简易逻辑精选练习题和答案

合集下载

简易逻辑精选练习题和答案

简易逻辑精选练习题和答案

简易逻辑精选练习题一、选择题11. “ m"是"直线(m 2) x 3my 1 二 0与直线(m - 2) x (m 2) y - 3 二 0相互垂直”的()A .充分必要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件x _ 12. 设集合 A ={ x| v 0} , B ={ x || x — 1| v a },若“ a = 1 ”是“ A n ”的()X +1A .充分不必要条件B .必要不充分条件 C.充要条件D .既不充分又不必要条件3. 命题p :“有些三角形是等腰三角形”,贝归p 是( )A .有些三角形不是等腰三角形B .所有三角形是等腰三角形 C.所有三角形不是等腰三角形D .所有三角形是等腰三角形2 24. 设命题p :方程x 3x -^0的两根符号不同;命题 q :方程x • 3x -1 =0的两根之和为3,判断28. a ::: 0是方程ax 2x ^0至少有一个负数根的( A .必要不充分条件 B .充分不必要条件 C.充分必要条件D.既不充分也不必要条件二、填空题9. (1) 命题: Ex 壬 R, x 2 + x + 1 v 0 的否定是 ________________________ ,(2) ______________________________________________________ 命题“ -x € R , X 2-X +3>0”的否定是 ____________________________________________________________ , (3)命题 “对任意的x € {x|-2<x<4},|x-2|<3 ”的否定形式(4) 命题 “? x , y € R ,有x2+ y 2 > 0 ”的否定是 _____________________2(5) __________________________________________________________________ 命题“不等式X +X -6>0的解是x<-3或X >2”的逆否命题是 __________________________________________ (6) 命题“ ? a , b € R,如果ab >0,则a >0”的否命题是 ________________(7) _______________________________________________________________ 命题 “△ ABC 中 ,若/C=90° ,则/ A 、/ B 都是锐角”的否命题为: ___________________________________________________________ ,否定形式: ________________________________ 。

