u134 UC3854运用手册
UC3854J中文资料
BLOCK DIAGRAM
UDG-92055
6/98
元器件交易网
UC1854 UC2854 UC3854 ABSOLUTE MAXIMUM RATINGS
Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . GT Drv Current, Continuous . . . . . . . . . . . . . GT Drv Current, 50% Duty Cycle. . . . . . . . . . Input Voltage, VSENSE, VRMS . . . . . . . . . . . . . Input Voltage, ISENSE, Mult Out . . . . . . . . . . . Input Voltage, PKLMT . . . . . . . . . . . . . . . . . . Input Current, RSET, IAC , PKLMT, ENA . . . . . Power Dissipation . . . . . . . . . . . . . . . . . . . . . Storage Temperature . . . . . . . . . . . . . . . Lead Temperature (Soldering, 10 Seconds) . . . . . . . . . . . . . . . . . 35V . . . . . . . . . . . . . . . 0.5A . . . . . . . . . . . . . . . 1.5A . . . . . . . . . . . . . . . . 11V . . . . . . . . . . . . . . . . 11V . . . . . . . . . . . . . . . . . 5V . . . . . . . . . . . . . . 10mA . . . . . . . . . . . . . . . . 1W . . . . . –65oC to +150oC . . . . . . . . . . . . . +300oC
UC3854工作原理及应用
UC3854工作原理及应用功率因数校正控制器UC3854目前,PFC专用集成电路有很多品种,国外的一些半导体厂商如Motorola、Unitrode、SiliconGeneral、Siemens、MicroLinear都开发生产了PFC专用集成电路。
常见的有专用于升压变换型功率因数校正专用集成电路MC34261、TDA4814、TDA4815、TDA4816、TDA4817、UC3854、ML4819等。
各种产品的技术指标和性能有所不同,但其结构与功能模块基本相同。
本文将以Unitrode公司的功率因数校正专用集成电路UC3854的主要参数进行宏模型构建并对利用所建模型构成的功率因数校正电路进行仿真。
2UC3854的结构与主要特性图1UC3854的总体结构框图2.0 UC3854的工作原理UC3854是一种高功率因数校正集成控制电路芯片,其主要特点是:属于PWM升压电路,功率因数达到0.99,THD<5%,适用于任何的开关器件;采用通用的工作方式,无需开关;前馈线性调整;采用平均电路控制模式,噪声灵敏度低,启动电流小;恒频控制,1A图腾柱驱动。
2.1 UC3854的组成结构UC3854的总体结构如图1所示,主要包括以下几个功能模块:电压误差放大器,电流误差放大器,模拟乘/除法器,固定频率脉宽调制器,功率MOS管的门极驱动器,过流保护比较器,7.5V的基准电压以及软启动,输入电压前馈,输入电压嵌位等电路。
2.2UC3854的关键特性表1列出了UC3854各主要功能模块的关键特性。
参数测试条件典型值单位电压误差放大器Vsense偏置电流 ,25 nA 开环增益 100 dB 输出电压摆幅 0.8,5.8 V 短路电流 VAOut=0 ,20 mA电流误差放大器Isense偏置 ,120 nA 开环增益 110 dB 输出电压摆幅 0.5,16 V 短路电流 ,20 mA 增益带宽积 800 kHz乘法器最大输出电流,200 μA 增益因子 ,1.0振荡器RSET=8.2k 102 kHz 振荡频率 RSET=15k 55 kHz 斜坡幅度 5.5 V输出驱动输出高电压 200mAloadonGTDrv,VCC=15V 12.8 V 输出低电压200mAloadonGTDrv 1.0 V 表2UC3854管脚说明管脚管脚符管脚说明序号号接地端,器件内部电压均以此电压为基准 1 Gnd峰值限定端,其阈值电压为零伏:外接电阻R1与芯片外电流传感电阻负端相连,外接电阻R2与2 PK1MT 芯片基准电压9脚相连,使峰值电流比较器反向端电位补偿至零;电流误差放大器的输出端,对输入总线电流进行传感,并向脉宽调制器发送电流校正信号的宽带3 CAOut 运放输出电流传感信号接至电流放大器反向输入端,4脚电压应高于,0.5伏(因采用二极管对地保护);4 Isense 外接电阻R3(及RC低通滤波器)与电流检测电阻正端相连; 5 MultOut 乘法放大器的输出和电流误差放大器的正向输入端;外接电阻R4与电流检测电阻负端相连。
UC3854 Datasheet 中文资料
高功率因数前置稳压器UC1854 / UC2854 / UC3854特点·控制升压PWM0.99功率因数·限制线电流失真<5%·环球开关操作而不·馈线路调整·平均电流模式控制·低噪声灵敏度·低启动电源电流·固定频率PWM驱动器·低偏移的模拟乘法器/除法·1A图腾柱栅极驱动器·精密电压参考说明UC1854提供有源功率因数校正电源系统,否则将提请非正弦电流正弦电源线。
此设备实现所有的控制功能需要建立一个能够最佳利用现有的电力线的电流,同时最大限度地降低线电流失真电源。
要做到这一点,UC1854包含一个电压放大器,模拟乘法器/除法器,电流放大器,和一个固定频率的PWM。
此外,UC1854包含一个功率MOSFET兼容的栅极驱动器,7.5V参考线预感器,负载使能比较器,低电压检测器,过电流比较器。
UC1854采用平均电流模式控制来完成,固定频率电流控制的稳定性和低失真。
不像峰值电流模式,平均电流控制准确地保持正弦线路电流没有斜率补偿和最小的噪声瞬变响应。
UC1854具有很高的参考电压和高振荡器幅度减少噪音的敏感性,而快速PWM 元素允许斩波频率为200kHz以上。
可以用在从75至275伏,跨越50Hz到400Hz 的范围内的线频率变化的线电压的单相和三相系统的UC1854。
为了减轻这个设备供电电路,UC1854具有低电源电流。
这些器件提供16引脚塑料和陶瓷双列直插式封装,表面贴装封装和各种包装。
框图绝对最大额定值电源电压Vcc-----------------------------------------35V GT DRV电流,连续--------------------------------0.5A GT DRV电流,占空比为50%-------------------1.5A 输入电压,VSENSE,VRMS---------------------11V 输入电压,ISENSE,多个------------------------11V输入电压,PKLMT---------------------------------5V输入电流,RSET,IAC,PKLMT,ENA----10毫安功率耗散----------------------------------------------1W贮存温度-----------------------------------65℃至+150 OC 焊接温度(焊接,10秒)---------------------+300 OC 注1:所有的电压相对于GND(引脚1)。
UC3854设计介绍
4
功率因素校正(PFC)
功率因素校正PFC是十几年电源技术进步的重大领域,它 的基本原理是: 是电源输入电流实现正弦波,正弦化就是要使其谐波为 零,电流失真因数 1
保证电流相位与输入电压保持同相位,两波形同相位, 相移因数 cos 1 最终实现功率因素PF=1的设计工作目标
DCM
假定在稳态条件下,在一个开关周期内,MOS管的导通时间为Ton,输入电 压为Ui,电感电流为i,电感电流峰值为 ,电感量为L,电感电流达到峰 imax 值时,对应的输入电压为。则在MOS管导通期间,有:
di L ui dt
di imax 其中, , dt Ton
因此
imax
Ton Ui L
滞环电流控制的原理框图如下
26
PFC控制方法——CCM-Hysteretic Current Control
电压外环的作用是为滞环控制单元提供瞬时电流参 考信号,作为滞环逻辑控制器的输入 所检测的输入电压经分压后,产生两个基准电流: 上限值与下限值
当电感电流达基准下限值时,开关管导通,电感电 流上升,当电感电流达基准上限值时,开关管关断, 电感电流下降
因此我们必须引入功率因素较正
3
功率因数和功率因数校正
功率因数的定义
V1rms I 1rms cos I 1rms cos PF = cos P视在 Vrms I rms I rms P有功
功率因数校正的任务
正弦化,使电流失真因数 1 1 同相位,使相移因数 cos=
mmin d d1 d 2 Vo (mmin sint )
UC3854工作原理
UC3854工作原理
1.输入电压稳定回路:UC3854通过反馈电路来控制输出电压的稳定性。
在开关电源的输入端接入一个电阻分压网络,电压经过采样电路进行
放大和滤波后与参考电压进行比较,得到一个误差电压并送入一个错误放
大器。
错误放大器将误差电压与一个内部的参考电压进行比较,并产生一
个稳定的控制信号,用于调节开关管的工作状态以使输出电压稳定。
2.PID控制器:UC3854内部集成了一个PID控制器。
PID控制器通过
采样输入电压的变化率,根据误差信号的大小、变化率和积分值来调整控
制信号,以达到快速、稳定地调节输出电压。
3.PWM控制:UC3854采用脉宽调制(PWM)技术来控制开关管的通断。
根据PID控制器输出的控制信号,UC3854生成一个与输入电压频率相同
的PWM信号,用于控制开关管的通断时间比例,从而控制输出电压的大小。
4.锁相环:UC3854利用锁相环技术来保证PWM信号与输入电压频率
的同步。
它通过将输入电压频率转换为一个相位参考信号,并与PWM信号
进行比较和调整,使得PWM信号与输入电压频率保持同步,从而确保输出
电压的稳定性。
5.过流保护:UC3854还提供了过流保护功能。
当输出电流超过设定
值时,UC3854会通过电流传感器检测到异常情况,并通过限制开关管导
通时间来保护开关管和负载。
总之,UC3854通过输入电压稳定回路、PID控制器、PWM控制、锁相
环和过流保护等多种技术手段,实现了对开关电源的高效稳定控制,使其
适用于各种应用场景。
UC3854
UC3854--电源用IC(功率因数校正控制器)适用机型:维修提示:UC3854它主要包括以下几个功能模块:电压误差放大器模块,电流误差放大器模块,乘除法器模块,锯齿波发生器模块,输出驱动模块,以及峰值限制比较器模块,欠电压过电压保护模块,软起动模块和一些数字逻辑。
当这部份电路出故障时会出现不开机、无电压电压输出的故障现象。
IC管脚功能及引脚参数引脚 名称 功能1 Gnd 接地端,器件内部电压均以此电压为基准2 PK1MT 峰值限定端,其阈值电压为零伏与芯片外电流传感电阻负端相连,有可与芯片内接基准电压的电阻相连,使峰值电流比较器反向端电位补偿至零3 CAOut 电流误差放大器的输出端,对输入总线电流进行传感,并向脉宽调制器发送电流校正信号的宽带运放输出4 Isense 电流传感信号接至电流放大器反向输入端,4脚电压应高于-0.5伏(因采用二极管对地保护)5 MultOut 乘法放大器的输出和电流误差放大器的正向输入端6 IAC 乘法器前馈交流输入端,与B端相连,6脚的设定电压为6伏,通过外接电阻与整流桥输出工频总线相连,并用电阻与芯片内基准相连7 VAOut 误差电压放大器的输出电压,这个信号又与乘法器A端相连,但若低于1伏乘法器便无输出8 VRMS 前馈总线电压有效值端,与跟输入线电压有效值正比的电阻相连时,可对线电压的变化进行补偿9 VREF 基准电压输出端,可对周边电路提供10mA的驱动电流10 ENA 允许比较器输入端,不用时与+5伏电压相连11 VSENSE 电压误差放大器反向输入端,在芯片外与反馈网络相连,或通过分压网络与功率因子较正器输出相连12 RSET 12脚信号与地接入不同的电阻,用来调节振荡器的输出和乘法器的最大输出13 SS 软起动端,与误差电压放大器同相端相连14 CT 接对地电容器CT,作为振荡器定时电容15 VCC 正电源阈值为10V~16V16 GTDrv PWM信号的图腾输出端,外接MOSFET管的栅极,该端电压箝位在15V。
采用UC3854的有源功率因数校正电路工作原理与应用
采用UC3854的有源功率因数校正电路工作原理与应用注册加盟红豆登录电脑手机网论坛我的帖子搜索农场推广论坛帮助hongdoupcbeta私人消息(0)公共消息(0)论坛任务(0)系统消息(0)好友消息(0)帖子消息(0)家电维修论坛集成电路资料UC1854、UC2854、UC3854功率因数校正控制器资料分享-返回列表查看515次|回复4次发帖[资料分享]UC1854、UC2854、UC3854功率因数校正控制器资料分享发短消息加为好友陆爱笛当前离线UID10017帖子12582精华2积分51826威望值39982红豆币57720红花168朵推广积分12696贡献值4277签到积分2285阅读权限200在线时间995小时管理员帖子12582积分51826来自河北唐山注册时间2009-4-7最后登录2010-5-15发短消息加为好友当前离线[url=javascript:;]1楼主[/url]跳转到倒序看帖打印字体大小:tT陆爱笛发表于2009-11-16 09:33|只看该作者--[资料分享]UC1854、UC2854、UC3854功率因数校正控制器资料分享采用UC3854的有源功率因数校正电路工作原理与应用一.功率因数校正原理1.功率因数(PF)的定义功率因数(PF)是指交流输入有功功率(P)与输入视在功率(S)的比值。
即所以功率因数可以定义为输入电流失真系数()与相移因数()的乘积。
可见功率因数(PF)由电流失真系数()和基波电压、基波电流相移因数()决定。
低,则表示用电电器设备的无功功率大,设备利用率低,导线、变压器绕组损耗大。
同时,值低,则表示输入电流谐波分量大,将造成输入电流波形畸变,对电网造成污染,严重时,对三相四线制供电,还会造成中线电位偏移,致使用电电器设备损坏。
由于常规整流装置常使用非线性器件(如可控硅、二极管),整流器件的导通角小于180o,从而产生大量谐波电流成份,而谐波电流成份不做功,只有基波电流成份做功。
3854中文资料
UC3854 控制之功率因子修正器电路设计PHILIP C. TODD摘要这个应用手册说明功率因子修正的概念与它的升压型前端调节器的设计。
本手册包含了功率因子修正的重要规格、升压型转换器的功率电路设计与控制此一转换器的UC3854 集成电路说明。
本文将提供完整的设计过程,同时说明了设计过程中所必须进行的斟酌与考虑。
本文所提到的设计流程适用于UC3854A/B 以及UC3854。
您可以参考Unitrod 公司所出品的设计手册DN-39 以了解某些本文未提到的主题。
虽然本文没有讨论到这些部分,但是在进行设计时还是必须考虑这些部分的。
本篇应用手册是用以作为取代应用手册U-125 "使用UC3854 的功率因子修正器"之用。
前言主动式功因修正器的主要功能就是使电源供应器的输入功因修正为1.0,即使得电源供应器把功因修正器的输入端视为一个电阻。
而主动式功因修正器主要是利用电流的响应随着电压的变化而跟着增大与减小的方式来完成这个功能。
当电压与电流间的变动比为一个定值时,输入端将呈现电阻性且此时的功率因子将达到1.0。
若这个变动比不再是一个定值,则输入的波形将会产生相位差或谐波失真,而这些变化将会降低功率因子。
一般对功率因子的定义是实功率与视在功率间的比例,即PF是输入功率的实功率,Vrms 与Irms 是负载的电压与电流均方根值,也就是文中所提到的功因修正器输入电压与电流均方根值。
若负载是一个纯电阻,则实功率与电压电流均方根值的乘积将会是相同的,且此时的功率将会是1.0;若负载不是一个纯电阻,则功因将会低于1.0。
相移量的大小主要是反应了主动式功因修正器的输入电抗大小,任何像是电感或电容的电抗皆会造成输入电流相对于输入电压的相位改变。
电压电流间的相位差也是一种功率因子典型的定义,即功率因子等于电压与电流相角差的余弦函数电压与电流间的相角差也反映出虚功率的大小。
如果负载的电抗只占负载阻抗的一小部份,则相位差将会很小。
UC3854工作原理与应用
() 1 升压式 P WM功率因数达 09 ; . 9 () 2 交流电 流失真 小于5 %; () 3 通用的操作方式, 无需开关; () 4 前馈线性调整; () 5 平均电流模式控制; )) 6 噪声灵敏度低; () 7 启动电流低; () 8 固定频率 P WM控制; () 9 低偏值模拟乘法器/ 除法器; ( ) A图 1 1 腾极驱动; 0 (i 高精度基准电压. i)
