北京市第四中学中考数学冲刺复习 专题训练 相似 第3讲 相似三角形的判断2(无答案)
北京四中九年级上册数学相似三角形判定定理的证明知识讲解(基础)
相似三角形判定定理的证明(基础)【学习目标】1.熟记三个判定定理的内容.2.三个判定定理的证明过程.3.学选会用适当的方法证明结论的成立性. 【要点梳理】要点一、两角分别相等的两个三角形相似 已知:如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′.求证:△ABC ∽△A ′B ′C ′.证明:在△ABC 的边AB (或它的延长线)上截取AD=A ′B ′,过点D 作BC 的平行线,交AC 于点E,则∠ADE=∠B ,∠AED=∠C,(.AD AEAB AC=平行于三角形一边的直线与其他两边相交,截得的对应线段成比例) 过点D 作AC 的平行线,交BC 与点F,则(AD CFAB CB =平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ∴AE CFAC CB=∵DE ∥BC,DF ∥AC,∴四边形DFCE 是平行四边形. ∴DE=CF.∴AE:AC=DE:CB ∴AD AE DEAB AC BC==. 而∠ADE=∠B,∠DAE=∠BAC,∠AED=∠C, ∴△ADE ∽△ABC.∵∠A=∠A ′,∠ADE=∠B=∠B ′,AD=A ′B ′, ∴△ADE ∽△A ′B ′C ′. ∴△ABC ∽△A ′B ′C ′.要点诠释:证明这个定理的正确性,是把它转化为平行线分线段成比例来证明的,注意转化时 辅助线的做法.要点二、两边成比例且夹角相等的两个三角形相似已知,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,''''AB ACA B A C =,求证:△ABC ∽△A ′B ′C ′.证明:在△ABC 的边AB (或它的延长线)上截取AD=A ′B ′,过点D 作BC 的平行线,交AC 于点E,则∠B=∠ADE,∠C=∠AED,∴△ABC ∽△ADE(两角分别相等的两个三角形相似).∴AB ACAD AE =. ∵''''AB AC A B A C =,AD=A ′B ′, ∴''AB AC AD A C =∴''AC AC AE A C =∴AE=A ′C ′ 而∠A=∠A ′∴△ADE ≌△A ′B ′C ′. ∴△ABC ∽△A ′B ′C ′.要点诠释:利用了转化的数学思想,通过添设辅助线,将未知的判定方法转化为已知两组角对应相等推得相似或已知平行推得相似的. 要点三、三边成比例的两个三角形相似 已知:在△ABC 和△A ′B ′C ′中, ''''''AB BC ACA B B C A C ==. 求证:△ABC ∽△A ′B ′C ′.证明:在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A ′B ′,AE=A ′C ′,连接DE. ∵''''AB ACA B A C =,AD=A ′B ′,AE=A ′C ′, ∴AB AC AD AE= 而∠BAC=∠DAE,∴△ABC ∽△ADE(两边成比例且夹角相等的两个三角形相似).∴AB BCAD DE =又''''AB BC A B B C =,AD= A ′B ′, ∴ ''AB BC AD B C =∴''BC BC DE B C =∴DE=B ′C ′,∴△ADE ≌△A ′B ′C ′, ∴△ABC ∽△A ′B ′C ′. 【典型例题】类型一、两角分别相等的两个三角形相似1、在△ABC 中,∠A=60°,BD⊥AC,垂足为D ,CE⊥AB,垂足为E ,求证:△ADE∽△ABC.【思路点拨】由BD⊥AC ,CE⊥AB 得到∠AEC=∠ADB=90°,利用∠EAC=∠DAB 可判断△AEC∽△ADB,则=,利用比例性质得=,加上∠EAD=∠CAB,根据三角形相似的判定方法即可得到结论. 【答案与解析】证明:∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°, 而∠EAC=∠DAB, ∴△AEC∽△ADB,∴=, ∴=,∵∠EAD=∠CAB, ∴△ADE∽△ABC.【总结升华】考查了相似三角形的判定与性质:有两组角对应相等的两三角形相似;有两组对应边的比相等且夹角相等的两个三角形相似;相似三角形的对应边的比相等.举一反三【变式】如图,△ABC是等边三角形,点D,E分别在BC、AC上,且∠ADE=60°,求证:BD•CD=AC•CE.【答案】证明:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=AC,∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴AB BD CD CE,∴BD•CD=AB•CE,即BD•CD=AC•CE;2、已知,Rt△ABC中,∠ACB=90°,点H在AC上,且线段HD⊥AB于D,BC的延长线与DH的延长线交于点E,求证:△AHD∽△EBD.【思路点拨】首先利用三角形的内角和定理证明:∠A=∠E,再有垂直得到90°的角,∠ADH=∠ACB=90°,从而证明:△AHD∽△EBD.【答案与解析】证明:∵HD⊥AB于D,∴∠ADH=90°,∴∠A+∠AHD=90°,∵∠ACB=90°,∴∠E+∠AHD=90°,∴∠A=∠E,∵∠ADH=∠ACB=90°,∴△AHD∽△EBD.【总结升华】考查了垂直定义、三角形内角和定理以及相似三角形的判定方法:两角法:有两组角对应相等的两个三角形相似.类型二、两边成比例且夹角相等的两个三角形相似3、如图,在正方形ABCD中,E、F分别是边AD、CD上的点,,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.【思路点拨】(1)利用正方形的性质,可得∠A=∠D,根据已知可得,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据平行线分线段成比例定理,可得CG的长,即可求得BG的长.【答案与解析】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.【总结升华】考查了相似三角形的判定(有两边对应成比例且夹角相等三角形相似)、正方形的性质、平行线分线段成比例定理等知识的综合应用.解题的关键是数形结合思想的应用.举一反三【变式】如图,锐角三角形ABC中,CD,BE分别是AB,AC边上的高,垂足为D,E.(1)证明:△ACD∽△ABE.(2)若将D,E连接起来,则△AED与△ABC能相似吗?说说你的理由.【答案】证明:(1)∵CD,BE分别是AB,AC边上的高,∴∠ADC=∠AEB=90°.∵∠A=∠A,∴△ACD∽△ABE.(2)∵△ACD∽△ABE,∴AD:AE=AC:AB.∵∠A=∠A,∴△AED∽△ABC.4、已知:如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,点P为BC上任意一点,PE⊥AB于E,PF⊥AC于点F.(1)求证:△ADF∽△BDE;(2)求证:△DEF∽△ABC.【思路点拨】(1)由∠BAC=90°,AD⊥BC,PE⊥AB,PF⊥AC可得到四边形AEPF为矩形,则AF=EP,再利用有两组角对应相等的两个三角形相似得到Rt△BEP∽Rt△BDA,得到=,则=,利用比例性质变形得=,根据等角的余角相等得∠DAF=∠B,根据两组对应边的比相等且夹角对应相等的两个三角形相似可判断△ADF∽△BDE;(2)由△ADF∽△BDE得到∠ADF=∠BDE,=,变形得=,再由∠BDF+∠ADE=90°得到∠DEF=90°,于是可证明△DEF∽△DB A,所以∠DEF=∠B,然后根据有两组角对应相等的两个三角形相似得到Rt△DEF∽Rt△ABC.【答案与解析】证明:(1)∵∠BAC=90°,AD⊥BC,PE⊥AB,PF⊥AC,∴四边形AEPF为矩形,∴AF=EP,∵∠EBP=∠DBA,∴Rt△BEP∽Rt△BDA,∴=,∴=,即=,∵∠DAF+∠BAD=90°,∠B+∠BAD=90°,∴∠DAF=∠B,∴△ADF∽△BDE;(2)∵△ADF∽△BDE,∴∠ADF=∠BDE,=,即=而∠BDF+∠ADE=90°,∴∠ADF+∠ADE=90°,∠DEF=90°,∴∠ADB=∠FDE,∴△DEF∽△DBA,∴∠DEF=∠B,∴Rt△DEF∽Rt△ABC.【总结升华】本题考查了相似三角形的判定与性质:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.举一反三【变式】如图,在4×3的正方形方格中,△ABC和△DEC的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.【答案】解:(1)∠ABC=135°,BC=;(2)相似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.类型三、三边成比例的两个三角形相似5、已知:正方形的边长为1(1)如图①,可以算出正方形的对角线为,求两个正方形并排拼成的矩形的对角线长,n个呢?(2)根据图②,求证△BCE∽△BED;(3)由图③,在下列所给的三个结论中,通过合情推理选出一个正确的结论加以证明,1.∠BEC+∠BDE=45°;⒉∠BEC+∠BED=45°;⒊∠BEC+∠DFE=45°【思路点拨】(1)主要是根据勾股定理寻找规律,容易在数据中找到正确结论;(2)在每个三角形中,根据勾股定理易求出每条边的长度,可利用三组边对应成比例,两三角形相似来判定;(3)欲证∠BEC+∠DFE=45°,在本题中等于45°的角有两个,即∠AEB和∠BEF,所以在证明第三个结论时,需把这两个角想法转移到已知的一个角中去,利用等腰梯形的性质求解即可.【答案与解析】解:(1)由勾股定理知,在第一个图形中,对角线长==,第二个图形中,对角线长==,第三个图形中,对角线长=,所以第n个图形中,对角线长=;(2)在△BCE中,BC=1,BE=,EC=,在△BED中,BE=,BD=2,ED=,所以,∴△BCE∽△BED;(3)选取③,∵CD∥EF,且CE=DF,∴四边形CEFD为等腰梯形,∴∠DFE=∠CEF,∴∠BEC+∠DFE=∠BEC+∠CEF=45°.【总结升华】此题主要运用三边对应成比例的两个三角形相似的判定定理、勾股定理的运用、等腰梯形的性质来解决问题的.。
北京中考复习(相似三角形的性质与判定)(课堂PPT)
13
考点聚焦
京考探究
第25课时┃相似三角形的性质与判定
思想方法
函数思想——动态几何中的函数关系 当动态几何中的两个变量有确定的关系时,其中一个变量就是 另一个变量的函数.站在函数的观点,动态的几何问题就是探求几 何图形按照某个规则运动下,两个变量之间的依赖关系,从而建立 函数关系.而此题我们通过相似三角形的判定来证明 △ADP∽△BPC,从而得出ABDP =BACP,∴AD·BC=BP·AP,∴xy= A2B2=2,即 y=2x(1<x<2).
相似
比
5
考点聚焦
京考探究
第25课时┃相似三角形的性质与判定 考点5 相似三角形的性质
6
考点聚焦
京考探究
第25课时┃相似三角形的性质与判定
京考探究 考情分析
7
考点聚焦
京考探究
第25课时┃相似三角形的性质与判定
热考京讲
热考一 平行线分线段成比例定理的应用
例 1 [2013·海淀二模] 如图 25-1,在△ABC 中,点 D,
∴DE=BBDA·AC=140×6=2.4.
18
考点聚焦
京考探究
第25课时┃相似三角形的性质与判定
情况 2:如图②,过点 D 作 DE∥BC, 交 AC 于点 E.
∵DE∥BC, ∴∠ADE=∠B. 又∵∠A=∠A, ∴△ADE∽△ABC,∴DBCE=AADB,
∴DE=AADB·BC=160×8=4.8.