逻辑灵活测试题及答案

逻辑灵活测试题及答案

逻辑灵活测试题及答案1. 题目:如果所有的苹果都是水果,所有的水果都是食物,那么苹果是食物吗?答案:是的,苹果是食物。

2. 题目:如果一个数是偶数,那么它一定能被2整除。

如果一个数是4的倍数,那么它一定是偶数吗?答案:是的,如果一个数是4的倍数,那么它一定是偶数。

3. 题目:如果所有的狗都是哺乳动物,而所有的猫也是哺乳动物,那么狗和猫是同类吗?答案:不是,狗和猫是不同的物种,尽管它们都属于哺乳动物。

4. 题目:如果一个物体是红色的,那么它的颜色是红色。

如果一个物体的颜色是蓝色,那么它是红色的吗?答案:不是,如果一个物体的颜色是蓝色,那么它不是红色的。

5. 题目:如果所有的学生都需要参加考试,那么没有学生需要参加考试吗?答案:不是,如果所有的学生都需要参加考试,那么所有学生都需要参加考试。

6. 题目:如果一个数是奇数,那么它不能被2整除。

如果一个数是3的倍数,那么它是奇数吗?答案:不一定,一个数是3的倍数并不意味着它是奇数,因为3的倍数中也有偶数。

7. 题目:如果所有的鸟都会飞,那么企鹅是鸟吗?答案:是的,企鹅是鸟,但它们不会飞。

8. 题目:如果所有的植物都需要水,那么仙人掌需要水吗?答案:是的,仙人掌需要水,尽管它们能在干旱环境中生存。

9. 题目:如果所有的金属都是导电的,那么塑料是金属吗?答案:不是,塑料不是金属,它们通常不导电。

10. 题目:如果所有的正方形都是四边形,那么四边形都是正方形吗?答案:不是,四边形包括正方形,但并非所有的四边形都是正方形。

11. 题目:如果所有的人都需要氧气才能生存,那么植物需要氧气吗?答案:不是,植物在光合作用过程中释放氧气,而不是需要氧气来生存。

12. 题目:如果所有的汽车都有轮子,那么自行车有轮子吗?答案:是的,自行车有轮子,尽管它们不是汽车。

13. 题目:如果所有的三角形都有三个角,那么一个有四个角的图形是三角形吗?答案:不是,一个有四个角的图形不是三角形。

(完整版)简易逻辑练习题及答案

(完整版)简易逻辑练习题及答案

、选择题:1若命题p : 2n — 1是奇数,q : 2n + 1是偶数,则下列说法中正确的是()A . p 或q 为真B . p 且q 为真C .非p 为真D .非p 为假2.“至多三个”的否定为()A .至少有三个B .至少有四个C .有三个D . 有四个3.△ ABC 中,若/ C=90°则/ A 、/ B 都是锐角”的否命题为 A . △ ABC 中,若/ C M 90° 则/ A 、/ B 都不是锐角 B . △ ABC 中,若/ C M 90° 则/ A 、/ B 不都是锐角 C . △ ABC 中,若/ C M 90°则/ A 、/ B 都不一定是锐角 D .以上都不对4. 给出 4 个命题:① 若 x 2 3x 2,则 x=1 或 x=2;② 若 2 x 3,则 (x 2)(x 3) 0; ③ 若 x=y=0 ,则 x 2 y 2 0 ;④ 若x, y N , x + y 是奇数,则x , y 中一个是奇数,一个是偶数. 那么:A . p 且q 为假 D .非p 为假6 .命题 若厶ABC 不是等腰三角形,则它的任何两个内角不相等• ”的逆否命题是()A .若厶ABC 是等腰三角形,则它的任何两个内角相等 .”B .若厶ABC 任何两个内角不相等,则它不是等腰三角形 .”C .若厶ABC 有两个内角相等,则它是等腰三角形 .”D .若厶ABC 任何两个角相等,则它是等腰三角形•”简易逻辑A .①的逆命题为真B .②的否命题为真C .③的逆否命题为假D .④的逆命题为假5 .对命题p : A n,命题q : A U = A ,下列说法正确的是B . p 或q 为假C . 非 p 为真7.设集合 M={x| x >2} , P={x|x v 3},那么 X € M ,或 x € P”是“ € M n P”的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件&有下列四个命题:① 若x + y=0,则x , y 互为相反数”的逆命题; ② 全等三角形的面积相等”的否命题;③ 若q < 1贝U x 2 + 2x + q=0有实根”的逆否命题; ④ 不等边三角形的三个内角相等 ”逆命题; 其中的真命题为 ()A .①②B .②③C .①③D .③④9•设集合A={ xlx 2 + x -6=0} , B={x|mx +仁0},贝V B 是A 的真子集的一个充分不必要的条件是()13 .由命题p:6是12的约数,q:6是24的约数,构成的“ p 或q ”形式的命题是: _________ _ ,“p 且q ”形式的命题是 ___________________ , “非p ”形式的命题是 _____________________ 14.设集合A={ x|x 2 + x - 6=0} , B={ x|mx +仁0},则B 是A 的真子集的一个充分不必要的条件是 __________________________________________ .15. _____________________________________________________________________________ 设1 1 1 A . mB . m=—2 32io . a 2 b 2 o ”的含义是A . a,b 不全为0 C . a,b 至少有一个为0 C . 1 1 m 0,,D .2 3m 0E( )B . a,b 全不为0D . a 不为0且b 为0, 或b 不为0且a 为011.如果命题非p ”与命题“戯q”都是真命题,那么A .命题p 与命题q 的真值相同B .命题q —定是真命题C .命题q 不一定是真命题D .命题p 不一定是真命题12.命题P :若A n B=B ,则A B ;命题q :若AB ,贝y A n B 工B .那么命题p 与命题q 的关系是 A .互逆、填空题:B .互否( )C .互为逆否命题D .不能确定集合M={x|x>2}, P={x|x v 3},那么x€ M,或x €P”是“X M n P”的___________________________三、解答题:16•命题:已知a、b为实数,若x2+ ax+ b< 0有非空解集,则a2—4b>0•写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.17. 已知关于x的一元二次方程(m € Z)① mx2—4x+ 4 = 0 ② x2—4mx+ 4m2—4m—5= 0求方程①和②都有整数解的充要条件•18 •分别指出由下列各组命题构成的逻辑关联词或”、且”、非”的真假.(1)p:梯形有一组对边平行;q:梯形有一组对边相等.2 2(2)p: 1是方程x 4x 3 0的解;q: 3是方程x 4x 3 0的解.(3)p:不等式X2 2x 1 0解集为R;q:不等式X2 2x 2 1解集为用1P:{0}; q:0X 1 2 219.已知命题p: 1 ----- 2 ;q: x 2x 1 m 0(m 0)若p是q的充分非必要3条件,试求实数m的取值范围.20.已知命题p:|x2—X |> 6, q:x€ Z,且p且q”与非q”同时为假命题,求x的值.21.已知p:方程x2+ mx+仁0有两个不等的负根;q:方程4x2+ 4(m —2)x+ 1 = 0无实根.若"p 或q”为真,“ p且q”为假,求m的取值范围.参考答案一、选择题:ABBAD CACBA BC二、填空题:13•若△ ABC有两个内角相等,则它是等腰三角形.14.6是12或24的约数;6是12的约数,也是24的约数;6不是12的约数.1 115.m= (也可为m -). 16.必要不充分条件.2 3三、解答题:2 217.解析:逆命题:已知a、b为实数,若a 4b 0,则x ax b 0有非空解集否命题:已知a、b为实数,若x2ax b 0没有非空解集,则a24b 0., 2 2逆否命题:已知a、b为实数,若a 4b 0.则x ax b 0没有非空解集原命题、逆命题、否命题、逆否命题均为真命题18. 解析:方程①有实根的充要条件是16 4 4 m 0,解得m 1.m 1 •而m 乙故m= —1 或m=0 或m=1. 4当m=—1时,①方程无整数解.当m=0时,②无整数解;当m=1时,①②都有整数.从而①②都有整数解m=1.反之,m=1①②都有整数解• ••①②都有整数解的充要条件是m=1.19 .解析:⑴I p真,q假,"戯q”为真,"诅q”为假,非p”为假.⑵•••p真,q真,“P或q”为真,“P且q”为真,非p”为假.⑶•••p 假, q假,“p q”为假, “p且q”为假,非p”为真⑷•p真,q假,“1或q”为真,“p且q”为假,非p”为假x 120.解析:由1 ---------- 2,得2x10. p: A x| x 2或x 103由x22x 1 m20(m 0),得1 m x 1 m.q : B={ x | x 1 m或x 1 m, m 0}.p是q的充分非必要条件,且m 0, A B.方程②有实根的充要条件是16m24(4m24m 5) 0,解得mm 0 1 m 10 即 0 m31 m 2即 p : m >2若方程4x 2 + 4(m — 2)x + 1 = 0无实根,则△= 16(m — 2)2— 16= 16(m 2— 4m + 3)v 0 解得:1 v m v 3•即 q : 1 v m v 3.因此,p 、q 两命题应一真一假,即 p 为真,q 为假或p 为假,q 为真.m 2 亠 m 2 *^或m 1或 m3 1 m 3解得:m 》3或1 v m W 2.由p 为假且 q 为真,可得: |xx| 6x Zx 2 x 6 2x x 6 0 2x3 即x 2 x6 •2 xx 6 0x R x Zx Zx Z故x 的取值为:一1、0、1、2.21、解析:•/ p 且q 为假p 、q 至少有一命题为假,又 非q”为假••• q 为真,从而可知p 为假• 22.解析: 若方程X + mx +仁0有两不等的负根,则因p 或q”为真,所以p 、q 至少有一为真,又 p 且q”为假,所以p 、q 至少有一为假, m 2 4 m 0解得m >2,。

逻辑练习题及答案

逻辑练习题及答案

逻辑练习题及答案1. 如果所有的猫都怕水,而小明养的宠物是一只猫,那么小明的宠物怕水吗?- 答案:是的,如果小明的宠物是猫,根据题目条件,它应该怕水。

2. 假设在一个岛上,所有的居民要么喜欢足球,要么喜欢篮球。

如果张三不喜欢足球,那么他喜欢篮球吗?- 答案:是的,根据题目条件,张三必须喜欢篮球,因为他不喜欢足球。

3. 一个逻辑问题:如果今天是星期三,那么明天是星期四吗?- 答案:是的,如果今天是星期三,那么按照一周七天的顺序,明天确实是星期四。

4. 一个推理问题:如果所有的苹果都是水果,而你手中有一个苹果,那么你手中的东西是水果吗?- 答案:是的,根据题目条件,你手中的苹果是一种水果。

5. 一个条件问题:如果下雨,那么地面会湿。

如果地面湿了,那么一定是因为下雨吗?- 答案:不一定,地面湿可能是因为其他原因,比如洒水或者有人倒水。

练习题答案解析1. 这个问题是一个典型的三段论,通过两个前提得出结论。

第一个前提是“所有的猫都怕水”,第二个前提是“小明的宠物是一只猫”,根据这两个前提,我们可以得出结论:小明的宠物怕水。

2. 这个问题也是一个三段论,通过条件“所有的居民要么喜欢足球,要么喜欢篮球”和“张三不喜欢足球”,我们可以推断出张三喜欢篮球。

3. 这个问题是一个简单的逻辑推理,基于一周的天数顺序,可以很容易地得出结论。

4. 这个问题涉及到类别的包含关系,苹果是水果的一个子集,所以如果你手中有一个苹果,那么你手中的东西自然是水果。

5. 这个问题涉及到因果关系的判断,虽然下雨会导致地面湿,但地面湿并不一定是由下雨引起的,可能还有其他原因。

逻辑练习题可以帮助学生提高他们的分析、推理和判断能力。

通过解决这些问题,学生可以更好地理解和应用逻辑规则,提高解决问题的能力。

50道经典逻辑题及答案

50道经典逻辑题及答案

一、逻辑判断:每题给出一段陈述,这段陈述被假设是正确的,不容置疑的。

要求你根据这段陈述,选择一个答案。

注意,正确的答案应与所给的陈述相符合,不需要任何附加说明即可以从陈述中直接推出1.以下是一则广告:就瘘痛而言,四分之三的医院都会给病人使用"诺维克斯"镇痛剂。

因此,你想最有效地镇瘘痛,请选择"诺维克斯"。

以下哪项如果为真,最强地削弱该广告的论点?( ) A.一些名牌的镇痛剂除了减少瘘痛外,还可减少其他的疼痛B.许多通常不用"诺维克斯"的医院,对那些不适应医院常用药的人,也用"诺维克斯" C.许多药物制造商,以他们愿意提供的最低价格,销售这些产品给医院,从而增加他们产品的销售额D.和其他名牌的镇痛剂不一样,没有医生的处方,也可以在药店里买到"诺维克斯"正确答案:C2.会骑自行车的人比不会骑自行车的人学骑三轮车更困难。

由于习惯于骑自行车,会骑自行车的人在骑三轮车转弯时,对保持平衡没有足够的重视。

据此可知骑自行车( )。

A.比骑三轮车省力B.比三轮车更让人欢迎C.转弯时比骑三轮车更容易保持平衡D.比骑三轮车容易上坡正确答案:C 解题思路:题干已知,不会骑自行车的人反而比会骑的人更容易学习骑三轮车,原因是骑三轮车在转弯时需要更多地控制平衡,由此可以推断出选项C为正确答案,选项A、B、D与题干无关。

