初三应用题综合复习专项训练

合集下载

中考应用题精选(含答案)

中考应用题精选(含答案)

中考综合应用题精选(含答案)1.小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物651140第二次购物371110第三次购物981062(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?2.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.3.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?4.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.5.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B 两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.6.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是50元;信息2:甲商品零售单价比进货单价多10元,乙商品零售单价比进货单价的2倍少10元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了190元.请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品60件和乙商品40件,经调查发现,甲、乙两种商品零售单价分别每降1元,这两种商品每天可多卖出10件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?7.某商品现在的售价为每件40元,每天可以卖出200件,该商品将从现在起进行90天的销售:在第x(1≤x≤49)天内,当天售价都较前一天增加1元,销量都较前一天减少2件;在第x(50≤x≤90)天内,每天的售价都是90元,销量仍然是较前一天减少2件,已知该商品的进价为每件30元,设销售该商品的当天利润为y元.(1)填空:用含x的式子表示该商品在第x(1≤x≤90)天的售价与销售量.第x(天)1≤x≤4950≤x≤90当天售价(元/件)当天销量(件)(2)求出y与x的函数关系式;(3)问销售商品第几天时,当天销售利润最大,最大利润是多少?(4)该商品在销售过程中,共有多少天当天销售利润不低于4800元?请直接写出结果.8.我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:成活率品种购买价(元/棵)甲2090%乙3295%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)求y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?9.某加工企业生产并销售某种农产品,假设销售量与加工产量相等.已知每千克生产成本y1(单位:元)与产量x(单位:kg)之间满足关系式y1=.如图中线段AB表示每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式.(1)试确定每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式,并写出自变量的取值范围;(2)若用w(单位:元)表示销售该农产品的利润,试确定w(单位:元)与产量x(单位:kg)之间的函数关系式;(3)求销售量为70kg时,销售该农产品是盈利,还是亏本?盈利或亏本了多少元?10.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?11.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,是甲、乙两人离B地的距离y (km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)A、B两地之间的距离为km;(2)直接写出y甲,y乙与x之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时x的取值范围.12.科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程:①在科研所到宿舍楼之间修一条笔直的道路;②对宿舍楼进行防辐射处理,已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=a+b(0≤x≤9).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理.设每公里修路的费用为m万元,配套工程费w=防辐射费+修路费.(1)当科研所到宿舍楼的距离x=9km时,防辐射费y=万元,a=,b=;(2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,求每公里修路费用m万元的最大值.13.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?14.某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=95,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?15.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:(1)根据图象,直接写出y1、y2关于x的函数图象关系式;(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.16.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?17.有一种螃蟹,从河里捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元.(1)设X天后每千克活蟹的市场价为P元,写出P关于x的函数关系式.(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额﹣收购成本﹣费用),最大利润是多少?计划投资15万元种植花卉和树木.根据市场调查与预测,种植树木的利润y1(万元)与投资量x(万元)成正比例关系:y1=2x;种植花卉的利润y2(万元)与投资量x(万元)的函数关系如图所示(其中OA是抛物线的一部分,A为抛物线的顶点;AB∥x轴).(1)写出种植花卉的利润y2关于投资量x的函数关系式;(2)求此专业户种植花卉和树木获取的总利润W(万元)关于投入种植花卉的资金t(万元)之间的函数关系式;(3)此专业户投入种植花卉的资金为多少万元时,才能使获取的利润最大,最大利润是多少?林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少?中考综合应用题精选一.解答题(共19小题)1.(2014•连云港)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物651140第二次购物371110第三次购物981062(1)小林以折扣价购买商品A、B是第三次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?【解答】解:(1)小林以折扣价购买商品A、B是第三次购物.故答案为:三;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为90元,商品B的标价为120元;(3)设商店是打a折出售这两种商品,由题意得,(9×90+8×120)×=1062,解得:a=6.答:商店是打6折出售这两种商品的.2.(2014•河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.3.(2014•扬州)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?【解答】解:(1)当40≤x≤58时,设y与x的函数解析式为y=k1x+b1,由图象可得,解得.∴y=﹣2x+140.当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得,解得,∴y=﹣x+82,综上所述:y=;(2)设人数为a,当x=48时,y=﹣2×48+140=44,∴(48﹣40)×44=106+82a,解得a=3;(3)设需要b天,该店还清所有债务,则:b[(x﹣40)•y﹣82×2﹣106]≥68400,∴b≥,当40≤x≤58时,∴b≥=,x=﹣时,﹣2x2+220x﹣5870的最大值为180,∴b,即b≥380;当58<x≤71时,b=,当x=﹣=61时,﹣x2+122x﹣3550的最大值为171,∴b,即b≥400.综合两种情形得b≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.4.(2014•潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.5.(2014•台州)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A 类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.6.(2013•许昌二模)某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是50元;信息2:甲商品零售单价比进货单价多10元,乙商品零售单价比进货单价的2倍少10元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了190元.请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品60件和乙商品40件,经调查发现,甲、乙两种商品零售单价分别每降1元,这两种商品每天可多卖出10件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?【解答】解:(1)设甲商品的进价为x元,乙商品的进价为y元,由题意,得,解得:.∴甲种商品的进价为:20元,乙种商品的进价为:30元.(2)设经销甲、乙两种商品获得的总利润为W,甲种商品每件的利润为(30﹣m﹣20)元,销售数量为(60+10m),乙种商品每件的利润为(50﹣m﹣30)元,销售数量为(40+10m),则W=(10﹣m)(60+10m)+(20﹣m)(40+10m)=﹣20m2+200m+1400=﹣20(m﹣5)2+1900∵﹣20<0,∴当m定为5元时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1900元.7.(2014秋•硚口区期中)某商品现在的售价为每件40元,每天可以卖出200件,该商品将从现在起进行90天的销售:在第x(1≤x≤49)天内,当天售价都较前一天增加1元,销量都较前一天减少2件;在第x(50≤x≤90)天内,每天的售价都是90元,销量仍然是较前一天减少2件,已知该商品的进价为每件30元,设销售该商品的当天利润为y元.(1)填空:用含x的式子表示该商品在第x(1≤x≤90)天的售价与销售量.第x(天)1≤x≤4950≤x≤90当天售价(元/件)40+x90当天销量(件)200﹣2x200﹣2x(2)求出y与x的函数关系式;(3)问销售商品第几天时,当天销售利润最大,最大利润是多少?(4)该商品在销售过程中,共有多少天当天销售利润不低于4800元?请直接写出结果.【解答】解:(1)由题意,得当1≤x≤49时,当天的售价为:(40+x)元,当天的销量为:(20﹣2x)件.当50≤x≤90时,当天的售价为:90元,当天的销量为:(20﹣2x)件.故答案为:40+x,20﹣2x,90,20﹣2x;(2)由题意,得当1≤x≤49时,y=(40+x﹣30)(200﹣2x)=﹣2x2+180x+2000,当50≤x≤90时,y=(90﹣30)(200﹣2x)=﹣120x+12000.∴y=(3)由题意,得当1≤x≤49时,y=﹣2x2+180x+2000,y=﹣2(x﹣45)2+6050∴a=﹣2<0,=6050元.∴x=45时,y最大当50≤x≤90时,y=﹣120x+12000.∴k=﹣120<0,∴当x=50时,y最大=6000元,∴销售商品第45天时,当天销售利润最大,最大利润是6050元;(4)由题意,得当﹣2x2+180x+2000≥4800时,∴(x﹣20)(x﹣70)≤0,∴或,∴20≤x≤70.∵x≤49,∴20≤x≤49,当﹣120x+12000≥4800时x≤60.∵x≥50,∴50≤x≤60,∴当天销售利润不低于4800元共有:49﹣20+1+60﹣50+1=41天答:当天销售利润不低于4800元共有41天.8.(2014•襄阳)我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:成活率品种购买价(元/棵)甲2090%乙3295%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)求y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?【解答】解:(1)y=260000﹣[20x+32(6000﹣x)+8×6000]=12x+20000,自变量的取值范围是:0<x≤3000;(2)由题意,得12x+20000≥260000×16%,解得:x≥1800,∴1800≤x≤3000,购买甲种树苗不少于1800棵且不多于3000棵;(3)①若成活率不低于93%且低于94%时,由题意得,解得1200<x≤2400在y=12x+20000中,∵12>0,∴y随x的增大而增大,∴当x=2400时,y最大=48800,②若成活率达到94%以上(含94%),则0.9x+0.95(6000﹣x)≥0.94×6000,解得:x≤1200,由题意得y=12x+20000+260000×6%=12x+35600,∵12>0,∴y随x的增大而增大,∴当x=1200时,y=50000,最大值综上所述,50000>48800∴购买甲种树苗1200棵,乙种树苗4800棵,可获得最大利润,最大利润是50000元.9.某加工企业生产并销售某种农产品,假设销售量与加工产量相等.已知每千克生产成本y1(单位:元)与产量x(单位:kg)之间满足关系式y1=.如图中线段AB表示每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式.(1)试确定每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式,并写出自变量的取值范围;(2)若用w(单位:元)表示销售该农产品的利润,试确定w(单位:元)与产量x(单位:kg)之间的函数关系式;(3)求销售量为70kg时,销售该农产品是盈利,还是亏本?盈利或亏本了多少元?【解答】解:(1)设y2=kx+b,将点A(0,160)、B(150,10)代入,得:,解得:,∴y2=﹣x+160(0≤x≤150);(2)根据题意,当0≤x<80时,w=[﹣x+160﹣(﹣0.5x+100)]•x=﹣0.5x2+60x,当80≤x≤150时,w=[﹣x+160﹣(3x﹣180)]•x=﹣4x2+340x;(3)∵当x=70时,w=﹣0.5×702+60×70=1750>0,∴销售量为70kg时,销售该农产品是盈利的,盈利1750元.。

2023年九年级数学中考应用题专题训练原卷版

2023年九年级数学中考应用题专题训练原卷版

2023年九年级数学中考应用题专题训练原卷版1.为了加强学生的体育锻炼,某班计划购买部分绳子和实心球.已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?2.某市开展信息技术与教学深度融合的“精准化教学”,某实验学校计划购买A,B两种型号教学设备,已知A型设备价格比B型设备价格每台高20%,用30000元购买A型设备的数量比用15000元购买B型设备的数量多4台.(1)求A,B型设备单价分别是多少元;(2)该校计划购买两种设备共50台,要求A型设备数量不少于B型设备数量的.设购买a台A型设备,购买总费用为w元,求w与a的函数关系式,并求出最少购买费用.3.金鹰酒店有140间客房需安装空调,承包给甲、乙两个工程队合作安装,每间客房都安装同一品牌同样规格的一台空调,已知甲工程队每天比乙工程队多安装5台,甲工程队的安装任务有80台,两队同时安装.问:(1)甲、乙两个工程队每天各安装多少台空调,才能同时完成任务?(2)金鹰酒店响应“绿色环保”要求,空调的最低温度设定不低于26℃,每台空调每小时耗电1.5度;据预估,每天至少有100间客房有旅客住宿,旅客住宿时平均每天开空调约8小时.若电费0.8元/度,请你估计该酒店每天所有客房空调所用电费W(单位:元)的范围?4.我市某乡村振兴果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨;因龙眼大量上市,价格下跌,第二次购买龙眼的价格为0.3万元/吨,两次购买龙眼共用了7万元.(1)求两次购买龙眼各是多少吨?(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?5.打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.6.为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?7.2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?8.某快递公司为了加强疫情防控需求,提高工作效率,计划购买A、B两种型号的机器人来搬运货物,已知每台A型机器人比每台B型机器人每天少搬运10吨,且A型机器人每天搬运540吨货物与B型机器人每天搬运600吨货物所需台数相同.(1)求每台A型机器人和每台B型机器人每天分别搬运货物多少吨?(2)每台A型机器人售价1.2万元,每台B型机器人售价2万元,该公司计划采购A、B两种型号的机器人共30台,必须满足每天搬运的货物不低于2830吨,购买金额不超过48万元.请根据以上要求,完成如下问题:①设购买A型机器人m台,购买总金额为w万元,请写出w与m的函数关系式;②请你求出最节省的采购方案,购买总金额最低是多少万元?9.2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)B款钥匙扣类别价格A款钥匙扣进货价(元/件)3025销售价(元/件)4537(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?10.某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:售价(元/本)……22232425…………80787674……每天销售量(本)(1)求A,B两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;①直接写出B款纪念册每天的销售量(用含m的代数式表示);②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?11.为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元/个,乙种型号水杯进价为45元/个,下表是前两月两种型号水杯的销售情况:时间销售数量(个)销售收入(元)(销售收入=甲种型号乙种型号售价×销售数量)第一月2281100第二月38242460(1)求甲、乙两种型号水杯的售价;(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种号水杯a个,利润为w元,写出w与a的函数关系式,并求出第三月的最大利润.。

