2013海淀二模理科数学试题及答案
数学_2013年北京市海淀区高考数学二模试卷(理科)(含答案)
2013年北京市海淀区高考数学二模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 集合A ={x|(x −1)(x +2)≤0},B ={x|x <0},则A ∪B =( ) A (−∞, 0] B (−∞, 1] C [1, 2] D [1, +∞)2. 已知数列{a n }是公比为q 的等比数列,且a 1⋅a 3=4,a 4=8,则a 1+q 的值为( ) A 3 B 2 C 3或−2 D 3或−33. 如图,在边长为a 的正方形内有不规则图形Ω.向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m ,n ,则图形Ω面积的估计值为( )Ama nB nam Cma 2nDna 2m4. 某空间几何体的三视图如图所示,则该几何体的表面积为( )A 180B 120C 276D 3005. 在四边形ABCD 中,“∃λ∈R ,使得AB →=λDC →,AD →=λBC →”是“四边形ABCD 为平行四边形”的( )A 充分而不必要条件B 必要而不充分条件C 充分必要条件D 既不充分也不必要条件6. 用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为( ) A 32 B 36 C 42 D 487. 双曲线C 的左右焦点分别为F 1,F 2,且F 2恰为抛物线y 2=4x 的焦点,设双曲线C 与该抛物线的一个交点为A ,若△AF 1F 2是以AF 1为底边的等腰三角形,则双曲线C 的离心率为( ) A √2 B 1+√2 C 1+√3 D 2+√38. 若数列{a n }满足:存在正整数T ,对于任意正整数n 都有a n+T =a n 成立,则称数列{a n }为周期数列,周期为T .已知数列{a n }满足a 1=m(m >0),a n+1={a n −1,a n >1,1an,0<a n ≤1,则下列结论中错误的是( )A 若a 3=4,则m 可以取3个不同的值B 若m =√2,则数列{a n }是周期为3的数列 C ∀T ∈N ∗且T ≥2,存在m >1,使得{a n }是周期为T 的数列 D ∃m ∈Q 且m ≥2,使得数列{a n }是周期数列二、填空题:本大题共6小题,每小题5分,共30分. 9. 在极坐标系中,极点到直线ρcosθ=2的距离为________.10. 已知a =ln 12,b =sin 12,c =2−12,则a ,b ,c 按照从大到小排列为________.11. 直线l 1过点(−2, 0)且倾斜角为30∘,直线l 2过点(2, 0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为________.12. 在△ABC 中,∠A =30∘,∠B =45∘,a =√2,则b =________;S △ABC =________. 13. 正方体ABCD −A 1B 1C 1D 1的棱长为1,若动点P 在线段BD 1上运动,则DC →⋅AP →的取值范围是________.14. 在平面直角坐标系中,动点P(x, y)到两条坐标轴的距离之和等于它到点(1, 1)的距离,记点P 的轨迹为曲线为W . (I)给出下列三个结论: ①曲线W 关于原点对称;②曲线W 关于直线y =x 对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12;其中,所有正确结论的序号是________;(II)曲线W 上的点到原点距离的最小值为________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. 已知函数f(x)=1−√2sin(x−π4).(1)求函数f(x)的定义域; (2)求函数f(x)的单调增区间.16. 福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p ,获得50元奖金的概率为2%.(1)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; (2)为了能够筹得资金资助福利事业,求p 的取值范围.17. 如图1,在直角梯形ABCD 中,∠ABC =∠DAB =90∘,∠CAB =30∘,BC =2,AD =4.把△DAC 沿对角线AC 折起到△PAC 的位置,如图2所示,使得点P 在平面ABC 上的正投影H 恰好落在线段AC 上,连接PB ,点E ,F 分别为线段PA ,PB 的中点.(1)求证:平面EFH // 平面PBC ;(2)求直线HE与平面PHB所成角的正弦值;(3)在棱PA上是否存在一点M,使得M到P,H,A,F四点的距离相等?请说明理由.18. 已知函数f(x)=e x,A(a, 0)为一定点,直线x=t(t≠0)分别与函数f(x)的图象和x轴交于点M,N,记△AMN的面积为S(t).(1)当a=0时,求函数S(t)的单调区间;(2)当a>2时,若∃t0∈[0, 2],使得S(t0)≥e,求a的取值范围.19. 已知椭圆M:x2a2+y2b2=1(a>b>0)的四个顶点恰好是一边长为2,一内角为60∘的菱形的四个顶点.(1)求椭圆M的方程;(2)直线l与椭圆M交于A,B两点,且线段AB的垂直平分线经过点(0,−12),求△AOB(O为原点)面积的最大值.20. 设A是由m×n个实数组成的m行n列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数(2)数表A如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的所有可能值;表2(3)对由m×n个实数组成的m行n列的任意一个数表A,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.2013年北京市海淀区高考数学二模试卷(理科)答案1. B2. D3. C4. B5. C6. A7. B8. D9. 210. c>b>a11. (1,√3)12. 2,√3+1213. [0, 1]14. ②③,2−√215. 解:(1)∵ sin(x−π4)≠0,∴ x−π4≠kπ,k∈Z,则函数的定义域为{x|x≠kπ+π4, k∈Z};(2)∵ f(x)=1−cos 2x−sin2xsinx−cosx =1+(cosx+sinx)=1+sinx+cosx=1+√2sin(x+π4),又∵ y=sinx的单调递增区间为(2kπ−π2, 2kπ+π2),k∈Z,令2kπ−π2<x+π4<2kπ+π2,解得:2kπ−3π4<x<2kπ+π4,又注意到x≠kπ+π4,则f(x)的单调递增区间为(2kπ−3π4, 2kπ+π4),k∈Z.16. 解:(1)设至少一张中奖为事件A,则P(A)=1−0.52=0.75…(2)设福彩中心卖出一张彩票可能获得的资金为ξ,则ξ可以取5,0,−45,−145…故ξ的分布列为所以ξ的期望为Eξ=5×50%+0×(50%−2%−p)+(−45)×2%+(−145)×p=2.5−90%−145p…所以当1.6−145p>0时,即p<8725…所以当0<p<8725时,福彩中心可以获取资金资助福利事业…17. 解:(1)∵ 点P在平面ABC上的正投影H恰好落在线段AC上,所以PH⊥平面ABC,所以PH⊥AC,∵ 在直角梯形ABCD中,∠ABC=∠DAB=90∘,∠CAB=30∘,BC=2,AD=4,∴ AC=4,∠CAB=60∘,∴ △ADC是等边三角形,故H是AC的中点,∴ HE // PC同理可证EF // PB,又HE∩EF=E,CP∩PB=P,∴ 平面EFH // 平面PBC;(2)在平面ABC内过H作AC的垂线,如图建立空间直角坐标系,则A(0, −2, 0),P(0, 0, 2√3),B(√3, 1, 0)因为E(0, −1, √3),HE →=(0, −1, √3),设平面PHB 的法向量n →=(x, y, z), ∵ HB →=(√3, 1, 0),HP →=(0, 0, 2√3),∴ {HP →⋅n →=0˙,即{√3x +y =0z =0,令x =√3,则y =−3, ∴ n →=(√3, −3, 0)…8分 cos <n →,HE →>=|n →|⋅|HE →|˙=32×2√3=√34∴ 直线HE 与平面PHB 所成角的正弦值为√34 (3)存在,事实上记点E 为M 即可因为在直角三角形PHA 中,EH =PE =EA =12PA =2在直角△PHB 中,PB =4,EF =12PB =2,所以点E 到P ,H ,A ,F 四点的距离相等 18. 解:(1) 因为S(t)=12|t −a|e t ,其中t ≠a…当a =0,S(t)=12|t|e t ,其中t ≠0当t >0时,S(t)=12te t ,S′(t)=12(t +1)e t ,所以S ′(t)>0,所以S(t)在(0, +∞)上递增,… 当t <0时,S(t)=−12te t ,S′(t)=−12(t +1)e t ,令S′(t)=−12(t +1)e t >0,解得t <−1,所以S(t)在(−∞, −1)上递增令S′(t)=−12(t +1)e t <0,解得t >−1,所以S(t)在(−1, 0)上递减 …综上,S(t)的单调递增区间为(0, +∞),(−∞, −1),S(t)的单调递增区间为(−1, 0) (2)因为S(t)=12|t −a|e t ,其中t ≠a 当a >2,t ∈[0, 2]时,S(t)=12(a −t)e t因为∃t 0∈[0, 2],使得S(t 0)≥e ,所以S(t)在[0, 2]上的最大值一定大于等于e , S′(t)=−12[t −(a −1)]e t ,令S ′(t)=0,得t =a −1…当a −1≥2时,即a ≥3时S′(t)=−12[t −(a −1)]e t >0对t ∈(0, 2)成立,S(t)单调递增,所以当t =2时,S(t)取得最大值S(2)=12(a −2)e 2令12(a −2)e 2≥e ,解得 a ≥2e +2, 所以a ≥3…当a −1<2时,即a <3时S′(t)=−12[t −(a −1)]e t >0对t ∈(0, a −1)成立,S(t)单调递增,S′(t)=−12[t −(a −1)]e t <0对t ∈(a −1, 2)成立,S(t)单调递减, 所以当t =a −1时,S(t)取得最大值S(a −1)=12e a−1,令S(a −1)=12e a−1≥e ,解得a ≥ln2+2,所以ln2+2≤a <3… 综上所述,ln2+2≤a… 19. 解:(1)因为椭圆x 2a2+y 2b 2=1(a >b >0)的四个顶点恰好是一边长为2,一内角为60∘的菱形的四个顶点,∴ a =√3,b =1,椭圆M 的方程为:x 23+y 2=1...4分(2)设A(x 1, y 1),B(x 2, y 2),因为AB 的垂直平分线经过点(0, −12),显然直线AB 有斜率, 当直线AB 的斜率为0时,AB 的垂直平分线为y 轴,则x 1=−x 2,y 1=y 2, 所以S △AOB=12|2x 1||y 1|=|x 1||y 1|=|x 1|⋅√1−x 123=√x 12(1−x 123)=√13x 12(3−x 12),∵ √x 12(3−x 12)≤x 12+(3−x 12)2=32,∴ S △AOB ≤√32,当且仅不当|x 1|=√62时,S △AOB 取得最大值为√32...7分 当直线AB 的斜率不为0时,则设AB 的方程为y =kx +t , 所以{y =kx +tx 23+y 2=1,代入得到(3k 2+1)x 2+6ktx +3t 2−3=0, 当△=4(9k 2+3−3t 2)>0,即3k 2+1>t 2①,方程有两个不同的实数解; 又x 1+x 2=−6kt3k 2+1,x 1+x 22=−3kt3k 2+1...8分所以y 1+y 22=t 3k 2+1,又y 1+y 22+12x 1+x 22−0=−1k ,化简得到3k 2+1=4t②代入①,得到0<t <4,…10分 又原点到直线的距离为d =√k 2+1,|AB|=√1+k 2|x 1−x 2|=√1+k 2⋅√4(9k 2+3−3t 2)3k 2+1,所以S △AOB =12|AB||d|=2√k 2+1√1+k 2⋅√4(9k 2+3−3t 2)3k 2+1,化简得:S △AOB =14√3(4t −t 2)...12分∵ 0<t <4,所以当t =2时,即k =±√73时,S △AOB 取得最大值为√32. 