故选C。

3.长久以来认为,高水平的睾丸激素荷尔蒙是男性心脏病发作的主要原因。

然而,这个观点不可能正确,因为有心脏病的男性一般比没有心脏病的男性有显著低水平的睾丸激素。

上面的论述是基于下列哪一个假设的?( )。

A.从未患过心脏病的许多男性通常有低水平的睾丸激素B.患心脏病不会显著降低男性的睾丸激素水平C.除了睾丸激素以外的荷尔蒙水平显著影响一个人患心脏病的可能性D.男性的心脏病和降低睾丸激素是一个相同原因的结果正确答案:B 解题思路:题干推理过程为:有心脏病的男性的睾丸激素水平低于无心脏病的,所以高水平的睾丸激素荷尔蒙不是男性心脏病发作的主要原因。

简易逻辑精选练习题和答案

简易逻辑精选练习题和答案

简易逻辑练习题一、选择题1. “21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 2. 设集合A ={x |11+-x x <0},B ={x || x -1|<a },若“a =1”是“φ≠⋂B A ”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3. 命题p :“有些三角形是等腰三角形”,则┐p 是( )A .有些三角形不是等腰三角形B .所有三角形是等腰三角形C .所有三角形不是等腰三角形D .所有三角形是等腰三角形4. 设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( )A .0B .1C .2D .35.“a >b >0”是“ab <222b a +”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件6. 若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( )A .a ≤1B .a ≤3C .a ≥1D .a ≥37. 下列命题中,其“非”是真命题的是( )A .∀x ∈R ,x ²-22x + 2 ≥ 0B .∃x ∈R ,3x-5 = 0C .一切分数都是有理数D .对于任意的实数a,b,方程ax=b 都有唯一解8. 0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件二、填空题9. (1)命题:,R x ∈∃ x 2+x +1<0的否定是 ,(2) 命题“∀x ∈R ,x 2-x +3>0”的否定是 ,(3) 命题 “对任意的x ∈{x|-2<x<4},|x-2|<3”的否定形式(4)命题 “∀x ,y ∈R ,有x ²+ y ² ≥ 0”的否定是(5) 命题 “不等式x 2+x -6>0的解是x <-3或x >2”的逆否命题是(6)命题“∀a ,b ∈R ,如果ab >0,则a >0”的否命题是(7)命题 “△ABC 中,若∠C=90°,则∠A 、∠B 都是锐角”的否命题为: ,否定形式: 。

简易逻辑精选练习题和答案

简易逻辑精选练习题和答案

简易逻辑精选练习题和答案1.“m=”是“直线(m+2)x+3my+1=与直线(m-2)x+(m+2)y-3=相互垂直”的充要条件。

2.设集合A={x| |x-1|<}。

B={x| |x-1|<1}。

若a=1,则A∩B≠。

3.命题p:“有些三角形是等腰三角形”,则┐p是“所有三角形不是等腰三角形”。

4.命题“¬p”、“¬q”、“p∧q”、“p∨q”中假命题的个数为2.5.“a>b>0”是“a2+b2<”的必要而不充分条件。

6.实数a的取值范围是a≥1.7.“∀x∈R,x²-22x + 2≥0”的非命题为“∃x∈R,x²-22x + 2<0”。

8.a<是方程ax+2x+1=至少有一个负数根的充分不必要条件。

9.(1)“∀x∈R,x2+x+1≥0” (2)“∃x∈R,x2-x+3≤0” (3)“存在x∈{x|-2<x<4},|x-2|≥3” (4)“∃x,y∈R,x²+y²<” (5)“x≥-3且x≤2时,x+x-6≤0” (6)“∃a,b∈R,ab>且a≤” (7)“△ABC中,若∠A或∠B是钝角,则∠C是锐角”。

10.选项不完整,无法填空。

11.(1)充分条件 (2)必要条件 (3)充分条件 (4)必要条件12.(1)假(2)m≤3 (3)x≤-2或x≥4 (4)真13.a≤-1或a≥214.解得A={1,2},B={1-m,2/m},则A是B的必要不充分条件,即1-m∈A但2/m∉A,解得m∈(-∞,1)U(2,∞)15.解得p的判别式D<0且m<0,q的判别式D<0且m∈(0,2),则m∈(0,2)16.解得p的解集为[-1,1],q无实根且判别式D<0,解得a∈(-∞,-1)U(1/2,∞)17.(1)不存在 (2)存在,m>0。

逻辑测试题及答案

逻辑测试题及答案

逻辑测试题及答案1. 线索推理题:某个小偷在一间房子里犯罪。

警方到达现场后,发现了以下线索:在门口发现了一个烟蒂,屋内的电视机处发现了指纹,窗户玻璃上发现了工具的划痕。

根据以上线索,请问小偷是如何入侵该房子的?答案:小偷是从窗户进入的。

因为只有窗户上发现了工具的划痕,表示小偷使用工具撬开了窗户进入。

而门口的烟蒂以及屋内的电视机上的指纹,并不能证明小偷从门口进入。

2. 逻辑推理题:A、B、C、D、E五人排成一排参加比赛。

他们中的任意三人满足以下条件之一:A在B的左边,B在D的左边,C在E的左边。

请根据以上条件,判断下列陈述中哪些是正确的?i) A在D的右边。

ii) A在C的左边。

iii) E在A的左边。

答案:i) 正确;ii) 错误;iii) 正确。

推理过程如下:根据条件可知,B和D之间必然存在一人且距离相对较近,而A在B的左边和B在D的左边,可推出A在D的右边,即i)为正确答案。

因为具体位置未知,所以无法判断A在C的左边,即ii)为错误答案。

C在E的左边,且A在B的左边,可推出E在A的左边,即iii)为正确答案。

3. 逻辑判断题:根据以下信息,请判断每个人的职业。

1) 甲说:乙是医生。

2) 乙说:丙是警察。

3) 丙说:甲是农民。

4) 丁说:乙是农民。

根据以上信息,请回答以下问题:每个人的职业是什么?答案:甲是警察,乙是医生,丙是农民,丁是农民。

推理过程如下:假设甲是医生,则乙应该说丙是警察,与2)中的说法矛盾,所以甲不是医生。

假设乙是医生,则丙应该说甲是农民,与3)中的说法矛盾,所以乙不是医生。

假设丙是医生,则甲应该说乙是医生,与1)中的说法相符,所以丙是医生。

根据4)中的说法,丁是农民。

由此可得答案:甲是警察,乙是医生,丙是农民,丁是农民。

通过以上逻辑测试题,我们锻炼了逻辑思维的能力,并通过分析线索和推理判断找出答案。

这些逻辑推理题可以帮助我们提高思维灵活性和推理能力,对于解决问题和理解复杂情况都有一定帮助。

简易逻辑精选练习题和答案

简易逻辑精选练习题和答案

简易逻辑精选练习题一、选择题1. “21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 2. 设集合A ={x |11+-x x <0},B ={x || x -1|<a },若“a =1”是“A ∩B ≠”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3. 命题p :“有些三角形是等腰三角形”,则┐p 是( )A .有些三角形不是等腰三角形B .所有三角形是等腰三角形C .所有三角形不是等腰三角形D .所有三角形是等腰三角形4. 设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( )A .0B .1C .2D .35.“a >b >0”是“ab <222b a +”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件6. 若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( )A .a ≤1B .a ≤3C .a ≥1D .a ≥37. 下列命题中,其“非”是真命题的是( )A .∀x ∈R ,x ²-22x + 2 ≥ 0B .∃x ∈R ,3x-5 = 0C .一切分数都是有理数D .对于任意的实数a,b,方程ax=b 都有唯一解8. 0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件二、填空题9. (1)命题:,R x ∈∃ x 2+x +1<0的否定是 ,(2) 命题“∀x ∈R ,x 2-x +3>0”的否定是 ,(3) 命题 “对任意的x ∈{x|-2<x<4},|x-2|<3”的否定形式(4)命题 “∀x ,y ∈R ,有x ²+ y ² ≥ 0”的否定是(5) 命题 “不等式x 2+x -6>0的解是x <-3或x >2”的逆否命题是(6)命题“∀a ,b ∈R ,如果ab >0,则a >0”的否命题是(7)命题 “△ABC 中,若∠C=90°,则∠A 、∠B 都是锐角”的否命题为: ,否定形式: 。