初三数学综合算式专项练习题数学综合运用

初三数学综合算式专项练习题数学综合运用

初三数学综合算式专项练习题数学综合运用在初三数学学科中,算式是基础和重点知识点之一,它是运用数学知识解决实际问题的基础。

本文将给出一些数学综合运用的算式专项练习题,供初三学生进行练习和巩固相关知识。

1. 解方程(1) 2x + 5 = 13(2) 3(x - 4) = 15(3) 2(3x - 1) = 4 - x2. 两个数之和与差的问题(1) 已知两个数的和为15,差为5,求这两个数。

(2) 儿子今年8岁,爸爸比儿子大32岁,求爸爸多少岁?3. 百分数计算(1) 48是160的几分之几?(2) 将0.6写成百分数。

4. 平均数和比例(1) 一组数的平均数为24,其中有4个数,除去其中一个数后的平均数为18,求这个被除去的数。

(2) 某商品原价是120元,现在打5折出售,求现价。

5. 运用速度时间公式(1) 一辆汽车以每小时40公里的速度行驶,行驶了3小时,求行驶的距离。

(2) 一辆火车以每小时80公里的速度行驶,行驶了4小时30分钟,求行驶的距离。

6. 运用利息公式(1) 本金为5000元,年利率为5%,存款2年,求两年后的本息和。

(2) 本金为8000元,年利率为4.5%,存款3年,求三年后的本息和。

7. 运用图表进行数据分析(1) 根据下表,回答问题:测验成绩表小明小红小李小华语文成绩 85 90 78 92数学成绩 92 88 95 86英语成绩 89 92 88 90体育成绩 80 85 90 85a. 数学成绩最高的同学是谁?b. 体育成绩最低的同学是谁?c. 小华的总成绩是多少?(2) 根据柱状图,回答问题:一年级每个班级学生人数的柱状图*** *** **人数 15 20 30 25a. 一年级一共有几个班级?b. 一共有多少名一年级学生?c. 学生人数最多的班级有多少人?以上是初三数学综合算式专项练习题的一部分,希望同学们能认真练习,熟练掌握相关知识点,并能在实际问题中灵活应用。

2023年中考数学第一轮复习应用题专项训练

2023年中考数学第一轮复习应用题专项训练

2023年中考第一轮复习应用题专项训练一、解答题1.为开展好校园足球活动,某些学校计划联合购买一批足球运动装备,经市场调查,甲、乙两商场分别以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球贵20元,4套队服与5个足球的费用相等,经洽谈,甲商场优惠方案是:每购买10套队服,送一个足球;乙商场优惠方案是;若购买队服超过90套,则购买足球打八折.(1)求每套队服和每个足球的价格分别是多少?(2)若计划一共购买100套队服和m(m大于10)个足球,请用含m的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若需要购买40个足球,你认为到甲、乙哪家商场购买比较合算?请说明理由.2.北京冬奥会吉祥物“冰墩墩”深受大家的喜爱,人们争相购买.现有甲、乙两种型号的“冰墩墩”,已知一个甲种型号比一个乙种型号多20元,购买甲、乙两种型号各10个共需1760元.(1)求甲、乙两种型号的“冰墩墩”单价各是多少元?(2)某团队计划用不超过4500元购买甲、乙两种型号的“冰墩墩”共50个,求最多可购买多少个甲种型号的“冰墩墩”?3.为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?4.《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?根据译文,解决下列问题:(1)设兽有x个,鸟有y只,可列方程组为;(2)求兽、鸟各有多少.5.某公司引入一条新生产线生产A,B两种产品,其中A产品每件成本为100元,销售价格为120元,B产品每件成本为75元,销售价格为100元,A,B两种产品均能在生产当月全部售出.(1)第一个月该公司生产的A,B两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A,B两种产品各多少件?(2)下个月该公司计划生产A,B两种产品共180件,且使总利润不低于4300元,则B产品至少要生产多少件?6.端午节前夕,某超市从厂家分两次购进A、B两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A品牌粽子100袋和B品牌粽子150袋,总费用为7000元;第二次购进A品牌粽子180袋和B品牌粽子120袋,总费用为8100元.(1)求A、B两种品牌粽子每袋的进价各是多少元;(2)当B品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当B 品牌粽子每袋的销售价降低多少元时,每天售出B品牌粽子所获得的利润最大?最大利润是多少元?7.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y与x之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?8.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?9.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?10.某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?11.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?12.阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.(1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?13.为了传承雷锋精神,某中学向全校师生发起“献爱心”募捐活动,准备向西部山区学校捐赠篮球、足球两种体育用品.已知篮球的单价为每个100元,足球的单价为每个80元.(1)原计划募捐5600元,全部用于购买篮球和足球,如果恰好能够购买篮球和足球共60个,那么篮球和足球各买多少个?(2)在捐款活动中,由于师生的捐款积极性高涨,实际收到捐款共6890元,若购买篮球和足球共80个,且支出不超过6890元,那么篮球最多能买多少个?14.今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?。

初三数学《应用题复习专题》训练题

初三数学《应用题复习专题》训练题

初三数学《应用题复习专题》训练题(满分100分,时间90分钟)班级_______姓名_______分数_______第1~13题,每题7分,第14题9分,共100分1、由于节约用水,小明发现他家同样是用10m3的水,本月比上月能多用5天。

已知本月小明家每天的平均用水量比上月少20%,求小明家上月每天的平均用水量。

2、一件商品的成本价是100元,提高50%后标价,又以8折出售,则这件商品的售价是多少?3、甲、乙两种商品原来的单价和为100元。

因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%。

求甲、乙两种商品原来的单价分别是多少?4、某车间加工1000个零件,由于采用了新工艺,效率提高了一倍,这样加工同样多的零件就少用5小时。

求该车间采用新工艺前、后每小时分别加工多少个零件?5、今年以来,CPI(居民消费价格总水平)的不断上涨已成热门话题。

已知某种食品在9月份的售价为8.1元/kg,11月份的售价为10元/kg。

求这种食品平均每月上涨的百分率是多少?6、“佳佳商场”在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,“佳佳商场”应将这种商品的售价定为多少?(2)物价局规定该商品的售价不能超过40元/件,“佳佳商场”为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?7、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

若商场平均每天要盈利1200元,每件衬衫应降价多少元?8、为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容环境提升行动。

九年级数学下册综合算式专项练习题函数与方程的应用

九年级数学下册综合算式专项练习题函数与方程的应用

九年级数学下册综合算式专项练习题函数与方程的应用九年级数学下册综合算式专项练习题:函数与方程的应用一、函数的应用函数是数学中的重要概念,它在各个领域都有广泛的应用。

本节将介绍一些函数的实际应用例子,并通过综合算式专项练习题来巩固学习。

函数的定义是“自变量和因变量之间的对应关系”,即当自变量取某个值时,因变量也对应取一个值。

其中,自变量通常表示问题中的已知量,而因变量则表示我们要求解的未知量。

例题1:某商品的售价与销量之间存在函数关系,已知该函数的表达式为:售价 = 20 - 0.5 ×销量。

若销量为200时,求售价。

解析:根据函数的定义,我们将销量代入函数表达式中即可求得售价。

代入销量为200,得到:售价 = 20 - 0.5 × 200 = 20 - 100 = 200元。

练习题1:某车厂生产的汽车的价格P(万元)与产量x(台)之间的函数关系是:P = 30 - 0.2 × x。

请问,当产量为500台时,汽车的价格是多少万元?解答略。

二、方程的应用方程是数学中的另一个重要概念,它用于描述未知量之间的关系。

在实际问题中,我们常常通过建立方程来求解未知量。

例题2:某同学参加了一场足球赛,已知他进球的数量加上传球的数量等于10。

设进球的数量为x,传球的数量为y,建立方程求解。

解析:根据题意,我们可以建立方程x + y = 10。

通过解方程,我们可以求解出该同学进球和传球的具体数量。

练习题2:一个长方形的长是宽的三倍,周长为28米。

请问,长方形的长和宽各是多长?解答略。

三、综合应用对于函数和方程的应用,我们在解决实际问题时往往需要综合运用多个概念和方法。

下面的综合应用题将考察你对函数与方程应用的综合运用能力。

例题3:已知一个数减去5,然后再乘以6的结果等于126。

求这个数是多少?解析:设这个数为x,根据题意,我们可以建立方程6(x - 5) = 126。

通过解方程,我们可以求解出这个数的值。

初三总复习应用题专题

初三总复习应用题专题

一次函数应用题1、(辽宁)某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家订月租车合同.设汽车每月行驶x千米,应付给个体车主月租费是y1元,应付给出租车公司的月租费是y2元,y1和y2分别与x之间的函数关系图象(两条射线)如图4,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国营公司的车合算?(2)每月行驶的路程等于多少时,两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租那家的车合算?2、(陕西咸阳)现在有甲、乙两个氮肥厂向A、B两地运送化肥.已知甲厂可调出50吨化肥,乙厂可调出40吨化肥,A地需30吨化肥,B地需60吨化肥,两厂到A、B两地的路程和运费如表2(表中运费栏“元/吨·千米”表示每吨化肥运送1千米所需人民币).根据题意,请设计出合理的运送方案,使所需的总运费最低,并求出最低的总运费.3、某厂生产四驱动玩具车,成本为每辆16元。

现有两种销售方式:第一种是直接由厂家门市部销售,每辆车售价为20元,需每月支出固定费用1520元(包括门市部房租、水电、销售人员工资等);第二种是批发给文化用品及玩具模型商店分销售,批发价为每辆18元。

已知这两种销售方式均需缴纳税款为销售金额的5%。

(1)求出该厂这两种销售方式的月利润y与售出辆数x的函数关系式;(2)就每月销售车辆数,讨论哪种销售方式所获利润多;(3)若该厂今年七月计划销售这种玩具车1500辆,应选择哪种销售方式,才能获利较大?4、从A地向B地打长途电话,按时收费,3分内收费元,每加1分加收1元,求电话费y(元)与时间t的函数关系式,并写出相应的自变量x的取值范围。