分类号 T 4 T 8 N 6 N 6
启 发
QF i a
A s c F d c a m r e tzi re o es r o t . l h e a P C i c ip v t ul tn opwr c tmeIC S g pa b r t e e t v n o h i ao a f o e e E i e s e i t u n P C b n io teS g h e v oeft o e ao c r c s w hs pt p cc. lpa a i pwr oc pn tn tl bo F a e u n r i i e s c e a r si o o l e e t a n t c m n i l p t u ns t r ppl , og c C84 o y c . a r U 84 ad wt a v y u r m n w i U 35 im st il h p ess 35 hs o as e o a a e r h h s t a Te e C p p t aa xm l n d re e u s rc l&p cccc t ea p ad cb i fte, ie r te u . s n e e i t a r pnp s s i ai i i r Ky r p e f t e oa pfr os ot l u o s wr o, r le bo cn occi e d o a r r m i , t r i t w c r i r 为了 线路供电质量, 改善供电 世界上许多国
UC3854中文资料
UC3854 控制之功率因數修正器電路設計PHILIP C. TODD摘要這個應用手冊說明功率因數修正的概念與它的升壓型前端調節器的設計。
本手冊包含了功率因數修正的重要規格、升壓型轉換器的功率電路設計與控制此一轉換器的UC3854 積體電路說明。
本文將提供完整的設計過程,同時說明了設計過程中所必頇進行的斟酌與考量。
本文所提到的設計流程適用於UC3854A/B 以及UC3854。
您可以參考Unitrod 公司所出品的設計手冊DN-39 以了解某些本文未提到的主題。
雖然本文沒有討論到這些部分,但是在進行設計時還是必頇考量這些部分的。
本篇應用手冊是用以作為取代應用手冊U-125 "使用UC3854 的功率因數修正器"之用。
前言主動式功因修正器的主要功能就是使電源供應器的輸入功因修正為1.0,即使得電源供應器把功因修正器的輸入端視為一個電阻。
而主動式功因修正器主要是利用電流的響應隨著電壓的變化而跟著增大與減小的方式來完成這個功能。
當電壓與電流間的變動比為一個定值時,輸入端將呈現電阻性且此時的功率因數將達到 1.0。
若這個變動比不再是一個定值,則輸入的波形將會產生相位差或諧波失真,而這些變化將會降低功率因數。
一般對功率因數的定義是實功率與視在功率間的比例,即P 是輸入功率的實功率,Vrms 與Irms 是負載的電壓與電流均方根值,也就是文中所提到的功因修正器輸入電壓與電流均方根值。
若負載是一個純電阻,則實功率與電壓電流均方根值的乘積將會是相同的,且此時的功率將會是1.0;若負載不是一個純電阻,則功因將會低於1.0。
相移量的大小主要是反應了主動式功因修正器的輸入電抗大小,任何像是電感或電容的電抗皆會造成輸入電流相對於輸入電壓的相位改變。
電壓電流間的相位差也是一種功率因數典型的定義,即功率因數等於電壓與電流相角差的餘弦函數電壓與電流間的相角差也反映出虛功率的大小。
如果負載的電抗只佔負載阻抗的一小部份,則相位差將會很小。
UC3854AN芯片手册
BLOCK DIAGRAM
UDG-92055
6/98
UC1854 UC2854 UC3854 ABSOLUTE MAXIMUM RATINGS
Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . GT Drv Current, Continuous . . . . . . . . . . . . . GT Drv Current, 50% Duty Cycle. . . . . . . . . . Input Voltage, VSENSE, VRMS . . . . . . . . . . . . . Input Voltage, ISENSE, Mult Out . . . . . . . . . . . Input Voltage, PKLMT . . . . . . . . . . . . . . . . . . Input Current, RSET, IAC , PKLMT, ENA . . . . . Power Dissipation . . . . . . . . . . . . . . . . . . . . . Storage Temperature . . . . . . . . . . . . . . . Lead Temperature (Soldering, 10 Seconds) . . . . . . . . . . . . . . . . . 35V . . . . . . . . . . . . . . . 0.5A . . . . . . . . . . . . . . . 1.5A . . . . . . . . . . . . . . . . 11V . . . . . . . . . . . . . . . . 11V . . . . . . . . . . . . . . . . . 5V . . . . . . . . . . . . . . 10mA . . . . . . . . . . . . . . . . 1W . . . . . –65oC to +150oC . . . . . . . . . . . . . +300oC
(完整版)UC3844应用
Uc3844的学习应用一 UC3844的简单介绍UC3844是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片,由该集成电路构成的开关稳压电源与一般的电压控制型脉宽调制开关稳压电源相比具有外围电路简单、电压调整率好、频响特性好、稳定幅度大、具有过流限制、过压保护和欠压锁定等优点.该芯片的主要功能有:内部采用精度为±2.0%的基准电压为5.00V,具有很高的温度稳定性和较低的噪声等级;振荡器的最高振荡频率可达500kHz。
其内部电路结构如图1所示。
UC3844 是高性能固定频率电流模式控制器专为离线和直流至直流变换器应用而设计,为设计人员提供只需最少外部元件就能获得成本效益高的解决方案。
这些集成电路具有可微调的振荡器、能进行精确的占空比控制、温度补偿的参考、高增益误差放大器。
电流取样比较器和大电流图腾柱式输出,是驱动功率MOSFET 的理想器件。
其它的保护特性包括输入和参考欠压锁定,各有滞后、逐周电流限制、可编程输出静区时间和单个脉冲测量锁存.二UC3844的管脚应用UC3844一般有8脚双列直插塑料封装和14脚塑料表面贴装封装(SO—14)。
SO-14封装的图腾柱式输出级有单独的电源和接地管脚。
UC3844 有16V(通)和10 伏(断)低压锁定门限,十分适合于离线变换器。
UC3845是专为低压应用设计的,低压锁定门限为8。
5伏(通)和7.6V(断)。
UC3844 的振荡工作频率由引脚4 与引脚8 之间所接定时电阻RT、脚4 与地之间所接定时电容CT 设定.计算公式为: f = 1/T = RTCT/0.55 = 1。
72RTCT.引脚2是电压反馈端,将取样电压加至E/A 误差放大器的反相输入端,与同向输入端的2.5 V 基准电压进行比较,产生误差电压。
利用内部E/A 误差放大器可以构成电压环.引脚3 是电流反馈端,电流取样电压由引脚3 输入到电流比较器.当引脚3 电压大于1V 时,输出关闭。
UC3854繁体中文版芯片手册pdf
平均電流模式控制法主要是利用一個簡單的概念,就 是在升壓型調節器功率電路上再外加一個由放大器電 路構成的回授迴路,也因此輸入電流將會以微小的誤 差量追隨著電流命令而變化。以上就是平均電流控制 法的優點,也是為什麼能改善功率因數的原因。平均 電流模式相對來講是比較容易實現的,這也是本文所 要描述的方法。
4
TI
UC3854 Controlled Power Factor Correction Circuit Design Application Note
電流的控制信號必須盡可能地接近整流後的線電壓信 號以提升功率因數,如果電壓回路的頻寬太大,則此 控制回路將會調節輸入電流以達成輸出電壓的恆定, 但這樣會使得輸入電流的波形嚴重失真。因此電壓回 路的頻寬必須小於輸入線電壓的頻率。但是電壓回路 的暫態響應又必須要很快,所以電壓回路的頻寬又需 要盡可能地大。平方器與除法器所構成的電路將可使 回路的增益維持定值,所以控制器頻寬就可以盡可能 地靠近輸入線電壓的頻率以降低輸出電壓的暫態變 化。當電壓輸入變動範圍大時,這個問題更形重要。 這個使回路增益維持定值的電路讓電壓誤差放大器的 輸出變成一種功率的控制,電壓誤差放大器的輸出就 可直接控制傳送到負載的功率大小,從以下的例子就 可以輕易地看到這個現象。如果電壓誤差放大器的輸 出是一個定值,而輸入的電壓變成兩倍,則控制命令 將會變成兩倍,但這個命令值將會除以前饋電壓信號 的平方,也就是除以四倍的輸入電壓信號,而其結果 將會使輸入電流變成原先值的一半。輸入電壓變成兩 倍時,輸入電流變為原值的一半則可維持與原輸入功 率相同的功率。因此,電壓誤差放大器的輸出即可用 來控制功率因數修正器的輸入功率等級,此種控制法 可用來限制系統從電源得到的最大的功率。如果將電 壓誤差放大器的輸出限制在某些值(即對應到某些最 大輸入功率等級的值),則當輸入電壓在正常操作範圍 內時主動式功率因數修正器將不會從電力線吸取超過 這個最大值的功率。
UC3854A中文资料
BLOCK DIAGRAM•Controls Boost PWM to Near Unity Power Factor•Limits Line Current Distortion To <3%•World-Wide Operation Without Switches •Accurate Power Limiting•Fixed Frequency Average Current Mode Control•High Bandwidth (5MHz), Low Offset Current Amplifier•Integrated Current and Voltage Amp Output Clamps•Multiplier Improvements: Linearity,500mV VAC Offset (eliminates external resistor), 0-5V Multout Common Mode Range•V REF "GOOD" Comparator•Faster and Improved Accuracy ENABLE Comparator•UVLO Threshold Options (16/10V / 10.5/10V)•300µA Startup Supply CurrentThe UC1854A/B products are pin compatible enhanced versions of theUC1854. Like the UC1854, these products provide all of the functions necessary for active power factor corrected preregulators. The controller achieves near unity power factor by shaping the AC input line current waveform to correspond to the AC input line voltage. To do this the UC1854A/B uses average current mode control. Average current mode control maintains stable, low distortion sinusoidal line current without the need for slope compensation, unlike peak current mode control.The UC1854A/B products improve upon the UC1854 by offering a wide bandwidth, low offset Current Amplifier, a faster responding and improved accuracy enable comparator, a V REF "good" comparator,UVLO threshold options (16/10V for offline, 10.5/10V for startup from an auxiliary 12V regulator), lower startup supply current, and an enhanced multiply/divide circuit. New features like the amplifier output clamps, improved amplifier current sinking capability, and low offset VAC pin reduce the external component count while improving performance. Improved common mode input range of the Multiplier output/Current Amp input allow the designer greater flexibility in choosing a method for current sensing. Unlike its predecessor, R SET controls only oscillator charging current and has no effect on clamping the maximum multiplier output current. This current is now clamped to a maximum of 2 * I AC at all times which simplifies the design process and provides foldback power limiting during brownout and extreme low line conditions.A 1% 7.5V reference, fixed frequency oscillator, PWM, Voltage Amplifier with softstart, line voltage feedforward (V RMS squarer), input supply voltage clamp, and over current comparator round out the list of features.UC2854A/B UC3854A/BEnhanced High Power Factor PreregulatorFEATURESDESCRIPTIONUVLO Turn on UVLO Turn offUC1854A 16V 10V UC1854B10.5V 10VUDG-93001-1DIL–16 & SOIC-16(Top View)J, N & DW PackagesPACKAGE PIN FUNCTIONFUNCTIONPINN/C 1 Gnd 2PKLMT 3CA Out 4I SENSE 5N/C6Mult Out 7I AC8VA Out 9V RMS 10N/C 11V REF 12ENA 13V SENSE 14R SET 15N/C 16SS 17C T 18V CC 19GT Drv 20PLCC-20 & LCC-20(Top View)Q & L PackagesCONNECTION DIAGRAMSSupply Voltage V CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22V GT Drv Current, Continuous. . . . . . . . . . . . . . . . . . . . . . . 0.5A GT Drv Current, 50% Duty Cycle. . . . . . . . . . . . . . . . . . . . 1.5A Input Voltage, V SENSE , V RMS . . . . . . . . . . . . . . . . . . . . . . . 