高中简易逻辑试题及答案

高中简易逻辑试题及答案

高中简易逻辑试题及答案一、单选题(每题2分,共20分)1. 下列命题中,哪一个是真命题?A. 所有学生都是高中生。

B. 有些学生是高中生。

B. 没有学生是高中生。

D. 所有学生都不是高中生。

2. 如果“如果下雨,地面就会湿”为真,那么下列哪个命题必然为真?A. 如果地面湿,那么一定下雨了。

B. 如果地面不湿,那么没有下雨。

C. 如果没有下雨,地面一定不湿。

D. 如果地面湿,那么可能下雨了。

3. 以下哪个命题是“所有猫都怕水”的逆命题?A. 所有怕水的都是猫。

B. 所有不怕水的都不是猫。

C. 有些猫不怕水。

D. 有些怕水的不是猫。

4. 如果“所有A都是B”为真,那么“有些A不是B”是:A. 真命题B. 假命题C. 可能命题D. 不可能命题5. 以下哪个命题是“有些A是B”的逆否命题?A. 所有B都是A。

B. 所有B都不是A。

C. 有些B不是A。

D. 没有B是A。

6. 如果“如果A,则B”为真,且A为假,那么B的真值是什么?A. 真B. 假C. 不确定D. 既非真也非假7. “所有A都是B”和“有些A不是B”这两个命题:A. 可以同时为真B. 可以同时为假C. 一个为真,另一个为假D. 一个为假,另一个为真8. 下列哪个命题是“如果A,则B”的等价命题?A. 如果B,则A。

B. 如果非B,则非A。

C. 如果A且B,则B。

D. 如果B且A,则A。

9. 如果“有些A是B”为真,那么“所有B都是A”是:A. 真命题B. 假命题C. 可能命题D. 不可能命题10. 如果“如果A,则B”为真,且B为真,那么A的真值是什么?A. 真B. 假C. 不确定D. 既非真也非假二、多选题(每题3分,共15分)11. 下列哪些命题是“如果A,则B”的逻辑等价命题?A. 如果非A,则非B。

B. 如果B,则A。

C. 如果非B,则非A。

D. 如果A且非B,则非A。

12. 如果“所有A都是B”和“有些C是A”为真,那么下列哪些命题必然为真?A. 所有C都是B。

逻辑测试题及答案

逻辑测试题及答案

逻辑测试题及答案一、选择题1. 如果所有的苹果都是水果,那么以下哪个陈述是正确的?A. 所有的水果都是苹果B. 一些水果是苹果C. 没有水果是苹果D. 一些苹果不是水果答案:B2. 如果“如果下雨,那么地面会湿”,并且事实上地面湿了,那么以下哪个结论是正确的?A. 一定是下雨了B. 可能是下雨了C. 地面湿了,但不是因为下雨D. 地面湿了,但无法确定是否下雨答案:B二、判断题1. 如果所有的猫都怕水,那么一只怕水的动物一定是猫。

()答案:错误2. 如果“如果今天是星期三,那么明天是星期四”,并且今天是星期三,那么明天是星期四。

()答案:正确三、逻辑推理题1. 在一个班级里,如果一个学生是班长,那么他/她一定是数学成绩最好的学生。

现在我们知道小明是班长,那么小明的数学成绩是班级中最好的吗?答案:根据题目信息,我们可以推断小明的数学成绩是班级中最好的。

2. 一个逻辑学家说:“如果所有的天鹅都是白色的,那么所有非白色的鸟都不是天鹅。

”现在我们发现一只黑色的鸟,这只鸟是天鹅吗?答案:根据逻辑学家的陈述,我们可以推断这只黑色的鸟不是天鹅。

四、解答题1. 请解释“逆否命题”的概念,并给出一个例子。

答案:逆否命题是一个命题的逆命题的否定形式。

例如,如果原命题是“如果A,则B”,那么逆否命题是“如果非B,则非A”。

例如,原命题是“如果今天是周末,那么我不上班”,逆否命题则是“如果我上班,那么今天不是周末”。

2. 请解释“充分条件”和“必要条件”的区别。

答案:充分条件是指当一个条件存在时,必然导致某个结果发生;必要条件是指为了某个结果发生,必须存在的条件。

例如,对于命题“如果下雨,那么地面会湿”,“下雨”是“地面湿”的充分条件,而“地面湿”是“下雨”的必要条件。

(完整版)简易逻辑练习题(包含详细答案)

(完整版)简易逻辑练习题(包含详细答案)