一元二次方程应用题1.一个一元二次方程,其两根之和是5,两根之积是-14,求出这两个根。

2、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新两位数与原两位数的乘积为736,求原来的两位数。

2019届初三物理中考复习。综合应用题。专项训练 含答案

2019届初三物理中考复习。综合应用题。专项训练 含答案

2019届初三物理中考复习。

综合应用题。

专项训练含答案2019届初三物理中考复综合应用题专项训练1.一辆质量为3 t的小型载重汽车,额定功率为100 kW,车上装有6 t的砂石。

汽车先以10 m/s的速度在平直公路上以20 kW的功率匀速行驶了10 ___,消耗汽油1.2 kg,然后又以额定功率用了2 ___的时间,将砂石从山坡底运送到50 m高的坡顶施工现场。

g取10 N/kg。

问题如下:1)1.2 kg的汽油完全燃烧放出的热量是多少?已知汽油的热值为4.5×10^7 J/kg。

2)汽车在平直公路上匀速行驶时,受到的阻力是多少?3)汽车从坡底向坡顶运送砂石的机械效率是多少?2.适当的足浴对身体很有好处。

___所示,___姐姐给奶奶买了一台家用足浴盆,其功率为1000 W,质量为2.5 kg,最大容水量为5 kg,限定最高温度为50℃。

足浴盆底部装有四个轮子,与地面的总接触面积为8 cm^2.已知水的比热容为4.2×10^3 J/(kg·℃)。

问题如下:1)足浴盆装满水后对水平地面的压强是多少?2)若将最大容量的水从20℃加热到最高温度,至少需要多长时间?3)足浴盆底部安装有按摩轮,按摩轮工作时将____能转化为_____能。

请写出足浴盆的设计应用到的其他物理知识。

3.一名体重为500 N、双脚与地面接触面积为0.04 m^2的学生站在水平地面上,要用滑轮组在20 s内将600 N的重物匀速提升1 m。

1)他站在地面上时对地面的压强是多少?2)若滑轮组的机械效率为75%,拉力F是多少?拉力的功率是多少?4.某同学想知道一种液体的密度,设计了如图所示的实验。

已知木块的重力为1.2 N,体积为200 cm^3,当木块静止时弹簧测力计的示数为2 N,g=10 N/kg。

问题如下:1)木块受到的浮力是多少?2)液体的密度是多少?3)剪断细绳,木块稳定时处于什么状态?所受浮力又是多大?5.如图所示,工人将一底面积为0.06 m^2,高为2 m,密度为2.0×10^3 kg/m^3的圆柱形实心物体从水下匀速提升1 m。

初三数学下册综合算式专项练习题圆应用

初三数学下册综合算式专项练习题圆应用

初三数学下册综合算式专项练习题圆应用在初三数学下册的学习中,我们学习了许多与圆有关的知识,包括圆的性质、弦、弧、切线等。

通过这些知识的学习,我们可以运用所学的方法和技巧解决与圆相关的问题。

在本文中,我们将通过综合算式专项练习题来巩固和应用这些知识。

练习题一:已知圆的半径为r,求圆的周长和面积。

解答:圆的周长公式为C=2πr,面积公式为S=πr²。

根据给定的半径r,我们可以直接代入公式进行计算。

例如,当半径r=3时,周长C=2π×3≈18.85,面积S=π×3²≈28.27。

因此,圆的周长为18.85,面积为28.27。

练习题二:已知圆心角θ和圆的半径r,求弧长L。

解答:圆心角与弧长的关系为L=θ/360°×2πr。

根据给定的圆心角θ和半径r,我们可以代入公式计算弧长L的值。

例如,当θ=45°、r=5时,弧长L=45/360°×2π×5≈3.93。

因此,弧长L约为3.93。

练习题三:已知圆的直径为d,求圆的半径、周长和面积。

解答:圆的直径与半径的关系为d=2r,因此可得半径r=d/2。

在已知半径r的情况下,圆的周长和面积的计算可参考练习题一中的公式。

练习题四:已知圆上两点A、B,求弦AB的中垂线与弧的交点坐标。

解答:首先,通过连接弦AB和圆心O,可得到弧的中点M。

由于中垂线垂直于弦,因此中垂线OM与弦AB垂直。

根据几何知识,垂直的直线相交于圆上的两点与圆心连线互相垂直,且交点到圆心的距离相等。

因此,我们可以通过求弦AB中点M的坐标,然后求出中垂线OM 的斜率,从而确定中垂线的方程。

进一步求解可以得到中垂线与弧的交点坐标。

练习题五:已知切线与半径的关系,求切线和半径的长度。

解答:切线与半径的关系为切线的平方等于半径的平方加上切点到圆心的距离的平方。

即T²=r²+OM²,其中T为切线的长度,r为半径的长度,OM为切点到圆心的距离。

初三数学综合算式专项练习题应用题解答

初三数学综合算式专项练习题应用题解答

初三数学综合算式专项练习题应用题解答1. 一家餐厅以58元为基准,包括小费共计支付255元,该餐厅的小费是多少元?我们设小费为x元,则餐厅的消费金额为58元+x元。

根据题意,消费金额加上小费等于255元,可以得到方程:58 + x = 255解方程得:x = 255 - 58x = 197所以该餐厅的小费是197元。

2. 一辆汽车经过一段路程需要耗费20升的汽油,已知该段路程长120千米,汽油的价格为7元/升。

求该段路程的油费。

根据题目信息,我们可以计算油费的公式为:油费 = 汽油价格 ×汽油用量汽油用量 = 距离 / 油耗其中,距离为120千米,油耗为20升,汽油价格为7元/升。

将数值代入公式中,可以得到:汽油用量 = 120 / 20 = 6 升油费 = 7 × 6 = 42 元所以该段路程的油费为42元。

3. 小明有300元,他买了一篮桃子,单价为每篮15元,还剩下多少钱?根据题目信息,我们可以计算小明购买桃子花费的公式为:花费 = 单价 ×数量其中,单价为15元,数量为篮数。

将数值代入公式中,可以得到:花费 = 15 ×篮数由题目知道,小明有300元,所以我们可以得到方程:300 = 15 ×篮数解方程得:篮数 = 300 / 15篮数 = 20所以小明共买了20篮桃子。

因此,小明购买桃子后剩下的钱为:剩下的钱 = 总钱数 - 花费剩下的钱 = 300 - (15 × 20)剩下的钱 = 300 - 300剩下的钱 = 0元所以小明购买桃子后剩下的钱为0元。

4. 一本书原价为60元,商家打折促销活动,以4折出售。

小明使用100元购买了这本书,他找零多少钱?折扣后的价格为原价的4折,即60 × 0.4 = 24元。

小明使用100元购买了这本书,所以他找零的金额为:找零 = 支付金额 - 商品价格找零 = 100 - 24找零 = 76元所以小明找零的金额为76元。

中考数学总复习《实际应用题》专项测试卷(带有答案)

中考数学总复习《实际应用题》专项测试卷(带有答案)