11V Input Voltage, I SENSE , Mult Out . . . . . . . . . . . . . . . . . . . . . 11V Input Voltage, PKLMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V Input Current, R SET , I AC , PKLMT, ENA . . . . . . . . . . . . . . 10mA Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W Storage Temperature . . . . . . . . . . . . . . . –65°C to +150°C Lead Temperature (Soldering, 10 Seconds). . . . . . . . . +300°CABSOLUTE MAXIMUM RATINGSNote 1: All voltages with respect to Gnd (Pin 1).Note 2: All currents are positive into the specified terminal.Note 3: ENA imput is internally clamped to approximately 10V.Note 4: Consult Unitrode Integrated Circuits databook for information regarding thermal specifications and limitations of packages.PARAMETERTEST CONDITIONSMINTYP MAX UNITS OVERALLSupply Current, Off CAO, VAO = 0V, V CC = UVLO - 0.3V 250400µA Supply Current, On 1218mA V CC Turn-On Threshold UC1854A 1617.5V UC1854B 10.511.2V V CC Turn-Off Threshold UC1854A / B910V V CC ClampI(V CC ) = I CC (on) + 5mA182022V VOLTAGE AMPLIFIER Input Voltage2.93.0 3.1V V SENSE Bias Current –500–25500nA Open Loop Gain V OUT = 2 to 5V 70100dB V OUT High I LOAD = –500µA 6V V OUT LowI LOAD = 500µA 0.30.5V Output Short Circuit Current V OUT = 0V1.5 3.5mA Gain Bandwidth ProductFin = 100kHz, 10mV p-p, (Note 1)1mHzUnless otherwise stated, V CC =18V, R T =8.2k, C T =1.5nF, PKLMT=1V, V RMS =1.5V,I AC =100µA, I SENSE =0V, CA Out=3.5V, VA Out=5V, V SENSE =3V, –55o C<T A <125oCfor the UC1854A/B, –40o C<T A <85o C for the UC2854A/B, and 0o C<T A <70o C for the UC3854A/B, and T A =T J .ELECTRICAL CHARACTERISTICSELECTRICALCHARACTERISTICS (cont.)PARAMETERTEST CONDITIONS MIN TYPMAX UNITS CURRENT AMPLIFIER Input Offset Voltage V CM = 0VT A = +25°C −40mV OverTemp–5.50mV Input Bias Current(sense)V CM = 0V–500500nA Open Loop Gain V CM = 0V, V OUT = 2 to 6V 80110dB V OUT High I LOAD = –500µA 8V V OUT LowILOAD = 500µA 0.30.5V Output Short Circuit Current V OUT = 0V1.5 3.5mA Common Mode Range –0.35V Gain Bandwidth Product Fin = 100kHz, 10mV p-p, (Note 1)35mHz REFERENCE Output Voltage I REF = 0mA, T A = 25o C 7.47.57.6V I REF = 0mA7.357.57.65V Load Regulation I REF = 1 to 10mA 0820mV Line RegulationV CC = 12 to 18V 01425mV Short Circuit CurrentV REF = 0V 253560mA OSCILLATOR Initial Accuracy T A = 25o C85100115kHz Voltage Stability V CC = 12 to 18V 1%Total VariationLine, Temp80120kHz Ramp Amplitude (p-p) 4.9 5.9V Ramp Valley Voltage0.8 1.3V ENABLE / SOFTSTART / CURRENT LIMIT Enable Threshold 2.352.55 2.8V Enable Hysteresis V FAULT = 2.5V500600mV Enable Input Bias Current V ENABLE = 0V–2–5µA Propagation Delay to Disable Enable Overdrive = –100mV,(Note 1)300ns SS Charge Current V SOFTSTART = 2.5V 101424PKLMT Offset Voltage –1515mV PKLMT Input Current V PKLMT = –0.1V –200–100µA PKLMT Propagation Delay (Note 1)150ns MULTIPLIEROutput Current - I AC Limited I AC =100µA, V RMS = 1V, R SET = 10k –220–200–170µA Output Current - ZeroI AC =0µA, R SET = 10k –2.0–0.2 2.0µA Output Current - Power Limited V RMS = 1.5V, Va = 6V –230–200–170µA Output CurrentV RMS = 1.5V, Va = 2V –22µA V RMS = 1.5V, Va = 5V –156µA V RMS = 5V, Va = 2V –2µA V RMS = 5V, Va = 5V–14µA Gain Constant (Note 2) V RMS = 1.5V, T J = 25°C, Va = 6V–1.1–1.0–0.9A/AUnless otherwise stated, V CC =18V, R T =8.2k, C T =1.5nF, PKLMT=1V, V RMS =1.5V,I AC =100µA, I SENSE =0V, CA Out=3.5V, VA Out=5V, V SENSE =3V, –55o C<T A <125o C for the UC1854A/B, –40o C<T A <85o C for the UC2854A/B, and 0o C<T A <70o C for the UC3854A/B,and T A =T J .Note 1: Guaranteed by design, not 100% tested in production.Note 2: Gain constant (K) = I AC × (Va − 1.5V )V RMS 2 × I MOPARAMETER TEST CONDITIONS MIN TYP MAX UNITS GATE DRIVEROutput High Voltage I OUT = –200mA, V CC = 15V1212.8V Output Low Voltage I OUT = 200mA1 2.2VI OUT = 10mA300500mVOutput Low (UVLO)I OUT = 50mA, V CC = 0V0.9 1.5V Output Rise / Fall Time C LOAD = 1nF, (Note 1)35ns Output Peak Current C LOAD = 10nF, (Note 1) 1.0ANote 1: Guaranteed by design, not 100% tested in production.Note 2: Gain constant (K) = I AC×(Va− 1.5V) V RMS2×I MOELECTRICAL CHARACTERISTICS (cont.)Unless otherwise stated, V CC=18V, R T=8.2k, C T=1.5nF, PKLMT=1V, V RMS=1.5V, I AC=100µA, I SENSE=0V, CA Out=3.5V, VA Out=5V, V SENSE=3V, –55o C<T A<125o C for the UC1854A/B,–40o C<T A<85o C for the UC2854A/B, and 0o C<T A<70o C for the UC3854A/B, and T A=T J.The UC1854A/B products were designed as pin compatible upgrades to the industry standard UC1854 active Power Factor correction circuits. The circuit enhancements allow the user to eliminate in most cases several external components currently required to successfully apply the UC1854. In addition, linearity improvements to the Multiply, Square, and Divide circuitry optimizes overall system performance. Detailed descriptions of the circuit enhancements are provided below. For in-depth design applications reference data refer to Unitrode application notes U-134 and DN-44. MULTIPLY / SQUARE AND DIVIDEThe UC1854A/B Multiplier design maintains the same gain constant (K = −1), as the UC1854. The relationship between the inputs and output current is given as:I MO = I AC(V AO - 1.5V) / K•V RMS2This is nearly the same as the UC1854, but circuit differences have improved the performance and application.The first difference is with the I AC input. The UC1854A/B regulates this pin voltage to a nominal 500mV over the full operating temperature range, rather than the 6.0V used on the UC1854. This low offset voltage eliminates the need for a line zero crossing compensating resistor to V REF from I AC that UC1854 designs require. The maximum current at high line into I AC should be limited to 250µA for best performance. Therefore, if V AC (max) = 270V, then R AC = 270(1.414) / 250µA = 1.53MΩ.The V RMS pin linear operating range is improved with the UC1854A/B as well. The input range for V RMS extends from 0 to 5.5V. Since the UC1854A squaring circuit employs an analog multiplier, rather than a linear approximation, accuracy is improved, and discontinuities are eliminated. The external divider network connected to V RMS should produce 1.5V at low line (85VAC). This will put 4.77V on V RMS at high line (27VAC) which is well within its operating range.The Voltage Amplifier output forms the third input to the Multiplier and is internally clamped to 6.0V. This eliminates an external zenerclamp often used in UC1854 designs. The offset voltage at this input to the Multiplier has been raised on the UC1854A/B to 1.5V.The Multiplier output pin, which is also common to the Current Amplifier non-inverting input, has a −0.3V to 5.0V output range,compared to the −0.3 to 2.5V range of the UC1854. This improvement allows the UC1854A/B to be used in applications where the current sense signal amplitude is very large.VOLTAGE AMPLIFIERThe UC1854A/B Voltage Amplifier design is essentially similar to the UC1854 with two exceptions. The first is with the internal connection. The lower voltage reduces the amount of charge on the compensation capacitor, which provides improved recovery from large signal events, such as line dropouts, or power interruption. It also minimizes the DC current flowing through the feedback. The output of the Voltage amplifier is also changed. In addition to a 6.0V temperature compensated clamp, the output short circuit current has been lowered to 2mA typical, and an active pull down has replaced the passive