1.“|a|>0”是“a>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析因为|a|>0⇔a>0或a<0,所以a>0⇒|a|>0,但|a|>0a>0.2.(2012·陕西)设a,b∈R,i是虚数单位,则“ab=0”是“复数a+b i为纯虚数”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析由a+bi为纯虚数可知a=0,b≠0,所以ab=0.而ab=0a=0,且b≠0.故选B项.3.“a>1”是“1a<1”的( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件答案 B4.(2013·湖北)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(綈p)∨(綈q) B.p∨(綈q)C.(綈p)∧(綈q) D.p∨q答案 A解析綈p:甲没有降落在指定范围;綈q:乙没有降落在指定范围,至少有一位学员没有降落在指定范围,即綈p或綈q发生.故选A.5.命题“若x2<1,则-1<x<1”的逆否命题是( )A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1答案 D解析原命题的逆否命题是把条件和结论都否定后,再交换位置,注意“-1<x<1”的否定是“x≥1或x≤-1”.6.设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析因为x≥2且y≥2⇒x2+y2≥4易证,所以充分性满足,反之,不成立,如x=y=74,满足x2+y2≥4,但不满足x≥2且y≥2,所以x≥2且y≥2是x2+y2≥4的充分而不必要条件,故选择A.7.已知p:a≠0,q:ab≠0,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析ab=0a=0,但a=0⇒ab=0,因此,p是q的必要不充分条件,故选B.8.设M、N是两个集合,则“M∪N≠∅”是“M∩N≠∅”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件答案 B解析M∪N≠∅,不能保证M,N有公共元素,但M∩N≠∅,说明M,N 中至少有一元素,∴M∪N≠∅.故选B.9.若x ,y ∈R ,则下列命题中,甲是乙的充分不必要条件的是( ) A .甲:xy =0 乙:x 2+y 2=0B .甲:xy =0 乙:|x |+|y |=|x +y |C .甲:xy =0 乙:x 、y 至少有一个为零D .甲:x <y 乙:xy <1答案 B解析 选项A :甲:xy =0即x ,y 至少有一个为0, 乙:x 2+y 2=0即x 与y 都为0.甲乙,乙⇒甲.选项B :甲:xy =0即x ,y 至少有一个为0,乙:|x |+|y |=|x +y |即x 、y 至少有一个为0或同号. 故甲⇒乙且乙甲.选项C :甲⇔乙,选项D ,由甲x <y 知当y =0,x <0时,乙不成立,故甲乙.10.在△ABC 中,设p :a sin B =b sin C =csin A ;q :△ABC 是正三角形,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 若p 成立,即a sin B =b sin C =c sin A ,由正弦定理,可得a b =b c =ca =k .∴⎩⎪⎨⎪⎧a =kb ,b =kc ,c =ka ,∴a =b =c .则q :△ABC 是正三角形成立.反之,若a =b =c ,∠A =∠B =∠C =60°,则a sin B =b sin C =csin A. 因此p ⇒q 且q ⇒p ,即p 是q 的充要条件.故选C.11.“a=1”是“函数f(x)=lg(ax)在(0,+∞)上单调递增”的( )A.充分不必要条件B.充分必要条件C.必要不充分条件D.既不充分也不必要条件答案 A解析∵当a=1时,f(x)=lg x在(0,+∞)上单调递增,∴a=1⇒f(x)=lg(ax)在(0,+∞)上单调递增,而f(x)=lg(ax)在(0,+∞)上单调递增可得a>0,∴“a=1”是“函数f(x)=lg(ax)在(0,+∞)上单调递增”的充分不必要条件,故选A.12.“x>y>0”是“1x<1y”的________条件.答案充分不必要解析1x<1y⇒xy·(y-x)<0,即x>y>0或y<x<0或x<0<y.13.“tan θ≠1”是“θ≠π4”的________条件.答案充分不必要解析题目即判断θ=π4是tanθ=1的什么条件,显然是充分不必要条件.14.如果对于任意实数x,〈x〉表示不小于x的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x-y|<1”是“〈x〉=〈y〉”的________条件.答案必要不充分解析可举例子,比如x=-0.5,y=-1.4,可得〈x〉=0,〈y〉=-1;比如x=1.1,y=1.5,〈x〉=〈y〉=2,|x-y|<1成立.因此“|x-y|<1”是〈x〉=〈y〉的必要不充分条件.15.已知A为xOy平面内的一个区域.命题甲:点(a,b)∈{(x,y)|⎩⎪⎨⎪⎧x-y+2≤0,x≥0,3x+y-6≤0};命题乙:点(a,b)∈A.如果甲是乙的充分条件,那么区域A的面积的最小值是________.答案 2解析设⎩⎪⎨⎪⎧x-y+2≤0,x≥0,3x+y-6≤0所对应的区域如右图所示的阴影部分PMN为集合B.由题意,甲是乙的充分条件,则B⊆A,所以区域A面积的最小值为S△PMN =12×4×1=2.16.“a=14”是“对任意的正数x,均有x+ax≥1”的________条件.答案充分不必要解析当a=14时,对任意的正数x,x+ax=x+14x≥2x·14x=1,而对任意的正数x,要使x+ax≥1,只需f(x)=x+ax的最小值大于或等于1即可,而在a为正数的情况下,f(x)=x+ax的最小值为f(a)=2a≥1,得a≥14,故充分不必要.17.已知命题p:|x-2|<a(a>0),命题q:|x2-4|<1,若p是q的充分不必要条件,求实数a的取值范围.答案0<a≤5-2解析由题意p:|x-2|<a⇔2-a<x<2+a,q:|x2-4|<1⇔-1<x2-4<1⇔3<x2<5⇔-5<x<-3或3<x< 5.又由题意知p是q的充分不必要条件,所以有⎩⎪⎨⎪⎧-5≤2-a,2+a≤-3,a>0,①或⎩⎪⎨⎪⎧3≤2-a,2+a≤5,a>0,②.由①得a无解;由②解得0<a≤5-2.18.已知集合M={x|x<-3或x>5},P={x|(x-a)·(x-8)≤0}.(1)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的充要条件;(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件;(3)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的一个必要但不充分条件.答案(1){a|-3≤a≤5} (2)在{a|-3≤a≤5}中可任取一个值a=0 (3){a|a<-3}解析由题意知,a≤8.(1)M∩P={x|5<x≤8}的充要条件-3≤a≤5.(2)M∩P={x|5<x≤8}的充分但不必要条件,显然,a在[-3,5]中任取一个值都可.(3)若a=-5,显然M∩P=[-5,-3)∪(5,8]是M∩P={x|5<x≤8}的必要但不充分条件.结合①②知a<-3时为必要不充分.。

逻辑测试题目及答案

逻辑测试题目及答案

逻辑测试题目及答案一、选择题1. 如果所有的苹果都是水果,那么以下哪项陈述是正确的?A. 所有的水果都是苹果B. 有些水果是苹果C. 没有水果是苹果D. 有些水果不是苹果2. 假设“如果下雨,地面就会湿”,那么以下哪项陈述与此逻辑相反?A. 如果地面湿,那么下雨了B. 如果地面不湿,那么没有下雨C. 如果没有下雨,地面就不会湿D. 如果地面湿,那么没有下雨二、判断题1. 如果“所有的猫都怕水”,那么“有些猫不怕水”这个陈述是错误的。

