCE 所成锐二面角的大小.ABCDEF PQ19.(1)证明:因为底面ABCD 为矩形,所以//AD BC ,又因为AD ⊂平面ADF ,BC ⊄平面ADF ,所以//BC 平面ADF ,……………………………………………………………………………………2分 又因为BC ⊂平面BCPQ ,平面BCPQ平面ADF PQ =,所以//BC PQ ,…………………………4分又因为PQ ⊄平面ABCD ,CD ⊂平面ABCD ,所以//PQ 平面ABCD .…………………………6分 (2)解:,,CD BE CD CB BE CB B ⊥⊥=,CD ∴⊥平面BCE ,又因为CE ⊂平面BCE ,所以CD CE ⊥;因为,,BC CD BC FD CD FD D ⊥⊥=,所以BC ⊥平面CDFE ,所以BC CE ⊥,以C 为坐标原点,,,CD CB CE 所在方向为,,x y z 轴正方向建立如图所示空间直角坐标系C xyz -,设1EF CE ==,则(2,,0),(2,0,0),(1,0,1)A t D F ,所以(0,,0),(1,,1)AD t AF t =-=--…………7分设平面ADF 的一个法向量为(,,)n x y z =,则0n AD ty n AF x ty z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩,令1x =,得(1,0,1)n =…9分易知平面BCE 的一个法向量为(1,0,0)m =,…………………………………………………………10分 设平面ADF 与平面BCE 所成的锐二面角为θ,则2cos 2n m n mθ⋅==⋅,……………………………11分 所以πθ=,故平面ADF 与平面BCE 所成锐二面角为4π. ABDF PQx yz20.(12分)已知F 为椭圆2222:1(0)x y C a b a b+=>>的右焦点,点(2,3)P 在C 上,且PF x ⊥轴.(1)求C 的方程;(2)过F 的直线l 交C 于,A B 两点,交直线8x =于点M .判定直线,,PA PM PB 的斜率是否依次构成等差数列?请说明理由.20.解:(1)因为点(2,3)P 在C 上,且PF x ⊥轴,所以2c =………………………………………1分由22224914a b a b ⎧+=⎪⎨⎪-=⎩,得221612a b ⎧=⎪⎨=⎪⎩,…………………………………………………………………………4分 故椭圆C 的方程为2211612x y +=.…………………………………………………………………………5分 (2)由题意可知直线l 的斜率存在,设直线l 的的方程为(2)y k x =-,令8x =,得M 的坐标为(8,6)k .……………………………………………………………………6分由2211612(2)x y y k x ⎧+=⎪⎨⎪=-⎩,得2222(43)1616(3)0k x k x k +-+-=.…………………………………………7分 设1122(,),(,)A x y B x y ,则有221212221616(3),4343k k x x x x k k -+==++.①…………………………8分设直线,,PA PM PB 的斜率分别为123,,k k k , 从而121231233631,,22822y y k k k k k x x ---====----.……………………………………………………9分 因为直线AB 的方程为(2)y k x =-,所以1122(2),(2)y k x y k x =-=-, 所以12121212121233113222122y y y y k k x x x x x x ⎛⎫--+=+=+-+ ⎪------⎝⎭1212124232()4x x k x x x x +-=-⨯-++. ②……………………………………………………………………10分把①代入②,得2212222216443232116(3)3244343k k k k k k k k k k -++=-⨯=---+++.………………………………11分 又312k k =-,所以1232k k k +=,故直线,,PA PM PB 的斜率成等差数列.…………………………12分21.(12分)设函数()(1)1xxf x xe a e =+-+. (1)求函数()f x 的单调区间;(2)若函数()f x 在(0,)+∞上存在零点,证明:2a >.21.(1)解:函数()f x 的定义域为(,)-∞+∞,…………………………………………………………1分因为()(1)1x x f x xe a e =+-+,所以()(1)xf x x a e '=+-.…………………………………………2分 所以当1x a >-时,()0f x '>,()f x 在(1,)a -+∞上是增函数;当1x a <-时,()0f x '<,()f x 在(,1)a -∞-上是减函数.……………………………………4分 所以()f x 在(1,)a -+∞上是增函数,在(,1)a -∞-上是减函数.…………………………………5分 (2)证明:由题意可得,当0x >时,()0f x =有解,即1(1)11111x x x x x xe x e x x a x e e e +-+-+===+---有解.………………………………………………6分 令1()1x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+=--.…………………………………………7分设函数()2,()10xxh x e x h x e '=--=->,所以()h x 在(0,)+∞上单调递增.