pulldown of the UC1854.CURRENT AMPLIFIERThe Current Amplifier for an average current PFC controller needs a low offset voltage in order to minimize AC line current distortion. With this in mind, the UC1854A/B Current Amplifier has improved the input offset voltage from ±4mV to 0 to −3mV. The negativeFUNCTIONAL DESCRIPTIONoffset of the UC1854A/B guarantees that the PWM circuit will not drive the MOSFET if the current command is zero (both Current amplifier inputs zero.).Previous designs required an external offset cancellation network to implement this key feature. The bandwidth of the Current Amplifier has been improved as well to 5mHz typical.While this is not generally an issue at 50 or 60Hz inputs, it is essential for 400Hz input avionics applications.MISCELLANEOUS Several other important enhancements have been implemented in the UC1854A/B. A V CC supply voltage clamp at 20V allows the controller to be current fed if desired. The lower startup supply current (250µA typical),substantially reduces the power requirements of an offline startup resistor. The 10.5/10V UVLO option (UC1854B)enables the controller to be powered off of an auxiliary 12V supply.The V REF "GOOD" comparator guarantees that the MOSFET driver output remains low if the supply or the 7.5V reference are not yet up. This improvementeliminates the need for external Schottky diodes on the PKL and CA+ pins that some UC1854 designs require.The propagation delay of the disable feature has been improved to 300ns typical. This delay was proportional toFUNCTIONAL DESCRIPTION (cont.)TYPICAL CHARACTERISTICS at T A = T J = 25°CLoad Capacitance,µF ns010020030040050060070000.010.020.030.040.05Rise TimeFall TimeGate Drive Rise and Fall TimeR SET , k ΩDutyCycle70%75%80%85%90%95%100%110100Gate Drive Maximum Duty Cycle501001502002500.80.840.880.920.9611.041.081.121.161.2KI AC Current (µA)V RMS =1.5VV RMS =3.0VV RMS =5.0VUC1854A/B Multiplier LinearityVA OUT = 3.5V501001502002500.80.840.880.920.9611.041.081.121.161.2KI AC Current (µA)V RMS =3.0VV RMS =1.5VV RMS =5.0VUC1854A/B Multiplier LinearityVA OUT = 5VTYPICAL CHARACTERISTICS at T A = T J = 25°C (cont.)UNITRODE CORPORATION7 CONTINENTAL BLVD. • MERRIMACK, NH 03054TEL. (603) 424-2410 FAX (603) 424-3460These products contain patented circuitry and are sold under license from Pioneer Magnetics, Inc.log fG a i n (d B )-60-40-200204060080-45PhaseDegrees100-9012010kHz1MHz10MHz100kHzGainPhase5.992 496 516 MHzCurrent Amplifier Frequency ResponseR SET , k ΩFrequency kHz 101001000110100100pF 200pF 5nF 10nF 3nF 500pF 2nF1nFOscillator Frequency vs R SET and C TFrequencykHzPhase Margin degreesOpen-Loop GaindB -200204060801001200.1110100100010000Voltage Amplifier Gain and Phase vs FrequencyIMPORTANT NOTICETexas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.Copyright © 1999, Texas Instruments Incorporated。
UC3854工作原理
UC3854工作原理UC3854的工作原理本电路PFC控制电路采用UC3854A,UC3854A是美国的Unitrode公司设计生产的PFC专用控制集成电路,它集成了PFC电路控制所需的电压控制、平均电流跟踪限制、乘法器、驱动、保护和基准源等全部电路,使用更方便。
UC3854是一种有源功率因数校正专用控制电路。
它可以完成升压变换器校正功率因数所需的全部控制功能,使功率因数达到0.99以上,输入电流波形失真小于5%。
该控制器采用平均电流型控制,控制精度很高,开关噪声较低。
采用UC3854组成的功率因数校正电路后,当输入电压在85,260V之间变化时,输出电压还可保持稳定,因此也可作为AC/DC稳压电源。
UC3854采用推拉输出级,输出电流可达1A以上,因此输出的固定频率PWM脉冲可驱动大功率MOSFET。
芯片自身工作电流典型值为10mA,工作电压为16V~35V。
4-2、 UC3854的基本组成UC3854内部框图如图2所示,它由以下几部分组成:1、欠压封锁比较器(UVLC):电源电压V高于16V时,基准电压建立,振荡器开始振荡,输出级输出CCPWM脉冲。
当电源电压V低于10V时,基准电压中断,振荡器停振,输出级被封锁。
CC2、使能比较器(EC):使能脚(10脚)输入电压高于2.5V时,输出级输出驱动脉冲,使能脚输入电压低于2.25V时,输出级关断。
以上两比较器的输出都接到与门输入端,只有两个比较器都输出高电平时,基准电压才能建立,器件才输出脉冲。
3、电压误差放大器(VEA):功率因数校正电路的输出电压经电阻分压后,加到该放大器的反相输入端,与7.5V基准电压比较,其差值经放大后加到乘法器的一个输入端(A)。
4、乘法器(MUL):乘法器输入信号除了误差电压外,还有与已整流交流电压成正比的电流I(B端)和前AC馈电压VRMS。
5、电流误差放大器(CEA):乘法器输出的基准电流I在RMO两端产生基准电压。
功率因数校正器芯片电路UC3854的分析_詹桦
文章编号:1004-3365(2002)02-0136-03功率因数校正器芯片电路UC3854的分析詹 桦,韩 雁(浙江大学 微电子技术和系统设计研究所,杭州 浙江 310027) 摘 要: 随着开关电源越来越广泛的应用,电网的功率因数大大下降,功率因数校正成为一个新的问题。
UC3854就是解决这个问题的一种高性能功率因数校正器。
该电路采用平均电流模型,它通过脉宽调制输出的一连串脉冲信号来控制电路中开关晶体管的导通与截止,从而将输入电流与输出电压的相位重新调整到同相的状态,最终达到功率因数校正的目的。
关键词: 开关电源;功率因数校正;脉冲宽度调制;乘法器中图分类号: T N761文献标识码: AAn Analysis of Power Factor Corrector Chip UC3854ZH AN Hua,HA N Yan(I nstitute o f M icr oelectr onic T echnology and Sy stem De sign,Zhej iang Univ er sity,H angz hou,Z he j iang310027,P.R.Ch ina)Abstract: U C3854is a po wer fact or co rr ector cir cuit w it h g oo d perfo rm ance.U sing the aver ag e cur rent model, U C3854contr ols the sta te o f the sw itching tr ansisto r in the circuit by o ut putting a ser ies o f P WM(Pulse Width M o dulatio n)signals.By this mean,it r eadjust s input curr ent and o utput vo ltag e to synchr o nizat ion,thus fulfilling pow er facto r co rr ectio n.Key words: Sw itching po wer supply;P ow er fa ct or co rr ectio n;Pulse width mo dulatio n;M ultiplierEEACC: 12101 引 言为提高线性稳压器电源的效率,适应现代电子设备多功能和小型化,开关电源电路应运而生。
采用uc3854的有源功率因数校正电路工作原理与应用
采用uc3854的有源功率因数校正电路工作原理与应用
UC3854是一款可编程高效能电源因数校正控制器,是由德州仪器公司(Texas Instruments,TI)生产的一款专业电源管理IC。
它是一种高效、可靠、智能化的功率因数校正控制器,常用于交流电源的功率因数校正应用中,可实现高精度的电源因数校正,并且具有较高的应用灵活性和可靠性。
UC3854采用的是有源功率因数校正技术,即通过对输入电流调节来控制输出电流的大小,从而达到功率因数校正的目的。
有源功率因数校正电路主要由电源电路、控制电路、采样电路和校正电路等部分组成。
其中,电源电路提供了稳定的工作电压和电流,控制电路通过控制开关管的导通和截止,实现对输出电流的控制。
采样电路采集输入电压和电流的信息,并将其转化为数字信号,校正电路根据采集到的信号,控制开关管的导通和截止,实现功率因数的校正。
UC3854的应用场景非常广泛,主要应用于交流电源的功率因数校正。
它可以实现交流电源的输入电压和电流的采样和测量,计算出功率因数的值,然后对输出电流进行调节,从而实现功率因数的校正。
同时,该芯片还具有多种保护功能,如过电流保护、过电压保护、过温保护等,能够保证电路的可靠性和安全性。
总之,UC3854是一款功能强大、性能稳定、可靠性高的有源功率因数校正控制器,对于交流电源的功率因数校正具有重要的作用。
它的应用广泛,可以满足不同场合和需求的功率因数校正要求,是一款非常优秀的电源管理IC。
PFC电路使用UC3854的计算资料
PFC電路使用UC3854的計算UC3854 简介图1为UC3854 的内部结构框图:图 1. UC3854的内部原理框图它包含了采用平均电流型功率因子校正控制全部必需的功能的单片集成电路,主要由电压放大器、模拟乘法器、电流放大器和定频率脉宽调制器组成。
此外还包括有与功率MOSFET兼容的栅极驱动器、7.5V电压基准、总线预测器、加载赋能比较器、欠压检测和过流比较器。
UC3854 因采用平均电流型方式实现定频电流控制,故稳定性高、失真小,且无需对电流作斜率补偿就能够精确维持总线输入电流正弦化。
UC3854 可在输入线电压75-275V,工频50-400Hz的范围内使用。
为了减少偏置电路的功耗,UC3854还具有启动电流低的特点。
该器件采用16脚DIP封装,也有表面封装的产品。
管脚功能介绍下面分别介绍器件的管脚功能:管脚1(GND)为接地脚,器件内部所有的电压都以该电压为基准参考。
Vcc 应采用0.1 F或更大的陶瓷电容直接旁路到该点。
定时电容的放电电和Vref流也应该回到该点,故从振荡器定时电容到“地”的引线必须尽可能的短。
管脚2(PK lim)为峰值限定脚。
其值为0.0V,使用时将它连接到电流传感电阻的负端,同时再用电阻和内基准相连,将负电流传感信号补偿到“地”电位。
管脚3(Vcea)是电流放大器的输出端,是对输入总线电流进行传感,并且向脉宽调制器(PWM)发送电流校正信号的宽带运算放大器的输出。
当需PWM 输出D = 0的调宽脉冲时,该脚的输出摆幅可接近为零。
管脚4(Isense)为电流传感负端,它是电流放大器的负输入端。
由于其输入埠对地采用了二极管保护,因此在实际应用时该埠的电位应确保高于-0.5V管脚5(Mult out)为乘法器输出和电流传感正端。
应该注意的是该管脚的电位也不能低于-0.5V。
因为乘法器输出的是电流,该埠的输入阻抗很高,因此电流放大器可作为差分放大器配制来抑制接地噪声。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