中考数学总复习《实际应用题》专项测试卷(带有答案)学校:___________班级:___________姓名:___________考号:___________类型一 行程问题典例精讲例 1 已知小明的家、体育场、文化宫在同一直线上.下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是min ),y 表示到小明离家的距离(单位是km). 请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅰ)填空:Ⅰ小明在文化宫停留了________min ;Ⅰ小明从家到体育场的速度为________km/min ; Ⅰ小明从文化宫回家的平均速度为______km/min ;Ⅰ当小明距家的距离为35 km 时,他离开家的时间为________min ;(Ⅰ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.例1题图【思维教练】(Ⅰ)观察图象可知,前45 min 图象有三段,分别计算每一段的解析式,将对应时间代入解析式即可求解;(Ⅰ)Ⅰ小明在文化宫停留的时间是45 min 后小明到达文化宫后图象水平的部分;Ⅰ和Ⅰ根据:速度=路程÷时间,即可确定对应速度;Ⅰ观察图象可知,小明距家的距离为35 km 有两次,分别在0~15 min 之间和30~45 min 之间,根据(Ⅰ)中求得的解析式,令y =35代入即可求解;(Ⅰ)在(Ⅰ)中计算的三段解析式即是0~45 min 的y 关于x 的函数解析式. 【自主解答】针对演练1. 甲、乙两车从A 城出发前往B 城,在整个行程中,甲车离开A 城的距离y 1 km 与甲车离开A 城的时间x h 的对应关系如图所示,乙车比甲车晚出发12h ,以60 km/h 的速度匀速行驶.第1题图(Ⅰ)填空:ⅠA ,B 两城相距________km ;Ⅰ当0≤x ≤2时,甲车的速度为________km/h ; Ⅰ乙车比甲车晚________h 到达B 城; Ⅰ甲车出发4 h 时,距离A 城________km ;Ⅰ甲、乙两车在行程中相遇时,甲车离开A 城的时间为________h ; (Ⅰ)当0≤x ≤173时,请直接写出y 1关于x 的函数解析式;(Ⅰ)当72≤x ≤5时,两车所在位置的距离最多相差多少km?2. 一艘游轮从甲地出发,途经乙地前往丙地,路线图如图Ⅰ所示.当游轮到达乙地时,一艘货轮沿着同样的线路从甲地出发前往丙地.已知游轮的速度为20 km/h ,离开甲地的时间记为t(单位:h),两艘轮船离甲地的路程s(单位:km)关于t的图象如图Ⅰ所示(游轮在停靠前后的行驶速度不变).货轮比游轮早1.6 h到达丙地.第2题图根据相关信息,解答下列问题:(Ⅰ)填表:游轮离开甲地的时间/h514162124游轮离甲地的路程/km100280(Ⅰ)填空:Ⅰ 游轮在乙地停靠的时长为__________h;Ⅰ 货轮从甲地到丙地所用的时长为________h,行驶的速度为________km/h;Ⅰ 游轮从乙地出发时,两艘轮船相距的路程为__________km.(Ⅰ)当0≤t≤24时,请直接写出游轮离甲地的路程s关于t的函数解析式.类型二最优方案选取典例精讲例2新冠肺炎疫情席卷而来,为了员工的健康安全,某公司欲购进一批口罩,在甲药店不管一次购买多少包,每包价格为70元a,在乙药店购买同样的口罩,一次购买数量不超过30包时,每包售价为80元,一次购买数量超过30包时,超过部分价格打八折b.设在同一家药店一次购买这种口罩的包数为x(x为非负整数).(Ⅰ)根据题意填写表格:一次性购买数量/包2050100…甲药店付款金额/元3500…乙药店付款金额/元3680…(Ⅰ)设在甲药店购买这种口罩的金额为y1元,在乙药店购买这种口罩的金额为y2元,分别写出y1、y2关于x的函数关系式;(Ⅰ)根据题意填空:Ⅰ若该公司在甲药店和乙药店一次购买口罩的数量相同,且花费相同c,则该公司在同一家药店一次购买口罩的数量为________包;Ⅰ若该公司在同一家药店一次购买口罩的数量为120包d,则该公司在甲、乙两家药店中的________药店购买花费少;Ⅰ若该公司在同一家药店一次购买口罩花费了4200元e,则该公司在甲、乙两家药店中的________药店购买数量多.【分层分析】(Ⅰ)由题干信息a和b可知,在甲药店购买时,y1关于x的函数关系式为________;在乙药店购买时,不超过30包时,y2关于x的函数关系式为________;超过30包时,y2关于x的函数关系式为________;(Ⅰ)Ⅰ由题干信息c可得,当x>30,且y1=y2时,可得方程________;Ⅰ由题干信息d可得,当x=120时,y1=________,y2=________;Ⅰ由题干信息e可得,y1=________=4200,y2=________=4200.【自主解答】针对演练1. 同一种品牌的空调在甲、乙两个电器店的标价均为每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售,乙电器的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x为正整数).(Ⅰ)根据题意,填写下表:一次购买台数(台)2615…甲电器店收费(元)6000…乙电器店收费(元)4800…(Ⅰ)设在甲电器店购买收费y1元,在乙电器店购买收费y2元,分别写出y1,y2关于x的函数关系式;(Ⅰ)当x>6时,该校在哪家电器店购买更合算?并说明理由.2.梨木台自然风景区是国家4A级景区,地处天津最北端,被称为“天津北极”.小明一家计划在“十一”国庆假期租用共享汽车去梨木台自然风景区游玩,现有甲、乙两家共享汽车公司分别提供了两种租车方案,具体租车费用如下:甲公司:收取固定租金120元,此外还需收取租车费,按每小时10元收取;乙公司:无固定租金,直接以租车时间计费,每小时租金为30元;设小明一家出去游玩租车用时为x小时(x>0).(Ⅰ)根据题意填表:租车时间/小时458甲公司租车租金/元170乙公司租车租金/元150(Ⅰ)设在甲、乙公司租车租金分别为y1,y2元,分别写出y1,y2关于x的函数解析式;(Ⅰ)根据题意填空:Ⅰ若小明一家在甲、乙两公司的租车租金相同,则租车时间为________小时;Ⅰ若小明一家计划租车约7小时,则在甲、乙两公司中________公司租车租金少;Ⅰ若小明一家计划租车费用为270元,则在甲、乙两公司中________公司租车时间少.3. 4月23日是“世界读书日”.甲、乙两个书店在这一天举行了购书优惠活动.在甲书店,所有书籍按标价总额的8折出售,在乙书店,一次购书的标价总额不超过100元的按标价总额计费,超过100元后的部分打6折.设在同一家书店一次购书的标价总额为x(单位:元,x>0).(Ⅰ)根据题意,填写下表:一次购书的标价总额/元50150300…在甲书店应支付金额/元120…在乙书店应支付金额/元130…(Ⅰ)设在甲书店应支付金额y1元,在乙书店应支付金额y2元,分别写出y1,y2关于x的函数关系式;(Ⅰ)根据题意填空:Ⅰ若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额________元;Ⅰ若在同一个书店一次购书应支付金额为280元,则在甲、乙两个书店中的________书店购书的标价总额多;Ⅰ若在同一个书店一次购书的标价总额120元,则在甲、乙两个书店中的________书店购书应支付的金额少.4.某公园计划打造银杏园,向园林公司购买一批银杏树苗.甲、乙两个园林公司销售同等规格的银杏苗.在甲园林公司,不论一次购买数量是多少,价格均为8元/棵,在乙园林公司,当购买棵数不超过50棵时,按照10元/棵付款,当购买棵数超过50棵时,超过的部分树苗每棵按7折付款.设公园负责人小李在同一个园林公司一次购买的银杏苗的数量为x棵(x 为正整数).(Ⅰ)根据题意填表:购买棵数/棵40160300…甲园林应付金额/元1280…乙园林应付金额/元1270…(Ⅰ)设在甲园林公司应付款y1元,在乙园林公司应付款y2元,分别求y1,y2关于x的函数解析式;(Ⅰ)根据题意填空:Ⅰ若小李在甲园林公司和在乙园林公司一次购买银杏苗的数量相同,且付款金额也相同,则小李在同一个园林公司一次购买的银杏苗的数量为________棵;Ⅰ若小李在同一个园林公司一次购买银杏苗的数量为140 棵时,则小李在甲、乙两个园林公司中的________园林公司付款的金额少;Ⅰ若小李在同一个园林公司一次购买银杏苗付款金额为2040元,则小李在甲、乙两个园林公司中的________园林公司购买的数量多.类型三最优方案设计典例精讲例3某水果经销商计划租用A,B两种货车共16辆a,将680吨水果运往某批发市场b.已知每辆A种货车最多可装运50吨水果,租车费用为800元c,每辆B种货车最多可装运40吨水果,租车费用为720元d.设租用A种货车x辆(x为正整数).(Ⅰ)根据题意填表:租用A种货车的数量/辆4812…租用A种货车的费用/元6400…租用B种货车的费用/元8640…(Ⅰ)当租车总费用为12240元时,求此时的租车方案;(Ⅰ)给出完成此项运送任务最节省费用的租车方案,并说明理由.【分层分析】(Ⅰ)由租车总费用=A种车辆总费用+B种车辆总费用,结合题干a,b,c,d 可知,当租用A种货车x辆,B种货车数量为______辆,A种货车租车总费用=______,B 种货车租车总费用=________,已知总费用为12240元,可列关于x的方程为12240=________,解得x即可确定此时的租车方案;(Ⅰ)由题干a可知,要完成此次运输任务,两车运输的水果不能少于680吨,结合题干b,c,d可列不等式为________,解得________,设租车的总费用为y元,结合题干a,b,c,d 可列y关于x的函数解析式为________,根据函数解析式的增减性,可知当x=________时y最小.【自主解答】针对演练1. 某服装公司有A型童装80件,B型童装120件,分配给下属的“万达”和“万象城”两个专卖店销售,其中140件给万达店,60件给万象城店,且都能卖完,两专卖店销售这两种童装每件的利润(元)如表:A型利润(元)B型利润(元)万达店10080万象城店8090(Ⅰ)设分配给万达店A型产品x件(20≤x≤80),请在下表中用含x的代数式填写:A型分配量(件)B型分配量(件)万达店x万象城店若记这家服装公司卖出这200件产品的总利润为y(元),求y关于x的函数关系;(Ⅰ)现要求总利润不低于18140元,请说明有多少种不同分配方案,并写出各种分配方案.2. A市和B市分别有库存某种机器12台和6台,现决定支援C市10台,D市8台,已知从A市调运一台机器到C市、D市的运费分别为130元和200元;从B市调运一台机器到C市、D市的运费分别为100元和150元.(Ⅰ)填空:若从A市运往C市机器5台Ⅰ从A市运往D市机器________台;Ⅰ从B市运往C市机器________台;Ⅰ从B市运往D市机器________台.(Ⅰ)填空:设从A市运往C市机器x台,总运费为y元.Ⅰ从A市运往D市机器________台;Ⅰ从B市运往C市机器________台;Ⅰ从B市运往D市机器________台;Ⅰ总运费y关于x的函数关系式为y=______;Ⅰ若总运费不超过2650元,共有________种不同的调动方案.(Ⅰ)求使总运费最低的调运方案,最低总运费是多少?3. 某工厂打算新建造10条生产线用于生产某种新产品,经过考察后有甲、乙两种生产线可供选择,已知每条甲种生产线建造费用为100万元,每天可生产500件产品,每条乙种生产线建造费用为30万元,每天可生产100件产品,设工厂建造甲种生产线x条(x为正整数).(Ⅰ)根据题意填表:甲种生产线数量/条36 (x)甲种生产线建造费用/万元300…乙种生产线建造费用/万元210…(Ⅰ)当x为何值时,该工厂新建造生产线的总费用为790万元;(Ⅰ)若该工厂计划使这些生产线每天至少生产3400个产品,则该工厂应该如何选择建造生产线的方式,使得建造总费用最低.4. 某校计划租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师,租车费用不超过2300元.现有甲、乙两种大客车,它们的载客量和租金如下:甲种客车乙种客车载客量/(人/辆)4530租金/(元/辆)400280为给出最节省费用的租车方案,请先帮小明完成分析,再解决问题.小明的分析:(Ⅰ)可以先考虑共需租多少辆车,从乘车人数的角度出发,要注意到以下要求:Ⅰ要保证240名师生都有车坐;Ⅰ要使每辆汽车上至少有1名教师.根据Ⅰ可知,汽车总数不能少于________,根据Ⅰ可知,汽车总数不能大于________,综合起来可知汽车总数为________;(Ⅰ)设租用甲种客车x辆(x为非负整数),试填写下表:车型甲乙数量/(辆)x载客人数/(人)45x费用/(元)400x(Ⅰ)请给出租车费用最节省的方案.类型四最值问题典例精讲例4小王计划批发“山东大樱桃”和“泰国榴莲”两种水果共120斤a,樱桃和榴莲的批发价分别为32元/斤和40元/斤b.设购买了樱桃x斤(x≥0).(Ⅰ)若小王批发这两种水果正好花费了4400元,那么小王分别购买了多少斤樱桃和榴莲?填写下表,并列方程求解;品种批发价(元/斤)购买斤数(斤)小王应付的钱数(元)樱桃32x榴莲40(Ⅰ)设小王购买两种水果的总花费为y元,试写出y与x之间的函数表达式;(Ⅰ)若要求所批发的榴莲的斤数不少于樱桃斤数的2倍c,那么购买樱桃的数量为多少斤时,可使小王的总花费最少?这个最少花费是多少?【分层分析】(Ⅰ)由题干信息a可知,当购买樱桃x斤时,则购买榴莲________斤,由应付钱数=批发量×批发价,结合题干信息b可知,小王此时购买樱桃应付的钱数为______,购买榴莲应付的钱数为______;(Ⅰ)由总花费=购买樱桃应付的钱+购买榴莲应付的钱,结合(Ⅰ)知,y关于x的函数表达式为________________________________________________________________________;(Ⅰ)由题干信息a,c可列不等式为____________,结合(Ⅰ)知,当x=________时,小王的总花费最少,最少花费为________元.【自主解答】针对演练1. 某超市3月份购进甲、乙两种商品共50件,甲商品进价为100元/件,售价为120元/件,乙商品进价为110元/件,售价为150元/件. 设超市购进甲商品x 件. (Ⅰ)根据题意填表:购进甲商品的数量/件 10 20 x 甲商品获得的利润/元 200 乙商品获得的利润/元1600(Ⅰ)若销售完这批商品后超市共获利1700元,求甲、乙两种商品各购进了多少件? (Ⅰ)若该超市计划4月份再次购进甲、乙两种商品共50件,其中乙商品数不超过甲商品数的2倍,求销售完这50件商品超市可获得的最大利润是多少?2. 小明和小华住在甲地,两人计划周末一起出去到乙地游玩.甲,乙两地相距60 km ,两人以不同的出行方式前往乙地,小明乘坐汽车以60 km/h 的速度前往乙地,小华则骑电动车以30 km/h 的速度从甲地出发前往乙地,小明到达乙地后在等小华半小时后,临时有事以40 km/h 的速度返回甲地,小华则继续前往乙地独自游玩,设行驶时间为x h . (Ⅰ)根据题意填表:时间/h0.5 1 1.5 2 … 小明到甲地的距离/km 30 60 … 小华到甲地的距离/km1545…(Ⅰ)当小明和小华两人相遇时,求行驶时间; (Ⅰ)求小明和小华在相遇前的最大距离为多少km ?参考答案类型一 行程问题典例精讲例 1 解:(Ⅰ)23,1,0.5;【解法提示】设小明离家的距离y 与小明离开家的时间x 的关系式为y =kx (k ≠0,0≤x ≤15),将(15,1)代入y =kx 得,15k =1,解得k =115,Ⅰy =115x (0≤x ≤15).当x =10时,y =115×10=23;当x =15时,y =115×15=1;从图中可知,当小明离开家的时间为45 min 时,小明离家的距离为12km.(Ⅰ)Ⅰ25;Ⅰ115;Ⅰ160;Ⅰ9或42;【解法提示】Ⅰ由图可知,小明离家时间为45 min 时,到达文化馆,小明离家时间为70 min 时,离开文化馆,故小明在文化馆停留70-45=25 min ;Ⅰ由图可知,小明离家时间为15 min 时,到距家1 km 的体育馆,则速度=115km/min ;Ⅰ由图可知,小明离家时间为70 min 时,离开距家12km 的文化馆,小明离家时间为100 min 时,回到家中,则速度为:0.5100-70=160km/min ;Ⅰ由图可知,小明距家的距离有两次为0.6 km ,分别在0 min ~15 min 之间和30 min ~45 min 之间,满足y =115x (0≤x ≤15),当y =35时,即115x =35,Ⅰx =9,则小明第一次距家的距离为35km 时,他离开家的时间为9 min ;设30 min ~45 min 时小明离家的距离y 与时间x的函数关系式为:y =kx +b (k ≠0),将(30,1),(45,12)代入,得⎩⎪⎨⎪⎧30k +b =145k +b =12,解得⎩⎪⎨⎪⎧k =-130b =2,Ⅰy =-130x +2(30≤x ≤45),则当y =35时,即-130x +2=35,解得x =42.则小明第二次距家的距离为35km 时,他离开家的时间为42 min .