又2(1)30,(2)20h e h e =-<=->,所以()h x 在(0,)+∞上存在唯一的零点.………………………8分 故()g x '在(0,)+∞上存在唯一的零点.设此零点为k ,则(1,2)k ∈.………………………………9分 当(0,)x k ∈时,()0g x '<;当(,)x k ∈+∞时,()0g x '>.所以()g x 在(0,)+∞上的最小值为()g k .………………………………………………………………10分 又由()0g k '=,可得2ke k =+,所以1()1(2,3)1kk g k k k e +=+=+∈-,…………………………11分 因为()a g x =在(0,)+∞上有解,所以()2a g k >≥,即2a >.………………………………12分解法2:(2)证明:由题意可得,当0x >时,()0f x =有解,由(1)可知()f x 在(1,)a -+∞上是增函数,在(,1)a -∞-上是减函数,且(0)1f =.①当10a -<,即1a <时,()f x 在(0,)+∞上单调递增,所以当0x >时,()(1)1f x f >=,不符合题意; ②当10a ->,即1a >时,()f x 在(0,1)a -上单调递减,在(1,)a -+∞上单调递增,所以当1x a =-时,()f x 取得最小值(1)f a -,由题意可知111(1)(1)(1)110≤a a a f a a e a e a e ----=-+-+=-+,设1()1(1)x g x x ex -=-+>,则1()10x g x e -'=-<,所以函数()g x 在(1,)+∞上单调递减,又(2)30g e =->,而()≤0g a ,所以2a >.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为5cos 55sin x y αα=⎧⎨=+⎩(α为参数).M 是曲线1C 上的动点,将线段OM 绕O 点顺时针旋转90︒得到线段ON ,设点N 的轨迹为曲线2C .以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线12,C C 的极坐标方程; (2)在(1)的条件下,若射线(0)3πθρ=≥与曲线12,C C 分别交于,A B 两点(除极点外),且有定点(4,0)T ,求TAB △的面积.22.解:(1)由题设,得1C 的直角坐标方程为22(5)25x y +-=,即22100x y y +-=,…………2分 故1C 的极坐标方程为210sin 0ρρθ-=,即10sin ρθ=.………………………………………………3分 设点(,)(0)N ρθρ≠,则由已知得,2M πρθ⎛⎫+⎪⎝⎭,代入1C 的极坐标方程得10sin()2πρθ=+,即10cos (0)ρθρ=≠.……………………………………………………………………………………5分 (2)将3πθ=代入12,C C 的极坐标方程得53,,5,33A B ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,………………………………7分 又因为(4,0)T ,所以1sin 1523TOA S OA OT π=⋅=△,………………………………………………8分 1sin 5323TOB S OB OT π=⋅=△,……………………………………………………………………9分 所以1553TAB TOA TOB S S S =-=-△△△10分 23.[选修4—5:不等式选讲](10分) 已知函数()22(0)f x x m x m m =+-->. (1)当12m =时,求不等式1()2f x ≥的解集; (2)对于任意的实数x ,存在实数t ,使得不等式()34f x t t +-<+成立,求实数m 的取值范围.23.解:因为0m >,所以3,()223,3,x m x mf x x m x m x m m x m x m x m --⎧⎪=+--=--<<⎨⎪-+⎩≤≥.……………………1分(1)当12m =时,31,22111()3,,22231,22x x f x x x x x ⎧--⎪⎪⎪=--<<⎨⎪⎪-+⎪⎩≤≥ …………………………………………………………2分所以由1()2f x ≥,可得31,2212x x ⎧-⎪⎪⎨⎪-⎪⎩≥≤或113,221122x x ⎧-⎪⎪⎨⎪-<<⎪⎩≥ 或312212x x ⎧-+⎪⎪⎨⎪⎪⎩≥≥ ,…………………………3分解得1132x <≤或112x ≤≤,………………………………………………………………………………4分 故原不等式的解集为113xx ⎧⎫<⎨⎬⎩⎭≤.………………………………………………………………………5分 (2)因为()34()43f x t t f x t t +-<+⇔+--≤,令()43g t t t =+--,则由题设可得max max ()()≤f x g t .…………………………………………6分由3,()3,3,x m x mf x x m m x m x m x m --⎧⎪=--<<⎨⎪-+⎩≤≥,得max ()()2f x f m m ==.……………………………………7分因为43(4)(3)7t t t t +--+--=≤,所以7()7g t -≤≤.……………………………………8分 故max ()7g t =,从而27m <,即72m <,………………………………………………………………9分 又已知0m >,故实数m 的取值范围是70,2⎛⎫ ⎪⎝⎭.…………………………………………………………10分。