综上,S △AOB 取得最大值为√32...14分法3:改变第1列得:改变第4列得:(写出一种即可) …(2) 每一列所有数之和分别为2,0,−2,0,每一行所有数之和分别为−1,1;则第一行之和为2a −1,第二行之和为5−2a ,{2a −1≥05−2a ≥0,解得a =1,a =2.… ②如果操作第一行则每一列之和分别为2−2a ,2−2a ,2a −2,2a 解得a =1 … 综上a =1 …(3) 证明:按要求对某行(或某列)操作一次时,则该行的行和(或该列的列和) 由负整数变为正整数,都会引起该行的行和(或该列的列和)增大,从而也就使得数阵中mn 个数之和增加,且增加的幅度大于等于1−(−1)=2, 但是每次操作都只是改变数表中某行(或某列)各数的符号,而不改变其绝对值,显然,数表中mn 个数之和必然小于等于∑∑|nj=1m i=1a ij |, 可见其增加的趋势必在有限次之后终止,终止之时必然所有的行和与所有的列和均为非负整数,故结论成立 …。
北京市海淀区2013届高三下学期期末练习理科数学含解析
海淀区高三年级第二学期期末练习数 学 (理科) 2013.5本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B =A .(,0]-∞B .(,1]-∞C .[1,2]D .[1,)+∞ 【答案】B{}|(1)(2)0{21}A x x x x x =-+≤=-≤≤,所以AB ={1}x x ≤,即选B.2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为 A .3 B .2 C .3或2- D .3或3- 【答案】D由134a a ⋅=,48a =得2214a q =,318a q =,解得2q =±。
当2q =时,11a =,此时13a q +=。
当2q =-时,11a =-,此时13a q +=-。
选D.3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m【答案】C设图形Ω面积的为S ,则由实验结果得2S m a n=,解2ma S n =,所以选C.4.俯视图A.180 B.240 C.276 D.300【答案】B由三视图可知,该几何体的下面部分是边长为6的正方体。
上部分为四棱锥。
四棱锥的底面为正方形,边长为 6.侧面三角形的斜高为 5.所以该几何体的表面积为21656542402⨯+⨯⨯⨯=,选B.5.在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C若,AB DC AD BC λλ==,则//,//A B D C A D B C,即//,//A B D C A D B C,所以四边形A B C D 为平行四边形。
【解析版】北京市海淀区2013届高三二模数学理试题
2013年北京市海淀区高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.2.(5分)(2013•海淀区二模)已知数列{a n}是公比为q的等比数列,且a1•a3=4,a4=8,则3.(5分)(2013•海淀区二模)如图,在边长为a的正方形内有不规则图形Ω.向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m,n,则图形Ω面积的估计值为()B=×4.(5分)(2013•海淀区二模)某空间几何体的三视图如图所示,则该几何体的表面积为()××5.(5分)(2013•海淀区二模)在四边形ABCD中,“∃λ∈R,使得AB=λDC,AD=λBC”是“四6.(5分)(2013•海淀区二模)用数字1,2,3,4,5组成没有重复数字的五位数,且5不22×7.(5分)(2013•海淀区二模)双曲线C的左右焦点分别为F1,F2,且F2恰为抛物线y2=4x 的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,B由抛物线的定义可知,抛物线的准线方程过双曲线的左焦点,所以e==1+8.(5分)(2013•海淀区二模)若数列{a n}满足:存在正整数T,对于任意正整数n都有a n+T=a n 成立,则称数列{a n}为周期数列,周期为T.已知数列{a n}满足a1=m(m>0),则下列结论中错误的是(),因为,,,,所以;所以可知当二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•海淀区二模)在极坐标系中,极点到直线ρcosθ=2的距离为2.10.(5分)(2013•海淀区二模)已知,,,则a,b,c按照从大到小排列为c>b>a.a=ln<b=sin≈<,=>,11.(5分)(2013•海淀区二模)直线l1过点(﹣2,0)且倾斜角为30°,直线l2过点(2,0)且与直线l1垂直,则直线l1与直线l2的交点坐标为.x3y+2﹣x+y=012.(5分)(2013•海淀区二模)在△ABC中,∠A=30°,∠B=45°,,则b=2;S△ABC=.=2=absinC==13.(5分)(2013•海淀区二模)正方体ABCD﹣A1B1C1D1的棱长为1,若动点P在线段BD1上运动,则的取值范围是[0,1].建立空间直角坐标系,求出有关点的坐标可得、、的坐标,再由,可得所在的直线为轴,以轴,以=上运动,∴λ•=++=14.(5分)(2013•海淀区二模)在平面直角坐标系中,动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线为W.(Ⅰ)给出下列三个结论:①曲线W关于原点对称;②曲线W关于直线y=x对称;③曲线W与x轴非负半轴,y轴非负半轴围成的封闭图形的面积小于;其中,所有正确结论的序号是②③;(Ⅱ)曲线W上的点到原点距离的最小值为.;=;三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)(2013•海淀区二模)已知函数.(Ⅰ)求函数f(x)的定义域;(Ⅱ)求函数f(x)的单调增区间.)﹣≠,﹣=1+sinx+cosx=1+sin x+,﹣<+<,+﹣)16.(13分)(2013•海淀区二模)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p,获得50元奖金的概率为2%.(Ⅰ)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率;(Ⅱ)为了能够筹得资金资助福利事业,求p的取值范围.时,即时,福彩中心可以获取资金资助福利事业17.(14分)(2013•海淀区二模)如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=2,AD=4.把△DAC沿对角线AC折起到△PAC的位置,如图2所示,使得点P在平面ABC上的正投影H恰好落在线段AC上,连接PB,点E,F分别为线段PA,PB的中点.(Ⅰ)求证:平面EFH∥平面PBC;(Ⅱ)求直线HE与平面PHB所成角的正弦值;(Ⅲ)在棱PA上是否存在一点M,使得M到P,H,A,F四点的距离相等?请说明理由.的法向量,由可赋值,可求得(<,EH=PE=EA=PA=2EF=2,,,的法向量=,,),即,则=,﹣,=所成角的正弦值为EH=PE=EA=EF=PB=218.(13分)(2013•海淀区二模)已知函数f(x)=e x,A(a,0)为一定点,直线x=t(t≠0)分别与函数f(x)的图象和x轴交于点M,N,记△AMN的面积为S(t).(Ⅰ)当a=0时,求函数S(t)的单调区间;(Ⅱ)当a>2时,若∃t0∈[0,2],使得S(t0)≥e,求a的取值范围.先求,因为,其中,时,,,时,,,,其中时,,令时,解得对)单调递增,对)取得最大值19.(14分)(2013•海淀区二模)已知椭圆的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.(Ⅰ)求椭圆M的方程;(Ⅱ)直线l与椭圆M交于A,B两点,且线段AB的垂直平分线经过点,求△AOB(O为原点)面积的最大值.a=(Ⅰ)因为椭圆=1,的方程为:,﹣)|2x=≤=,当且仅不当时,取得最大值为所以=所以,又,化简得到d=,=|AB||d|=…±取得最大值为.取得最大值为20.(13分)(2013•海淀区二模)设A是由m×n个实数组成的m行n列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ)数表A如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);(Ⅱ)数表A如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与a的所有可能值;(Ⅲ)对由m×n个实数组成的m行n列的任意一个数表A,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.数之和必然小于等于个数之和必然小于等于。
北京市海淀区高三数学下学期期末练习试题 理(海淀二模
北京市海淀区2013届高三数学下学期期末练习试题理(海淀二模,扫描版)海淀区高三年级第二学期期末练习数 学 (理)参考答案及评分标准 2013.5说明: 合理答案均可酌情给分,但不得超过原题分数.一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(I )因为πsin()04x -≠ 所以ππ,4x k -≠Z k ∈ ……………………2分 所以函数的定义域为π{|π+,4x x k ≠Z}k ∈ ……………………4分 (II )因为22cos sin ()1sin cos x x f x x x -=-- ……………………6分 = 1+(cos sin )x x +π= 1)4x + ……………………8分 又sin y x =的单调递增区间为 ππ(2π,2π)22k k -+ ,Z k ∈ 令 πππ2π2π242k x k -<+<+ 解得 3ππ2π2π44kx k -<<+ ……………………11分 又注意到ππ+,4x k ≠ 所以()f x 的单调递增区间为3ππ(2π,2π)44k k -+, Z k ∈ …………………13分9. 210.c b a >> 11. 12.12 13.[0,1]14.②③;216. 解:(I )设至少一张中奖为事件A则2()10.50.75P A =-= …………………4分(II) 设福彩中心卖出一张彩票可能获得的资金为ξ则ξ可以取5,0,45,145-- …………………6分 ξ的分布列为…………………8分所以ξ的期望为550%0(50%2%)(45)2%(145)E p p ξ=⨯+⨯--+-⨯+-⨯2.590%145p =-- …………………11分 所以当 1.61450p ->时,即8725p <…………………12分 所以当80725p <<时,福彩中心可以获取资金资助福利事业…………………13分17.