(Ⅰ)y =⎩⎪⎨⎪⎧115x (0≤x ≤15)1(15<x ≤30)-130x +2(30<x ≤45).【解法提示】由图可知,在15 min 到30 min 之间小明离家的距离不变为1 km ,由(Ⅰ)(Ⅰ)知y =115x (0≤x ≤15),y =-130x +2(30≤x ≤45),Ⅰ当0≤x ≤45时 y =⎩⎪⎨⎪⎧115x (0≤x ≤15)1(15<x ≤30)-130x +2(30<x ≤45).针对演练1. 解:(Ⅰ)Ⅰ360;Ⅰ60;Ⅰ56;Ⅰ6803;Ⅰ52或196;【解法提示】Ⅰ由图知,A ,B 两城相距360 km ;Ⅰ当0≤x ≤2时,甲车速度=120÷2=60 km/h ;Ⅰ乙车行驶时间:360÷60=6 h ,Ⅰ乙车比甲车晚出发12h ,Ⅰ乙车比甲车晚到6-173+12=56h ;Ⅰ甲车出发4 h 距A 城:120+(4-83)×(360-120)÷3=6803;Ⅰ设甲、乙相遇时用时为th ,当0≤x ≤83时,Ⅰ0≤x ≤2时甲、乙速度相同,Ⅰ甲、乙在2≤x ≤83之间相遇,则120=(t -12)60,解得t =52;当83≤x ≤173时,120+(t -83)80=(t -12)60,解得t =196,综上所述,当52h 或196h 时,甲、乙相遇.(Ⅰ)y 1=⎩⎪⎨⎪⎧60x (0≤x ≤2)120 (2<x ≤83)80x -2803(83<x ≤173); 【解法提示】当0≤x ≤2时,设解析式为y 1=ax ,将(2,120)代入得120=2x ,解得x =60,Ⅰy 1=60x ;当2<x ≤83,由图象知y 1=120;当83<x ≤173时,设抛物线解析式为y 1=ax +b ,将(83,120),(173,360)代入得⎩⎨⎧120=83k +b360=173k +b,解得⎩⎪⎨⎪⎧k =80b =-2803,即y 1=80x -2803. Ⅰy 1=⎩⎪⎨⎪⎧60x (0≤x ≤2)120 (2<x ≤83)80x -2803(83<x ≤173); (Ⅰ)当72≤x ≤5时,由题意可知,甲车在乙车前面,设两车所在位置的距离相差y km则y =(80x -2803)-(60x -30)=20x -1903Ⅰ20>0Ⅰy 随x 的增大而增大 Ⅰ当x =5时,y 取得最大值1103答:两车所在位置的距离最多相差1103km.2. 解:(Ⅰ)280,360,420;【解法提示】由图Ⅰ知,当t =14时,s =280,Ⅰ游轮停靠前后速度均为20 km/h ,Ⅰ游轮一共行驶的时间t 1=420÷20=21 h ,Ⅰ游轮的停靠时间=24-21=3 h ,Ⅰ当t =21时,游轮行驶时间为21-3=18 h ,此时s =18×20=360 (km).由图知当t =24时,s =420 (km). (Ⅰ)Ⅰ3;Ⅰ8.4,50;Ⅰ130;【解法提示】Ⅰ由(Ⅰ)得停靠时间为3 h ;Ⅰ货轮从甲到丙地所用的时间=24-1.6-14=8.4 h ,Ⅰ货轮的速度=420÷8.4=50 km/h ;Ⅰ游轮从乙地出发的时间t =17 h ,货轮距离甲地=50×(17-14)=150 (km),Ⅰ两船相距=280-150=130 (km). (Ⅰ)s =⎩⎪⎨⎪⎧20t (0≤t ≤14)280(14<t ≤17)20t -60(17<t ≤24).【解法提示】当0≤t ≤14时,设s 1=k 1t 1(k 1≠0),将点(14,280)代入解得k 1=20,即s 1=20t 1;当14<t ≤17时,游轮在乙地停靠,s =280;当17<t ≤24时,设s 2=k 2t 2+b (k 2≠0),将点(21,360),(24,420)代入得 ⎩⎪⎨⎪⎧21k 2+b =36024k 2+b =420,解得⎩⎪⎨⎪⎧k 2=20b =-60,Ⅰs 2=20t 2-60.综上所述 s =⎩⎪⎨⎪⎧20t (0≤t ≤14)280(14<t ≤17)20t -60(17<t ≤24). 类型二 最优方案选取典例精讲例 2 【分层分析】(Ⅰ)y 1=70x ,y 2=80x ,y 2=64x +480; (Ⅰ)70x =64x +480,8400,8160,70x ,64x +480. 解:(Ⅰ)1400;7000;1600;6880;【解法提示】在甲药店不管一次购买多少包,每包价格为70元,买20包时,在甲药店付款金额为70×20=1400(元),买100包,在甲药店付款金额为100×70=7000(元);在乙药店,一次购数量不超过30包时,每包售价为80元,买20包时,在乙药店付款金额为80×20=1600(元),买100包,在乙药店付款金额为80×30+(100-30)×80×0.8=6880(元). (Ⅰ)y 1=70x (x >0);y 2=⎩⎪⎨⎪⎧80x (0<x ≤30)64x +480(x >30);【解法提示】设在同一家药店一次购买这种口罩的包数为x (x 为非负整数),在甲药店购买这种口罩的金额为y 1=70x ,在乙药店购买这种口罩的金额为:当x ≤30时,y 2=80x (0<x ≤30),当x >30时,y 2=80×30+(x -30)×80×0.8=64x +480,综上所述,y 2=⎩⎪⎨⎪⎧80x (0<x ≤30)64x +480(x >30).(Ⅰ)Ⅰ80;Ⅰ乙;Ⅰ甲.【解法提示】Ⅰ依题意得,y 1=y 2,Ⅰ70x =80x ,该方程无解;或70x =64x +480,解得x =80;Ⅰ若该公司在同一家药店一次购买口罩的数量为120包,在甲药店购买这种口罩的金额为y 1=70x =70×120=8400(元),Ⅰ120>30,Ⅰ在乙药店购买这种口罩的金额为y 2=64x +480=64×120+480=8160(元).Ⅰ8400>8160,Ⅰ在乙药店购买花费少;Ⅰ把y =4200代入y 1=70x ,得70x =4200,Ⅰx =60;Ⅰ80×30=2400,2400<4200,Ⅰx >30,把y =4200代入y 2=64x +480=4200,Ⅰx =58.125≈58,Ⅰ60>58,Ⅰ在甲药店购买数量多.针对演练1. 解:(Ⅰ)16800,33000,14400 36000;【解法提示】一次购买6台,甲店收费为:5×3000+(6-5)×3000×0.6=16800(元),乙店收费为:6×3000×0.8=14400(元),一次购买15台,甲店收费为:5×3000+(15-5)×3000×0.6=33000(元),乙店收费为:15×3000×0.8=36000(元). (Ⅰ)当0<x ≤5时,y 1=3000x ;当x >5时,y 1=3000×5+3000×0.6(x -5)=1800x +6000Ⅰy 1=⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数)1800x +6000(x >5且x 为正整数)y 2=3000×0.8x =2400x (x >0且x 为正整数); (Ⅰ)设y 1与y 2的总费用的差为y 元 则y =1800x +6000-2400x =-600x +6000. 当y =0时,即-600x +6000=0,解得x =10. Ⅰ当x =10时,选择甲乙两家电器店购买一样合算; Ⅰ-600<0Ⅰy 随x 的增大而减小. Ⅰx >6Ⅰ当6<x <10时,y 1>y 2,在乙电器店购买更合算;当x >10时,y 1<y 2,在甲电器店购买更合算. 2. 解:(Ⅰ)160,200,120,240;【解法提示】根据题意得,甲公司租车4小时=120+4×10=160(元),甲公司租车8小时=120+8×10=200(元);乙公司租车4小时=4×30=120(元),乙公司租车8小时=8×30=240(元).(Ⅰ)⎩⎪⎨⎪⎧y 1=120+10x (x >0)y 2=30x (x >0); 【解法提示】甲公司租车租金y 1与租车时间x 的关系式为:y 1=120+10x (x >0),乙公司租车租金y 2与租车时间x 的关系式为:y 2=30x (x >0). (Ⅰ)Ⅰ6;Ⅰ甲;Ⅰ乙.【解法提示】Ⅰ当租金相同时,y 1=y 2,Ⅰ120+10x =30x ,解得x =6,Ⅰ租车租金相同时,租车时间为6小时;Ⅰ当租车时间为7小时时,甲公司租车租金y 1=120+10×7=190(元),乙公司租车租金:y 2=30×7=210(元),Ⅰ190<210,Ⅰ甲公司租车租金少;Ⅰ当租车租金为270元时,甲公司租车时长:x =(270-120)÷10=15小时,乙公司租车时长:x =270÷30=9小时,Ⅰ15>9,Ⅰ乙公司租车时间少. 3. 解:(Ⅰ)40,240,50,220;【解法提示】一次性购书的标价总额为50元时,在甲书店应支付:50×0.8=40(元),在乙书店应支付:50(元),一次性购书的标价总额为300元时,在甲书店应支付:300×0.8=240(元),在乙书店应支付:100+(300-100)×0.6=220(元). (Ⅰ)y 1=0.8x (x >0) 当0<x ≤100时,y 2=x当x >100时,y 2=0.6(x -100)+100=0.6x +40Ⅰy 2=⎩⎪⎨⎪⎧x (0<x ≤100)0.6x +40(x >100);(Ⅰ)Ⅰ200;Ⅰ乙;Ⅰ甲.【解法提示】Ⅰ依题意,y 1=y 2,即0.8x =0.6x +40,解得x =200,Ⅰ标价总额为200元时,应支付的金额相同;Ⅰ甲书店标价总额为:280÷0.8=350(元),乙书店的标价总额为:280=0.6x +40,即x =400(元),Ⅰ350<400,Ⅰ在乙书店购书标价总额多;Ⅰ在甲书店应支付:120×0.8=96(元),在乙书店应支付:120×0.6+40=112(元),Ⅰ112>96,Ⅰ在甲书店购书应支付金额少.4. 解:(Ⅰ)320,2400,400,2250;【解法提示】当一次购买40棵时,应付给甲园林公司的金额为40×8=320(元),应付给乙园林公司金额为40×10=400(元);当一次购买300棵时,应付给甲园林公司的金额为300×8=2400(元),应付给乙园林公司的金额为50×10+10×(300-50)×0.7=2250(元). (Ⅰ)y 1=8x (x ≥0) 当0<x ≤50时,y 2=10x当x >50时,y 2=50×10+(x -50)×10×0.7=7x +150Ⅰy 2=⎩⎪⎨⎪⎧10x (0≤x ≤50)7x +150(x >50);(Ⅰ)Ⅰ150;Ⅰ甲;Ⅰ乙.【解法提示】Ⅰ令8x =7x +150,解得x =150;Ⅰ140×8=1120(元),7×140+150=1130(元),故在甲园林公司付款金额少;Ⅰ2040÷8=255,令7x +150=2040,解得x =270,则在乙园林公司购买的数量多.类型三 最优方案设计典例精讲例 3 【分层分析】(Ⅰ)16-x ,800x ,720(16-x ),800x +720(16-x ); (Ⅰ)50x +40(16-x )≥680,x ≥4,y =800x +720(16-x ),4. 解:(Ⅰ)3200,9600,5760,2880; (Ⅰ)由题意得800x +720(16-x )=12240 解得x =9,此时16-9=7答:当租用A 种货车9辆,B 种货车7辆时,租车总费用为12240元; (Ⅰ)由题意得50x +40(16-x )≥680,解得x ≥4. 设租车的总费用为y 元由题意得y =800x +720(16-x )=80x +11520 Ⅰ80>0Ⅰy 随x 的增大而增大 Ⅰ当x =4时,y 取得最小值 此时16-4=12答:完成此项运送任务最节省费用的租车方案为租用A 种货车4辆,B 种货车12辆.针对演练1. 解:(Ⅰ)140-x ,80-x ,x -20; Ⅰ分配给万达店A 型产品x 件(20≤x ≤80),Ⅰy =100x +80(140-x )+80(80-x )+90(x -20)=30x +15800 即y 关于x 的函数关系式是y =30x +15800(20≤x ≤80); (Ⅰ)由题意,可得30x +15800≥18140 解得x ≥78 Ⅰ20≤x ≤80 Ⅰ78≤x ≤80 Ⅰx 是整数 Ⅰx =78,79,80. Ⅰ分配方案有三种:方案一:给万达店A 型产品78件,B 型产品62件,给万象城店A 型产品2件,B 型产品58件;方案二:给万达店A 型产品79件,B 型产品61件,给万象城店A 型产品1件,B 型产品59件;方案三:给万达店A 型产品80件,B 型产品60件,给万象城店A 型产品0件,B 型产品60件.2. 解:(Ⅰ)Ⅰ7;Ⅰ5;Ⅰ1;【解法提示】A 市和B 市分别有库存某种机器12台和6台,现支援C 市10台,D 市8台.若从A 市运往C 市机器5台,则:Ⅰ从A 市运往D 市机器12-5=7台;Ⅰ从B 市运往C 市机器10-5=5台;Ⅰ从B 市运往D 市机器6-5=1台. (Ⅰ)Ⅰ(12-x );Ⅰ(10-x ); Ⅰ(x -4); Ⅰ-20x +2800;Ⅰ3;【解法提示】A 市和B 市分别有库存某种机器12台和6台,现支援C 市10台,D 市8台.设从A 市运往C 市机器x 台,则:Ⅰ从A 市运往D 市机器(12-x )台;Ⅰ从B 市运往C 市机器(10-x )台;Ⅰ从B 市运往D 市机器6-(10-x )=(x -4)台;Ⅰ总运费y 关于x 的函数关系式为:y =130x +200(12-x )+100(10-x )+150(x -4).Ⅰy =-20x +2800;Ⅰ由题意可得:⎩⎪⎨⎪⎧x ≥0-20x +2800≤2650,解得152≤x ≤10.Ⅰx 须为正整数,Ⅰx 的值可取8,9,10,即共有3种方案.(Ⅰ)ⅠA 市运往C 市机器x 台,运往D 市(12-x )台B 市运往C 市机器(10-x )台,运往D 市(x -4)台Ⅰ4≤x ≤10.从A 市运往C 市机器x 台时,总运费为y =-20x +2800Ⅰ-20<0Ⅰy 随x 的增大而减小Ⅰ当x =10时,y 取得最小值,y 的最小值是2600.答:使总运费最低的调运方案是A 市运往C 市10台,A 市运往D 市2台,B 市运往C 市0台,B 市运往D 市6台,最低总费用为2600元.3. 解:(Ⅰ)甲种生产线:600,100x ;乙种生产线:120,300-30x ;(Ⅰ)由题意得:100x +300-30x =790,解得x =7Ⅰ当x =7时,该工厂新建造生产线的总费用为790万元;(Ⅰ)设该工厂新建造生产线的总费用为y 元则y =100x +300-30x =70x +300由题意得:500x +100×(10-x )≥3400解得x ≥6Ⅰ70>0,Ⅰy 随x 的增大而增大Ⅰ当x =6时,y 取得最小值.答:该工厂建造甲种生产线6条,乙种生产线4条时,建造总费用最低.4. 解:(Ⅰ)6,6,6;(Ⅰ)6-x ,180-30x ,-280x +1680;(Ⅰ)根据题意,得⎩⎪⎨⎪⎧45x +180-30x ≥234+6400x -280x +1680≤2300 解得4≤x ≤316设租车费用为y 元,则y =400x -280x +1680=120x +1680(4≤x ≤316,且x 为整数). Ⅰ120>0Ⅰy 随x 的增大而增大.Ⅰ当x =4时,租车费用最少.答:租车费用最节省的方案是租甲种客车4辆,乙种客车2辆.类型四最值问题典例精讲例4【分层分析】(Ⅰ)120-x,32x,4800-40x;(Ⅰ)y=-8x+4800;(Ⅰ)120-x≥2x,40,4480.解:(Ⅰ)32x,120-x,4800-40x;由题意得:32x+4800-40x=4400解得x=50Ⅰ120-x=70.答:小王购买了50斤樱桃和70斤榴莲;(Ⅰ)由题意得:y=32x+4800-40x=-8x+4800Ⅰy=-8x+4800 (0≤x≤120);(Ⅰ)Ⅰ120-x≥2x解得x≤40,由题意知x≥0Ⅰ0≤x≤40Ⅰ-8<0Ⅰy随x的增大而减小Ⅰ当x=40时,y取得最小值,y最小=-8×40+4800=4480元.答:购买樱桃的数量为40斤时,可使小王的总花费最少,最少花费是4480元.针对演练1. 解:(Ⅰ)甲商品获得的利润:400,20x;乙商品获得的利润:1200,40(50-x);(Ⅰ)由题意得,20x+40(50-x)=1700,解得x=15Ⅰ50-x=35Ⅰ甲、乙两种商品各购进了15件、35件;(Ⅰ)设销售完4月份购进的这50件商品超市共获得利润y元根据题意得y=20x+40(50-x)=-20x+2000(0<x<50)Ⅰ-20<0,Ⅰy随x的增大而减小Ⅰ50-x≤2xⅠx ≥503Ⅰ503≤x ≤50 Ⅰx 取整数Ⅰ当x =17时,y 有最大值,最大值为y =-20×17+2000=1660答:当甲种商品购进17件,乙种商品购进33件时,可使超市4月获得的利润最大,最大利润为1660元.2. 解:(Ⅰ)60,40,30,60;(Ⅰ)由题意知:小明从甲地前往乙地的过程中不会与小华相遇小明返回途中与小华相遇,则30x =60-40(x -1.5)解得x =127答:当小明和小华两人相遇时,行驶时间为127h ; (Ⅰ)由(Ⅰ)知,当0≤x <127时,小明和小华未相遇 由题意得,当0≤x ≤1时,小明和小华之间的距离为y =(60-30)x =30xⅠ30>0Ⅰy 随x 的增大而增大当1<x <127时,小明和小华之间的距离逐渐缩小 Ⅰ当x =1时,相遇前小明和小华两人之间距离最大,最大距离为30 km答:小明和小华相遇前,两人之间的最大距离为30 km.。