第25课时 相似三角形的性质与判定
1
第25课时┃相似三角形的性质与判定
考点聚焦
考点1 相似图形的有关概念
2
考点聚焦
京考探究
第25课时┃相似三角形的性质与判定 考点2 比例线段
北京四中九年级上册数学相似三角形判定定理的证明知识讲解(基础)---巩固练习
【巩固练习】一、选择题1. 如图,已知∠C=∠E,则不一定能使△ABC∽△ADE的条件是()A ∠BAD=∠CAEB ∠B=∠DC BC ACDE AE= DAB ACAD AE=2.在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角顶角O在AB边的中点上,这块三角板绕O点旋转,两条直角边始终与AC、BC边分别相交于E、F,连接EF,则在运动过程中,△OEF与△ABC的关系是()A.一定相似B.当E是AC中点时相似 C.不一定相似D.无法判断3.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A. 1对B. 2对C. 3对D. 4对4.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C. AB CBBD CD= D.AD ABAB AC=5.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是()A B C D6.在△ABC与△A′B′C′中,有下列条件:(1);(2);(3)∠A=∠A′;(4)∠C=∠C′.如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有多少组()A. 1 B. 2 C. 3 D. 4二、填空题7.如图∠DAB=∠CAE,请补充一个条件:,使△ABC∽△ADE.8.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)9.如图,△ABC与△DEF的顶点均在方格纸中的小正方形方格(边长为一个单位长)的顶点处,则△ABC △DEF(在横线上方填写“一定相似”或“不一定相似”或“一定不相似”).10.如图,AC与BD相交于点O,在△AOB和△DOC中,已知,又因为,可证明△AOB∽△DOC.11.如图,△ABD与△AEC都是等边三角形,AB≠AC,下列结论中:①BE=DC;②∠BOD=60°;③△BOD∽△COE.正确的序号是.12.如图,D是△ABC的边BC上的一点,∠BAD=∠C,∠ABC的平分线分别与AC、AD相交于点E、F,则图形中共有对相似三角形.(不添加任何辅助线)三、解答题13. 如图,已知四边形ABCD是平行四边形.(1)求证:△MEF∽△MBA;(2)若AF、BE分别是∠DAB,∠CBA的平分线,求证:DF=EC.14.如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.(1)求证:△ABD∽△CAE;(2)如果AC=BD,AD=2BD,设BD=a,求BC的长.15.已知:正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF交于点M.(1)求证:△ABF≌△DAE;(2)找出图中与△ABM相似的所有三角形(不添加任何辅助线).【答案与解析】一、选择题1.【答案】D;【解析】由题意得,∠C=∠E,A、若添加∠BAD=∠CAE,则可得∠BAC=∠DAE,利用两角法可判断△ABC∽△ADE,故本选项错误;B、若添加∠B=∠D,利用两角法可判断△ABC∽△ADE,故本选项错误;C、若添加=,利用两边及其夹角法可判断△ABC∽△ADE,故本选项错误;D、若添加=,不能判定△ABC∽△ADE,故本选项正确;故选D.2.【答案】A.【解析】连结OC,∵∠C=90°,AC=BC,∴∠B=45°,∵点O为AB的中点,∴OC=OB,∠ACO=∠BCO=45°,∵∠EOC+∠COF=∠COF+∠BOF=90°,∴∠EOC=∠BOF,在△COE和△BOF中,∴△COE≌△BOF(ASA),∴OE=OF,∴△OEF是等腰直角三角形,∴∠OEF=∠OFE=∠A=∠B=45°,∴△OEF∽△△CAB.故选A.3.【答案】C;【解析】图中相似三角形共有3对.理由如下:∵四边形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB,∵DE=CE,FC=BC,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,∴AE:EF=AD:EC,∠DAE=∠CEF,∴AE:EF=AD:DE,即AD:AE=DE:EF,∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.故选C.4.【答案】C;【解析】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似);故A与B正确;当时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);故D正确;当时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误.5.【答案】B;【解析】根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故本选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故本选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故本选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故本选项错误.6.【答案】C;【解析】能判断△ABC∽△A′B′C′的有:(1)(2),(2)(4),(3)(4),∴能判断△ABC∽△A′B′C′的共有3组.故选C.二、填空题7.【答案】当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似;【解析】∵∠DAB=∠CAE∴∠DAE=∠BAC∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.8.【答案】∠C=∠2或∠B=∠1或;9.【答案】一定相似;【解析】根据图示知:AB=2,BC=1,AC=;DE=2,EF=,DF=5,∴====,∴△ABC∽△DEF.故答案是:一定相似.10.【答案】∠AOB=∠DOC;【解析】∵=,∠AOB=∠DOC,∴△AOB∽△DOC(两边对应成比例,夹角相等,两三角形相似).故答案为:∠AOB=∠DOC.11.【答案】①②;【解析】∵△ABD、△AEC都是等边三角形,∴AD=AB,AE=AC,∠DAB=∠CAE=60°,∴∠DAC=∠BAC+60°,∠BAE=∠BAC+60°,∴∠DAC=∠BAE,∴△DAC≌△BAE,∴BE=DC.∴∠ADC=∠ABE,∵∠BOD+∠BDO+∠DBO=180°,∴∠BOD=180°﹣∠BDO﹣∠DBO=180°﹣(60°﹣∠ADC)﹣(60°+∠ABE)=60°,∵△DAC≌△BAE,∴∠ADC=∠ABE,∠AEB=∠ACD,∵∠DBO=∠ABD+∠ABE=60°+∠ABE,∠OCE=∠ACE+∠ACO=60°+∠ACD,∵∠ABE≠∠ACD,∴∠DBO≠∠OCE,∴两个三角形的最大角不相等,∴△BOD不相似于△COE;故答案为:①②.12.【答案】3【解析】在△ABC与△DBA中,∵∠ABD=∠ABD,∠BAD=∠C,∴△ABC∽△DBA,在△ABF与△CBE中,∵BF平分∠ABC,∴∠ABF=∠CBE,又∠BAF=∠BCE,∴△ABF∽△CBE.同理可证得:△ABE∽△DBF,所以图形中共有3对相似三角形.故答案为:3.三、解答题13.【解析】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EFM=∠MAB,∠FEM=∠MBA,∴△MEF∽△MBA;(2)∵AB∥CD,∴∠DFA=∠FAB,∵AF、BE分别是∠DAB,∠CBA的平分线,∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DA=DF,同理得出CE=CB,∴DF=EC.14.【解析】(1)证明:∵BD∥AC,点B,A,E在同一条直线上,∴∠DBA=∠CAE,又∵==3,∴△ABD∽△CAE;(2)连接BC,∵AB=3AC=3BD,AD=2BD,∴AD2+BD2=8BD2+BD2=9BD2=AB2,∴∠D=90°,由(1)得△ABD∽△CAE∴∠E=∠D=90°,∵AE=BD,EC=AD=BD,AB=3BD,∴在Rt△BCE中,BC2=(AB+AE)2+EC2=(3BD+BD)2+(BD)2=BD2=12a2,∴BC=2a.15.【解析】(1)证明:∵ABCD是正方形,∴AB=AD=CD,∠BAD=∠ADC=90°.∵CE=DF,∴AD﹣DF=CD﹣CE.∴AF=DE.在△ABF与△DAE中,∴△ABF≌△DAE(SAS).(2)解:与△ABM相似的三角形有:△FAM;△FBA;△EAD,∵△ABF≌△DAE,∴∠FBA=∠EAD.∵∠FBA+∠AFM=90°,∠EAF+∠BAM=90°,∴∠BAM=∠AFM.∴△ABM∽△FAM.同理:△ABM∽△FBA;△ABM∽△EAD.。
2022-2023学年北京市海淀区第四中学数学九年级第一学期期末复习检测试题含解析
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.下图中几何体的左视图是( )A .B .C .D .2.如图,在⊙O 中,半径OC 垂直弦AB 于D ,点E 在⊙O 上,22.52E AB ︒∠=,=,则半径OB 等于()A .1B 2C .2D .223.已知2x=5y (y ≠0),则下列比例式成立的是( )A .25xy= B .52xy= C .25xy = D .52xy =4.4的平方根是( )A .2B .–2C .±2D .±125.﹣3﹣(﹣2)的值是( )A .﹣1B .1C .5D .﹣56.方程x (x ﹣1)=0的根是( )A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=﹣17.一组数据3,1,4,2,-1,则这组数据的极差是( )A .5B .4C .3D .28.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为( ) A .120,2x x == B .122,4x x =-= C .120,4x x == D .122,2x x =-=9.四边形ABCD 内接于⊙O ,点I 是ABC ∆的内心,124AIC ∠=,点E 在AD 的延长线上,则CDE ∠的度数为( )A .56°B .62°C .68°D .48°10.如图,矩形AOBC 的面积为4,反比例函数k y x =(0k ≠)的图象的一支经过矩形对角线的交点P ,则该反比例函数的解析式是( )A .4y x =B .2y x =C .2y x =-D .1y x=- 11.用配方法解一元二次方程x 2﹣2x =5的过程中,配方正确的是( )A .(x +1)2=6B .(x ﹣1)2=6C .(x +2)2=9D .(x ﹣2)2=912.某同学用一根长为(12+4π)cm 的铁丝,首尾相接围成如图的扇形(不考虑接缝),已知扇形半径OA =6cm ,则扇形的面积是( )A .12πcm 2B .18πcm 2C .24πcm 2D .36πcm 2二、填空题(每题4分,共24分)13.若关于x 的一元二次方程21x x m 20-+-=有实数根,则m 的取值范围是___________.14.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为_____.15.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线kyx(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=_____.16.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么AFAG的值为__________.17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=1010,则CD的长等于_____.18.计算:1(27)33-⨯= . 三、解答题(共78分)19.(8分)如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.20.(8分)如图,在Rt ABC ∆中,90ACB ︒∠=,D 为边AB 上的中点,DE AB ⊥交AC 于点E ,2AD DE =.(1)求sin B 的值;(2)若5CD =,求CE 的值.21.(8分)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在轴,轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数k y x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数k y x=的表达式,并直接写出E 、F 两点的坐标. (2)求△AEF 的面积.22.(10分)如图,点A B C ,,在O 上,//BE AC ,交O 于点E ,点D 为射线BC 上一动点, AC 平分BAD ∠,连接AC .(1)求证://AD CE ;(2)连接EA ,若3BC =,则当CD =_______时,四边形EBCA 是矩形.23.(10分)如图,将矩形ABCD 绕点C 旋转得到矩形EFGC ,点E 在AD 上.延长AD 交FG 于点H(1)求证:△EDC ≌△HFE ;(2)若∠BCE =60°,连接BE 、CH .证明:四边形BEHC 是菱形.24.(10分)某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为每千克8元,下面是他们在活动结束后的对话.小丽;如果以每千克10元的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以每千克13元的价格销售,那么每天可获取利润750元.(1)已知该水果每天的销售量y (千克)与销售单价x (元)之间存在一次的函数关系,请根据他们的对话,判决该水果每天的销售量y (千克)与销售单价x (元)之间存在怎样的函数关系,并求出这个函数关系式;(2)设该超市销售这种水果每天获取的利润为W (元),求W (元)与x (元)之间的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3)当销售利润为600元并且尽量减少库存时,销售单价为每千克多少元?25.