()2. 如果“只有当小明在家时,电视才会开着”,那么“电视开着,所以小明在家”这个推理是有效的。

()三、逻辑推理题1. 假设在一个岛上,所有的居民要么是骑士,要么是无赖。

骑士总是说真话,无赖总是说谎。

一个居民告诉你:“我旁边的人是无赖。

”根据这个陈述,你能确定说话的人是什么吗?2. 一个逻辑谜题:有三个开关,分别对应着远处的三盏灯。

每个开关可以是开或关状态,但灯的亮灭状态与开关的开闭状态不直接对应。

你只能去远处观察灯的亮灭状态一次,如何确定哪个开关控制哪盏灯?四、解答题1. 解释“逆否命题”的概念,并给出一个例子。

2. 描述“演绎推理”和“归纳推理”的区别,并各举一例。

答案:一、选择题1. D2. D二、判断题1. 正确2. 正确三、逻辑推理题1. 说话的人是无赖。

因为如果说话的人是骑士,他会说真话,那么他旁边的人就是无赖,这与他的陈述一致。

但如果说话的人是无赖,他说谎,那么他旁边的人就不是无赖,这与他的陈述矛盾。

因此,说话的人只能是无赖。

2. 首先打开第一个开关,等待一段时间,然后关闭它并打开第二个开关,然后直接去观察灯的状态。

如果灯是亮的,那么是第二个开关控制的。

如果灯是暗的但摸起来热,那么是第一个开关控制的。

如果灯是暗且冷,那么是第三个开关控制的。

四、解答题1. 逆否命题是指将一个命题的条件和结论都取反。

例如,原命题是“如果下雨,那么地面湿”,其逆否命题是“如果地面不湿,那么没有下雨”。

50道经典逻辑题及答案

50道经典逻辑题及答案

50道经典逻辑题及答案1.一则广告声称,四分之三的医院都使用"XXX"镇痛剂来治疗瘘痛。

因此,该广告建议使用"XXX"来最有效地缓解瘘痛。

以下哪个选项最能削弱该广告的论点?A。

一些名牌镇痛剂除了减轻瘘痛外,还可以减轻其他疼痛。

B。

许多通常不使用"XXX"的医院也会使用它来治疗那些不适应常规药物的患者。

C。

许多药品制造商以最低价格向医院销售产品,从而增加销售额。

D。

与其他名牌镇痛剂不同,"XXX"不需要医生处方,可以在药店购买。

正确答案:C2.会骑自行车的人比不会骑自行车的人更难学会骑三轮车。

由于惯于骑自行车,会骑自行车的人在骑三轮车时转弯时对保持平衡不够重视。

因此,骑自行车()。

A。

比骑三轮车省力B。

比三轮车更受欢迎C。

比骑三轮车转弯时更容易保持平衡D。

比骑三轮车更易上坡正确答案:C3.长期以来,人们认为高水平的睾酮激素是男性心脏病发作的主要原因。

然而,这个观点不可能正确,因为有心脏病的男性一般比没有心脏病的男性睾酮激素水平更低。

上述论述基于以下哪个假设?A。

从未患过心脏病的男性通常具有低水平的睾酮激素。

B。

患有心脏病不会显著降低男性的睾酮激素水平。

C。

除了睾酮激素以外的荷尔蒙水平明显影响一个人患心脏病的可能性。

D。

男性的心脏病和降低睾酮激素是同一原因的结果。

正确答案:B一胎孩子接近3岁时才会考虑生第二个孩子,那么在这个年龄段内,第一胎孩子很可能并不是独生子,而是有一个更小的兄弟姐妹。

因此,这个选项削弱了结论中“独生孩子和第一胎孩子的社会能力发展几乎没有差别”的假设。

其他选项与结论无关,不能削弱结论。

1.一胎的孩子接近3岁的时候才会生第二个孩子,因此无法比较独生子和非独生子的情况。

2.引进人才和提高教师应聘标准并不是唯一提高乡村教学水平的需要,近年来学校教学条件改进缓慢也是重要原因。

因此不能把教师应聘标准的提高视为提高乡村教学水平的关键。

(完整版)简易逻辑练习题及答案

(完整版)简易逻辑练习题及答案

简易逻辑一、选择题:1.若命题p :2n -1是奇数,q :2n +1是偶数,则下列说法中正确的是 ( )A .p 或q 为真B .p 且q 为真C . 非p 为真D . 非p 为假2.“至多三个”的否定为( ) A .至少有三个 B .至少有四个 C . 有三个 D . 有四个 3.“△ABC 中,若∠C=90°,则∠A 、∠B 都是锐角”的否命题为 ( )A .△ABC 中,若∠C ≠90°,则∠A 、∠B 都不是锐角 B .△ABC 中,若∠C ≠90°,则∠A 、∠B 不都是锐角 C .△ABC 中,若∠C ≠90°,则∠A 、∠B 都不一定是锐角D .以上都不对 4.给出4个命题:①若0232=+-x x ,则x =1或x =2; ②若32<≤-x ,则0)3)(2(≤-+x x ; ③若x =y =0,则022=+y x ;④若*∈N y x ,,x +y 是奇数,则x ,y 中一个是奇数,一个是偶数. 那么:( )A .①的逆命题为真B .②的否命题为真C .③的逆否命题为假D .④的逆命题为假5.对命题p :A ∩∅=∅,命题q :A ∪∅=A ,下列说法正确的是( )A .p 且q 为假B .p 或q 为假C .非p 为真D .非p 为假6.命题“若△ABC 不是等腰三角形,则它的任何两个内角不相等.”的逆否命题是( )A .“若△ABC 是等腰三角形,则它的任何两个内角相等.”B .“若△ABC 任何两个内角不相等,则它不是等腰三角形.”C .“若△ABC 有两个内角相等,则它是等腰三角形.”D .“若△ABC 任何两个角相等,则它是等腰三角形.”7.设集合M={x | x >2},P={x |x <3},那么“x ∈M ,或x ∈P”是“x ∈M ∩P”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件8.有下列四个命题:①“若x +y =0 ,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆否命题; ④“不等边三角形的三个内角相等”逆命题;其中的真命题为 ( )A .①②B .②③C .①③D .③④9.设集合A={x |x 2+x -6=0},B={x |mx +1=0} ,则B 是A 的真子集的一个充分不必要的条件是 ( )A .11,23m ⎧⎫∈-⎨⎬⎩⎭B .m=21-C .110,,23m ⎧⎫∈-⎨⎬⎩⎭D .10,3m ⎧⎫∈⎨⎬⎩⎭10.“220a b +≠”的含义是 ( )A .,a b 不全为0B . ,a b 全不为0C .,a b 至少有一个为0D .a 不为0且b 为0,或b 不为0且a 为0 11.如果命题“非p”与命题“p 或q”都是真命题,那么( )A .命题p 与命题q 的真值相同B .命题q 一定是真命题C .命题q 不一定是真命题D .命题p 不一定是真命题12.命题p :若A ∩B=B ,则A B ⊆;命题q :若A B ⊄,则A ∩B ≠B .那么命题p 与命题q 的关系是 ( )A .互逆B .互否C .互为逆否命题D .不能确定二、填空题:13.由命题p :6是12的约数,q :6是24的约数,构成的“p 或q ”形式的命题是:_ ___,“p 且q ”形式的命题是__ _,“非p ”形式的命题是__ _. 14.设集合A={x |x 2+x -6=0}, B={x |mx +1=0},则B 是A 的真子集的一个充分不必要的条件是__ __.15.设集合M={x |x >2},P={x |x <3},那么“x ∈M ,或x ∈P”是“x ∈M ∩P”的三、解答题:16.命题:已知a 、b 为实数,若x 2+ax +b ≤0 有非空解集,则a 2- 4b ≥0.写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.17.已知关于x 的一元二次方程 (m ∈Z)① mx 2-4x +4=0 ② x 2-4mx +4m 2-4m -5=0 求方程①和②都有整数解的充要条件.18.分别指出由下列各组命题构成的逻辑关联词“或”、“且”、“非”的真假.(1)p : 梯形有一组对边平行;q :梯形有一组对边相等.(2)p : 1是方程0342=+-x x 的解;q :3是方程0342=+-x x 的解. (3)p : 不等式0122>+-x x 解集为R ;q : 不等式1222≤+-x x 解集为.(4)p : ∅⊂≠∈0:};0{q19.已知命题1:123xp--≤;)0(012:22>≤-+-mmxxq若p⌝是q⌝的充分非必要条件,试求实数m的取值范围.20.已知命题p:|x2-x|≥6,q:x∈Z,且“p且q”与“非q”同时为假命题,求x的值.21.已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根.若“p 或q”为真,“p且q”为假,求m的取值范围.参考答案一、选择题: ABBAD CACBA BC 二、填空题:13.若△ABC 有两个内角相等,则它是等腰三角形.14.6是12或24的约数;6是12的约数,也是24的约数;6不是12的约数. 15.m=21-(也可为31-=m ). 16.必要不充分条件.三、解答题:17.解析:逆命题:已知a 、b 为实数,若0,0422≤++≥-b ax x b a 则有非空解集.否命题:已知a 、b 为实数,若02≤++b ax x 没有非空解集,则.042<-b a 逆否命题:已知a 、b 为实数,若.042<-b a 则02≤++b ax x 没有非空解集. 原命题、逆命题、否命题、逆否命题均为真命题.18.解析:方程①有实根的充要条件是,04416≥⨯⨯-=∆m 解得m ≤1.方程②有实根的充要条件是0)544(41622≥---=∆m m m ,解得.45-≥m,.145Z m m ∈≤≤-∴而故m =-1或m =0或m =1. 当m =-1时,①方程无整数解.当m=0时,②无整数解;当m=1时,①②都有整数.从而①②都有整数解m =1.反之,m =1①②都有整数解. ∴①②都有整数解的充要条件是m =1.19.解析:⑴∵ p 真,q 假, ∴“p 或q”为真,“p 且q”为假,“非p”为假.⑵∵ p 真,q 真, ∴“p 或q”为真,“p 且q”为真,“非p”为假. ⑶∵ p 假,q 假, ∴“p 或q”为假,“p 且q”为假,“非p”为真. ⑷∵ p 真,q 假, ∴“p 或q”为真,“p 且q”为假,“非p”为假. 20.解析:由1123x --≤,得210x -≤≤. ∴p ⌝:{}102|>-<=x x x A 或. 由)0(01222>≤-+-m m x x ,得11m x m -≤≤+.∴q ⌝:B={0,11|>+>-<m m x m x x 或}.∵p ⌝是q ⌝的充分非必要条件,且0m >, ∴ A ≠⊂B .∴⎪⎩⎪⎨⎧-≥-≤+>211010m m m 即30≤<m 21、解析: ∵p 且q 为假∴p 、q 至少有一命题为假,又“非q ”为假 ∴q 为真,从而可知p 为假.由p 为假且q 为真,可得:⎩⎨⎧∈<-Z x x x 6||2即⎪⎪⎩⎪⎪⎨⎧∈->-<-Z x x x x x 6622 ∴⎪⎩⎪⎨⎧∈∈<<-∴⎪⎪⎩⎪⎪⎨⎧∈>+-<--ZR Z x x x x x x x x 32060622 故x 的取值为:-1、0、1、2. 22.解析: 若方程x 2+mx +1=0有两不等的负根,则⎩⎨⎧>>-=∆042m m 解得m >2,即p :m >2若方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16=16(m 2-4m +3)<0 解得:1<m <3.即q :1<m <3.因“p 或q ”为真,所以p 、q 至少有一为真,又“p 且q ”为假,所以p 、q 至少有一为假, 因此,p 、q 两命题应一真一假,即p 为真,q 为假或p 为假,q 为真.∴⎩⎨⎧<<≤⎩⎨⎧≥≤>312312m m m m m 或或解得:m ≥3或1<m ≤2.。