解:(I )因为点P 在平面ABC 上的正投影H 恰好落在线段AC 上所以PH ⊥平面ABC ,所以PH ⊥AC …………………1分因为在直角梯形ABCD 中,90ABC DAB ∠=∠=o ,30CAB ∠=o ,2BC =,4AD =所以4AC =,60CAB ∠=o ,所以ADC ∆是等边三角形,所以H 是AC 中点, …………………2分所以//HE PC …………………3分同理可证//EF PB又,HE EF E CP PBP ==I I所以//EFH PBC 平面PBC …………………5分(II )在平面ABC 内过H 作AC 的垂线如图建立空间直角坐标系,则(0,2,0)A -,P,B …………………6分因为(0,E -,(0,HE =-u u u r设平面PHB 的法向量为(,,)n x y z =r因为HB =u u u r,HP =u u u r所以有00HB n HP n ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r,即00y z +==⎪⎩,令x =则3,y =- 所以3,0)n =-r …………………8分cos ,||||n HE n HE n HE ⋅<>===⋅r u u u r r u u u r r u u u u u r …………………10分所以直线HE 与平面PHB 所成角的正弦值为4…………………11分 (III)存在,事实上记点E 为M 即可 …………………12分因为在直角三角形PHA 中,122EH PE EA PA ====, …………………13分在直角三角形PHB 中,点4,PB =122EF PB == 所以点E 到四个点,,,P O C F 的距离相等 …………………14分18.解: (I) 因为1()||e 2t S t t a =-,其中t a ≠ …………………2分 当0a =,1()||e 2t S t t =,其中0t ≠ 当0t >时,1()e 2t S t t =,1'()(1)e 2t S t t =+, 所以'()0S t >,所以()S t 在(0,)+∞上递增, …………………4分当0t <时,1()e 2t S t t =-,1'()(1)e 2t S t t =-+, 令1'()(1)e 02t S t t =-+>, 解得1t <-,所以()S t 在(,1)-∞-上递增 令1'()(1)e 02t S t t =-+<, 解得1t >-,所以()S t 在(1,0)-上递减 ……………7分 综上,()S t 的单调递增区间为(0,)+∞,(,1)-∞-()S t 的单调递增区间为(1,0)-(II )因为1()||e 2tS t t a =-,其中t a ≠当2a >,[0,2]t ∈时,1()()e 2t S t a t =-因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e 1'()[(1)]e 2t S t t a =---,令'()0S t =,得1t a =- …………………8分当12a -≥时,即3a ≥时1'()[(1)]e 02t S t t a =--->对(0,2)t ∈成立,()S t 单调递增所以当2t =时,()S t 取得最大值21(2)(2)e 2S a =- 令21(2)e e 2a -≥ ,解得 22e a ≥+ ,所以3a ≥ …………………10分当12a -<时,即3a <时1'()[(1)]e 02t S t t a =--->对(0,1)t a ∈-成立,()S t 单调递增1'()[(1)]e 02t S t t a =---<对(1,2)t a ∈-成立,()S t 单调递减所以当1t a =-时,()S t 取得最大值11(1)e 2a S a --=令11(1)e e 2a S a --=≥ ,解得ln22a ≥+所以ln223a +≤< …………………12分综上所述,ln22a+≤…………………13分19.解:(I)因为椭圆:M 22221(0)x y a b a b +=>>的四个顶点恰好是一边长为2,一内角为60o 的菱形的四个顶点,所以1a b ==,椭圆M 的方程为2213x y += …………………4分 (II)设1122(,),(,),A x y B x y 因为AB 的垂直平分线通过点1(0,)2-, 显然直线AB 有斜率, 当直线AB 的斜率为0时,则AB 的垂直平分线为y 轴,则1212,x x y y =-=所以111111=|2||||||||2AOB S x y x y x ∆====2211(3)322x x +-≤=,所以AOB S ∆≤1||x =时,AOB S ∆………………6分 当直线AB 的斜率不为0时,则设AB 的方程为y kx t =+ 所以2213y kx t x y =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330k x kt t +++-= 当224(933)0k t ∆=+->, 即2231k t +>①方程有两个不同的解 又122631ktx x k -+=+,1223231x x kt k +-=+ …………………9分 所以122231y y t k +=+, 又1212112202y y x x k ++=-+-,化简得到2314k t += ② 代入①,得到04t << …………………10分又原点到直线的距离为d =12|||AB x x =-=所以1=||||2AOB S AB d ∆=化简得到AOB S ∆ …………………12分因为04t <<,所以当2t =时,即k =时,AOB S ∆综上,AOB ∆面积的最大值为…………………14分20.(I )解:法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行 法2:24123712371237210121012101--−−−−−→−−−−−→----改变第行改变第列法3:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列…………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果首先操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -,这两个数中,必须有一个为负数,另外一个为非负数,所以 12a ≤或52a ≥当12a ≤时,则接下来只能操作第一行,22221212a a a a a a a a ------此时每列之和分别为2222,22,22,2a a a a ---必有2220a -≥,解得0,1a =- 当52a ≥时,则接下来操作第二行 22221212a a a a a a a a ------ 此时第4列和为负,不符合题意. …………………6分② 如果首先操作第一行22221212a a a a a a a a ----- 则每一列之和分别为22a -,222a -,22a -,22a当1a =时,每列各数之和已经非负,不需要进行第二次操作,舍掉当1a ≠时,22a -,22a -至少有一个为负数,所以此时必须有2220a -≥,即11a -≤≤,所以0a =或1a =-经检验,0a =或1a =-符合要求综上:0,1a =-…………………9分 (III )能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数。
2013年北京市-海淀区高三二模数学(理科)考试试题和答案
2013年北京市海淀区高三年级二摸试题数 学(理科)2013. 5本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{|(1)(2)0}A x x x =-+≤,{|0}B x x =<,则A B =A.(,0]-∞B.(,1]-∞C.[1,2]D.[1,)+∞2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为A.3B.2C.3或2-D.3或3-3.如图,在边长为a 的正方形内有不规则图形W .若撒在图形W 内和正方形内的豆子数分别为,m n ,则图形W 面积的估计值为A.manB.na mC.2ma nD.2na m4.某空间几何体的三视图如右图所示,则该几何体的表面积为A.180B.240C.276D.3005.在四边形ABCD 中,“∃∈R l ,使得AD BC =l ,AD BC =l ”是“四边形ABCD 为平行四边形”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个 位和万位,则这样的五位数个数为 A.32B.36C.42D.48俯视图7.双曲线C 的左右焦点分别为1F ,2F ,且2F 恰好为抛物线24y x =的焦点,设双曲线C 与 该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心 率为B.1C.1+D.2+8.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T .已知数列{}n a 满足1(0)a m m =>,11,1,1,0 1.n n n n na a a a a +->=<⎧⎪⎨⎪⎩≤则下列结论中错误..的是 A.若34a =,则m 可以取3个不同的值 B.若m =则数列{}n a 是周期为3的数列C.T *∀∈N 且2T ≥,存在1m >,使得{}n a 是周期为T 的数列 D.m ∃∈Q 且2m ≥,使得数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分. 9.在极坐标系中,极点到直线cos 2ρθ=的距离为 .10.已知1ln 2a =,1sin 2b =,122c -=,则a ,b ,c 按照从大到小...排列为 . 11.直线1l 过点(2-,0)且倾斜角为30︒,直线2l 过点(2,0)且与直线1l 垂直,则直线1l 与直线2l 的交点坐标为 .12.在ABC ∆中,30A ∠︒=,45B ∠︒=,a =则b = ;ABC S ∆= . 13.正方体1111ABCD A B C D -的棱长为1,若动点P 在线段1BD 上运动,则DC AP ⋅的取值范围是 .14.在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线为W . (Ⅰ)给出下列三个结论:①曲线W 关于原点对称; ②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12; 其中,所有正确结论的序号是 ;(Ⅱ)曲线W 上的点到原点距离的最小值为 .图 2图 1B H CF PEADCBA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数cos2()1)4x f x x =-π-.(Ⅰ)求函数()f x 的定义域; (Ⅱ)求函数()f x 的单调增区间.16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一 种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50 %; (2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获 得150元奖金的概率为p ,获得50元奖金的概率为2 %.(Ⅰ)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; (Ⅱ)为了能够筹得资金资助福利事业,求p 的取值范围.17.