(12分)如图,一次函数6y x =-+的图象与反比例函数(0)k y k =≠在第一象限的图象交于()2,A a 和B 两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点M在x轴上,且AMC∆的面积为10,求点M的坐标.26.如图,已知反比例函数kyx=(x > 0,k是常数)的图象经过点A(1,4),点B(m , n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:∆ACB∽∆NOM;(3)若∆ACB与∆NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.参考答案一、选择题(每题4分,共48分)1、D【分析】根据左视图是从左面看到的图形,即可.【详解】从左面看从左往右的正方形个数分别为1,2,【点睛】本题主要考查几何体的三视图,理解左视图是从左面看到的图形,是解题的关键.2、B【分析】直接利用垂径定理进而结合圆周角定理得出ODB ∆是等腰直角三角形,进而得出答案. 【详解】半径OC ⊥弦AB 于点D ,AC BC ∴=,22.5E ︒∴∠=,45BOC ︒∴∠=,ODB ∴∆是等腰直角三角形,2AB =,1DB OD ∴==,则半径OB ==故选:B .【点睛】此题主要考查了勾股定理,垂径定理和圆周角定理,正确得出ODB ∆是等腰直角三角形是解题关键.3、B【解析】试题解析:∵2x=5y , ∴ 52xy =. 故选B .4、C【分析】根据正数的平方根的求解方法求解即可求得答案.【详解】∵(±1)1=4, ∴4的平方根是±1. 故选:C .5、A【解析】利用有理数的减法的运算法则进行计算即可得出答案.【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A .【点睛】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键.6、C【分析】由题意推出x =0,或(x ﹣1)=0,解方程即可求出x 的值.【详解】解:∵x (x ﹣1)=0,∴x 1=0,x 2=1,故选C .【点睛】此题考查的是一元二次方程的解法,掌握用因式分解法解一元二次方程是解决此题的关键.7、A【分析】根据极差的定义进行计算即可.【详解】这组数据的极差为:4-(-1)=5.故选A.【点睛】本题考查极差,掌握极差的定义:一组数据中最大数据与最小数据的差,是解题的关键.8、C【分析】设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论. 【详解】解:设方程2(1)(1)0a x b x c -+-+=中,1t x =-则方程变为20at bt c ++=∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴关于t 的方程20at bt c ++=的解为11t =-,23t =, ∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3解得:10x =,24x =,故选C .【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.9、C【分析】由点I 是ABC 的内心知2BAC IAC =∠∠ ,2ACB ICA =∠∠,从而求得()1802180B AIC =︒-⨯︒-∠∠ ,再利用圆内接四边形的外角等于内对角可得答案.【详解】∵点I 是ABC 的内心∴2BAC IAC =∠∠ ,2ACB ICA =∠∠∵124AIC =︒∠∴B ()180BAC ACB =︒-+∠∠()1802180AIC =︒-⨯︒-∠68=︒∵四边形ABCD 内接于⊙O∴68CDE B ==︒∠∠故答案为:C .【点睛】本题考查了三角形的内心,圆内接四边形的性质,掌握三角形内心的性质和圆内接四边形的外角等于内对角是解题的关键.10、D【分析】过P 点作PE ⊥x 轴于E ,PF ⊥y 轴于F ,根据矩形的性质得S 矩形OEPF =14S 矩形OACB =1,然后根据反比例函数的比例系数k 的几何意义求解.【详解】过P 点作PE ⊥x 轴于E ,PF ⊥y 轴于F ,如图所示:∵四边形OACB 为矩形,点P 为对角线的交点,∴S 矩形OEPF =14S 矩形OACB =14×4=1. ∴k=-1,所以反比例函数的解析式是:1y x=-. 故选:D考查了反比例函数的比例系数k 的几何意义:在反比例函数y=k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.11、B 【分析】在方程左右两边同时加上一次项系数一半的平方即可.【详解】解:方程两边同时加上一次项系数一半的平方,得到x 2﹣2x+1=5+1,即(x ﹣1)2=6,故选:B .【点睛】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12、A【分析】首先根据铁丝长和扇形的半径求得扇形的弧长,然后根据弧长公式求得扇形的圆心角,然后代入扇形面积公式求解即可.【详解】解:∵铁丝长为(12+4π)cm ,半径OA =6cm ,∴弧长为4πcm , ∴扇形的圆心角为:18046ππ⨯=120°, ∴扇形的面积为:21206360π⨯=12πcm 2, 故选:A .【点睛】本题考查了扇形的面积的计算,解题的关键是了解扇形的面积公式及弧长公式,难度不大.二、填空题(每题4分,共24分)13、m 9≤ 【分析】根据根的判别式可得方程21x x m 204-+-=有实数根则Δ0≥,然后列出不等式计算即可. 【详解】根据题意得:()221Δb 4ac 141m 204⎛⎫∴=-=--⨯⨯-≥ ⎪⎝⎭ 解得:m 9≤故答案为:m 9≤本题考查的是一元二次方程的根的判别式,根据一元二次方程的根的情况确定24b ac - 与0的关系是关键.14、33.【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB ′, 则线段BF 为所求的最短路线.设∠BAB ′=n °.∵64180n ππ⋅=, ∴n =120,即∠BAB ′=120°.∵E 为弧BB ′中点,∴∠AFB =90°,∠BAF =60°,Rt △AFB 中,∠ABF =30°,AB =6∴AF =3,BF 2263-3∴最短路线长为3.故答案为:3【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.15、1【解析】证明△ODA ∽△CDO ,则OD 2=CD•DA ,而则OD 2=(4﹣n )2+n 2=2n 2﹣1n+16,CD 2(m+n ﹣4),DA 2n ,即可求解.【详解】解:点A 、B 的坐标分别为(4,0)、(0,4),即:OA =OB ,∴∠OAB =45°=∠COD ,∠ODA =∠ODA ,∴△ODA ∽△CDO ,∴OD2=CD•DA,设点E(m,n),则点D(4﹣n,n),点C(m,4﹣m),则OD2=(4﹣n)2+n2=2n2﹣1n+16,CD(m+n﹣4),DA n,即2n2﹣1n+16(m+n﹣4)n,解得:mn=1=k,故答案为1.【点睛】本题考查的是反比例函数与一次函数的交点问题,涉及到三角形相似、一次函数等知识点,关键是通过设定点E的坐标,确定相关线段的长度,进而求解.16、3 5【分析】由题中所给条件证明△ADF~△ACG,可求出AFAG的值.【详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE=∠C∴△ADF~△ACG∴35 AF ADAG AC==.故答案为35.【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.17、16【解析】如图作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.易知四边形BEDF是矩形,理由面积法求出DE,再利用等腰三角形的性质,求出DF即可解决问题.【详解】连接BD,过点B分别作BM⊥AD于点M,BN⊥DC于点N,∵梯形ABCD是等距四边形,点B是等距点,∴AB=BD=BC=10,∵10cos A=AMAB,∴10,∴22AB AM-10,∵BM⊥AD,∴10,∵AB//CD,∴S△ABD=11·22AB BN AD BM=⋅,∴BN=6,∵BN⊥DC,∴22BD BN-,∴CD=2DN=16,故答案为16.18、1.【解析】试题分析:原式127333﹣1=1,故答案为1.考点:二次根式的混合运算.三、解答题(共78分)19、(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出222OA AB OB-=.根据直角三角形斜边的中线等于斜边的一半即可求解. 详解:(1)证明:∵AB∥CD,∴CAB ACD∠=∠∵AC平分BAD∠∴CAB CAD∠=∠,∴CAD ACD∠=∠∴AD CD =又∵AD AB =∴AB CD =又∵AB ∥CD ,∴四边形ABCD 是平行四边形又∵AB AD =∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB 中,90AOB ∠=︒.∴2OA ==.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC 中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.20、(1);5(2)32 【分析】(1)根据题意证出∠B=∠ADE ,进而设出DE 和AD 的值,再结合勾股定理求出AE 的值即可得出答案; (2)根据斜中定理求出AD 和AB 的值,结合∠B 和∠AED 的sin 值求出AC 和AE 的值,相减即可得出答案.【详解】(1)∵DE AB ⊥,∴90ACB ADE ︒∠=∠=.又∵A A ∠=∠,∴90B AED A ︒∠=∠=-∠.设DE x =,则22AD DE x ==.在Rt ADE ∆中,AE = ,则sin sinADB AEDAE=∠===(2)∵D为Rt ABC∆斜边AB上的中点,∴AD BD CD===∴AB=则sin45AB BAC=⋅==,5sin2ADAEAED===∠,∴53422CE AC AE=-=-=.【点睛】本题考查的是解直角三角形,难度适中,需要熟练掌握直角三角形中的相关性质与定理.21、(1)2yx=,E(2,1),F(-1,-2);(2)32.【分析】(1)先得到点D的坐标,再求出k的值即可确定反比例函数解析式;(2)过点F作FG⊥AB,与BA的延长线交于点G.由E、F两点的坐标,得到AE=1,FG=2-(-1)=3,从而得到△AEF 的面积.【详解】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得到x=1,∴点D的坐标为(1,2).∵函数kyx=的图象经过点D,∴21k=,∴k=2,∴函数kyx=的表达式为2yx=.(2)过点F作FG⊥AB,与BA的延长线交于点G.根据反比例函数图象的对称性可知:点D与点F关于原点O对称∴点F的坐标分别为(-1,-2),把x=2代入2yx=得,y=1;∴点E的坐标(2,1);∴AE=1,FG=2-(-1)=3,∴△AEF的面积为:12AE•FG=131322⨯⨯=.22、(1)见详解;(2)1【分析】(1)先证E DAC ∠=∠,再证E ACE ∠=∠,可得ACE DAC ∠=∠,即可得出结论;(2)根据矩形的性质可得∠BCA=90°,再证△ABC ≌△ADC ,即可解决问题.【详解】(1)证明:∵AC 平分BAD ∠∴BAC DAC ∠=∠∵E BAC ∠=∠∴E DAC ∠=∠∵//BE AC∴E ACE ∠=∠∴ACE DAC ∠=∠∴//AD EC(2) 当CD =1时,四边形EBCA 是矩形.当四边形EBCA 是矩形,∴∠BCA=90°, 又∵AC 平分BAD ∠,∴∠BAC=∠DAC∴△ABC ≌△ADC ,∴BC=DC又∵3BC =∴DC=1故答案为1.【点睛】本题考查矩形判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)见解析;(2)见解析.【解析】(1)依据题意可得到FE=AB=DC ,∠F=∠EDC=90°,FH ∥EC ,利用平行线的性质可证明∠FHE=∠CED ,然后依据AAS 证明△EDC ≌△HFE 即可;(2)首先证明四边形BEHC 为平行四边形,再证明邻边BE=BC 即可证明四边形BEHC 是菱形.【详解】(1)证明:∵矩形FECG 由矩形ABCD 旋转得到,∴FE =AB =DC ,∠F =∠EDC =90°,FH ∥EC ,∴∠FHE =∠CED .在△EDC 和△HFE 中,F EDC FHE CED EF DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EDC ≌△HFE (AAS );(2)∵△EDC ≌△HFE ,∴EH =EC .∵矩形FECG 由矩形ABCD 旋转得到,∴EH =EC =BC ,EH ∥BC ,∴四边形BEHC 为平行四边形.∵∠BCE =60°,EC =BC ,∴△BCE 是等边三角形,∴BE =BC ,∴四边形BEHC 是菱形.【点睛】本题主要考查的是旋转的性质、菱形的判定,熟练掌握相关图形的性质和判定定理是解题的关键.24、(1)y=﹣50x+800(x >0);(2)单价为12元时,每天可获得的利润最大,最大利润是800元;(3)每千克10元或14元.【解析】本题是通过构建函数模型解答销售利润的问题.依据题意首先确定学生对话中一次函数关系;然后根据销售利润=销售量×(售价-进价),列出平均每天的销售利润w (元)与销售价x 之间的函数关系,再依据函数的增减性求得最大利润.【详解】(1)当销售单价为13元/千克时,销售量为:750÷(13﹣8)=150千克, 设:y 与x 的函数关系式为:y=kx+b (k≠0)把(10,300),(13,150)分别代入得:k=﹣50,b=800∴y 与x 的函数关系式为:y=﹣50x+800(x >0).(2)∵利润=销售量×(销售单价﹣进价),由题意得∴W=(﹣50x+800)(x ﹣8)=﹣50(x ﹣12)2+800,∴当销售单价为12元时,每天可获得的利润最大,最大利润是800元.(3)将w=600代入二次函数W=(﹣50x+800)(x ﹣8)=600解得:x 1=10,x 2=14即:当销售利润为600元时,销售单价为每千克10元或14元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,我们首先要读懂题意,确定变量,建立函数模型,然后结合实际选择最优方案.25、(1)8y x=;(2)()1,0或()11,0 【分析】(1)先把点()2,A a 代入6y x =-+解得a 的值,再代入反比例函数(0)k y k x=≠中解得k 的值即可; (2)AMC ∆的面积可以理解为是以MC 为底,点A 的纵坐标为高,根据三角形的面积公式列式求解即可.