经典75道逻辑思维题(附答案)

经典75道逻辑思维题(附答案)

【1】假设有一个池塘,里面有无穷多的水。

现有2个空水壶,容积分别为5升和6升。

问题是如何只用这2个水壶从池塘里取得3升的水。

由满6向空5倒,剩1升,把这1升倒5里,然后6剩满,倒到5里面,由于5里面有1升水,因此6只能向5倒4升水,然后将6剩余的2升,倒入空的5里面,再灌满6向5里倒3升,剩余3升。

【2】周雯的妈妈是豫林水泥厂的化验员。

一天,周雯来到化验室做作业。

做完后想出去玩。

"等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。

你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?"爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。

请你想想看,"小机灵"是怎样做的?设杯子编号为ABCDEF,ABC为满,DEF为空,把B中的水倒进E中即可。

【3】三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。

小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手是小林,他从不失误,命中率是100%。

由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。

然后这样循环,直到他们只剩下一个人。

那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?小林在轮到自己且小黄没死的条件下必杀黄,再跟菜鸟李单挑。

所以黄在林没死的情况下必打林,否则自己必死。

小李经过计算比较(过程略),会决定自己先打小林。

于是经计算,小李有873/2600≈33.6%的生机;小黄有109/260≈41.9%的生机;小林有24.5%的生机。

哦,这样,那小李的第一枪会朝天开,以后当然是打敌人,谁活着打谁;小黄一如既往先打林,小林还是先干掉黄,冤家路窄啊!最后李,黄,林存活率约38:27:35;菜鸟活下来抱得美人归的几率大。

逻辑灵活测试题及答案

逻辑灵活测试题及答案

逻辑灵活测试题及答案一、选择题1. 如果所有的苹果都是水果,那么以下哪个陈述是正确的?A. 所有的水果都是苹果B. 苹果是水果的一种C. 水果中不包括苹果D. 苹果不是水果答案:B2. 如果一个人是医生,那么他一定有医学学位。

以下哪个选项与此逻辑相符?A. 所有有医学学位的人都是医生B. 只有医生才有医学学位C. 有医学学位的人可能不是医生D. 没有医学学位的人一定不是医生答案:C3. 以下哪个选项符合逻辑推理的规则?A. 因为今天是星期一,所以明天一定是星期二B. 因为下雨了,所以地面一定是湿的C. 因为今天是晴天,所以地面一定是干的D. 因为今天是周末,所以人们一定在休息答案:A二、判断题1. 如果所有A类物品都是B类物品,那么B类物品中一定包含A类物品。

()答案:错误2. 如果一个事件的发生是另一个事件发生的充分条件,那么第一个事件的发生必然导致第二个事件的发生。

()答案:正确3. 逻辑上的“或”表示两个条件中只要有一个满足即可。

()答案:正确三、简答题1. 解释什么是演绎推理,并给出一个例子。

答案:演绎推理是一种从一般到特殊的推理方式,它从普遍性的前提出发,通过逻辑推导得出特定情况的结论。

例如,所有人都会死亡(普遍前提),苏格拉底是人(特殊前提),因此,苏格拉底会死亡(结论)。

2. 什么是归纳推理?请描述其与演绎推理的区别。

答案:归纳推理是一种从特殊到一般的推理方式,它通过观察特定情况,总结出一般性的结论。

与演绎推理不同,归纳推理得出的结论不是必然的,而是概率性的。

例如,观察到许多乌鸦都是黑色的,归纳出所有乌鸦都是黑色的结论。

四、论述题1. 论述逻辑悖论的概念及其在日常生活中的应用。

答案:逻辑悖论是指在逻辑推理中出现的自相矛盾的情况,它挑战了传统逻辑的一致性和有效性。

在日常生活中,逻辑悖论可以用于检验论证的合理性,例如,通过识别悖论来找出论证中的逻辑错误。

此外,逻辑悖论也启发了对逻辑和语言的深入思考,促进了逻辑学和哲学的发展。

逻辑测试题目及答案

逻辑测试题目及答案

逻辑测试题目及答案一、选择题1. 如果所有的猫都是哺乳动物,而所有的哺乳动物都有毛发,那么我们可以得出以下结论:A. 所有的猫都有毛发。

B. 所有的猫都是哺乳动物。

C. 所有的毛发都是猫的毛发。

D. 所有的猫都是动物。

答案:A2. 假设在一个岛上,只有两种颜色的鸟:蓝色和红色。

如果一只鸟不是蓝色的,那么它一定是红色的。

现在,岛上有一只红色的鸟,那么我们可以得出以下结论:A. 岛上没有蓝色的鸟。

B. 岛上的鸟都是红色的。

C. 岛上的鸟都是红色的或者蓝色的。

D. 岛上至少有一只红色的鸟。

答案:D二、判断题1. 如果所有的A都是B,并且所有的B都是C,那么所有的A都是C。

()答案:正确2. 如果所有的A都不是B,那么所有的B都不是A。

()答案:错误三、推理题某公司有三位员工:Alice、Bob和Charlie。

他们分别负责三个不同的部门:财务、市场和人力资源。

已知:- Alice不负责人力资源。

- Bob不负责财务。

- 负责市场的员工是唯一的男性。

根据以上信息,回答以下问题:1. Alice负责哪个部门?2. Bob负责哪个部门?3. Charlie负责哪个部门?答案:1. Alice负责财务部门。

2. Bob负责人力资源部门。

3. Charlie负责市场部门。

四、逻辑分析题在一个村庄里,有五座房子,每座房子的颜色都不同,分别是红色、蓝色、黄色、绿色和紫色。

这些房子是按顺序排列的。

以下是关于这些房子的一些信息:- 最左边的房子是红色的。

- 绿色房子在最右边。

- 黄色房子的邻居是蓝色的。

- 紫色房子在蓝色房子的左边。

根据以上信息,确定每座房子的颜色。

答案:1. 最左边的房子:红色2. 第二座房子:蓝色3. 第三座房子:紫色4. 第四座房子:黄色5. 最右边的房子:绿色五、综合应用题一个逻辑谜题中,有五位朋友:Alice、Bob、Charlie、David和Eva。

他们分别喜欢不同的运动:足球、篮球、排球、网球和乒乓球。

逻辑测试题目及答案

逻辑测试题目及答案

逻辑测试题目及答案
1. 如果所有的猫都怕水,而有些动物不是猫,那么以下哪项陈述是正
确的?
A. 所有怕水的动物都是猫
B. 所有不怕水的动物都是猫
C. 有些怕水的动物不是猫
D. 有些不怕水的动物是猫
答案:C
2. 假设在一个房间里,如果灯是开着的,那么门就是关着的。

如果门
是开着的,那么灯就是关着的。

现在灯是开着的,那么门是什么状态?
A. 门是开着的
B. 门是关着的
C. 门的状态无法确定
D. 门是半开半关的
答案:B
3. 有三扇门,一扇门后面有一辆车,另外两扇门后面是山羊。

如果你
选择了一扇门,主持人会打开另外两扇门中的一扇,露出一只山羊,
然后问你要不要换门。

以下哪项策略会增加你赢得汽车的概率?
A. 坚持最初的选择
B. 换门
C. 随机换门
D. 换门与否无关紧要
答案:B
4. 如果所有的苹果都是水果,所有的水果都含有维生素C,那么以下哪项陈述是正确的?
A. 所有的苹果都含有维生素C
B. 所有的维生素C都在水果中
C. 有些水果不是苹果
D. 所有的维生素C都在苹果中
答案:A
5. 假设在一个逻辑游戏中,如果玩家A赢了,那么玩家B就会输。