(本小题满分14分)如图1,在直角梯形ABCD 中,90ABC DAB ∠=∠=︒,30CAB ∠=︒,2BC =, 4AD =.把DAC ∆沿对角线AC 折起到PAC ∆的位置,如图2所示,使得点P 在平面 ABC 上的正投影H 恰好落在线段AC 上,连接PB ,点E ,F 分别为线段PA ,PB 的中 点.(Ⅰ)求证:平面EFH ∥平面PBC ;(Ⅱ)求直线HE 与平面PHB 所成角的正弦值;(Ⅲ)在棱PA 上是否存在一点M ,使得M 到P ,H ,A ,F 四点的距离相等?请说明理 由.18.(本小题满分13分)已知函数()e xf x =,(,0)A a 为一定点,直线(0)x t t =≠分别与函数()f x 的图象 和x 轴交于点M ,N ,记AMN ∆的面积为()S t . (Ⅰ)当0a =时,求函数()S t 的单调区间;(Ⅱ)当2a >时,若0[0,2]t ∃∈,使得0()e S t ≥,求a 的取值范围.19.(本小题满分14分)已知椭圆2222:1(0)y x M a b a b+=>>的四个顶点恰好是一边长为2,一内角为60︒ 的菱形的四个顶点. (Ⅰ)求椭圆M 的方程;(Ⅱ)直线l 与椭圆M 交于A ,B 两点,且线段AB 的垂直平分线经过点1(0,)2-,求(AOB O ∆为原点)面积的最大值.20.(本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之 和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (Ⅰ)数表A 如表1所示,若经过两次“操作”,使得 到的数表每行的各数之和与每列的各数之和均为非负 实数,请写出每次“操作”后所得的数表(写出一种 方法即可);(Ⅱ)数表A 如表2所示,若必须经过两次“操作”, 才可使得到的数表每行的各数之和与每列的各数之和 均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作” 以后,使得到的数表每行的各数之和与每列的各数之和均为非负实数? 请说明理由.a 2-a 2a -2-a 1-a 2a 2-12-aa 表 2表 11312-7-212013海淀区高三年级二摸试题数 学 (理科)参考答案及评分标准 2013.5一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I)因为πsin()04x -≠所以ππ,4x k -≠Z k ∈ ……………………2分 所以函数的定义域为π{|π+,4x x k ≠Z}k ∈ ……………………4分(II )因为22cos sin ()1sin cos x xf x x x-=-- ……………………6分= 1(cos sin )x x ++1sin cos x x =++π= 1)4x + (8)分又sin y x=的单调递增区间为 ππ(2π,2π)22k k -+ ,Z k ∈令πππ2π2π242k x k -<+<+ 解得 3ππ2π2π44k x k -<<+ ……………………11分 又注意到ππ+,4x k ≠9. 2 10.c b a >> 11. 12. 13.[0,1]14.②③;2所以()f x 的单调递增区间为3ππ(2π,2π)44k k -+, Z k ∈ …………………13分16. 解:(I )设至少一张中奖为事件A则2()10.50.75P A =-= …………………4分(II) 设福彩中心卖出一张彩票可能获得的资金为ξ则ξ可以取5,0,45,145-- …………………6分 ξ的分布列为…………………8分所以ξ的期望为550%0(50%2%)(45)2%(145)E p p ξ=⨯+⨯--+-⨯+-⨯ 2.590%145p =-- …………………11分 所以当 1.61450p ->时,即8725p < …………………12分 所以当80725p <<时,福彩中心可以获取资金资助福利事业…………………13分17.解:(I )因为点P 在平面ABC 上的正投影H 恰好落在线段AC 上所以PH ⊥平面ABC ,所以PH ⊥AC …………………1分因为在直角梯形ABCD 中,90ABC DAB ∠=∠=,30CAB ∠=,2BC =,4AD =所以4AC =,60CAB ∠=,所以ADC ∆是等边三角形,所以H 是AC 中点, …………………2分所以//HE PC …………………3分 同理可证//EF PB 又,HEEF E CP PB P ==所以平面//EFH 平面PBC …………………5分 (II )在平面ABC 内过H 作AC 的垂线如图建立空间直角坐标系,则(0,2,0)A -,P ,B …………………6分因为(0,E -,(0,HE =- 设平面PHB 的法向量为(,,)n x y z =因为(3,1,0)HB =,HP =所以有00HB n HP n ⎧⋅=⎪⎨⋅=⎪⎩,即00y z +==⎪⎩,令x =则3,y =- 所以(3,3,0)n =- …………………8分cos ,||||22n HE n HE n HE ⋅<>===⋅⋅…………………10分所以直线HE 与平面P H 所成角的正弦值为…………………11分 (III)存在,事实上记点E 为M 即可 …………………12分因为在直角三角形PHA 中,122EH PE EA PA ====,…………………13分在直角三角形PHB 中,点4,PB =122EF PB == 所以点E 到四个点,,P O C F 的距离相等 …………………14分 18.解: (I) 因为1()||e 2t S t t a =-,其中t a ≠ …………………2分 当0a =,1()||e 2t S t t =,其中0t ≠ 当0t >时,1()e 2t S t t =,1'()(1)e 2t S t t =+,所以'(S t >,所以()S t 在(0,)+∞上递增, …………………4分当0t <时,1()e 2t S t t =-,1'()(1)e 2t S t t =-+,令1'()(1)e 02t S t t =-+>, 解得1t <-,所以()S t 在(,1)-∞-上递增令1'()(1)e 02t S t t =-+<, 解得1t >-,所以()S t 在(1,0)-上递减 ……………7分 综上,()S t 的单调递增区间为(0,)+∞,(,1)-∞-()S t 的单调递增区间为(1,0)-(II )因为1()||e 2t S t t a =-,其中t a ≠ 当2a >,[0,2]t ∈时,1()()e 2t S t a t =-因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e1'()[(1)]e 2tS t t a =---,令'(S t =,得1t a =- …………………8分当12a -≥时,即3a ≥时1'()[(1)]e 02t S t t a =--->对(0,2)t ∈成立,()S t 单调递增所以当2t =时,()S t 取得最大值21(2)(2)e 2S a =-令21(2)e e 2a -≥ ,解得 22ea ≥+ , 所以3a ≥…………………10分当12a -<时,即3a <时1'()[(1)]e 02t S t t a =--->对(0,1)t a ∈-成立,()S t 单调递增1'()[(1)]e 02t S t t a =---<对(1,2)t a ∈-成立,()S t 单调递减所以当1t a =-时,()S t 取得最大值11(1)e 2a S a --=令11(1)e e 2a S a --=≥ ,解得ln22a ≥+所以l a +≤…………………12分综上所述,ln22a+≤…………………13分19.解:(I)因为椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点, 所以,1a b ==,椭圆M 的方程为2213x y += …………………4分 (II)设1122(,),(,),A x y B x y 因为AB 的垂直平分线通过点1(0,)2-, 显然直线AB 有斜率,当直线AB 的斜率为0时,则AB 的垂直平分线为y 轴,则1212,x x y y =-=所以111111=|2||||||||2AOB S x y x y x ∆===2211(3)322x x +-≤=,所以AOB S ∆≤1||x =AOB S ∆………………7分 当直线AB 的斜率不为0时,则设AB 的方程为y kx t =+所以2213y kx t x y =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330k x ktx t +++-= 当224(933)0k t ∆=+->, 即2231k t +>①方程有两个不同的解 又122631kt x x k -+=+,1223231x x ktk +-=+ …………………8分所以122231y y tk +=+, 又1212112202y y x x k ++=-+-,化简得到2314k t += ② 代入①,得到04t <<…………………10分又原点到直线的距离为d =12|||AB x x =-=所以1=||||2AOB S AB d ∆=化简得到3(4A OBS tt ∆…………………12分因为04t <<,所以当2t =时,即k =AOB S ∆ 综上,A O ∆面积的最大值为…………………14分 20.(I )解:法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法2:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列…………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果首先操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -, 这两个数中,必须有一个为负数,另外一个为非负数, 所以 12a ≤或52a ≥ 当12a ≤时,则接下来只能操作第一行,22221212a a a a a a a a ------此时每列之和分别为2222,22,22,2a a a a ---必有2220a -≥,解得0,1a =- 当52a ≥时,则接下来操作第二行 22221212a a a a a a a a ------ 此时第4列和为负,不符合题意. …………………6分② 如果首先操作第一行22221212a a a a a a a a ----- 则每一列之和分别为22a -,222a -,22a -,22a当1a =时,每列各数之和已经非负,不需要进行第二次操作,舍掉当1a ≠时,22a -,22a -至少有一个为负数,所以此时必须有2220a -≥,即11a -≤≤,所以0a =或1a =-经检验,0a =或1a =-符合要求综上:0a =-…………………9分 (III )能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数。
2013海淀高三二模数学(理科)试题分析
S AOB
1 2 x1 y1 x1 2
2
x1 1 3
1 x 2 y 1 x 1 x 1
直接翻译:
1 x 2 d x ( ) 1 x
2 2
2
0 x 1
2 2 4 4 2 x (1 ) x 1 2 1 x ( x 1) x 1 4 4 2 ( x 1) 2 x 2 ( x 1) x 1 2 2 2 (x 1 ) 2( x )2 x 1 x 1 2 2 (x 1 1) 3 x 1
折叠前后的对应关系
求证:平面 EFH / / 平面 PBC ;
加一个第二问建立坐标系选 E 择的说明,不要上来就建系, ,使得 M 到点 P, H , A, F 四点 思考一下!