【详解】解:(1)把点()2,A a 代入6y x =-+,得26a =-+,解得:4a =,()2,4A ∴把()2,4A 代入反比例函数k y x=, 248k ∴=⨯=; ∴反比例函数的表达式为8y x =; (2)一次函数6y x =-+的图象与x 轴交于点C ,()6,0C ∴,设(),0M x ,6MC x ∴=-,164102AMC S x ∆∴=-⨯=, 1x ∴=或11x =,M ∴的坐标为()1,0或()11,0.【点睛】本题主要考查一次函数和反比例函数的交点问题,注意MC 的值有两个.26、(1)4y x =;(2)证明见解析;(3)43,?3⎛⎫ ⎪⎝⎭,41633y x =-+. 【解析】试题分析:(1)把 A 点坐标代入y k x=可得k 的值,进而得到函数解析式; (2)根据A 、B 两点坐标可得AC=4-n ,BC=m-1,ON=n ,OM=1,则4AC n NO n-=,再根据反比例函数 解析式可得4m =n ,则1AC m ON =-,而11BC m MO -=,可得AC BC NO MO =,再由∠ACB=∠NOM=90°,可得 △ACB ∽△NOM ;(3)根据△ACB 与△NOM 的相似比为2可得m-1=2,进而得到m 的值,然后可得B 点坐标,再利用待定系数法求出AB 的解析式即可.试题解析:(1)∵y k x =(x >0,k 是常数)的图象经过点A (1,4), ∴k=4,∴反比例函数解析式为y=4x; (2)∵点 A (1,4),点 B (m ,n ),∴AC=4-n ,BC=m-1,ON=n ,OM=1, ∴441AC n NO n n-==-, ∵B (m ,n )在y=4x 上, ∴4m =n , ∴1AC m ON =-,而11BC m MO -=, ∴AC BC NO MO=, ∵∠ACB=∠NOM=90°,∴△ACB ∽△NOM ;(3)∵△ACB 与△NOM 的相似比为 2,∴m-1=2,m=3,∴B (3,43), 设AB 所在直线解析式为 y=kx+b , ∴43{34k b k b=+=+,解得,43 {163 kb=-=∴AB的解析式为y=-43x+163.考点:反比例函数综合题.。
北京市第四中学2024届中考冲刺卷数学试题含解析
北京市第四中学2024学年中考冲刺卷数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.(3,-1)B.(2,﹣1)C.(1,-3)D.(﹣1,3).若不考虑接缝,它是一个半径为12cm,圆心角为60的扇形,2.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开则()A.圆锥形冰淇淋纸套的底面半径为4cmB.圆锥形冰淇淋纸套的底面半径为6cmC.圆锥形冰淇淋纸套的高为235cmD.圆锥形冰淇淋纸套的高为63cm3.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB 的最小值为()A.B.C.10 D.=,4.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当AB2∠=时,AC等于()B60A.2B.2C.6D.225.将(x+3)2﹣(x﹣1)2分解因式的结果是()A.4(2x+2)B.8x+8 C.8(x+1)D.4(x+1)6.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()A.28 B.29 C.30 D.317.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x的值是().A.3-B.3C.2D.88.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.833π-C.8233π-D.843π-9.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.110.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<0二、填空题(共7小题,每小题3分,满分21分)11.如图,在每个小正方形边长为1的网格中,ABC△的顶点A,B,C均在格点上,D为AC边上的一点.线段AC的值为______________;在如图所示的网格中,AM是ABC△的角平分线,在AM上求一点P,使CP DP的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置是如何找到的(不要求证明)___________.12.如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD.则△AED的周长为____cm.13.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=23+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.14.点(a-1,y1)、(a+1,y2)在反比例函数y=kx(k>0)的图象上,若y1<y2,则a的范围是________.15.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.16.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.17.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O 的半径为2,则图中阴影部分的面积为_____.三、解答题(共7小题,满分69分)18.(10分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图(1)中画出一个等腰△ABE,使其面积为3.5;(2)在图(2)中画出一个直角△CDF,使其面积为5,并直接写出DF的长.19.(5分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)20.(8分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.21.(10分)化简:(x-1-2x2x1-+)÷2x xx1-+.22.(10分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。
北京四中九年级上册数学探索相似三角形相似的条件知识讲解(基础)
探索相似三角形相似的条件(基础)【学习目标】1. 相似三角形的概念.2.相似三角形的三个判定定理.3.黄金分割.4. 进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形的概念相似三角形:三个角分别相等,三边成比例的两个三角形叫做相似三角形.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A 的对应点是A ′,点B 的对应点是B ′,点C 的对应点是C ′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等. 要点二、相似三角形的三个判定定理定理:两角分别相等的两个三角形相似.两边成比例且夹角相等的两个三角形相似.三边成比例的两个三角形相似.要点诠释:(1)要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.(2)此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.要点三、相似三角形的常见图形及其变换:要点四、黄金分割1.定义:一般地,点C 把线段AB 分成两条线段AC 和BC 两段,如果AC BC AB AC=,那么线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.要点诠释:51AC AB -=≈0.618AB(0.61851-是黄金分割的准确值).2.作一条线段的黄金分割点:如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD =21AB . (2)连接AD ,在DA 上截取DE =DB .(3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点. 要点诠释:一条线段的黄金分割点有两个.【典型例题】类型一、相似三角形的概念1. 下列能够相似的一组三角形为( ).A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形【答案】C【解析】A 中只有一组直角相等,其他的角是否对应相等不可知;B 中什么条件都不满足;D 中只有一条对应边的比相等;C 中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.举一反三:【变式】下列图形中,必是相似形的是( ).A .都有一个角是40°的两个等腰三角形B .都有一个角为50°的两个等腰梯形C .都有一个角是30°的两个菱形D .邻边之比为2:3的两个平行四边形【答案】C.类型二、相似三角形的三个判定定理2、如图,点D 在等边△ABC 的BC 边上,△ADE 为等边三角形,DE 与AC 交于点F .(1)证明:△ABD ∽△DCF ;(2)除了△ABD ∽△DCF 外,请写出图中其他所有的相似三角形.【思路点拨】(1)利用等边三角形的性质以及相似三角形的判定方法两角对应相等的两三角形相似得出即可;(2)利用对顶角的性质以及相似三角形的性质进而判断得出即可.【答案与解析】(1)证明:∵△ABC,△ADE为等边三角形,∴∠B=∠C=∠3=60°,∴∠1+∠2=∠DFC+∠2,∴∠1=∠DFC,∴△ABD∽△DCF;(2)解:∵∠C=∠E,∠AFE=∠DFC,∴△AEF∽△DCF,∴△ABD∽△AEF,故除了△ABD∽△DCF外,图中相似三角形还有:△AEF∽△DCF,△ABD∽△AEF.【总结升华】此题主要考查了相似三角形的两个对应角相等的判定方法以及等边三角形的性质等知识,得出对应角关系是解题关键.举一反三【变式】如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.【答案】证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE ⊥AB , ∴∠ADB=∠CEB=90°,又∵∠B=∠B ,∴△ABD ∽△CBE .3、已知:如图,在△ABC 中,∠C=90°,点D 、E 分别AB 、CB 延长线上的点,CE=9,AD=15,连接DE .若BC=6,AC=8,求证:△ABC ∽△DBE .【思路点拨】首先利用勾股定理可求出AB 的长,再由已知条件可求出DB ,进而可得到DB :AB 的值,再计算出EB :BC 的值,继而可判定△ABC ∽△DBE .【答案与解析】证明:∵在RT △ABC 中,∠C=90°,BC=6,AC=8,∴AB=22BC AC +=10,∴DB=AD-AB=15-10=5∴DB :AD=1:2,又∵EB=CE-BC=9-6=3,∴EB :BC=1:2,∴EB :BC=DB :AD ,又∵∠DBE=∠ABC ,∴△ABC ∽△DBE .【总结升华】本题考查了相似三角形的判定,常见的判定方法有:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似.举一反三【变式】【答案】4、网格图中每个方格都是边长为1的正方形.若A ,B ,C ,D ,E ,F 都是格点,试说明△ABC ∽△DEF .【思路点拨】利用图形与勾股定理可以推知图中两个三角形的三条对应边成比例,由此可以证得△ABC ∽△DEF .【答案与解析】证明:∵AC=2,BC=221031=+,AB=4,DF=222222=+,EF=2202621=+,ED=8, ∴12AC BC AB DF EF DE ===,∴△ABC ∽△DEF . 【总结升华】本题考查了相似三角形的判定、勾股定理.相似三角形相似的判定方法有:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A ”型和“X ”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.本题是在网格状中的两个三角形,优先考虑三边对应成比例的方法去考虑.举一反三【变式】如图所示,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=________,BC=_________;(2)判断△ABC 与△DEF 是否相似?并证明你的结论.【答案】(1)解:∠ABC=90°+45°=135°,BC=2222822+==;故答案为:135°;22.(2)△ABC ∽△DEF .证明:∵在4×4的正方形方格中,∠ABC=135°,∠DEF=90°+45°=135°,∴∠ABC=∠DEF .∵AB=2,BC=22,FE=2,DE=2∴22,222AB BC DE FE ===. ∴△ABC ∽△DEF .类型三、5. 如图所示,矩形ABCD 是黄金矩形(即BC AB =215-≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形?【思路点拨】(1)矩形的宽与长之比值为215-,则这种矩形叫做黄金矩形. (2)要说明ABFE 是不是黄金矩形只要证明AB AE =215-即可. 【答案与解析】矩形ABFE 是黄金矩形.理由如下:因为AB AE =ABED AB AD AB ED AD -=- =21512151)15)(15()15(21152-=-+=-+-+=-- 所以矩形ABFE 也是黄金矩形.【总结升华】判断四边形是否是黄金矩形,要根据实际条件灵活选择判断方法.举一反三:【变式】以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图所示,(1)求AM ,DM 的长,(2)试说明AM 2=AD ·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?【答案】(1)∵正方形ABCD 的边长是2,P 是AB 中点,∴AD =AB =2,AP =1,∠BAD =90°,∴PD =522=+AD AP 。
【全国百强校】北京市第四中学数学中考冲刺:相似专题:4相似三角形的性质和应用 专题训练-精编.doc