APPLICATION NOTEU-134UC3854 Controlled Power Factor Correction Circuit DesignPHILIP C. TODDABSTRACTThis Application Note describes the concepts and design of a boost preregulator for power factor correc-tion.This note covers the important specifications for power factor correction, the boost power circuit de-sign and the UC3854 integrated circuit which controls the converter. A complete design procedure is given which includes the tradeoffs necessary in the process. This design procedure is directly applicable to the UC3854A/B as well as the UC3854. The recommendations in Unitrode Design Note DN-39 cover other ar-eas of the circuit and, while not discussed here, must be considered in any design. This application note supersedes Application Note U- 125 "Power Factor Correction With the UC3854. ”INTRODUCTIONThe objective of active power factor correction is tomake the input to a power supply look like a simpleresistor. An active power factor corrector does thisby programming the input current in response tothe input voltage. As long as the ratio between thevoltage and current is a constant the input will beresistive and the power factor will be 1.0. When theratio deviates from a constant the input will containphase displacement, harmonic distortion or bothand either one will degrade the power factor.The most general definition of power factor is theratio of real power to apparent power.Where P is the real input power and Vrms and Irms are the root mean square (RMS) voltage and cur-rent of the load, or power factor corrector input in this case. If the load is a pure resistance the real power and the product of the RMS voltage and cur-rent will be the same and the power factor will be 1.0. If the load is not a pure resistance the power factor will be below 1.0.Phase displacement is a measure of the reactance of the input impedance of the active power factor corrector. Any amount of reactance, either induc-tive or capacitive will cause phase displacement ofthe input current waveform with respect to the input voltage waveform. The phase displacement of the voltage and current is the classic definition of power factor which is the cosine of the phase anglebetween the voltage and current sinusoids.The amount of displacement between the voltage and current indicates the degree to which the load is reactive. If the reactance is a small part of the impedance the phase displacement will be small.An active power factor corrector will generate phase displacement of the input current if there is phase shift in the feedforward signals or in the con-trol loops. Any filtering of the AC line current willalso produce phase displacement.Harmonic distortion is a measure of the non-linear-ity of the input impedance of the active power fac-tor corrector. Any variation of the input impedanceas a function of the input voltage will cause distor-tion of the input current and this distortion is theother contributor to poor power factor. Distortion in-creases the RMS value of the current without in-creasing the total power being drawn. A non-linearload will therefore have a poor power factor be-cause the RMS value of the current is high but thetotal power delivered is small. If the non-linearity issmall the harmonic distortion will be low. Distortionin an active power factor corrector comes from 3-269APPLICATION NOTE U-134Power Factor Versus Distortion Power Factor Versus DistortionTable 1several sources: the feedforward signals, the feed-back loops, the output capacitor, the inductor and the input rectifiers.An active power factor corrector can easily achievea high input power factor, usually much greaterthan 0.9. But power factor is not a sensitive meas-ure of the distortion or the displacement of the cur-rent waveform. It is often more convenient to dealwith these quantities directly rather than with thepower factor. For example, 3% harmonic distortionalone has a power factor of 0.999. A current with30% total harmonic distortion still has a power fac-tor of 0.95. A current with a phase displacement of25 degrees from the voltage has a power factor of0.90.The trend among the world standards organiza-tions responsible for power quality is to specifymaximum limits for the amount of current allowedat each of the harmonics of the line frequency. IEC555-2 specifies each harmonic up through and be-yond the 15th and the amount of current permissi-ble at each. Table 1 lists the requirements for IEC555-2 as of the time of this writing. There are twoparts to the specification, a relative distortion andan absolute distortion maximum. Both limits applyto all equipment. This table is included here as anexample of a line distortion specification. It is notintended to be used for design purposes. The IEChas not finalized the requirements of IEC 555 atthis time and major changes are possible.Active Power Factor CorrectionA boost regulator is an excellent choice for thepower stage of an active power factor corrector be-cause the input current is continuous and this pro-duces the lowest level of conducted noise and thebest input current waveform. The disadvantage ofthe boost regulator is the high output voltage re-quired. The output voltage must be greater thanthe highest expected peak input voltage.The boost regulator input current must be forced orprogrammed to be proportional to the input voltagewaveform for power factor correction. Feedback isnecessary to control the input current and either 3-270APPLICATION NOTE U-134Figure 1Basic Configuration of High Power FactorControl Circuitpeak current mode control or average current concept. An amplifier is used in the feedback loop mode control may be used. Both techniques may around the boost power stage so that input current be implemented with the UC3854. Peak current tracks the programming signal with very little error. mode control has a low gain, wide bandwidth cur-This is the advantage of average current mode rent loop which generally makes it unsuitable for a control and it is what makes active power factor high performance power factor corrector since correction possible. Average current mode control there is a significant error between the program-is relatively easy to implement and is the method ming signal and the current. This will produce dis-described here.tortion and a poor power factor. A block diagram of a boost power factor corrector Average current mode control is based on a simple circuit is shown in Figure 1. The power circuit of aFigure 2. Preregulator Waveforms3-271APPLICATION NOTEU-134boost power factor corrector is the same as that of a dc to dc boost converter. There is a diode bridge ahead of the inductor to rectify the AC input volt-age but the large input capacitor which would nor-mally be associated with the AC to DC conversion function has been moved to the output of the boost converter. If a capacitor follows the input diode bridge it is a small one used only for noise control.The output of the boost regulator is a constant volt-age but the input current is programmed by the in-put voltage to be a half sine wave. The power flow Control Circuits An active power factor corrector must control both the input current and the output voltage. The cur-rent loop is programmed by the rectified line volt-age so that the input to the converter will appear to be resistive. The output voltage is controlled by changing the average amplitude of the current pro-gramming signal. An analog multiplier creates the current programming signal by multiplying the rec-tified line voltage with the output of the voltage er-Figure 3. High Power Factorinto the output capacitor is not constant but is a sine wave at twice the line frequency since power is the instantaneous product of voltage an current.This is shown in Figure 2. The top waveform shows the voltage and the current into the power factor corrector and the second waveform shows the flow of energy into and out of the output ca-pacitor. The output capacitor stores energy when the input voltage is high and releases the energy when the input voltage is low to maintain the out-put power flow. The third waveform in Figure 2shows the charging and discharging current. This current has a different shape from the input current and is almost entirely at the second harmonic of the AC line voltage. This flow of energy into and out of the capacitor results in ripple voltage at the second harmonic also and this is shown in