基本概念的考查 PHB 所成角的正弦值; P D (II) 求直线 HE 与平面
(III)在棱 PA 上是否存在一点 M 的距离相等?请说明理由.
x ty n
1 m x1 x2 2 1 d AB 2
6kmx 3m 2 3 0
36k 2m2 4(1 3k 2 )(3m2 3) 0
化简,得: 3k 1 m 0
2 2
设 A ( x1 , y1 ) B ( x2 , y 2 ) , ,
x2 y2 18)已知椭圆 M : 2 2 1( a b 0) 的四个顶点恰好是一边 a b
长为 2,一内角为 60 的菱形的四个顶点. (I)求椭圆 M 的方程;
(II)直线 l 与椭圆 M 交于 A , B 两点,且线段 AB 的垂直平分线
x2 y2 1 3
1 经过点 (0, ) ,求 AOB ( O 为原点)面积的最大值. 2
2013年高三数学二模理科试卷B版(海淀区附答案)
2013年高三数学二模理科试卷B版(海淀区附答案)海淀区高三年级第二学期期末练习数学(理科)2013.5本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合,,则A.B.C.D.2.已知数列是公比为的等比数列,且,,则的值为A.B.C.或D.或3.如图,在边长为的正方形内有不规则图形.向正方形内随机撒豆子,若撒在图形内和正方形内的豆子数分别为,则图形面积的估计值为A.B.C.D.4.某空间几何体的三视图如右图所示,则该几何体的表面积为A.B.C.D.5.在四边形中,“,使得”是“四边形为平行四边形”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为A.B.C.D.7.双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为A.B.C.D.8.若数列满足:存在正整数,对于任意正整数都有成立,则称数列为周期数列,周期为.已知数列满足,则下列结论中错误的是A.若,则可以取3个不同的值B.若,则数列是周期为的数列C.且,存在,是周期为的数列D.且,数列是周期数列二、填空题:本大题共6小题,每小题5分,共30分.9.在极坐标系中,极点到直线的距离为_______.10.已知,则按照从大到小排列为______.11.直线过点且倾斜角为,直线过点且与直线垂直,则直线与直线的交点坐标为____.12.在中,,则13.正方体的棱长为,若动点在线段上运动,则的取值范围是______________.14.在平面直角坐标系中,动点到两条坐标轴的距离之和等于它到点的距离,记点的轨迹为曲线.(I)给出下列三个结论:①曲线关于原点对称;②曲线关于直线对称;③曲线与轴非负半轴,轴非负半轴围成的封闭图形的面积小于;其中,所有正确结论的序号是_____;(Ⅱ)曲线上的点到原点距离的最小值为______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知函数.(Ⅰ)求函数的定义域;(Ⅱ)求函数的单调递增区间.16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为,获得50元奖金的概率为.(I)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率;(II)为了能够筹得资金资助福利事业,求的取值范围.17.(本小题满分14分)如图1,在直角梯形中,,,,.把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点.(I)求证:平面平面;(II)求直线与平面所成角的正弦值;(III)在棱上是否存在一点,使得到点四点的距离相等?请说明理由. 18.(本小题满分13分)已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为. (I)当时,求函数的单调区间;(II)当时,若,使得,求实数的取值范围.19.(本小题满分14分)已知椭圆的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点. (I)求椭圆的方程;(II)直线与椭圆交于,两点,且线段的垂直平分线经过点,求(为原点)面积的最大值.20.(本小题满分13分)123101设是由个实数组成的行列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (Ⅰ)数表如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ)数表如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数的所有可能值;(Ⅲ)对由个实数组成的行列的任意一个数表,能否经过有限次“操作”以后,使得到的数表每行的各数之表2和与每列的各数之和均为非负整数?请说明理由.海淀区高三年级第二学期期末练习数学(理科)参考答案及评分标准2013.5一、选择题(本大题共8小题,每小题5分,共40分)题号12345678答案BDCBCABD9.210.11.12.13.14.②③;二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分)15.(本小题满分13分)解:(I)因为所以……………………2分所以函数的定义域为……………………4分(II)因为……………………6分……………………8分又的单调递增区间为,令解得……………………11分又注意到所以的单调递增区间为,…………………13分16.解:(I)设至少一张中奖为事件则…………………4分(II)设福彩中心卖出一张彩票可能获得的资金为则可以取…………………6分的分布列为…………………8分所以的期望为…………………11分所以当时,即…………………12分所以当时,福彩中心可以获取资金资助福利事业…………………13分17.解:(I)因为点在平面上的正投影恰好落在线段上所以平面,所以…………………1分因为在直角梯形中,,,,所以,,所以是等边三角形,所以是中点,…………………2分所以…………………3分同理可证又所以平面平面…………………5分(II)在平面内过作的垂线如图建立空间直角坐标系,则,,…………………6分因为,设平面的法向量为因为,所以有,即,令则所以…………………8分…………………10分所以直线与平面所成角的正弦值为…………………11分(III)存在,事实上记点为即可…………………12分因为在直角三角形中,,…………………13分在直角三角形中,点所以点到四个点的距离相等…………………14分18.解:(I)因为,其中…………………2分当,,其中当时,,,所以,所以在上递增,…………………4分当时,,,令,解得,所以在上递增令,解得,所以在上递减……………7分综上,的单调递增区间为,的单调递增区间为(II)因为,其中当,时,因为,使得,所以在上的最大值一定大于等于,令,得…………………8分当时,即时对成立,单调递增所以当时,取得最大值令,解得,所以…………………10分当时,即时对成立,单调递增对成立,单调递减所以当时,取得最大值令,解得所以…………………12分综上所述,…………………13分19.解:(I)因为椭圆的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点,所以,椭圆的方程为…………………4分(II)设因为的垂直平分线通过点,显然直线有斜率,当直线的斜率为时,则的垂直平分线为轴,则所以因为,所以,当且仅当时,取得最大值为………………7分当直线的斜率不为时,则设的方程为所以,代入得到当,即方程有两个不同的解又,…………………8分所以,又,化简得到代入,得到…………………10分又原点到直线的距离为所以化简得到…………………12分因为,所以当时,即时,取得最大值综上,面积的最大值为…………………14分20.(I)解:法1:法2:…………………3分(II)每一列所有数之和分别为2,0,,0,每一行所有数之和分别为,1;①如果首先操作第三列,则则第一行之和为,第二行之和为,这两个数中,必须有一个为负数,另外一个为非负数,所以或当时,则接下来只能操作第一行,此时每列之和分别为必有,解得当时,则接下来操作第二行此时第4列和为负,不符合题意.…………………6分②如果首先操作第一行则每一列之和分别为,,,当时,每列各数之和已经非负,不需要进行第二次操作,舍掉当时,,至少有一个为负数,所以此时必须有,即,所以或经检验,或符合要求综上:…………………9分(III)能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数。
【解析分类汇编系列三北京2013(二模)数学理】5数列
【解析分类汇编系列三:北京2013(二模)数学理】5:数列一、选择题1 .(2013北京海淀二模数学理科)若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 ( )A .若34a =,则m 可以取3个不同的值 B.若m =则数列{}n a 是周期为3的数列C .T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列D .Q m ∃∈且2m ≥,数列{}n a 是周期数列 【答案】D解析:A,若34a =,若3214a a =-=,解得23a =,成立。
若2113a a =-=,解得14a =成立。
若2113a a ==,解得113a =,成立。
若3214a a ==,解得214a =。
若21114a a =-=,解得154a =,成立。
若21114a a ==,解得14a =,但此时不满足0 1.n a <≤舍去。
所以当34a =时,14a =或113a =或154a =,即m 可以取3个不同的值,所以A 正确。
B若11a m ==>,则21111a a =-=<,32111a a ===>,所以43111a a =--=。
此时数列{}n a 是周期为3的数列,所以正确。
C 由B可知,当m ={}n a 是周期为3的数列,所以C 正确。
所以下列结论中错误..的是D.2 .(2013北京顺义二模数学理科)已知数列{}n a 中,54+-=n a n ,等比数列{}n b 的公比q 满足()21≥-=-n a a q n n ,且21a b =,则=+++n b b b 21 ( )A .n41-B .14-nC .341n-D .314-n【答案】B解析:因为14n n q a a -=-=-,123b a ==-,所以1113(4)n n n b b q --==-⋅-,所以113(4)34n n n b --=-⋅-=⋅,即{}nb 是公比为4的等比数列,所以12n b b b +++3(14)4114n n -==--,选B. 3 .(2013北京海淀二模数学理科)已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为 ( )A .3B .2C .3或2-D .3或3-【答案】D解析:由134a a ⋅=,48a =得2214a q =,318a q =,解得2q =±。