相似三角形的性质和应用北京四中一、相似形的性质1. 相似三角形的性质两个三角形相似,则它们的(1)对应角相等,对应边的比相等;——根据定义(2)对应高的比、对应中线的比、对应角平分线的比都等于相似比;(3)周长比等于相似比;——容易证明(4)面积比等于相似比的平方.——需(2)成立 重点证明性质(2)如图,ABC A B C '''△△∽,AD A D ''、分别是它们的高, 求证::=:AD A D AB A B ''''.如图,ABC A B C '''△△∽,AD A D ''、分别是它们的中线, 求证::=:AD A D AB A B ''''.如图,ABC A B C '''△△∽,AD A D ''、分别是它们的角平分线, 求证::=:AD A D AB A B ''''.2. 相似多边形的性质:相似多边形的(1)对应角相等,对应边的比相等.(2)周长比等于相似比.(3)面积比等于相似比的平方.二、例题分析例1.如图,在正三角形ABC中,D、E、F分别是BC、AC、AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF与△ABC的周长之比为,面积之比等于.例2.如图,在△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC.上,Q在BC上,(1)当△PQC的面积与四边形PABQ的面积相等时,求PC的长;(2)当△PQC的周长与四边形PABQ的周长相等时,求PC的长.=12,两动点M、N分别在边AB、AC 例3.锐角△ABC中,BC=6,S△ABC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y,(1)分别写出三个图中的面积y与边长x之间的函数关系式及x的取值范围;(2)当x= ,y有最大值.三、应用举例测量旗杆的高度平面镜测量法影子测量法手臂测量法标杆测量法例1.如图,小明站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请帮小明求出楼高AB(结果精确到0.1m).例2.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5 米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).四、知识总结学习几何知识的一般思路:。
北京四中九年级上册数学图形的相似全章复习与巩固--巩固练习(基础)
《图形的相似》全章复习与巩固--巩固练习(基础)【巩固练习】一、选择题1.如图,已知,那么下列结论正确的是( ).A.B. C.D.2. 在和中,,如果的周长是16,面积是12,那么的周长、面积依次为( ).A.8,3 B.8,6 C.4,3 D.4,63.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是( ).4.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x 轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是,则点B的横坐标是().A.B. C.D.5.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的有( ) .A.1个B.2个 C.3个 D.4个6. 如图,在正方形ABCD中,E是CD的中点,P是BC边上的点,下列条件中不能推出△ABP与以点E、C、P为顶点的三角形相似的是( ).A.∠APB=∠EPC B.∠APE=90° C.P是BC的中点D.BP:BC=2:37. 如图,在△ABC中,EF∥BC,12AEEB,,S四边形BCFE=8,则S△ABC=().A.9 B.10 C.12 D.138.如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是().A.∠E=2∠K B.BC=2HIC.六边形ABCDEF的周长=六边形GHIJKL的周长D.S六边形ABCDEF=2S六边形GHIJKL二、填空题9. 在□ABCD中,在上,若,则___________.10. 如图,在△ABC中,D、E分别是AB和AC中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=_______,△ADE•与△ABC•的面积之比为_______,•△CFG与△BFD的面积之比为________.11. 如图,梯形ABCD中,AD∥BC,AC、BD交于O点,S△AOD:S△COB=1:9,则S△DOC:S△BOC=_______.12. 在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在B EFC H DA G 面上的影长为40米,则古塔高为________.13. 若, 则的值为 .14.如图,在△ABC 中,MN ∥BC ,若∠C=68°,AM :MB =1:2,则∠MNA=_______度,AN :NC =_____________.15.如图,点D,E 分别在AB 、AC 上,且∠ABC=∠AED 。
北京市西城区中考复习《相似》《解直角三角形》建议讲义及练习
北京市西城区中考复习《相似》《解直⾓三⾓形》建议讲义及练习北京市西城区重点⽰范中学20XX年3⽉九年级数学中考复习《相似》、《解直⾓三⾓形》复习建议及练习⼀、20XX年北京考试说明(⼀)图形的性质1. 相似三⾓形:A. 了解相似三⾓形的性质定理与判定定理;B. 能利⽤相似三⾓形的性质定理与判定定理解决有关简单问题。
2. 锐⾓三⾓函数及解直⾓三⾓形A. 理解锐⾓三⾓函数(sinA,cosA.tanA)的概念;知道30°、45°、60°⾓的三⾓函数值,理解(20XX年是“了解”)解直⾓三⾓形的概念;B. 能利⽤锐⾓三⾓函数的有关知识解直⾓三⾓形,能利⽤锐⾓三⾓函数的有关知识解决⼀些(20XX年是“某些”)简单的实际问题;C.运⽤直⾓三⾓形的有关内容解决有关问题。
(⼆)图形的变化3. 图形的相似:A. 了解⽐例的基本性质、线段的⽐、成⽐例的线段;了解黄⾦分割;认识图形的相似;了解相似多边形和相似⽐;了解图形的位似,知道利⽤位似可以将⼀个图形放⼤或缩⼩;B. 掌握基本事实:两条直线被⼀组平⾏线所截,所得的对应线段成⽐例(20XX年新增);会利⽤图形的相似解决⼀些简单的实际问题。
(三)图形与坐标4. 坐标与图形运动:A. 在平⾯直⾓坐标系中,知道已知顶点坐标的多边形经过位似(位似中⼼为原点)后的对应顶点坐标之间的关系;了解将多边形的顶点坐标(有⼀个顶点为原点,有⼀条边在横坐标轴上)分别扩⼤或缩⼩相同倍数时所对应的图形与原图形位似;B. 在平⾯直⾓坐标系中,能写出已知顶点的多边形经过位似(位似中⼼为原点)后的图形的顶点坐标;C. 运⽤坐标与图形运动的有关内容解决有关问题。
⼆、复习建议1.按照考试说明的要求进⾏全⾯复习,重点知识重点复习、知识系统复习全⾯、⾮重点的A 级知识点适当安排、不漏过、不随意拔⾼难度;2.B级的知识要落实到位;C级知识要达到灵活运⽤;3.注重⽅程思想在相似、解直⾓三⾓形中的使⽤;4.教会学⽣观察复杂的⼏何图形,善于分解出基本图形,熟练的应⽤⼏何中定义、定理、公式来解题;5. 逆向思维是寻求⼏何证明思路的有效途径之⼀;6. 去模式化,重知识,重思想;7. 重视学⽣思路的收集,关注学⽣的学习过程,给予有效的学习⽅法指导。
北京市北京四中九年级数学下册第二十七章《相似》测试卷(含答案解析)
一、选择题1.如图,在平行四边形ABCD 中,点E ,F 分别为,AB BC 的中点,则三角形BEF 与多边形EFCDA 的面积之比为( )A .1∶4B .1∶5C .1∶7D .1∶82.如图,AB 为半圆O 的直径,10AB =,AC 为O 的弦,8AC =,D 为AB 的中点,DM AC ⊥于M ,则DM 的长为( )A .42B .2C .1D .33.如图,在ABC 中,//DE BC ,6AD =,3DB =,4AE =,则AC 的长为( )A .1B .2C .4D .64.如图,已知△ABC 和△EDC 是以点C 为位似中心的位似图形,且△ABC 和△EDC 的周长之比为1:2,点C 的坐标为(﹣2,0),若点A 的坐标为(﹣4,3),则点E 的坐标为( )A .(52,﹣6) B .(4,﹣6) C .(2,﹣6)D .3(,6)2-5.如果两个相似三角形的对应高之比是1:2,那么它们的周长比是( ) A .1:2 B .1:4 C .2D .2:16.如图,在ABC ,AB AC a ==,点D 是边BC 上的一点,且BD a =,1AD DC ==,则a 等于( )A .512+ B .512- C .1D .27.如图,地面上点A 处有一只兔子,距它10米的B 处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C 离木桩B( )米.A .60B .50C .40D .458.如图在ABC 中,其中D 、E 两点分别在AB 、AC 上,且31AD =,29DB =,30AE =,32EC =.若50A ∠=︒,则图中1∠、2∠、3∠、4∠的大小关系正确的是( ).A .13∠=∠B .24∠∠=C .23∠∠=D .14∠<∠9.已知四个数2,3,m 3m 的值是( ) A .3B .233C 2D .2310.如图,已知直线////a b c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC =,则DEEF=( )A .13B .12C .23D .1 11.如图,在矩形OABC 中,点A 和点C 分别在y 轴和x 轴上.AC 与BO 交于点D ,过点C 作CE BD ⊥于点E ,2DE BE =.若5CE =,反比例函数(0,0)ky k x x=>>经过点D ,则k =( )A .2B .352C .36D .3012.已知P 是线段AB 的黄金分割点,且51AB =+,则AP 的长为( ).A .2B .51-C .2或51-D .35-13.如图,菱形ABCD 的边长为10,面积为80,∠BAD <90°,⊙O 与边AB ,AD 都相切菱形的顶点A 到圆心O 的距离为5,则⊙O 的半径长等于( )A .2.5B 5C .22D .314.已知两个三角形相似,其中一个三角形的两个内角分别为72,63︒︒,则另一个三角形的最小内角为( ) A .72︒B .63︒C .45︒D .不能确定15.如图,四边形ABCD 是正方形,E 是BC 的中点,连接AE 与对角线BD 相交于点G ,连接CG 并延长,交AB 于点F ,连接DE 交CF 于点H .以下结论:①CDE BAE ∠=∠;②CF DE ⊥;③AF BF =;④22CE CH CF =⋅.其中正确结论的个数有( )A .1B .2C .3D .4二、填空题16.如图,一次函数y =﹣34x +6的图象与x 轴交于点B ,与y 轴交于点A ,过线段AB 的中点P (4,3)作一条直线与△AOB 交于点Q ,使得所截新三角形与△AOB 相似,则点Q 坐标是_____.17.如图,在Rt ABC 中,90ACB ︒∠=,5AC =,12BC =,D 、E 分别是边BC 、AC 上的两个动点,且8DE =,P 是DE 的中点,连接PA ,PB ,则13PA PB +的最小值为________.18.如图,在△ABC 中,中线BE ,CD 相交于点G ,则EDG BDG S S ∆∆:=__________.19.如图,△ABC 中,D 在AC 上,且AD :DC=1:n ,E 为BD 的中点,AE 的延长线交BC 于F ,那么FC:BF 的值为______(用含有n 的代数式表示).20.如图,在四边形ABCD 中,AC 平分∠BAD ,AD=AC ,以A 为圆心,AB 长为半径画弧,交AC 于点E ,连接DE 、BE ,并延长BE 交CD 于点F ,下列结论:①△BAC ≌ △EAD ,②BC+CF=DE+EF ,③∠ABE+∠ADE=∠BCD ,其中正确的有____(填序号)21.如图,在矩形ABCD 中,M N 、分别是边AD BC 、的中点,点P Q 、在DC 边上,且14PQ DC =.若8,10AB BC ==,则图中阴影部分的面积是_____________22.△ABC 的三边长分别为7、6、2,△DEF 的两边分别为1、3,要使△ABC ∽△DEF ,则△DEF 的第三边长为______.23.如图,已知△ABC 中,∠B =90°,BC =3,AB =4,D 是边AB 上一点,DE ∥BC 交AC 于点E ,将△ADE 沿DE 翻折得到△A ′DE ,若△A ′EC 是直角三角形,则AD 长为_____.24.如图,在Rt ABC ∆中,90ACB ∠=︒,//CD AB ,ABC ∠的平分线BD 交AC 于点E ,若10AB =,6BC =,则AE =_______.25.如图,在直角三角形ABC 中,90,C AD ︒∠=是BAC ∠的平分线,且35,22CD DB ==,则AB =____.26.如图,在△ABC 中,AE AFEB FC=,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于点Q ,当CQ =13CE 时,EP +BP =20,则BC 的长为________.三、解答题27.如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴的正半轴上.双曲线(0)ky x x=>经过BC 边的中点(2,4)D ,与AB 交于点E ,连结DE ,CE .(1)求k 的值及CDE ∠的度数.(2)在直线AB 上找点F ,使得以点A 、D 、F 为顶点的三角形与CDE △相似,求F 点的坐标.28.如图,在△ABC 中,AB =23,AC 43=,点D 在AC 上,且AD =12AB , (1)用尺规作图作出点D(保留作图痕迹,不必写作法); (2)连接BD ,并证明:△ABD ∽△ACB .29.已知:如图,在边长为4的菱形ABCD 中,60D ∠=︒,点E 、F 分别在边AB 、AD 上,BE DF =,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:~BEC BCH ∆∆;(2)当E 是边AB 的中点时,试求CH 的长度.30.将ABC 绕点A 逆时针方向旋转θ,并使各边长变为原来的n 倍,得到AB C ''△,我们将这种变换记为[],n θ.(1)问题发现如图①,对ABC 作变换603⎡⎤︒⎣⎦得AB C ''△,则:AB C ABC S S ''=△△______;直线BC 与直线B C ''所夹的锐角度数为______.(2)拓展探究如图②,ABC 中,35BAC ∠=︒且:2AB AC =,连结BB ',CC '.对ABC 作变换603⎡︒⎣得AB C ''△,求:ABB ACC S S ''△△的值及直线BB '与直线CC '相交所成的较小角的度数,并就图②的情形说明理由. (3)问题解决如图③,ABC 中,30BAC ∠=︒,90ACB ∠=︒,对ABC 作变换[],n θ得AB C ''△,使点B 、C 、C '在同一直线上,且四边形ABB C ''为矩形,请直接写出n 的值.。