初三数学上册综合算式专项练习题一元一次方程的应用

初三数学上册综合算式专项练习题一元一次方程的应用

初三数学上册综合算式专项练习题一元一次方程的应用一、商店促销活动(300字)假设某商店举行了一次促销活动,为了吸引更多的顾客,他们决定对一部分商品降价出售。

现在我们来解决以下问题:假设原价为x元的商品降价后售价为(2x - 100)元,请问这个售价是原价的多少折?解:折扣是指原价和售价之间的折算比例,可以用售价除以原价得到。

所以,我们可以得到如下一元一次方程:(2x - 100) = x ×折扣率通过移项整理方程,我们得到:x ×折扣率 = 2x - 100将方程化简,得到:x ×折扣率 - 2x = -100进一步化简,得到:-x = -100通过两边乘以-1,可以得到解:x = 100所以,售价是原价的1折。

二、运动会报名费(300字)某初中正在组织一年一度的运动会,学生们需要缴纳一定的报名费参与比赛。

已知男生缴纳的报名费是女生的3倍,而且男生和女生共缴纳了240元。

现在我们来解决以下问题:男生和女生每人各缴纳多少报名费?解:设女生的报名费为x元,则男生的报名费是3x元。

根据题意,可以得到以下一元一次方程:3x + x = 240通过合并同类项,我们得到:4x = 240通过除以4,可以得到解:x = 60所以,女生每人缴纳60元报名费,男生每人缴纳180元报名费。

三、公交车票价(300字)某城市的公交车票价根据乘坐里程进行计算,假设票价与里程成正比。

已知3公里的公交车票价为6元,而5公里的票价为10元。

现在我们来解决以下问题:乘客乘坐10公里需要多少元?解:设乘客乘坐x公里需要y元,根据题意,可以得到以下一元一次方程:3/6 = x/y通过交叉乘法,我们得到:3y = 6x进一步化简,得到:y = 2x根据题目给出的信息,我们可以列出以下方程:2 × 5 = 1010 = 2 × x通过求解,可以得出:x = 5所以,乘客乘坐10公里需要10元。

应用题专题训练函数(对勾函数)

应用题专题训练函数(对勾函数)

应用题综合复习----对勾函数1、甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成;可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元。

①把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出函数的定义域;②为了使全程运输成本最小,汽车应以多大速度行驶?2、某森林出现火灾,火势正以每分钟2m100的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后五分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火2m50,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为60元.(1)设派x名消防队员前去救火,用t分钟将火扑灭,试建立t与x的函数关系式;(2)问应该派多少消防队员前去救火,才能使总损失最少?精选范本,供参考!精选范本,供参考!3、某学校要建造一个面积为10000平方米的运动场。

如图,运动场是由一个矩形ABCD 和分别以AD 、BC 为直径的两个半圆组成。

跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮。

已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元 (1) 设半圆的半径OA=r (米),试建立塑胶跑道 面积S 与r 的函数关系S(r )(2) 由于条件限制[]30,40r ∈,问当r 取何值时,运动场造价最低?(精确到元)4、已知某种稀有矿石的价值y (单位:元)与其重量ω(单位:克)的平方成正比,且3克该种矿石的价值为54000元。

⑴写出y (单位:元)关于ω(单位:克)的函数关系式;⑵若把一块该种矿石切割成重量比为1:3的两块矿石,求价值损失的百分率; ⑶把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大。