北京海淀区2013年中考数学二模试卷
北京海淀区2013年中考数学二模试卷2013.6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1 . 6-的绝对值是A. 6-B.16 C. 16- D. 6 2. 2012年我国全年完成造林面积6 010 000公顷.将6 010 000用科学记数法表示为A. 76.0110⨯ B. 66.0110⨯ C. 70.60110⨯ D. 560.110⨯ 3.如图,在△ABC 中,点D 、E 分别在AB 、AC上,DE ∥BC .若4AD =,2DB =,则DEBC的值为 A. 12 B. 23 C. 34D. 24. 下列计算正确的是A. 632a a a =⋅ B. 842a a a ÷=C. 623)(a a = D. a a a 632=+ 5.下列图形可以由一个图形经过平移变换得到的是A .B .C .D .6. 如图,⊙O 的半径为5,AB 为⊙O 的弦,OC ⊥AB 于点C .若3OC =,则AB 的长为A .4B .6C .8D .107. 甲、乙两个学习小组各有4名同学,在某次测验中,他们的得分情况设两组同学得分的平均数依次为x 甲,x 乙,得分的方差依次为S 甲,S 乙,则下列关系中完全正确的是A.x x =乙甲,22S S >乙甲B. x x =乙甲,22S S <乙甲 C.x x >乙甲,22S S >乙甲 D. x x <乙甲,22S S <乙甲 8.如图1,在矩形A B C D 中,1,AB BC ==.将射线AC 绕着点A 顺时针旋转α(0α︒<≤180)︒得到射线AE ,点M 与点D 关于直线AE 对称.若15x α=︒,图中某点到点M 的距离为y ,表示y 与x 的函数关系的图象如图2所示,则这个点为图1中的A.点AB. 点BC. 点CD. 点D图1 图2二、填空题(本题共16分,每小题4分)9. 若分式241x x --的值为0,则x 的值等于____________. 10.如图,在△OAB 中,=90O A B∠︒,则OB 的长为 .11. 如图,△ABC 内接于⊙O ,若⊙O 的半径为6,︒=∠60A ,则BC 的长为_____________.12.已知:n x ,'n x 是关于x 的方程244=0n n n a x a x a n -+-1()n n a a +>的两个实数根,'n n x x <,其中n 为正整数,且1a =1.(1)11'x x -的值为;(2)当n 分别取1,2,⋅⋅⋅,2013时,相对应的有2013个方程,将这些方程的所有实数根按照从小到大的顺序排列,相邻两数的差恒为(11'x x -)的值,则20132012'x x -=. 三、解答题(本题共30分,每小题5分)13.计算:2012tan 60(3)3π-⎛⎫︒+- ⎪⎝⎭.14.解方程:2250x x --= .15.已知:如图,在△ABC 中,90ABC ∠=︒.DC ⊥AC 于点C ,且CD CA =,DE ⊥BC 交BC 的延长线于点E . 求证:CE AB =.16. 已知:26x x +=,求代数式(21)(21)(3)7x x x x -+---的值.17.如图,在平面直角坐标系xOy 中,反比例函数xky =的图象与一次函数2+=x y 的图象的一个交点为)1(-,m A . (1)求反比例函数的解析式;(2)设一次函数2+=x y 的图象与y 轴交于点B ,若P 是y 轴上一点, 且满足PAB △的面积是3,直接写出点P 的坐标.18. 列方程(组)解应用题:园博会招募志愿者,高校学生积极响应.据统计,截至2月28日和3月10日,高校志愿者报名人数分别为2.6万人和3.6万人,而志愿者报名总人数增加了1.5万人,并且两次统计数据显示,高校志愿者报名人数与志愿者报名总人数的比相同.求截至3月10日志愿者报名总人数.四、解答题(本题共20分,每小题5分)19.如图,ABCD 中,E 为BC 中点,过点E 作AB 的垂线交AB 于点G ,交DC 的延长线于点H ,连接DG .若10BC =,45GDH ∠=︒,DG =,求CH 的长及ABCD 的周长.20.如图,△ABC 中,E 是AC 上一点,且AE=AB ,BAC EBC ∠=∠21,以AB 为直径的⊙O 交AC 于点D ,交EB 于点F .(1)求证:BC与⊙O相切;(2)若18,sin4AB EBC=∠=,求AC的长.21.北京市近年来大力发展绿地建设,2010年人均公共绿地面积比2005年增加了4平方米,以下是根据北京市常住人口调查数据和绿地面积的有关数据制作的统计图表的一部分.北京市人均公共绿地面积调查规划统计图北京市常住人口统计表(1)补全条形统计图,并在图中标明相应数据;(2)按照2013年的预测,预计2020年北京市常住人口将达到多少万人?(3)按照2013年的北京市常住人口预测,要完成2020年的北京市人均公共绿地面积规划,从2005年到2020年,北京市的公共绿地总面积需增加多少万平方米?22.如图1,四边形ABCD中,AC、BD为它的对角线,E为AB边上一动点(点E不与点A、B重合),EF∥AC交BC于点F,FG∥BD交DC于点G,GH∥AC交AD于点H,连接HE.记四边形EFGH的周长为p,如果在点E的运动过程中,p的值不变,则我们称四边形ABCD为“Ω四边形”,此时p的值称为它的“Ω值”.经过探究,可得矩形是“Ω四边形”.如图2,矩形ABCD 中,若AB =4,BC =3,则它的“Ω值”为 .图1 图2 图3(1)等腰梯形 (填“是”或 “不是”)“Ω四边形”;(2)如图3,BD 是⊙O 的直径,A 是⊙O 上一点,=34AD AB =,,点C 为AB 上的一动点,将△DAB 沿CD 的中垂线翻折,得到△CEF .当点C 运动到某一位置时,以A 、B 、C 、D 、E 、F 中的任意四个点为顶点的“Ω四边形”最多,最多有 个.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知:抛物线2(2)2y ax a x =+--过点(3,4)A . (1)求抛物线的解析式;(2)将抛物线2(2)2y ax a x =+--在直线1y =-下方的部分沿直线1y =-翻折,图象其余的部分保持不变,得到的新函数图象记为G .点()1,M m y 在图象G 上,且10y ≤.①求m 的取值范围;②若点()2,N m k y +也在图象G 上,且满足24y ≥恒成立,则k 的取值范围为 .24.如图1,在△ABC 中,AB =AC ,ABC α∠=. 过点A 作BC 的平行线与∠ABC 的平分线交于点D ,连接CD .图1 图2 (1)求证:AC AD =;(2)点G 为线段CD 延长线上一点,将射线GC 绕着点G 逆时针旋转β,与射线BD 交于点E .①若βα=,2GD AD =,如图2所示,求证:2DEG BCD S S ∆∆=; ②若2βα=,GD kAD =,请直接写出DEGBCDS S ∆∆的值(用含k 的代数式表示).25. 在平面直角坐标系xOy 中,点A 的坐标是0,2(),过点A 作直线l 垂直y 轴,点B 是直线l 上异于点A 的一点,且ÐOBA =a .过点B 作直线l 的垂线m ,点C 在直线m 上,且在直线l 的下方,ÐOCB =2a .设点C 的坐标为x ,y (). (1) 判断△OBC 的形状,并加以证明; (2) 直接写出y 与x 的函数关系式(不要求写自变量的取值范围);(3) 延长CO 交(2)中所求函数的图象于点D .求证:CD =CO ×DO .2013北京海淀区中考数学二模试卷答案及评分参考三、解答题(本题共30分,每小题5分)13.计算:2012tan 60(3)3π-⎛⎫︒+-⎪⎝⎭.解:原式921=-------------------------- 4分10=. ------------------------- 5分 14.解方程:2250x x --= . 解:225x x -=.22151x x -+=+.2(1)6x -=. ------------------------- 2分 1x -=------------------------- 3分 1x =∴1211x x ==------------------------- 5分15. 证明:∵DC ⊥AC 于点C ,∴90.ACB DCE ∠+∠=︒ ∵90ABC ∠=︒, ∴90.ACB A ∠+∠=︒∴.A DCE ∠=∠ -------------------------1分 ∵DE ⊥BC 于点E , ∴90.E ∠=︒ ∴B E ∠=∠.在△ABC 和△CED 中,,,,B E A DCE AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CED .-------------------------4分∴CE AB =. -------------------------5分 16.解:原式=224137x x x --+- ------------------------2分=2338x x +-. ------------------------3分∵26x x +=, ∴原式=23()8x x +-=368⨯--------------------------4分=10.-------------------------5分17.解:(1)∵ 点)1(-,m A 在一次函数2+=x y 的图象上, ∴ 3m =-. -------------------------1分 ∴ A 点的坐标为(3,1)--. ∵ 点A (3,1)--在反比例函数xky =的图象上, ∴ 3k =. -------------------------2分 ∴ 反比例函数的解析式为3y x=.-------------------------3分 (2)点P 的坐标为(0,0)或(0,4).-------------------------5分 (写对一个给1分)18. 