北京第四中学九年级数学下册第二单元《相似》测试卷(包含答案解析)
一、选择题1.如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作//EF BC ,交AD 于点F ,过点E 作//EG AB ,交BC 于G ,则下列式子一定正确的是( )A .AE EFEC CD= B .BF EGCD AB= C .AF BCFD GC= D .CG AFBC AD= 2.如图,一次函数y =﹣2x +10的图象与反比例函数y =kx(k >0)的图象相交于A 、B 两点(A 在B 的右侧),直线OA 与此反比例函数图象的另一支交于另一点C ,连接BC 交y 轴于点D ,若52BC BD =,则△ABC 的面积为( )A .12B .10C .9D .83.如图,ABC 和CDE △都是等边三角形,点G 在CA 的延长线上,GB GE =,若10BE CG +=,32AG BE =,则AF 的长为( )A .1B .43C .95D .24.如图,直线////a b c ,直线m 分别交直线a ,b ,c 于点A ,B ,C ,直线n 分别交直线a ,b ,c 于点D ,E ,F ,若23=AB BC ,则DE DF 的值为( )A .13B .23C .25D .355.如图,点D 在ABC 的边AC 上,添加下列哪个条件后,仍无法判定ABC ADB ∽△△( )A .C ABD ∠=∠B .CBA ADB ∠=∠C .AB ADAC AB= D .AB BCAC BD= 6.如图,在Rt ABC 中,90,ACB AC BC ∠==,点D 、E 在AB 边上,45DCE ∠=,若3,4AD BE ==,则ABC ∣的面积为( )A .20B .24C .32D .367.如图,在ABC 中,//DE BC ,6AD =,3DB =,4AE =,则AC 的长为( )A .1B .2C .4D .68.如图,直线12//l l ,:2:3AF FB =,:2:1BC CD =,则:AE EC 是( )A .1:2B .1:4C .2:1D .3:29.已知线段a 、b 有52a b a b +=-,则:a b 为( ) A .5:1B .7:2C .7:3D .3:710.如图,在△ABC 中,AB =AC=5,BC =25,若点O 为△ABC 三条高的交点,则OA 的长度为( )A .352B .253C .5D .35411.如图,四边形ABCD 是正方形,E 是BC 的中点,连接AE 与对角线BD 相交于点G ,连接CG 并延长,交AB 于点F ,连接DE 交CF 于点H .以下结论:①CDE BAE ∠=∠;②CF DE ⊥;③AF BF =;④22CE CH CF =⋅.其中正确结论的个数有( )A .1B .2C .3D .412.如图,在△ABC 中,DE ∥BC ,12AD BD =,则AEEC=( )A .13B .12C .23D .32二、填空题13.己知034x zy ==≠,则345x y z x y z -+=++________. 14.如图,身高1.6m 的小华站在距路灯5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AE 为________.15.如图,已知点M 是△ABC 的重心,AB =123,MN ∥AB ,则MN =__________16.如图所示,在△ABC 中DE ∥BC ,若2EFB EFD S S ∆∆=,则 DE:BC=______.17.如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB BC ⊥,CD BC ⊥,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得20BE m =,10EC m =,20CD m =,则河的宽度AB 等于_______.18.如图,已知△ABC 中,∠B =90°,BC =3,AB =4,D 是边AB 上一点,DE ∥BC 交AC 于点E ,将△ADE 沿DE 翻折得到△A ′DE ,若△A ′EC 是直角三角形,则AD 长为_____.19.在ABC中,点D、E分别在边AB、AC上,AB=12,AC=16,AE=4,若ABC与ADE相似,则AD=__________.20.如图,已知△ABC中,若BC=6,△ABC的面积为12,四边形DEFG是△ABC的内接的正方形,则正方形DEFG的边长是__.三、解答题21.如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(﹣1,2)、B (﹣2,﹣1),P(m,n)是△OAB的边AB上一点.(1)画出将△OAB向右平移2个单位,再向下平移1个单位后的△O1A1B1 ,并写出点P的对应点P1的坐标;(2)以原点O为位似中心,在y轴的左侧画出△OAB的一个位似△OA2B2 ,使它与△OAB 的相似比为2:1,并写出点P的对应点P2的坐标;(3)判断△O1A1B1与△O2A2B2,能否是关于某一点Q为位似中心的位似图形,若是,请在图中标出位似中心Q,并写出点Q的坐标.22.如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,ABC的顶点都在格点上.(1)以原点O 为位似中心,在第三象限内画出将ABC 放大为原来的2倍后的位似图形111A B C △.(2)已知ABC 的面积为72,则111A B C △的面积是_________. 23.如图, ABC 中,中线AD ,BE 交于点F ,//EG BC 交AD 于点G .(1)求AGGF的值. (2)如果43BD =,4DF =,请找出与BDA 相似的三角形,并挑出一个进行证明. 24.如图,在ABC 中,正方形EFGH 内接于ABC ,点E F 、在边AB 上,点G H 、分别在BC AC 、上,且2EF AE FB =⋅, (1)求证:90C ∠=︒(2)求证:AH CG AE FB ⋅=⋅.25.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABC 的三个顶点坐标分别为()3,1A -,()1,1B -,()0,3C .(1)画出ABC 关于y 轴对称的111A B C △;(2)画出ABC 以点O 为位似中心的位似图形222A B C △,ABC 与222A B C △的位似比为1:2(画一个即可) .26.将ABC 绕点A 逆时针方向旋转θ,并使各边长变为原来的n 倍,得到AB C ''△,我们将这种变换记为[],n θ.(1)问题发现如图①,对ABC 作变换603⎡⎤︒⎣⎦得AB C ''△,则:AB C ABC S S ''=△△______;直线BC 与直线B C ''所夹的锐角度数为______.(2)拓展探究如图②,ABC 中,35BAC ∠=︒且:2AB AC =,连结BB ',CC '.对ABC 作变换603⎡︒⎣得AB C ''△,求:ABB ACC S S ''△△的值及直线BB '与直线CC '相交所成的较小角的度数,并就图②的情形说明理由. (3)问题解决如图③,ABC 中,30BAC ∠=︒,90ACB ∠=︒,对ABC 作变换[],n θ得AB C ''△,使点B 、C 、C '在同一直线上,且四边形ABB C ''为矩形,请直接写出n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据平行线分线段成比例性质进行解答便可. 【详解】 解:∵EF ∥BC ,∴AF AEFD EC =, ∵EG ∥AB ,∴AE BGEC GC=, ∴AF BCFD GC =, 故选:C . 【点睛】本题考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.2.B解析:B 【分析】过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,则//BM CN ,可证得23BM BC CN CD ==,设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭,由已知可求得A 、B 、C 的坐标,则可求得直线BC 的解析式,进而求得点D 、F 的坐标,由ABD ADF BDF S S S -=△△△及:2:5ABD ABC S S =△△可求得ABCS.【详解】过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,如图,则有//BM CN , ∴BMD CND ∽,又52BC BD = ∴23BM BD CN CD ==,设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭.∵点A ,B 在直线AB 上,∴2210223103kx x k x x⎧=-⨯+⎪⎪⎨⎪=-⨯+⎪⎩∴解得:112x k =⎧⎨=⎩,∴点()3,4A ,点()2,6B 、点()3,4C --. 设直线BC 的解析式为y=mx+n ,则有:2634m n m n +=⎧⎨-+=-⎩,解得:22m n =⎧⎨=⎩,∴直线BC 解析式为22y x =+, ∴点()0,2D ,∵点F 是直线AB 与y 轴的交点, ∴点()0,10F∴()()10232102224ABD ADF BDF S S S -==-⨯÷--⨯÷=△△△ 又∵:2:5ABD ABC S S =△△,∴55S 41022ABCABDS==⨯=, 故选:B . 【点睛】本题考查了一次函数与反比例函数的图象交点问题、待定系数法求一次函数解析式、相似三角形的判定与性质、直线上点的坐标特征、等高三角形的面积比等于底的比等知识,求出点A 、B 的坐标和作辅助线借助相似三角形解决问题是解答的关键.3.C解析:C 【分析】过点G 作GH ⊥BE ,垂足为点H ,设BE =2x ,进而可表示出相关线段长,再根据CH =12CG 列出方程求得x =1,最后再根据GAF GDE △∽△可得AF AG DE DG=,进而可求得AF 的长. 【详解】解:过点G 作GH ⊥BE ,垂足为点H ,设BE =2x ,∵10BE CG +=,32AG BE =, ∴CG =10-2x ,AG =3x , ∴AC =CG -AG =10-5x ,∵ABC 和CDE △都是等边三角形,∴BC =AC =10-5x ,CD =DE =CE =BC -BE =10-7x ,∠ABC =∠DEC =∠C =60°, ∵GB =GE ,GH ⊥BE , ∴BH =HE =x , ∴CH =CE +HE =10-6x , ∵∠GHC =90°,∠C =60°, ∴∠HGC =30°, ∴CH =12CG , ∴10-6x =12(10-2x ), 解得:x =1,∴AG =3x =3,CG =10-2x =8,CD =DE =10-7x =3, ∴GD =CG -CD =5, ∵∠ABC =∠DEC , ∴AB//DE ,∴GAF GDE ∽, ∴AF AGDE DG =, 即335AF =, 解得95AF =,故选:C . 【点睛】本题考查了等边三角形的性质,含30°的直角三角形的性质,相似三角形的判定及性质,设BE =2x ,利用含30°的直角三角形的性质列出方程是解决本题的关键.4.C解析:C【分析】 先由23AB BC =得出25AB AC =,再根据平行线分线段成比例定理即可得到结论. 【详解】 ∵23AB BC =, ∴25AB AC =, ∵a ∥b ∥c , ∴25DE AB DF AC ==, 故选:C .【点睛】 本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.5.D解析:D【分析】根据三角形相似的判定方法一一判断即可.【详解】解:A 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ;B 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ;C 、根据两边成比例夹角相等两三角形相似即可判定△ABC ∽△ADB ;D 、无法判断三角形相似.故选:D .【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.D解析:D【分析】设DE x =,则7AB x =+,然后根据相似三角形的判定及性质以及勾股定理求出x 的值,最后利用直角三角形面积公式求解即可.【详解】设DE x =,则7AB x =+,45DCE CAE DBC ∠=∠=∠=︒,ACE CDE BDC ∴△△△.设,CD a CE b ==,则有以下等式:()::3x b b x =+,()::4x a a x =+,::x a b AC =,整理得()()223,4,b x x a x x x AC ab =+=+⋅=, ()()()22222227342x x x x x a b x AC +++===, 解得5x =,12AB ∴=,62AC BC ∴==, 16262362ABC S ∴=⨯⨯=△, 故选:D .【点睛】本题主要考查相似三角形的判定及性质,勾股定理,利用方程的思想是解题的关键. 7.D解析:D【分析】根据平行线分线段成比例求出EC ,即可解答.【详解】解:∵DE ∥BC ,∴AD AE DB EC =,即643EC=, 解得:EC=2,∴AC=AE+EC=4+2=6;故选:D .【点睛】 本题考查了平行线分线段成比例定理,解决本题的关键是熟记平行线分线段成比例定理. 8.C解析:C【分析】为了便于计算,可设AF =2x ,BF =3x ,BC =2y ,CD =y ,利用AG ∥BD ,可得△AGF ∽△BDF ,从而可求出AG ,那么就可求出AE :EC 的值.【详解】解:如图所示,∵AF :FB =2:3,BC :CD =2:1∴设AF =2x ,BF =3x ,BC =2y ,CD =y∵12//l l ,∴△AGF ∽△BDF , ∴AG BD =AF BF ∴3AG y =23∴AG =2y∴AE :EC =AG :CD =2y :y =2:1故选:C .【点睛】根据三角形相似,找到各对相似三角形的共公边,建立起不同三角形之间的联系,是解答此题的关键.9.C解析:C【分析】把比例式化成乘积式求出ab 之间的关系即可.【详解】 ∵52a b a b +=- ∴2()5()a b a b +=- 解得37a b =∴:7:3a b =故选C.【点睛】本题考查比例的性质,熟练利用比例的性质转换比例式和乘积式是解题的关键. 