(注:价值损失的百分率100%-=⨯原有价值现有价值原有价值;在切割过程中的重量损耗忽略不计)5、国家加大水利工程建设,某地区要修建一条灌溉水渠,其横断面为等腰梯形(如图),底角A为060,考虑到坚固性及用料原因,要求其横断面的面积为63平方米,记水渠深为x米,用料部分的周长(即渠底BC及两腰长的和)为y米,⑴.求y关于x的函数关系式,并指出其定义域;⑵.当水渠的腰长x为多少米时,水泥用料最省(即断面的用料部分的周长最小)?求此时用料周长的值⑶.如果水渠的深限制在3,3⎡⎤⎣⎦范围内时,横断面用料部分周长的最小值是多少米?6、因客流量临时增大, 某鞋店拟用一个高为50㎝(即EF=50㎝)的平面镜自制一个竖直摆放的简易鞋镜. 根据经验,一般顾客AB的眼睛B到地面的距离(cm)x在区间[140,180]内. 设支架FG高为(090)h h<<㎝, 100AG=㎝, 顾客可视的镜像范围为CD(如图所示), 记CD的长度为y (y GD GC=-).(1) 当40h=㎝时, 试求y关于x的函数关系式和y的最大值;(2) 当顾客的鞋A在镜中的像1A满足不等关系1GC GA GD<≤(不计鞋长)时, 称顾客可在镜中看到自己的鞋. 若使一般顾客都能在镜中看到自己的鞋, 试求h的取值范围.第6题ABC DEFG A1·精选范本,供参考!精选范本,供参考!7、某城市坐落在一个三角形海域的顶点O 处(如图),一条海岸线AO 在城市O 的正东方向,另一条海岸线OB 在城市O 北偏东)31(tan =θθ方向,位于城市O 北偏东3(cos )25παα-=方向15km 的P 处有一个美丽的小岛. 旅游公司拟开发如下一条旅游观光线路:从城市O 出发沿海岸线OA 到达C 处,再从海面直线航行,途经小岛P 到达海岸线OB 的D 处,然后返回城市O. 为了节省开发成本,要求这条旅游观光线路所围成的三角形区域面积最小,问C 处应选址何处?并求这个三角形区域的最小面积.8、某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离()x km 的关系为:(08)35kp x x =≤≤+,若距离为1km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设()f x 为建造宿舍与修路费用之和. (I )求()f x 的表达式;(II )宿舍应建在离工厂多远处,可使总费用()f x 最小,并求最小值.(第7题图)精选范本,供参考!9、在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业.其用氧量包含3个方面:①下潜时,平均速度为v (米/单位时间),单位时间内用氧量为2cv (c 为正常数);②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③返回水面时,平均速度为2v(米/单位时间), 单位时间用氧量为0.2.记该潜水员在此次考古活动中,总用氧量为y . (1)将y 表示为v 的函数;(2)设0<v ≤5,试确定下潜速度v ,使总的用氧量最少.10、某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元. (Ⅰ)求该企业使用该设备x 年的年平均污水处理费用y (万元); (Ⅱ)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?11、某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (x∈*N)名员工从事第三产业,调整后他们平均每人每年创造利润为310500xa⎛⎫-⎪⎝⎭万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.2x%.(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?12、为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:()()01035kC x xx=≤≤+,若不建隔热层,每年能源消耗费用为8万元.设()f x为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k的值及()f x的表达式;(Ⅱ)隔热层修建多厚对,总费用()f x达到最小,并求最小值.精选范本,供参考!。

初三应用题综合复习专项训练

初三应用题综合复习专项训练

新课标初三应用题综合复习专项训练一、选择题1.一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是( )A 、16B 、25C 、34D 、612.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是( )A 、10岁B 、15岁C 、20岁D 、30岁3.小明买了80分与2元的邮票共16枚,化了18元8角,若设他买了80分邮票x 枚,可列方程为( )A 、80x+2(16—x)=188B 、80x+2(16—x)=18.8C 、0.8x+2(16—x)=18.8D 、8x+2(16—x)=1884.在一个农场,母鸡的只数与猪的头数之和是70,而腿数之和是196,则母鸡比猪多( ) A 、14 B 、16 C 、22 D 、425.小明把400元钱存入银行,年利率为1.8%,到期时小明得到利息36元,则她一共存了( )A 、6年B 、5年C 、4年D 、3年6.一个三位数,个位数字是c ,十位数字是b ,百位数字是a ,这个三位数是( )A 、abcB 、1000abcC 、a+b+cD 、100a+10b+c7.甲、乙两人同时同地相背而行,甲每小时行a 千米,乙每小时行b 千米,x 小时后,二人相距( )A 、b x a x +B 、xb x a + C 、ax+bx D 、ax —bx 8.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后又降20%,现售价为n 元,那么该电脑的原售价为( ) A 、元⎪⎭⎫ ⎝⎛+m n 54 B 、元⎪⎭⎫ ⎝⎛+m n 45 C 、(5m+n ) D 、(5n+m ) 9.一项工程,甲独做需m 天,乙独做需n 天,则甲、乙合做需( )A 、天⎪⎭⎫ ⎝⎛+n m 11 B 、天n m mn + C 、天mn n m + D 、以上都不对 二、填空题10.国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元.若设小明的这笔一年定期存款是x 元,根据题意,可列方程为.11.如图是“星星超市”中“飘扬”洗发水的价格标签,请你在横线上填写它的原价.12.某月日历有一竖列四个日期,其中第二个日期与第四个日期的和是36,那么第三个日期是___________13.年暑假,李老师一家三口人外出旅行一周,这一周各天的日期之和是91,那么李老师是_________号回家的14.果这个月的5号是星期三,则20号是星期_________15.根铁丝长为40cm,把它围成一个四边形,则得到的最大的面积是__________cm216.辆汽车以a千米/的速度行驶b千米,若速度加快10千米/时,则可以少用__________小时17.人上山的速度为4千米/时,下山的速度为6千米/时,则此人上山下山的整个路程的平均速度是____________千米/时18.商品利润是a元,利润率是20%,此商品进价是_______(利润率=利润/成本)19.甲数为x,且甲数比乙数的2倍大5,则乙数为_________(用含x的代数式表示)20.商店购进一种商品,出售时要在进价基础上加一定的利润,销售量x与售价C((2)当销售数量为12千克时,售价C为____________21.某校为适应电化教学的需要,新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,教室共有p个座位,则a、n和m之间的关系为______________a、n和p之间的关系为___________三.解答题22某民航规定旅客可以免费携带a千克物品,但若超过a千克,则要收一定的费用,费用规定如下:旅客的携带的重量b千克(b>a)乘以10,再减去200,就得你应该交的费用。

九年级数学下册综合算式专项练习题分式方程的应用

九年级数学下册综合算式专项练习题分式方程的应用

九年级数学下册综合算式专项练习题分式方程的应用一、简介九年级数学下册综合算式专项练习题是为了帮助学生巩固和应用分式方程的知识而设计的,分式方程是数学中的一个重要概念,通过解决实际问题,学生将学会如何运用分式方程进行实际计算和推理。

二、题目一:水池的装满时间某水池有4个进水管,A管需要2小时装满,B管需要3小时装满,C管需要4小时装满,D管需要6小时装满。

假设所有管道同时开放,请问多长时间可以装满水池?解析:首先,设水池的容量为C,每个管道每小时的流量为m1、m2、m3、m4,根据题意我们可以列出如下方程:m1 * 2 + m2 * 3 + m3 * 4 + m4 * 6 = C又因为要装满水池,所以方程会有一个限制条件:m1 + m2 + m3 + m4 = 1通过求解以上方程组,可以得到水池装满所需要的时间。

三、题目二:面积的比值某个面积为20的矩形的长和宽之比是2:5,如果将矩形的长增加15,宽减少5,新矩形的面积与原矩形的面积之比是多少?解析:设原矩形的长为2x,宽为5x,则原矩形的面积为10x^2。

根据题意,新矩形的长为2x+15,宽为5x-5,则新矩形的面积为(2x+15)(5x-5)。

根据题目给出的比例关系,可以列出如下方程:(2x+15)(5x-5) / 10x^2 = ?通过化简和约分,我们可以求得新矩形面积与原矩形面积的比值。

四、题目三:桶的装满时间某个桶的容量为12升,其中装有纯酒精和水的混合物。

已知在桶中的液体中酒精的体积比例为3:5,酒精的密度为0.8 g/cm³,水的密度为1 g/cm³。

请问桶中液体的总质量是多少?解析:设桶中酒精的体积为3x升,水的体积为5x升。

根据题意,我们可以列出如下方程:(3x * 0.8 + 5x * 1) = ?通过求解以上方程,可以得到桶中液体的总质量。

五、题目四:两条船段时间的相遇甲船顺流行驶10小时,与乙船相遇;甲船逆流行驶15小时,再次与乙船相遇。

九年级数学下册综合算式专项练习题分式方程的应用综合题

九年级数学下册综合算式专项练习题分式方程的应用综合题

九年级数学下册综合算式专项练习题分式方程的应用综合题分式方程在数学中是一个重要的概念,它在实际问题中的应用也非常广泛。

本篇文章将通过九年级数学下册综合算式专项练习题,来讨论分式方程的应用综合题。

一、整体方程思维训练本节我们将通过一道综合题来进行整体方程思维的训练。

【题目】健康食品A和食品B的价格之比为3:2。

如果购买健康食品A需要600元,求购买健康食品B的费用。

【解析】设食品B的价格为x,则食品A的价格为3x。

根据题意我们可以列出一个分式方程:(3x) / x = 600 / x。

通过交叉相乘可以得到:3x^2 = 600。

化简方程得:x^2 = 200。

通过开平方根可以得到:x = ±√200。

根据实际情况,费用不能为负数,所以x = √200。

因此,购买健康食品B的费用为√200。

二、分步解题法训练接下来,我们将通过一道综合题来进行分步解题法的训练。

【题目】小明一共有80元,他想要买一些铅笔和橡皮。

已知一支铅笔的价格是每支2元,一块橡皮的价格是每块5元。

如果他一共购买了x支铅笔和y块橡皮,且花光了所有的钱,请问他买了多少支铅笔和多少块橡皮?【解析】设铅笔的支数为x,橡皮的块数为y。

根据题意,我们可以列出以下两个方程:2x + 5y = 80(表示花费的总金额)x + y = ?(表示铅笔和橡皮的总数)通过这两个方程,我们可以使用分步解题法来求解这道题目。

首先,我们将第一个方程乘以2,得到4x + 10y = 160。

然后,我们将这个式子与第二个方程相减,得到3y = 80。

通过简单的计算,我们可以得到y = 80 / 3。

再将y的值代入第二个方程中,可以求得x的值:x + 80 / 3 = ?通过将y = 80 / 3的值代入,可以求得x的值为x = ?。

综上所述,我们可以通过以上步骤来解题,求出小明购买的铅笔和橡皮的具体数量。

三、实际问题应用训练接下来,我们将通过一道综合题来进行实际问题应用训练。

初三数学上册综合算式专项练习题二次函数的应用问题

初三数学上册综合算式专项练习题二次函数的应用问题

初三数学上册综合算式专项练习题二次函数的应用问题每年的初三学期末,数学上册都会考察一些综合算式专项练习题。

这些题目常常涉及到二次函数的应用问题,考察学生对于二次函数概念和应用的掌握程度。

在本文中,我们将通过几个例题来深入探讨如何应用二次函数解答这些问题。

例题一:小明用一块200元的布料做沙发套和坐垫套,已知沙发套的造价是坐垫套的两倍,而沙发套的造价又是面积的3倍。

问小明制作的沙发套和坐垫套的规格应该是多少?解析:假设坐垫套的价格为x元,则沙发套的价格为2x元。

根据题目条件,我们可以得到以下等式:2x = 3 * (长 * 宽)x = 长 * 宽由于沙发套和坐垫套的布料总共为200元,所以有以下等式:2x + x = 2003x = 200解方程可得:x = 66.67将x代入长 * 宽的等式中,可得:长 * 宽 = x长 * 宽 = 66.67由于长和宽都是正整数,且乘积最接近于66.67,我们可以尝试一些整数,如长=8,宽=8时,乘积为64,比较接近于66.67。