the fourth waveform in Figure 2. Note that the voltage ripple is displaced by 90 degrees relative to the current since this is reactive energy storage. The output capacitor must be rated to handle the sec-ond harmonic ripple current as well as the high fre-quency ripple current from the boost converter switch which modulates it.ror amplifier so that the current programming sig-nal has the shape of the input voltage and an aver-age amplitude which controls the output voltage.Figure 3 is a block diagram which shows the basic control circuit arrangement necessary for an active power factor corrector. The output of the multiplier is the current programming signal and is called Imo for multiplier output current. The multiplier input from the rectified line voltage is shown as a current in Figure 3 rather than as a voltage signal because this is the way it is done in the UC3854.Figure 3 shows a squarer and a divider as well as a multiplier in the voltage loop. The output of the voltage error amplifier is divided by the square of the average input voltage before it is multiplied by the rectified input voltage signal. This extra cir-cuitry keeps the gain of the voltage loop constant,without it the gain of the voltage loop would change as the square of the average input voltage. The av-erage value of the input voltage is called the feed-forward voltage or Vff since it provides an open loop correction which is fed forward into the volt-age loop. It is squared and then divided into thevoltage error amplifier output voltage (Vvea).3-272APPLICATION NOTE U-134The current programming signal must match the rectified line voltage as closely as possible to maxi-mize the power factor. If the voltage loop band-width were large it would modulate the input current to keep the output voltage constant and this would distort the input current horribly. There-fore the voltage loop bandwidth must be less than the input line frequency. But the output voltage transient response must be fast so the voltage loop bandwidth must be made as large as possible. The squarer and divider circuits keep the loop gain con-stant so the bandwidth can be as close as possible to the line frequency to minimize the transient re-sponse of the output voltage. This is especially im-portant for wide input voltage ranges.The circuits which keep the loop gain constant make the output of the voltage error amplifier a power control. The output of the voltage error am-plifier actually controls the power delivered to the load. This can be seen easily from an example. If the output of the voltage error amplifier is constant and the input voltage is doubled the programming signal will double but it will be divided by the square of the feedforward voltage, or four times the input, which will result in the input current being re-duced to half its original value. Twice the input volt-age times half the input current results in the same input power as before. The output of the voltage error amplifier, then, controls the input power level of the power factor corrector. This can be used to limit the maximum power which the circuit can draw from the power line. If the output of the volt-age error amplifier is clamped at some value that corresponds to some maximum power level, then the active power factor corrector will not draw more than that amount of power from the line as long as the input voltage is within its range.Input Distortion SourcesThe control circuits introduce both distortion and displacement into the input current waveform. These errors come from the input diode bridge, the multiplier circuits and ripple voltage, both on the output and on the feedforward voltage.There are two modulation processes in an active power factor corrector. The first is the input diode bridge and the second is the multiplier, divider, squarer circuit. Each modulation process gener-ates cross products, harmonics or sidebands be-tween the two inputs. The description of these mathematically can be quite complex. Interestingly enough, however, the two modulators interact and one becomes a demodulator for the other so that the result is quite simple. As shown later, virtually all of the ripple voltages in an active power factor corrector are at the second harmonic of the line frequency. When these voltages go through themultiplier and get programmed into the input cur-rent and then go through the input diode bridge the second harmonic voltage amplitude results in two frequency components. One is at the third har-monic of the line frequency and the other is at the fundamental. Both of these components have an amplitude which is half of the amplitude of the original second harmonic voltage. They also have the same phase as the original second harmonic. If the ripple voltage is 10% of the line voltage ampli-tude and is phase shifted 90 degrees the input cur-rent will have a third harmonic which is 5% of the fundamental and is shifted 90 degrees and a fun-damental component which is 5% of the line cur-rent and is displaced by 90 degrees.The feedforward voltage comes from the rectified AC line which has a second harmonic component that is 66% of the amplitude of the average value.The filter capacitors of the feedforward voltage di-vider greatly attenuate the second harmonic and effectively remove all of the higher harmonics but some of the second harmonic is still present at the feedforward input. This ripple voltage is squared by the control circuits as shown in Figure 3. This dou-bles the amplitude of the ripple since it is riding on top of a large DC value. The divider process is transparent to the ripple voltage so it passes on to the multiplier and eventually becomes third har-monic distortion of the input current and a phase displacement. The doubling action of the squarer means that the amplitude of the input current dis-tortion in percent is the same as the amplitude of the ripple voltage, in percent, at the feedforward in-put.Needless to say, the feedforward ripple voltage must be kept small to achieve a low distortion input current. The ripple voltage could be made small with a single pole filter with a very low cutoff fre-quency. However, fast response to changes of the input voltage is also desirable so the response time of the filter must be fast. These two require-ments are, of course, in conflict and a compromise must be found. A two pole filter on the feedforward input has a faster transient response than a single pole filter for the same amount of ripple attenu-ation. Another advantage of the two pole filter has is that the phase shift is twice that of the single pole filter. This results in 180 degrees of phase shift of the second harmonic and brings both the resulting third harmonic and the displacement component of the input current back in phase with the voltage. A second harmonic ripple voltage of 3% at the feedforward input results in a 0.97 power factor just from the displacement component if a single pole filter is used for the feedforward volt-age. With a two pole filter there is no displacement component to the power factor because it is in 3-273APPLICATION NOTEU-134UC3854 Block DiagramA block diagram of the UC3854 is shown in Figure 5 and is the same as the one in the device data sheet. This integrated circuit contains the circuits necessary to control a power factor corrector. The UC3854 is designed