解:设截至3月10日志愿者报名总人数为x 万人. -------------------------1分依题意,得3.6 2.6=1.5x x -. -------------------------3分 解得 5.4x =. -------------------------4分经检验, 5.4x =是原方程的解,且符合题意.答:截至3月10日志愿者报名总人数为5.4万人. -------------------------5分四、解答题(本题共20分,每小题5分) 19.解:∵四边形ABCD 是平行四边形,∴AB CD =,AB ∥CD ,AD BC =. ∵HG ⊥AB 于点G , ∴90BGH H ∠=∠=︒.在△DHG 中,90H ∠=︒,45GDH ∠=︒,DG =∴8DH GH ==.-------------------------1分 ∵E 为BC 中点,10BC =, ∴5BE EC ==. ∵BEG CEH ∠=∠, ∴△BEG ≌△CEH .∴142GE HE GH ===.-------------------------3分 在△EHC 中,90H ∠=︒,5CE =,4EH =, ∴3CH =.-------------------------4分 ∴5AB CD ==.∴30AB BC CD AD +++=.∴ABCD 的周长为30.-------------------------5分A20. (1)证明:连接AF .∵AB 为直径, ∴∠90AFB =︒. ∵AE AB =, ∴△ABE 为等腰三角形.∴∠12BAF =∠BAC .∵BAC EBC ∠=∠21,∴∠BAF =∠.EBC -------------------------1分 ∴∠FAB +∠FBA =∠EBC +∠90FBA =︒. ∴∠90ABC =︒ .∴BC 与⊙O 相切. -------------------------2分 (2) 解:过E 作EG BC ⊥于点.G ∠BAF =∠EBC ,∴1sin sin 4BAF EBC ∠=∠=.在△AFB 中,∠90AFB =︒, ∵8AB =,∴BF AB =⋅sin ∠18 2.4BAF =⨯=--------------3分∴24BE BF ==.在△EGB 中,∠90EGB =︒,∴1sin 4 1.4EG BE EBC =⋅∠=⨯=------------------4分∵EG BC ⊥,AB ⊥BC , ∴EG ∥.AB ∴△CEG ∽△.CAB ∴CE EGCA AB =. ∴1.88CE CE =+ ∴8.7CE =∴8648.77AC AE CE =+=+=-------------------------5分21. 解:(1)如下图:-------------------2分(2)205575%=2740÷(万人).答:预计2020年北京市常住人口将达到2740万人.---------------------3分(3)274018154011=32380⨯-⨯(万平方米).答:从2005年到2020年,北京市的公共绿地总面积需增加32380万平方米. ------5分22.解: “Ω值”为10.---------------------2分(1)是;--------------------3分(2)最多有5个.--------------------5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23解:(1)∵抛物线2(2)2y ax a x =+--过点(3,4)A ,∴93(2)24a a +--=. 解得 1a =.∴抛物线的解析式为22y x x =--. --------------2分(2)①当0y =时,220x x --=. ∴1x =-或2.∴抛物线与x 轴交于点(1,0)A -,(2,0)B .-----3分 当2y =-时,222x x --=-. ∴0x =或1.∴抛物线与直线2y =-交于点(0,2)C -, (1,2)D -.∴C ,D 关于直线1y =-的对称点'(0,0)C ,'(1,0)D .----4分 ∴根据图象可得1-≤m ≤0或1≤m ≤2.----------------5分 ②k 的取值范围为k ≥4或k ≤4-.----------------7分 24.解:(1) ∵BD 平分ABC ∠,∴12∠=∠.∵AD ∥BC , ∴23∠=∠.∴13∠=∠.---------------1分 ∴AB AD =. ∵AB AC =,∴AC AD =.---------------2分 (2)①证明:过A 作AH BC ⊥于点H .∴90AHB ∠=.∵AB AC =,ABC α∠=, ∴ACB ABC α∠=∠=. ∴1802BAC α∠=︒-. 由(1)得=AB AC AD =.∴点B 、C 、D 在以A 为圆心,AB 为半径的圆上.∴12BDC BAC ∠=∠. ∴90GDE BDC α∠=∠=︒-.----------3分∵G ∠=β=αABC =∠,∴90G GDE ∠+∠=︒.∴90DEG AHB ∠=∠=︒.∴△DEG ∽△AHB .------------------4分∵2GD AD =,AB AD =, ∴22DEG AHB S GD S BA∆∆==4. ∵AD ∥BC ,∴2BCD ABC AHB S S S ∆∆∆==.∴2DEG BCD S S ∆∆=.----------------------5分 ②2=DEG BCDS k S ∆∆. -------------------------7分 25.解:(1)△OBC 为等腰三角形.---------1分 证明:如图1,∵AB BC ⊥,∴90ABC ∠=︒.∵OBA α∠=,∴90CBO α∠=︒-.∵2BCO α∠=,∴90BOC CBO α∠=︒-=∠.∴BC OC =.∴ △OBC 为等腰三角形.---------------2分(2)y 与x 的函数关系式为y =-14x 2+1.----4分 (3)过D 作DF ^l 于F ,DG BC ⊥于G 交直线OA 于H .∵C 为抛物线上异于顶点的任意一点,且BC OC =, ∴DO =DF .-------------------------5分设DO =DF =a ,BC =OC =b ,则DF AH BG a ===,DC a b =+.①当点C 在x 轴下方时,如图2,∵2OA =,∴2,OH a CG b a =-=-.∵OH ∥CG ,∴△DOH ∽△DCG . ∴OH DO CG DC=. 图3图2 图1∴2a a b a a b -=-+.∴ab a b =+.∴CD =CO ×DO .------------------------7分 ②当点C 在x 轴上方时,如图3,2OH a =-,CG a b =-.同理可证CD =CO ×DO .③当点C 在x 轴上时,如图4,2CO DO ==.∴CD CO DO =⋅.综上所述,CD CO DO =⋅.------------------8分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)图4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区高三年级第二学期期末练习数 学 (理科) 2013.5本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B = A .(,0]-∞ B .(,1]-∞ C .[1,2] D .[1,)+∞2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为 A .3 B .2 C .3或2- D .3或3-3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.namC. 2ma nD. 2na m4.某空间几何体的三视图如右图所示,则该几何体的表面积为 A.180 B.240 C.276 D.3005.在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为 A.32 B. 36 C. 42 D.487.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为B.1+1+D.2俯视图8. 若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 A. 若34a =,则m 可以取3个不同的值 B.若m ={}n a 是周期为3的数列C.T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列D.Q m ∃∈且2m ≥,数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分.9.在极坐标系中,极点到直线cos 2ρθ=的距离为_______.10.已知1211ln ,sin ,222a b c -===,则,,a b c 按照从大到小....排列为______. 11.直线1l 过点(2,0)-且倾斜角为30 ,直线2l 过点(2,0)且与直线1l 垂直,则直线1l 与直线2l 的交点坐标为____.12.在ABC ∆中,30,45,A B a ∠=∠== ,则_____;b =C _____.AB S ∆=13.正方体1111ABCD A B C D -的棱长为1,若动点P 在线段1BD 上运动,则DC AP ⋅的取值范围是______________.14.在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线W .(I) 给出下列三个结论: ①曲线W 关于原点对称; ②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12; 其中,所有正确结论的序号是_____; (Ⅱ)曲线W 上的点到原点距离的最小值为______.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数cos2()1π)4x f x x =--.(Ⅰ)求函数()f x 的定义域; (Ⅱ) 求函数()f x 的单调递增区间.16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p ,获得50元奖金的概率为2%.(I)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; (II )为了能够筹得资金资助福利事业, 求p 的取值范围.17. (本小题满分14分)如图1,在直角梯形ABCD 中,90ABC DAB ∠=∠= ,30CAB ∠= ,2BC =,4AD =. 