10.A解析:A【分析】设BC 边上的高为AD ,结合三角形高线的性质及等腰三角形的性质证明△OBD ∽△BAD ,可得BD:AD=OD:BD ,利用勾股定理可求解AD 的长,进而可求解OD 的长.【详解】解:如图,设BC 边上的高为AD ,∵点O 为△ABC 三条高的交点,∴AD ⊥BC ,BO ⊥AC ,∴∠ADB=90°,∠OBC+∠C=90°,∴∠CAD+∠C=90°,∴∠OBD=∠CAD ,∵AB=AC ,∴D 为BC 的中点,∠BAD=∠CAD ,∴∠OBD=∠BAD ,∴△OBD ∽△BAD ,∴BD:AD=OD:BD ,∵BC=25∴5在Rt △ABD 中,AB=5,∴()22225525AB BD -=-= ∴5255OD =,解得152 ∴OA=AD−OD=1352552=, 故选A .【点睛】 本题主要考查等腰三角形的性质,三角形的高线,相似三角形的性质与判定,勾股定理等知识的综合运用 .11.D解析:D【分析】证明△ABE ≌△DCE ,可得结论①正确;由正方形的性质可得AB=AD=BC=CD ,BE=CE ,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,可证△ABE ≌△DCE ,△ABG ≌△CBG ,可得∠BCF=∠CDE ,由余角的性质可得结论②;证明△DCE ≌△CBF 可得结论③,证明△CHF ∽△CBF 即可得结论④正确.【详解】解:∵四边形ABCD 是正方形,点E 是BC 的中点,∴AB=AD=BC=CD ,BE=CE ,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE ≌△DCE (SAS )∴∠DEC=∠AEB ,∠BAE=∠CDE ,DE=AE ,故①正确,∵AB=BC ,∠ABG=∠CBG ,BG=BG ,∴△ABG ≌△CBG (SAS )∴∠BAE=∠BCF ,∴∠BCF=∠CDE ,且∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF ⊥DE ,故②正确,∵∠CDE=∠BCF ,DC=BC ,∠DCE=∠CBF=90°,∴△DCE ≌△CBF (ASA ),∴CE=BF ,∵CE=12BC=12AB , ∴BF=12AB , ∴AF=BF ,故③正确,∵∠BCF+∠BFC=90°,∠DEC=∠BFC∴∠BCF+∠DECC=90°,∴∠CHE=90°∴∠CHE=∠FBC又∠DEC=∠BFC∴△CHF ∽△CBF ∴CH CE BC CF= ∵BC=2CE , ∴2BC CE CE CE CH CF CF == ∴22CE CH CF =⋅故选:D .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,熟练运用这些性质进行推理是本题的关键.12.B解析:B【分析】直接利用平行线分线段成比例定理得出答案即可.【详解】解:∵DE ∥BC ,∴AE EC =12AD BD =. 故选:B .【点睛】本题考查了平行线分线段成比例定理,了解定理的内容是解答此题的关键.二、填空题13.【分析】可设则x=3ky=kz=4k 代入所求式子中求解即可【详解】解:设则x=3ky=kz=4k 则===故答案为:【点睛】本题考查比例的性质分式的求值熟练掌握比例的性质巧妙设参数是解答的关键 解析:43【分析】 可设=34x z y k ==,则x=3k ,y=k ,z=4k ,代入所求式子中求解即可. 【详解】 解:设=34x z y k ==,则x=3k ,y=k ,z=4k , 则345x y z x y z -+++ =3344354k k k k k k -+⨯++ =1612k k=43, 故答案为:43. 【点睛】本题考查比例的性质、分式的求值,熟练掌握比例的性质,巧妙设参数是解答的关键. 14.【分析】由于人和地面是垂直的即和路灯平行构成相似三角形根据对应边成比例列方程解答即可【详解】即解得:即路灯的高度为48米【点睛】本题考查了相似三角形的应用把实际问题抽象到相似三角形中利用相似三角形的 解析:4.8m【分析】由于人和地面是垂直的,即和路灯平行,构成相似三角形.根据对应边成比例,列方程解答即可.【详解】//CE AB ,ADB EDC ∴∽,::AB CE BD CD ∴=,即:1.67.5:2.5AB =,解得: 4.8m AB =.即路灯的高度为4.8米.【点睛】本题考查了相似三角形的应用.把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出路灯的高度,体现了转化的思想.15.【分析】根据三角形重心的性质可得AD=BD=CM :CD=2:3由MN ∥AB 可得△CMN ∽△CDB 再根据相似三角形的性质求解即可【详解】解:∵点M 是△ABC 的重心∴AD=BD=CM :CD=2:3∵MN解析:【分析】根据三角形重心的性质可得AD=BD=12AB =CM :CD=2:3,由MN ∥AB 可得△CMN ∽△CDB ,再根据相似三角形的性质求解即可.【详解】解:∵点M 是△ABC 的重心,∴AD=BD=12AB =CM :CD=2:3, ∵MN ∥AB ,∴△CMN ∽△CDB , ∴23MN CM DB CD ==,23=,解得MN =.故答案为:【点睛】本题考查了三角形的重心和相似三角形的性质,熟练掌握上述知识是解题的关键. 16.1:2【分析】由可得DF :FB=1:2又由DE ∥BC 可得△DFE 和△BFC 相似确定DE:BC 【详解】解:设为1则为2∵∴DF :FB=1:2又∵DE ∥BC ∴△DFE ∽△BFC ∴DE:BC=DF:FB=解析:1:2【分析】由2EFB EFD S S ∆∆=,可得DF :FB=1:2,又由DE ∥BC ,可得△DFE 和△BFC 相似,确定DE:BC.【详解】解:设EFD S ∆为1,则EFB S ∆为2,∵2EFB EFD S S ∆∆=,∴DF :FB=1:2,又∵DE ∥BC ,∴△DFE ∽△BFC ,∴DE:BC=DF:FB=1:2故答案为1:2【点睛】本题考查了相似三角形的性质和判定,解题的关键在于根据面积比确定边长的比. 17.【分析】易证△ABE ∽△DCE 即可求得【详解】∵∠ABE=∠DCE=90°∠BEA=∠DEC ∴△ABE ∽△DCE ∴即故答案为:【点睛】本题考查相似三角形的实际应用掌握相似三角形的判定定理是解题的关键 解析:40m【分析】易证△ABE ∽△DCE ,即可求得.【详解】∵∠ABE=∠DCE=90°,∠BEA=∠DEC∴△ABE ∽△DCE ∴=AB BE CD CE即20=2010AB cm m cm =40AB m故答案为:40m【点睛】本题考查相似三角形的实际应用,掌握相似三角形的判定定理是解题的关键. 18.或【分析】先根据勾股定理得到AC =5再根据平行线分线段成比例得到AD :AE =AB :AC =4:5设AD =x 则AE =A′E =xEC =5﹣xA′B =2x ﹣4在Rt △A′BC 中根据勾股定理得到A′C 再根据△ 解析:78或258 【分析】 先根据勾股定理得到AC =5,再根据平行线分线段成比例得到AD :AE =AB :AC =4:5,设AD =x ,则AE =A ′E =54x ,EC =5﹣54x ,A ′B =2x ﹣4,在Rt △A ′BC 中,根据勾股定理得到A ′C ,再根据△A ′EC 是直角三角形,根据勾股定理得到关于x 的方程,解方程即可求解.【详解】解:在△ABC 中,∠B =90°,BC =3,AB =4,∴AC =5,∵DE ∥BC ,∴AD :AB =AE :AC ,即AD :AE =AB :AC =4:5,设AD =x ,则AE =A ′E =54x ,EC =5﹣54x ,A ′B =24x ﹣, 在Rt △A ′BC 中,A ′C =22(24)3x -+,∵△A ′EC 是直角三角形,∴①当A '落在边AB 上时,∠EA ′C =90°,∠BA ′C =∠ACB ,A ′B =3×cot ∠ACB =39344⨯=, ∴AD =1974248⎛⎫-= ⎪⎝⎭;②点A 在线段AB 的延长线上(22(24)3x -+)2+(5﹣54x )2=(54x )2, 解得x 1=4(不合题意舍去),x 2=258.故AD 长为78或258. 故答案为:78或258. 【点晴】 本题考查了勾股定理和平行线等分线段成比例定理,掌握相关知识是解决问题的关键. 19.或【分析】分类讨论:当△ADE ∽△ABC 和当△AED ∽△ABC 根据相似的性质得出两种比例式进而解答即可【详解】如图∵∠DAE=∠BAC∴当△ADE∽△ABC∴即解得:AD=3∴当△AED∽△ABC∴解析:163或3【分析】分类讨论:当△ADE∽△ABC和当△AED∽△ABC,根据相似的性质得出两种比例式进而解答即可.【详解】如图∵∠DAE=∠BAC,∴当△ADE∽△ABC,∴AB ADAC AE=,即12164AD=,解得:AD=3,∴当△AED∽△ABC,∴AB AE AC AD=,即12416AD=,解得:AD=163,故答案为:163或3【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.20.【分析】过点作交于点证明(设为得到;证明列出比例式求出即可解决问题【详解】解:如图过点作交于点四边形是正方形(设为则;的面积为12;解得:故答案为:【点睛】本题考查了相似三角形的判定与性质作出辅助线 解析:125 【分析】过点A 作AN BC ⊥,交DG 于点M ,证明DE DG MN ==(设为)λ,得到AM AN λ=-;证明△∽△ADG ABC ,列出比例式446λλ-=,求出λ即可解决问题. 【详解】解:如图,过点A 作AN BC ⊥,交DG 于点M ,四边形DEFG 是正方形,DE DG MN ∴==(设为)λ,则AM AN λ=-;6BC =,ABC 的面积为12,∴16122AN ⨯=, 4AN ∴=,4AM λ=-;//DG BC ,ADG ABC ∴∽,∴446λλ-=, 解得:125λ=. 故答案为:125. 【点睛】本题考查了相似三角形的判定与性质,作出辅助线是解题的关键.三、解答题21.(1)()121P m n +-,,作图见解析;(2) ()222P m n ,,作图见解析;(3)能关于某一点Q 为位似中心的位似图形,Q (4,-2).【分析】(1)根据平移规律,画出111,,A B O 即可;(2)根据位似图形的性质,画出△22OA B 即可;(3)对应点连线的交点即为位似中心;【详解】解:(1)△111O A B 如图所示,1P (m+2,n-1);(2)△22OA B 如图所示,2P (2m ,2n ).(3)能关于某一点Q 为位似中心的位似图形,Q (4,-2);【点睛】本题考查作图-位似变换,作图-平移变换等知识,解题的关键是熟练掌握位似变换、平移变换的性质,属于中考常考题型.22.(1)画图见解析;(2)14【分析】(1)给A 、B 、C 三点坐标乘以-2,得到A 1、B 1、C 1的坐标,再描点连接即得到111A B C △;(2)给ABC 的面积乘以4即得111A B C △的面积.【详解】(1)如图,111A B C △为所作.(2)ABC 的面积为72,位似比为2:1, ∴111A B C △的面积是272142⨯=. 故答案为:14.【点睛】 此题考查位似图形和坐标变换.当位似中心为坐标原点时,位似图形的对应点之坐标比(即横坐标与横坐标之比,纵坐标与纵坐标之比)的绝对值等于位似比.当比值为负时,图形分居原点两侧;当比值为正时,图形在原点一侧.23.(1)3;(2)BDA FGE ∽△△,证明见解析【分析】(1)先证明AGE ADC △∽△,再证明GEF DBF ∽△△,得到2DF GF =,则问题可解; (2)根据题意分别证明BDA FDB ∽△△,BDA FGE ∽△△问题可证.【详解】解:(1)D 是BC 的中点,E 是AC 的中点,BD CD ∴=,AE CE =,//GE BC ,AGE ADC ∴∽△△,12AG GE AE AD CD AC ∴===, AG GD ∴=,2GE CD BD ==,//GE BC ,GEF DBF ∴∽△△,12GE GF BD DF ∴==, 2DF GF ∴=,3AG DG GF ∴==,3AG GF ∴=.(2)当BD =4DF =时,由(1)可得122GF DF ==,36AG DG GF ===,212AD AG ==, 12GE BD ==, 4BD DF ==AD BD ==, AD BD BD DF∴=,又BDG ADB ∠=∠,BDA FDB ∴∽△△,3GEGF =AD BD == AD GE BD GF∴=, //GE BC ,ADB EGF ∴∠=∠,BDA FGE ∴∽△△.【点睛】本题考查了相似三角形的性质和判定,解答关键是根据题意选择适当方法证明三角形相似.24.(1)证明见解析(2)证明见解析【分析】(1)由已知可得RT △AEH ∽RT △GFB ,从而可得∠A+∠B=∠FGB+∠B=90°,进一步得到∠C=180°-90°=90°;(2)根据由(1)所得RT △AEH ∽RT △HCG 的性质和已知条件可以得到解答.【详解】(1)证明:由已知,EF=EH=GF ,∴由2EF AE FB =⋅可得:AE EF EF FB =,即AE EH GF FB=, 又四边形 EFGH 是正方形 ,∴∠AEH=∠GFB=90°,∴RT △AEH ∽RT △GFB ,∴∠A=∠FGB ,∴∠A+∠B=∠FGB+∠B=90°,∴∠C=180°-90°=90°; (2)∵四边形 EFGH 是正方形 ,∴HG ∥AB ,∴∠A=∠CHG ,又∠AEH=∠C=90°,∴RT △AEH ∽RT △HCG ,∴,?·AH EH AH CG HG EH HG GC==, 由已知得:EF=EH=GH ,∴2··AH CG EF AE FB ==.【点睛】本题考查正方形与相似三角形的综合应用,灵活运用相似三角形的判定和性质是解题关键.25.(1)图见解析;(2)图见解析.【分析】(1)先画出点,,A B C 关于y 轴的对称点111,,A B C ,再顺次连接即可得;(2)先根据位似中心、位似比得出点222,,A B C 的坐标,再画出点222,,A B C ,然后顺次连接即可得.【详解】(1)先画出点,,A B C 关于y 轴的对称点111,,A B C ,再顺次连接即可得111A B C △,如图所示:(2)()3,1A -,()1,1B -,()0,3C ,且位似比为1:2,()()()22232,12,12,12,20,3A B C ∴⨯-⨯⨯--⨯⨯,即()()()2226,2,2,0,62,C A B ---,先画出点222,,A B C ,再顺次连接即可得222A B C △,如图所示:【点睛】本题考查了画轴对称图形和位似图形,熟练掌握轴对称图形和位似图形的画法是解题关键.26.(1)3:1,60;(2)35︒,理由见解析;(3)2n =.