to implement average current mode control but is flexible enough to be used for a wide variety of power topologies and control meth-ods.The top left corner of Figure 5 contains the under voltage lock out comparator and the enable com-parator. The output of both of these comparators must be true to allow the device to operate. The in-verting input to the voltage error amplifier is con-nected to pin 11 and is called Vsens. The diodes shown around the voltage error amplifier are in-tended to represent the functioning of the internal circuits rather than to show the actual devices. The diodes shown in the block diagram are ideal di-odes and indicate that the non-inverting input to the error amplifier is connected to the 7.5Vdc refer-ence voltage under normal operation but is also used for the slow start function. This configuration lets the voltage control loop begin operation before the output voltage has reached its operating point and eliminates the turn-on overshoot which plagues many power supplies. The diode shown between pin 11 and the inverting input of the error amplifier is also an ideal diode and is shown to eliminate confusion about whether there might be an extra diode drop added to the reference or not.In the actual device we do it with differential ampli-fiers. An internal current source is also provided for charging the slow start timing capacitor.input to the multiplier. The other input to the multi-plier is pin 6, lac, and this is the input for the pro-gramming wave shape from the input rectifiers.This pin is held at 6.0 volts and is a current input.The feedforward input, Vff, is pin 8 and its value is squared before being fed into the divider input of the multiplier. The lset current from pin 12 is also used in the multiplier to limit the maximum output current. The output current of the multiplier is Imo and it flows out of pin 5 which is also connected tothe non-inverting input of the current error ampli-fier.The inverting input of the current amplifier is con-nected to pin 4, the lsens pin. The output of the current error amplifier connects to the pulse width modulation (PWM) comparator where it is com-pared to the oscillator ramp on pin 14. The oscilla-tor and the comparator drive the set-reset flip-flop which, in turn, drives the high current output on pin16. The output voltage is clamped internally to the UC3854 at 15 volts so that power MOSFETs will not have their gates over driven. An emergency peak current limit is provided on pin 2 and it will shut the output pulse off when it is pulled slightly below ground. The reference voltage output is con-nected to pin 9 and the input voltage is connected to pin 15.DESIGN PROCESSPower Stage DesignThe output of the voltage error amplifier, Vvea, isavailable on pin 7 of the UC3854 and it is also anThis analysis of the power stage design makes use of a 250W boost converter as an example. The control circuit for a boost power factor corrector does not change much with the power level of the converter. A 5000 watt power factor corrector will have almost the same control circuits as a 50 watt Figure 5. UC3854 Block Diagram3-275corrector. The power stage will be different but the design process will remain the same for all power factor corrector circuits. Since the design process is the same and the power stage is scalable a 250watt corrector serves well as an example and it can be readily scaled to higher or lower output lev-els. Figure 6 is the schematic diagram of the cir-cuit. Please refer to this schematic in the discussion of the design process which follows.SpecificationsThe design process starts with the specifications for the converter performance. The minimum and maximum line voltage, the maximum output power,and the input line frequency range must be speci-fied. For the example circuit the specifications are:Maximum power output: 250WInput voltage range: 80-27OVacLine frequency range: 47-65HzThis defines a power supply which will operate al-most anywhere in the world. The output voltage of a boost regulator must be greater than the peak of the maximum input voltage and a value 5% to 10%higher than the maximum input voltage is recom-mended so the output voltage is chosen to be 400Vdc.Switching Frequency The choice of switching frequency is generally somewhat arbitrary. The switching frequency must be high enough to make the power circuits small and minimize the distortion and must be low enough to keep the efficiency high. In most appli-cations a switching frequency in the range of 20KHz to 300KHz proves to be an acceptable compromise.The example converter uses a switching frequency of I00KHz as a compromise between size and efficiency. The value of the in-ductor will be reasonably small and cusp distortion will be minimized, the inductor will be physically small and the loss due to the output diode will not be excessive. Converters operating at higher power levels may find that a lower switching fre-quency is desirable to minimize the power losses.Turn-on snubbers for the switch will reduce the switching losses and can be very effective in allow-ing a converter to operate at high switching fre-quency with very high efficiency.Inductor Selection The inductor determines the amount of high fre-quency ripple current in the input and its value is chosen to give some specific value of ripple cur-rent. Inductor value selection begins with the peakPFC CURRENTS VS INPUT VOLTAGEVIN (AC) VOLTSFigure 73-277current of the input sinusoid. The maximum peak current occurs at the peak of the minimum line voltage and is given by:For the example converter the maximum peak line current is 4.42 amps at a Vin of 80Vac.The maximum ripple current in a boost converter occurs when the duty factor is 50% which is also when the boost ratio M=Vo/Vin=2. The peak value of inductor current generally does not occur at this point since the peak value is determined by the peak value of the programmed sinusoid. The peak value of inductor ripple current is important for cal-culating the required attenuation of the input filter.Figure 7 is a graph of the peak to peak ripple cur-rent in the inductor versus input voltage for the ex-ample converter.The peak-to-peak ripple current in the inductor is normally chosen to be about 20% of the maximum peak line current. This is a somewhat arbitrary de-cision since this is usually not the maximum value of the high frequency ripple current. A larger value of ripple current will put the converter into the dis-continuous conduction mode for a larger portion of the rectified line current cycle and means that the input filter must be larger to attenuate more high frequency ripple current. The UC3854, with aver-age current mode control, allows the boost stage to move between continuous and discontinuous modes of operation without a performance change.The value of the inductor is selected from the peak current at the top of the half sine wave at low input voltage, the duty factor D at that input voltage and the switching frequency. The two equations neces-sary are given below:WhereandL=0.89mH. For convenience the value of L is rounded up to 1.0mH.The high frequency ripple current is added to the line current peak so the peak inductor current is the sum of peak line current and half of the peak-to-peak high frequency ripple current. The inductor must be designed to handle this current