把DAC ∆沿对角线AC 折起到PAC ∆的位置,如图2所示,使得点P 在平面ABC 上的正投影H 恰好落在线段AC 上,连接PB ,点,E F 分别为线段,PA AB 的中点. (I) 求证:平面//EFH 平面PBC ; (II)求直线HE 与平面PHB 所成角的正弦值;(III)在棱PA 上是否存在一点M ,使得M 到点,,,P H A F 四点的距离相等?请说明理由.CDBA图1H E CPBAF图218.(本小题满分13分)已知函数()e x f x =,点(,0)A a 为一定点,直线()x t t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记AMN ∆的面积为()S t . (I )当0a =时,求函数()S t 的单调区间;(II )当2a >时, 若0[0,2]t ∃∈,使得0()e S t ≥, 求实数a 的取值范围.19. (本小题满分14分)已知椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点.(I )求椭圆M 的方程;(II )直线l 与椭圆M 交于A ,B 两点,且线段AB 的垂直平分线经过点1(0,)2-,求AOB ∆ (O 为原点)面积的最大值.20.(本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值; (Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之 表和与每列的各数之和均为非负整数?请说明理由.22221212a a a a a a a a ------海淀区高三年级第二学期期末练习数 学 (理)参考答案及评分标准 2013.5说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I )因为πsin()04x -≠所以ππ,4x k -≠Z k ∈ ……………………2分 所以函数的定义域为π{|π+,4x x k ≠Z}k ∈ ……………………4分(II )因为22cos sin ()1sin cos x xf x x x-=-- ……………………6分= 1+(cos sin )x x +π= 1)4x + ……………………8分又sin y x=的单调递增区间为 ππ(2π,2π)22k k -+ ,Z k ∈令πππ2π2π242k x k -<+<+解得 3ππ2π2π44k x k -<<+ ……………………11分 又注意到ππ+,4x k ≠9. 2 10.c b a >> 11. 12. 13.[0,1]14.②③;2所以()f x 的单调递增区间为3ππ(2π,2π)44k k -+, Z k ∈ …………………13分16. 解:(I )设至少一张中奖为事件A则2()10.50.75P A =-= …………………4分(II) 设福彩中心卖出一张彩票可能获得的资金为ξ则ξ可以取5,0,45,145-- …………………6分 ξ的分布列为…………………8分所以ξ的期望为550%0(50%2%)(45)2%(145)E p p ξ=⨯+⨯--+-⨯+-⨯ 2.590%145p =-- …………………11分 所以当 1.61450p ->时,即8725p < …………………12分 所以当80725p <<时,福彩中心可以获取资金资助福利事业…………………13分17.解:(I )因为点P 在平面ABC 上的正投影H 恰好落在线段AC 上所以PH ⊥平面ABC ,所以PH ⊥AC …………………1分因为在直角梯形ABCD 中,90ABC DAB ∠=∠= ,30CAB ∠= ,2BC =,4AD =所以4AC =,60CAB ∠= ,所以ADC ∆是等边三角形,所以H 是AC 中点, …………………2分所以//HE PC …………………3分 同理可证//EF PB又,HE EF E CP PB P ==所以//EFH PBC 平面PBC …………………5分 (II )在平面ABC 内过H 作AC 的垂线如图建立空间直角坐标系,则(0,2,0)A -,P ,B …………………6分因为(0,E -,(0,HE =-设平面PHB 的法向量为(,,)n x y z =因为HB =,HP =所以有00HB n HP n ⎧⋅=⎪⎨⋅=⎪⎩,即00y z +==⎪⎩,令x =则3,y =- 所以3,0)n =-…………………8分cos ,||||n HE n HE n HE ⋅<>===⋅…………………10分所以直线HE 与平面P H 所成角的正弦值为…………………11分 (III)存在,事实上记点E 为M 即可 …………………12分因为在直角三角形PHA 中,122EH PE EA PA ====, …………………13分在直角三角形PHB 中,点4,PB =122EF PB == 所以点E 到四个点,,P O C F 的距离相等 …………………14分 18.解: (I) 因为1()||e 2t S t t a =-,其中t a ≠ …………………2分 当0a =,1()||e 2t S t t =,其中0t ≠ 当0t >时,1()e 2t S t t =,1'()(1)e 2t S t t =+,所以'(S t >,所以()S t 在(0,)+∞上递增, …………………4分当0t <时,1()e 2t S t t =-,1'()(1)e 2t S t t =-+,令1'()(1)e 02t S t t =-+>, 解得1t <-,所以()S t 在(,1)-∞-上递增令1'()(1)e 02t S t t =-+<, 解得1t >-,所以()S t 在(1,0)-上递减 ……………7分 综上,()S t 的单调递增区间为(0,)+∞,(,1)-∞-()S t 的单调递增区间为(1,0)-(II )因为1()||e 2t S t t a =-,其中t a ≠ 当2a >,[0,2]t ∈时,1()()e 2t S t a t =-因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e1'()[(1)]e 2tS t t a =---,令'S t =,得1t a =- …………………8分当12a -≥时,即3a ≥时1'()[(1)]e 02t S t t a =--->对(0,2)t ∈成立,()S t 单调递增所以当2t =时,()S t 取得最大值21(2)(2)e 2S a =-令21(2)e e 2a -≥ ,解得 22ea ≥+ , 所以3a ≥…………………10分当12a -<时,即3a <时1'()[(1)]e 02t S t t a =--->对(0,1)t a ∈-成立,()S t 单调递增1'()[(1)]e 02t S t t a =---<对(1,2)t a ∈-成立,()S t 单调递减所以当1t a =-时,()S t 取得最大值11(1)e 2a S a --=令11(1)e e 2a S a --=≥ ,解得ln 22a ≥+所以l a +≤…………………12分综上所述,ln 22a+≤…………………13分19.解:(I)因为椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点, 所以,1a b ==,椭圆M 的方程为2213x y += …………………4分 (II)设1122(,),(,),A x y B x y 因为AB 的垂直平分线通过点1(0,)2-, 显然直线AB 有斜率,当直线AB 的斜率为0时,则AB 的垂直平分线为y 轴,则1212,x x y y =-=所以111111=|2||||||||2AOB S x y x y x ∆==2211(3)322x x +-=,所以AOB S ∆≤1||x =时,AOB S ∆………………6分 当直线AB 的斜率不为0时,则设AB 的方程为y kx t =+所以2213y kx t x y =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330k x kt t +++-= 当224(933)0k t ∆=+->, 即2231k t +>①方程有两个不同的解 又122631kt x x k -+=+,1223231x x ktk +-=+ …………………9分 所以122231y y tk +=+, 又1212112202y y x x k ++=-+-,化简得到2314k t += ②代入①,得到04t <<…………………10分又原点到直线的距离为d =12|||AB x x =-=所以1=||||2AOB S AB d ∆=化简得到AOB S ∆…………………12分因为04t <<,所以当2t =时,即k =AOB S ∆综上,AOB ∆面积的最大值为…………………14分 20.(I )解:法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法2:24123712371237210121012101--−−−−−→−−−−−→----改变第行改变第列法3:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列…………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果首先操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -, 这两个数中,必须有一个为负数,另外一个为非负数,所以 12a ≤或52a ≥ 当12a ≤时,则接下来只能操作第一行, 22221212a a a a a a a a ------此时每列之和分别为2222,22,22,2a a a a ---必有2220a -≥,解得0,1a =- 当52a ≥时,则接下来操作第二行 22221212a a a a a a a a------ 此时第4列和为负,不符合题意. …………………6分② 如果首先操作第一行22221212a a a a a a a a ----- 则每一列之和分别为22a -,222a -,22a -,22a当1a =时,每列各数之和已经非负,不需要进行第二次操作,舍掉当1a ≠时,22a -,22a -至少有一个为负数,所以此时必须有2220a -≥,即11a -≤≤,所以0a =或1a =-经检验,0a =或1a =-符合要求综上:0a =-…………………9分(III )能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数。