所以,小明制作的沙发套和坐垫套的规格应该是8米 * 8米。

通过这个例题可以看出,我们可以利用二次函数的概念来求解实际问题。

而且,通过解方程和求解最优值,我们可以得到问题的答案。

例题二:一枚打火机从2km的高空自由下落至地面,已知该打火机在下落过程中高度与时间的关系符合二次函数规律,并且在打火机落地前的2s时,高度为0。

问打火机自由落地所需的时间。

解析:设打火机的高度为h,时间为t。

根据题目条件,我们可以得到以下等式:h = at^2 + bt + c由于在打火机落地前的2s时,高度为0,我们可以得到以下等式:a * (2^2) +b * 2 +c = 04a + 2b + c = 0同时,已知打火机从2km的高空自由下落至地面,所以有以下等式:a * (0^2) +b * 0 +c = 2000c = 2000将c = 2000代入4a + 2b + c = 0,可得:4a + 2b + 2000 = 0解方程可得:a = -500b = 1000代入h = -500t^2 + 1000t + 2000 = 0,可得:-500t^2 + 1000t + 2000 = 0通过求解二次方程,可以得到t的值。

初三数学下册综合算式专项练习题解方程与不等式的应用能力

初三数学下册综合算式专项练习题解方程与不等式的应用能力

初三数学下册综合算式专项练习题解方程与不等式的应用能力在初三数学的学习过程中,综合算式是一个非常重要的知识点。

学生们需要通过解方程和不等式的应用题,来锻炼和提高他们的思维能力和解题能力。

本文将通过一些具体的综合算式专项练习题来解析方程与不等式的应用能力。

一、方程的应用能力1. 题目:甲航空公司和乙航空公司从A地到B地的直线距离为3600km。

两架飞机同时从A点起飞,甲航空公司的飞机速度是乙航空公司的5/4倍,飞机在起飞后的2小时,甲航空公司的飞机比乙航空公司的飞机少1000km。

求甲航空公司的飞机的速度。

解析:设甲航空公司飞机的速度为x km/h,则乙航空公司飞机的速度为(5/4)x km/h。

在2小时后,甲航空公司飞机比乙航空公司飞机少1000km,因此可以得到方程:2 * x = 2 * (5/4)x - 1000解方程可以得到:x = 200。

所以甲航空公司飞机的速度为200km/h。

2. 题目:小明和小红的年龄之和是30岁,小明的年龄减去小红的年龄是10岁。

求小明和小红的年龄分别是多少?解析:设小明的年龄为x岁,则小红的年龄为(30-x)岁。

根据题意,可以得到方程:x - (30 - x) = 10解方程可以得到:x = 20。

所以小明的年龄为20岁,小红的年龄为30-20=10岁。

二、不等式的应用能力1. 题目:某公司生产A、B两种产品,每个A产品的利润为3元,每个B产品的利润为5元。

该公司共生产了a个A产品和b个B产品,并且有限定条件:a > 10,b > 5。

现在要求该公司生产的产品利润总额不少于120元。

问a和b的取值范围。

解析:设a个A产品的总利润为3a元,b个B产品的总利润为5b 元。

根据题意,可以得到不等式:3a + 5b ≥ 120由于a > 10,b > 5,所以可以得到a ≥ 11,b ≥ 6。

因此,a和b的取值范围是a ≥ 11和b ≥ 6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标初三应用题综合复习专项训练
一、 选择题
1•一个两位数的十位数字与个位数字的和是 7,把这个两位数加上45后,结果
恰好成为数字对调后组成的两位数,则这个两位数是( )
A 、16
B 、25
C 、34
D 、61
2•甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是(

A 、10 岁
B 、15 岁
C 、20 岁
D 、30 岁
3 •小明买了 80分与2元的邮票共16枚,化了 18元8角,若设他买了 80分邮 票x 枚,可列方程为( )
A 、80x+2(16—x )=188
B 、80x+2(16—x )=18.8
C 、0.8x+2(16— x )=18.8
D 、8x+2(16—x )=188
4•在一个农场,母鸡的只数与猪的头数之和是
70,而腿数之和是196,则母鸡 比猪多( ) A 、14 B 、16 C 、22 D 、42
5•小明把400元钱存入银行,年利率为1.8%,至V 期时小明得到利息36元,则 她一共存了( )
A 、6年
B 、5年
C 、4年
D 、3年 6.一个三位数,个位数字是 c ,十位数字是b ,百位数字是a ,这个三位数是
( ) A 、abc B 、1000abc C 、a+b+c D 、100a+10b+c
7•甲、乙两人同时同地相背而行,甲每小时行 a 千米,乙每小时行b 千米,x 小时后,二人相距(
) A x x f a b ,
A 、
B 、
C 、ax+bx
D 、ax — bx a b x x 8 •随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低
m 元后又降20%,现售价为n 元,那么该电脑的原售价为( )
4 5
A 、 n m 兀
B 、 n m 兀
C 、(5m+n )
D 、(5n+m )
5 4 9.一项工程,甲独做需 m 天,乙独做需n 天,则甲、乙合做需(
) 1 1 十 mn 十 亠 m n 十
A、天
B、天
C、天
D、以上都不对
m n m n mn
二、填空题
10•国家规定:存款利息税二利息X 20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元•若设小明
的这笔一年定期存款是x元,根据题意,可列方程
为________________________ •
11 •如图是“星星超市”中“飘扬”洗发水的价格标签,请你在横线上
填写它的原价.
12•某月日历有一竖列四个日期,其中第二个日期与第四个日期的和是
36,那
么第三个日期是______________
13. 年暑假,李老师一家三口人外出旅行一周,这一周各天的日期之和是91,那
么李老师是__________ 回家的
14. 果这个月的5号是星期三,则20号是星期_____________
15. 根铁丝长为40cm,把它围成一个四边形,则得到的最大的面积是
_________ c n i
16. _______ 辆汽车以a千米/的速度行驶b千米,若速度加快10千米/时,则可以少用___________ 小时
17. 人上山的速度为4千米/时,下山的速度为6千米/时,则此人上山下山的整个
路程的平均速度是______________ 米/时
18. ______________________________________________ 商品利润是a元,利润率是20%,此商品进价是 _________________________________ (利润率=利润/成本) 19. 甲数为x,且甲数比乙数的2倍大5,则乙数为_______________ (用含x的代数式
表示)
20. 商店购进一种商品,出售时要在进价基础上加一定的利润,销售量x与售价C 间的
销售数量x (千克) 12
34
价格C (元) 2.5+0.25+0.47.5+0.610+0.8
(1)用数量x表示售价C的公式,C= _________________
(2)当销售数量为12千克时,售价C为_________________
21 •某校为适应电化教学的需要,新建阶梯教室,教室的第一排有a个座位,后
面每一排都比前一排多一个座位,若第n排有m个座位,教室共有p个座位,贝U a、n 和m 之间的关系为_______________________ a n和p之间的关系为_______________ 三•解答题
22某民航规定旅客可以免费携带a千克物品,但若超过a千克,则要收一定的费用,费用规定如下:旅客的携带的重量b千克(b>a)乘以10,再减去200,就得你应该交的费用。

(1)小明携带了50千克的物品,问他应交多少费用?
(2)小王交了100元费用,问他携带了多少千克物品?
(3)这里的a等于多少?
23.室有2 扇门和4 扇窗户,已知每扇门的价格为200 元,每扇窗户价格为400 元(1)n 个这样的教室的门窗共需多少元?
(2)某校教学楼共有36 个教室,那么门窗需多少钱?
24.用代数式表示下列问题的答案:
甲、乙两人从同于点出发,甲每小时走akm,乙每小时走bkm (b<a),用代数式表示:
(1)反向行走th,两人相距多少千米?
(2)同向行走th,两人相距多少千米?
(3)反向行走,甲比乙早出发mh,乙走nh,两人相距多少千米?
(4)同向行走,甲比乙晚出发mh,乙走nh (n>m),两人相距多少千米?
25 一串数字的排列规律是:第一个数是20,从第二个数起,每一个数比前一个
数小8
(1)第10个数是多少?(2)第n个数是多少?(3)第几个数是一60
26某打工者第一个月的工资为300元,以后每个月比前一个月增加工资50元,
(1)打工一年半以后的首次工次为多少元?
(2)经过多长时间,他的月工资将达到xx元?
27某仓库堆放一批圆木,一共20层,第一层3根,每往下一层多1根,问这堆圆木一共有多少根?
(1) 从左下角到右上角的三个数字之和为45那么这9个数的和是多少这9个
日期中最后一天是1月几日?
(2) 用这样的方框能否圈出总和为162的9个数?
29某地出租车的收费标准是:起步价5元,超过3千米,则超过部分每千米1.8 元,若某人乘坐x (x>3)千米的路程
(1)请你写出他应该支付的费用(用含x的代数式表示);
(2)若他乘坐了15千米的路程,则他应付多少元钱?
(3)若他支付了23元钱,则他乘坐了多少千米?
30 一份数学试卷有20道选择题,规定做对一题得5 分,不做或做错扣1 分,结果某学生得分为76 分,问他做对了几题?
31.中学初一(1)班23 名同学星期天去公园游览,公园售票窗口标明票价:每人10 元,团体票25 人以上(含25人)8折优惠,请你为这23 名同学设计一个较好的购票方案
32 某书店在促销活动中,推出一种优惠卡,每张卡售价20 元,凭此卡购书可享受8 折优惠,有一次,李明同学到书店购书,结账时,他先买优惠卡再凭卡付款,结果节省了人民币12 元,那么李明同学此次购书的总价值是多少元?
33.将一个底面半径是5cm,高为40cm的圆柱,锻压成底面半径为8cm的圆柱, 其高变成了多少?表面积减少了多少?
34.某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作三次降价处理:
第一次降价30%,第二次降价30%,第三次再降价30%,三次降价处理销售结果如下表:
问:(1)第三次降价后的价格占原价的百分比是多少?
(2)该商品按新销售方案销售,相比原价全部售完,哪一种方案更盈利?
35.现在,人们生活日益富足,大部分家庭日常开支除外,都有结余,节余下来的钱存入银行,一来可以支持国家经济建设,二来自己也可获得一部分利息,国家规定,存款利息的纳税办法是:利息税=利息乂20%,储户取款时由银行代扣代收,若银行一年定期储蓄的年利率为1.98%,某储户到银行领取一年到期的本金和利息时,扣除了利息税198 元。

问:(1)该储户存入的本金是多少元?
(2)该储户实得利息多少元?
36.某地有两家通讯公司,移动通讯收费标准如下:第一家规定不收月租费,每分钟收费是0.6 元;第二家规定要收月租费,每月收50 元,另外每分钟收费0.4 元(1)某用户每月打电话的时间为x 分钟,请你写出这两种收费方式下应该支付的费用;
(2)某用户每月打电话的时间为200分钟,你认为应该采用哪一家通讯公司合算;(3)你认为每月打电话时间超过多少分钟,第二家通讯公司比较合算?
37.小明的爸爸是做服装生意的,现在他有一批成本价为每件100 元的服装,他想每件服装的利润在30元到60元之间.请你帮他设计一个符.合.条.件.的.、诱.人.的
销售方案,并计算出方案中每件服装的实际利润。

你的方案为:
请用列方程解应用题的方法,计算并验证方案中每件服装的实际利润:
38.xx 年世界杯足球赛韩国组委会公布的四分之一决赛门票价格为:一等席300 美元,二等席200 美元,三等席125 美元. 某服装公司在促销活动中,组织获奖的36 名顾客到韩国观看xx 年世界杯足球赛四分之一决赛,除去其它费用后,计划恰好用5025 美元购买两种门票. 你能设计出几种购票方案供该服装公司选择?并说明理由.
39.股民李明星期五买进某公司的股票1000股,每股16.8元,下表是第二周一至周五
(1) 星期三收盘时,每股是多少元?
(2) 本周内最咼价每股多少兀?最低价每股多少兀?
(3) 若买进股票和卖出股票都要交0.2%的各种费用,现在小明在星期五收盘前将全部股票卖出,他的收益情况如何?。

相关文档
最新文档