如果玩家B赢了,那么玩家A就会输。

现在玩家A赢了,那么玩家B的状态是什么?
A. 玩家B赢了
B. 玩家B输了
C. 玩家B的状态无法确定
D. 玩家B既没有赢也没有输
答案:B
结束语:以上是逻辑测试题目及答案,希望这些题目能够帮助你提高逻辑思维能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简易逻辑精选练习题
一、选择题
1. “21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的( )
A .充分必要条件
B .充分而不必要条件
C .必要而不充分条件
D .既不充分也不必要条件 2. 设集合A ={x |1
1+-x x <0},B ={x || x -1|<a },若“a =1”是“A ∩B ≠”的( ) A .充分不必要条件 B .必要不充分条件
C .充要条件
D .既不充分又不必要条件
3. 命题p :“有些三角形是等腰三角形”,则┐p 是( )
A .有些三角形不是等腰三角形
B .所有三角形是等腰三角形
C .所有三角形不是等腰三角形
D .所有三角形是等腰三角形
4. 设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( )
A .0
B .1
C .2
D .3
5.“a >b >0”是“ab <2
2
2b a +”的 ( ) A .充分而不必要条件 B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
6. 若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( )
A .a ≤1
B .a ≤3
C .a ≥1
D .a ≥3
7. 下列命题中,其“非”是真命题的是( )
A .∀x ∈R ,x ²-22x + 2 ≥ 0
B .∃x ∈R ,3x-5 = 0
C .一切分数都是有理数
D .对于任意的实数a,b,方程ax=b 都有唯一解
8. 0a <是方程2
210ax x ++=至少有一个负数根的( ) A .必要不充分条件
B .充分不必要条件
C .充分必要条件
D .既不充分也不必要条件
二、填空题
9. (1)命题:,R x ∈∃ x 2+x +1<0的否定是 ,
(2) 命题“∀x ∈R ,x 2-x +3>0”的否定是 , (3) 命题 “对任意的x ∈{x|-2<x<4},|x-2|<3”的否定形式 (4)命题 “∀x ,y ∈R ,有x ²+ y ² ≥ 0”的否定是 (5) 命题 “不等式x 2
+x -6>0的解是x <-3或x >2”的逆否命题是
(6)命题“∀a ,b ∈R ,如果ab >0,则a >0”的否命题是
(7)命题 “△ABC 中,若∠C=90°,则∠A 、∠B 都是锐角”的否命题为:
,否定形式: 。

10.下列四个命题:
①“k=1”22sin kx kx π-是“函数y=cos 的最小正周期为”
的充要条件; ②“a=3”是“直线2303(1)7ax y a x a y a ++=+-=-与直线相互垂直”的充要条件;
③ 函数2
y =2; ④“不等边三角形的三个内角相等”的逆命题.
其中假命题的序号为 .
11. 用充分条件、必要条件填空:
(1)1,23x y x y ≠≠+≠且是的 .
(2)1,23x y x y ≠≠+≠或是的 . (3):12p x +>, 2:56q x x ->,则p ⌝是q ⌝的
(4) 若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,
另一根小于零,则A 是B 的 .
12. 判断下列命题的真假性:
①在△ABC 中,“A >B ”是“sinA>sinB”充分必要条件
②“x∈R ,x 2+4x 2
+1≥m”恒成立的充要条件是m≤3 ③、对任意的x ∈{x|-2<x<4},|x-2|<3的否定形式
④、△>0是一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件.
其中真命题的序号为 .
13. 已知命题:p R x ∈∃,0122
≤++ax ax .若命题p 是假命题,则实数a 的取值范围是 .
三、解答题
14. 已知集合A={x|x 2-3x+2=0},B={x|x 2-mx+2=0},若A 是B 的必要不充分条件,求实数m
范围。

15.已知p :方程210x mx ++=有两个不相等的负实根;q :方程244(2)10x m x +-+=无实根. 若
"","",p q p q ∨∧为真为假求实数m 的取值范围.
16.已知命题p :方程2220a x ax +-=在[-1,1]上有解; 命题q :只有一个实数x 满足不等式
2220.x ax a ++≤若命题"",p q ∨是假命题 求实数a 的取值范围.
17 (1)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的充分条件?
(2)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的必要条件?
常用逻辑用语练习题答案
一、选择题
B A
C C A
D D B
8曲线与y 轴焦点在(0,1),所以只要开口向下就能确定有负根——不管对称轴在x 正半轴还是负半轴。

但是 至少有一个负根不能推出开口向下即a<0 因为有可能对称轴在x 负半轴且开口向上,那样有两个负根。

综上 a>0 可以推出 至少有一个负根,但是至少有一个负根不能的推出a>0. 所以答案是:充分不必要条件
二、填空题
9. (1)01,2≥+-∈∀x x R x (2)∃x ∈R ,x 2-x +3≤0 (3)∃x ∈{x|-2<x<4},|x-2|>=3
(4) “∃x ,y ∈R ,有x ²+ y ² < 0” (5)若x 23≤-≥x 且,则x 2
+x-60≤ (6) ∀a ,b ∈R ,如果ab ≤0,则a ≤0 )否定形式:△ABC 中,若∠C=90°,则∠A 、∠B 不都是锐角”
否命题:△ABC 中,若∠C 90°,则∠A 、∠B 不都是锐角”
10. ①②③④
11.(1)既不充分也不必要条件(2)必要不充分条件(3) 充分不必要条件(4) 充分不必要条件 12①②.③ 13. [)0,1
三、解答题
14. 解:化简条件得A={1,2},A 是B 的必要不充分条件,即A ∩B=B ⇔B ⊆A
根据集合中元素个数集合B 分类讨论,B=φ,B={1}或{2},B={1,2}
当B=φ时,△=m 2-8<0∴ 22m 22<<-
当B={1}或{2}时,⎩⎨
⎧=+-=+-=∆02m 2402m 10或,m 无解 当B={1,2}时,⎩
⎨⎧=⨯=+221m 21∴ m=3 综上所述,m=3或22m 22<<-
15.解:若p 为真,则24002
m m ⎧∆=->⎪⎨-<⎪⎩解得2m >.
若q 为真,则22
16(2)1616(43)0m m m ∆=--=-+<,解得13m << p q p q p q p q ∨∧∴“”为真,“”为假,
为真,为假,或为假,为真.
当p 为真, q 为假时, 213
m m m >⎧⎨≤≥⎩或,解得3m ≥,
当p q 为假,为真时, 213
m m ≤⎧⎨<<⎩,解得12m <≤. 故实数m 的取值范围是(][)1,23,⋃+∞.
16. 解:由22
20a x ax +-=,得(2)(1)0ax ax +-= 210,.a x x a a
≠∴=-=或 []211,1,111x a a a
∈∴≤≤∴≥或,. “只有一个实数x 满足2220.x ax a ++≤” 即为抛物线222y x ax a =++与x 轴只有一个交点,
2480a a ∴∆=-= 0a a ∴=或=2.
∴命题p q ∨“”为真命题时, 1a ≥或0a =.
命题
p q ∨“”为假命题, ∴实数a 的取值范围是()()-1,01⋃0, 17 (能力题,中)(14分)(1)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的充分条件?
(2)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的必要条件?
解:(1)欲使得2x +m <0是x 2-2x -3>0的充分条件,则只要⎩⎨⎧⎭⎬⎫
x |x <-m 2⊆{x |x <-1或x >3},则只要- m 2
≤-1,即m ≥2,故存在实数m ≥2,使2x +m <0是x 2-2x -3>0的充分条件. (2)欲使2x +m <0是x 2-2x -3>0的必要条件,则只要⎩⎨⎧⎭⎬⎫
x |x <-m 2⊇{x |x <-1或x >3},这是不可能的,故不存在实数m ,使2x +m <0是x 2
-2x -3>0的必要条件.。

相关文档
最新文档