level. For our example the peak inductor current is 5.0 amps.The peak current limit will be set about 10% higher at 5.5 amps.Output Capacitor The factors involved in the selection of the output capacitor are the switching frequency ripple cur-rent, the second harmonic ripple current, the DC output voltage, the output ripple voltage and the hold-up time. The total current through the output capacitor is the RMS value of the switching fre-quency ripple current and the second harmonic of the line current. The large electrolytic capacitors which are normally chosen for the output capacitor have an equivalent series resistance which changes with frequency and is generally high at low frequencies. The amount of current which the capacitor can handle is generally determined by the temperature rise. It is usually not necessary to calculate an exact value for the temperature rise. It is usually adequate to calculate the temperature rise due to the high frequency ripple current and the low frequency ripple current and add them to-gether. The capacitor data sheet will provide the necessary ESR and temperature rise information.The hold-up time of the output often dominates any other consideration in output capacitor selection.Hold-up is the length of time that the output voltage remains within a specified range after input power has been turned off. Hold-up times of 15 to 50 milli-seconds are typical. In off-line power supplies with a 400Vdc output the hold-up requirement generally works out to between 1 and 2pF per watt of output.In our 250W example the output capacitor is per watt, and then ripple current and ripple voltage are the major con-cern.Hold-up time is a function of the amount of energy stored in the output capacitor, the load power, out-put voltage and the minimum voltage the load will operate at. This can be expressed in an equation to define the capacitance value in terms of the hold-up time.Where Co is the output capacitor, Pout is the loadpower, is 64msec, Vo is 400V and Vo(min) is300V so Co is3-279the inductor and a voltage rating at least equal to the output voltage. The same is true for the output diode. The output diode must also be very fast to reduce the switch turn-on power dissipation and to keep its own losses low. The switch and diode must have some level of derating and this will vary depending on the application.For the example circuit the diode is a high speed, high voltage type with 35ns reverse recovery, 600Vdc breakdown, and 8A forward current rat-ings. The power MOSFET in the example circuit has a 500Vdc breakdown and 23Adc current rat-ing. A major portion of the losses in the switch are due to the turn-off current in the diode. The peak power dissipation in the switch is high since it must carry full load current plus the diode reverse recov-ery current at full output voltage from the time it turns on until the diode turns off. The diode in the example circuit was chosen for its fast turn off and the switch was oversized to handle the high peak power dissipation. A turn on snubber for the switch would have allowed a smaller switch and a slightly slower diode.Current SensingThere are two general methods for current sens-ing, a sense resistor in the ground return of the converter or two current transformers. The sense resistor is the least expensive method and is most appropriate at low power or current levels. The power dissipation in the resistor may become quite large at higher current levels and in that case the current transformers are more appropriate. Two current transformers are required, one for the switch current and one for the diode current, to produce an analog of the inductor current as is re-quired for average current mode control. The cur-rent transformers must operate over a very wide duty factor range and this can be difficult to achieve without saturating them. Current trans-former operation is outside the scope of this paper but Unitrode has Design Note DN-41 which dis-cusses the problem in some detail.The current transformers may be configured for either a positive output voltage or a negative output voltage. In the negative output configuration, shown in Figure 8, the peak current limit on pin 2 of the UC3854 is easy to implement. In the positive output configuration, shown in Figure 9, this fea-ture may be lost. It can be added back by putting another resistor in series with the ground leg of the current transformer which senses the switch cur-rent.The configuration of the multiplier output and the current error amplifier are different depending on whether a resistor is used for current sensing or whether current transformers with positive outputvoltages are used for current sensing. Both work equally well and the configurations of the current error amplifier are shown in Figures 8 and 9 re-spectively. The positive output current transformer configuration requires the inverting input to the in-tegrator be connected to the sense resistor and the resistor at the output of the multiplier be connected to ground. (see Figure 9) The voltage at the output of the multiplier is not zero but is the programming voltage for the current loop and it will have the half sine wave shape which is necessary for the current loop.The resistor current sense configuration is used in the example converter (Figure 6) so the inverting input to the current error amplifier (pin 4) is con-nected to ground through Rci. The current error amplifier is configured as an integrator at low fre-quencies for average current mode control so the average voltage at the non-inverting input of the current error amplifier (pin 5, which it shares with the multiplier output) must be zero. The non-invert-ing input to the current error amplifier acts like a summing junction for the current control loop and adds the multiplier output current to the current from the sense resistor (which flows through the programming resistor Rmo). The difference con-trols the boost regulator. The voltage at the invert-ing input of the current error amplifier (pin 4) will be small at low frequencies because the gain at low frequencies is large. The gain at high frequencies is small so relatively large voltages at the switching frequency may be present. But, the average volt-age on pin 4 must be zero because it is connected through Rci to ground.The voltage across Rs, the current sense resistor in the example converter, goes negative with re-spect to ground so it is important to be sure that the pins of the UC3854 do not go below ground.The voltage across the sense resistor should be kept small and pins 2 and 5 should be clamped to prevent their going negative. A peak value of 1 volt or so across the sense resistor provides a signal large enough to have good noise margin but which is small enough to have low power dissipation.There is a great deal of flexibility in choosing the value of the sense resistor. A 0.25 ohm resistor was chosen for Rs in the example converter and at the worst case peak current of 5.6 amps gives a maximum voltage of 1.40V peak.Peak Current LimitThe peak current limit on the UC3854 turns the switch off when the instantaneous current through it exceeds the maximum value and is activated when pin 2 is pulled below ground. The current limit value is set by a simple voltage divider from the reference voltage to the current sense resistor. 3-280。