【分析】(1)利用新定义得出[],n θ的意义,利用旋转的性质得到AB C ''△∽ABC ,且相似比3,60BAB '∠=︒,进而求出面积比,通过外角的性质得到DEB '∠即可求出直线BC 与直线B C ''所夹的锐角度数;(2)利用新定义得出[],n θ的意义,得到::3AB AB AC AC ''==35BAC B AC ''∠=∠=︒,进而可以得到BAB CAC ''∠=∠,下证BAB '△∽CAC '△,通过题中给的相似比即可求出面积之比,延长CC '交BB '于D ,通过DEB AEC ''∠=∠,BB A CC A ''∠=∠,可以证得DEB '△∽AEC ',从而得到C DB ''∠的度数,即可得直线BB '与直线CC '相交所成的较小角的度数;(3)由四边形ABB C ''为矩形,得到90BAC '∠=︒,进而求出CAC '∠的度数,利用含30角的直角三角形的性质即可得到AC AC'的值,进而求出n 的值. 【详解】解:(1)由题意可知:对ABC 作变换60,3⎡⎤︒⎣⎦得AB C ''△,∴AB C ''△∽ABC ,且相似比为3:1,60BAB '∠=︒,∴B B '∠=∠,∴()2:3:13:1AB C ABC S S ''==, ADE B BAB '∠=∠+∠,ADE B DEB ''∠=∠+∠,∴60DEB BAB ''∠=∠=︒,即直线BC 与直线B C ''所夹的锐角度数为:60︒.故答案为:3:1,60.(2)根据题意得:::1:3AB AB AC AC ''==,35BAC B AC ''∠=∠=︒, ∴BAC B AC B AC B AC ''''∠+∠=∠+∠,∴BAB CAC ''∠=∠,∴BAB '△∽CAC '△,∴相似比AB k AC=,BB A CC A ''∠=∠, :2AB AC =,∴()2:22ABB ACC S S ''==,延长CC '交BB '于D ,如图,设CC '交AB '于E .DEB AEC ''∠=∠,BB A CC A ''∠=∠,∴DEB '△∽AEC ',∴35C DB B AC ''''∠=∠=︒,∴:2ABB ACC S S ''=△△,直线BB '与直线CC '相交所成的较小角的度数为35︒. (3)四边形ABB C ''为矩形,∴90BAC '∠=︒,30BAC ∠=︒,∴60CAC BAC BAC ''∠=∠-∠=︒,90ACB ∠=︒,∴90ACC '∠=︒,在Rt ACC '△中,12AC AC '=, ∴21AC AC '=, ∴2AC n AC'==, 即n 的值为2.【点睛】本题考查了图形的旋转,相似三角形的判定和性质,新定义运算,三角形的外角性质以及含30角的直角三角形的性质,解题的关键是根据题意得出[],n θ的意义.。
第四中学中考数学冲刺复习 专题训练 相似 第3讲 相似三角形的判断2(无答案)(2021年整理)
北京市第四中学2017年中考数学冲刺复习专题训练相似第3讲相似三角形的判断2(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北京市第四中学2017年中考数学冲刺复习专题训练相似第3讲相似三角形的判断2(无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北京市第四中学2017年中考数学冲刺复习专题训练相似第3讲相似三角形的判断2(无答案)的全部内容。
相似三角形的判定(2)一、知识回顾判定两个三角形相似的方法?1.定义.2.平行截出相似(预备定理).3.三个判定定理(1)三边(2)两边和夹角(3)两角 二、知识巩固例1.如图,在□ABCD 中,EF//AB ,DE:EA=2:3,EF=6,DB=10,求CD 和BF 的长.例2.如图,P 是□ABCD 的边BC 延长线上任意一点,AP 分别交BD 和CD于点M 和N .求证:AM 2=MN •MP .AB BC AC AD DE AE ==。
断∠BAD 和∠例3.如图,已知CAE 的大小关系,并说明理由.例4.如图,已知AC和BD相交于点E,CE•AE=BE•DE,△ABE与△DCE是否相似?【变式应用】如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.例5.如图,已知CD为Rt△ABC斜边上的高.求证:(1)(1)△ABC∽△ACD∽△CBD(2)CD2=AD•BD;AC2=AD•AB;BC2=BD•AB.(3)AC•BC=AB•CD.(4)若AC=4,BC=3,求AB、CD、AD和BD的长.例6.如图,D是△ABC的边BC上的一点,AB=2,BD=1,DC=3,△ABD与△C BA是否相似?例7.如图,△ABC中,D是BC中点,E是AD上一点,CE的延长线交AB 于F,求证:AE:ED=2AF:FB.三、方法总结1.基本图形结构2。
北京四中九年级上册数学探索相似三角形相似的条件知识讲解(提高)---巩固练习
【巩固练习】一、选择题1. 如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B. 2个 C.3个D. 4个2.(2014•黄浦区一模)在△ABC中,D、E分别是边AB、AC上的点,下列条件中不能判定△AED ∽△ABC是()A.∠ADE=∠C B.∠AED=∠B C. AD ACAE AB= D.AD DEAC BC=3.如图,平行四边形ABCD中,F是CD上一点,BF交AD的延长线于G,则图中的相似三角形对数共有()A.8对 B. 6对 C.4对D. 2对4.下列五幅图均是由边长为1的16个小正方形组成的正方形网格,网格中的三角形的顶点都在小正方形的顶点上,那么在下列右边四幅图中的三角形,与左图中的△ABC相似的个数有()A. 1个B. 2个C. 3个D. 4个5.如图,已知点P是线段AB的黄金分割点,且PA>PB,若S1表示以PA为边的正方形的面积,S2表示长为AB、宽为PB的矩形的面积,那么S1()S2.A.>B.=C.<D.无法确定6.有以下命题:①如果线段d是线段a,b,c的第四比例项,则有a cb d =.②如果点C是线段AB的中点,那么AC是AB、BC的比例中项.③如果点C是线段AB的黄金分割点,且AC>BC,那么AC是AB与BC的比例中项.④如果点C是线段AB的黄金分割点,AC>BC,且AB=2,则AC=-1.其中正确的判断有().A.1个B.2个C.3个D.4个二、填空题7.如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)8.在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有条.9.如图,在矩形ABCD中,AB=10,AD=4,点P是边AB上一点,若△APD与△BPC相似,则满足条件的点P有个.10.如图,点D、E、F在△ABC三边上,EF、DG相交于点H,∠ABC=∠EFC=70°,∠ACB=60°,∠DGB=50°,图中与△GFH相似的三角形的个数是.11.如图,正方形ABCD的边长为2,E为AB中点,MN=,线段MN的两端在CD、CD上滑动,当CM= 时,△AED与以M、N、C为顶点的三角形相似.12.如图所示,顶角A为36°的第一个黄金三角形△ABC的腰AB=1,底边与腰之比为K,三角形△BCD为第二个黄金三角形,依此类推,第2008个黄金三角形的周长为____________.三、解答题13. 如图,点P在平行四边形ABCD的CD边上,连接BP并延长与AD的延长线交于点Q.(1)求证:△DQP∽△CBP;(2)当△DQP≌△CBP,且AB=8时,求DP的长.14.如图,在△ABC中,点D在边AB上,且DB=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比51 2.①写出图中所有的黄金三角形,选一个说明理由;②求AD的长;③在直线AB或BC上是否存在点P(点A、B除外),使△PDC是黄金三角形?若存在,在备用图中画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.15.如图1,点C 将线段AB 分成两部分,如果AC BCAB AC=,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果121S S S S =,那么称直线l 为该图形的黄金分割线. (1)研究小组猜想:在△ABC 中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是△ABC 的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF ∥CE ,交AC 于点F ,连接EF (如图3),则直线EF 也是△ABC 的黄金分割线.请你说明理由. (4)如图4,点E 是平行四边形ABCD 的边AB 的黄金分割点,过点E 作EF ∥AD ,交DC 于点F ,显然直线EF 是平行四边形ABCD 的黄金分割线.请你画一条平行四边形ABCD 的黄金分割线,使它不经过平行四边形ABCD 各边黄金分割点.【答案与解析】 一、选择题 1.【答案】C ;【解析】∵AB ⊥BC ,∴∠B=90°. ∵AD ∥BC ,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.AB=8,AD=3,BC=4, 设AP 的长为x ,则BP 长为8﹣x .若AB 边上存在P 点,使△PAD 与△PBC 相似,那么分两种情况:①若△APD ∽△BPC ,则AP :BP=AD :BC ,即x :(8﹣x )=3:4,解得x=;②若△APD ∽△BCP ,则AP :BC=AD :BP ,即x :4=3:(8﹣x ),解得x=2或x=6. ∴满足条件的点P 的个数是3个, 故选:C .2.【答案】D;【解析】A 、有条件∠ADE=∠C ,∠A=∠A 可利用两角法:有两组角对应相等的两个三角形相似证明△AED 和△ABC 相似;B、有条件∠AED=∠B,∠A=∠A可利用两角法:有两组角对应相等的两个三角形相似证明△AED和△ABC相似;C、根据两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似证明△AED和△ABC相似;D、不能证明△AED和△ABC相似;故选:D.3.【答案】C;【解析】∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴△BEC∽△GEA,△ABE∽△CEF,△GDF∽△GAB,△DGF∽△BCF,∴△GAB∽△BCF,还有△ABC≌△CDA(是特殊相似),∴共有6对.故选:C.4.【答案】B;【解析】观察可以发现AC=,BC=2,AB=,故该三角形中必须有一条边与邻边的比值为2,且为直角三角三角形,第1个图形中,有两边为2,4,且为直角三角三角形,第2,3图形中,两边不具备2倍关系,不可能相似,第4个图形中,有两边为,2,且为直角三角三角形,∴只有第1,4个图形与左图中的△ABC相似.故选:B.5.【答案】B.【解析】根据黄金分割的概念得:AP BP AB AP=,则212×PBS APS AB===1,即S1=S2.故选B.6.【答案】B.【解析】①、根据第四比例项的概念,显然正确;②、如果点C是线段AB的中点,AB:AC=2,AC:BC=1,不成比例,错误;③、根据黄金分割的概念,正确;④、根据黄金分割的概念:AC=51-,错误.故选B.二、填空题7.【答案】∠ADE=∠ACB;【解析】由题意得,∠A=∠A(公共角),则可添加:∠ADE=∠ACB,利用两角法可判定△ADE∽△ACB.故答案可为:∠ADE=∠ACB.8.【答案】3;【解析】当PD∥BC时,△APD∽△ABC,当PE∥AC时,△BPE∽△BAC,连接PC,∵∠A=36°,AB=AC,点P在AC的垂直平分线上,∴AP=PC,∠ABC=∠ACB=72°,∴∠ACP=∠PAC=36°,∴∠PCB=36°,∴∠B=∠B,∠PCB=∠A,∴△CPB∽△ACB,故过点P的△ABC的相似线最多有3条.故答案为:3.9.【答案】3;【解析】设AP为x,∵AB=10,∴PB=10﹣x,①AD和PB是对应边时,∵△APD与△BPC相似,∴=,即=,整理得,x2﹣10x+16=0,解得x1=2,x2=8,②AD和BC是对应边时,∵△APD与△BPC相似,∴=,即=,解得x=5,所以,当AP=2、5、8时,△APD与△BPC相似,满足条件的点P有3个.故答案为:3.10.【答案】3;【解析】①∵∠ABC=∠EFC=70°,∴HF∥DB;∴△GBD∽△△GFH;②∵在△BDG中,∠B=∠EFC=70°,∠DGB=50°,则∠GDB=60°;在△ABC中,∠B=70°,∠ACB=60°,则∠A=50°;∴△ABC∽△GFH.③∵△DGB=∠A=∠FEC=50°,∠EFC为公共角∴△EFC∽△GFH;综上所述,图中与△GF H相似的三角形的个数是3.故答案是:3.11.【答案】1或2;【解析】如图,正方形ABCD的边长为2,E为AB中点,∴AE=AD=.设CM的长为x.在Rt△MNC中∵MN=,∴NC=,①当Rt△AED∽Rt△CMN时,则=,即=,解得x=1或x=﹣1(不合题意,舍去),②当Rt△AED∽Rt△CNM时,则=,即=,解得x=2或﹣2(不合题意,舍去),综上所述,当CM=1或2时,△AED与以M,N,C为顶点的三角形相似.故答案为:1或2.12.【答案】K2007(K+2).【解析】第一个三角形的周长为K+2;第二个三角形的周长K+K+K2=K(K+2);第三个周长为K2+K2+K3=K2(K+2)…所以第2008个三角形的周长为K2007(K+2).三、解答题13.【解析】(1)证明:∵四边形ABCD是平行四边形,∴AQ∥BC,∴∠QDP=∠BCP,又∠QPD=∠CPB,∴△DQP∽△CBP;(2)解:∵△DQP≌△CBP,∴DP=CP=CD,∵AB=CD=8,∴DP=4.14.【解析】(1)∵BD=DC=AC.则∠B=∠DCB,∠CDA=∠A.设∠B=x,则∠DCB=x,∠CDA=∠A=2x.又∠BOC=108°, ∴∠B+∠A=108°. ∴x+2x=108,x=36°. ∴∠B=36°;(2)①有三个:△BDC ,△ADC ,△BAC . ∵DB=DC ,∠B=36°, ∴△DBC 是黄金三角形,(或∵CD=CA ,∠ACD=180°-∠CDA-∠A=36°. ∴△CDA 是黄金三角形. 或∵∠ACE=108°,∴∠ACB=72°.又∠A=2x=72°, ∴∠A=∠ACB . ∴BA=BC .∴△BAC 是黄金三角形. ②△BAC 是黄金三角形, ∴512AC BC -=, ∵BC=2,∴AC=51-. ∵BA=BC=2,BD=AC=51-, ∴AD=BA-BD=2-(51-)=3-5,③存在,有三个符合条件的点P 1、P 2、P 3. ⅰ)以CD 为底边的黄金三角形:作CD 的垂直平分线分别交直线AB 、BC 得到点P 1、P 2. ⅱ)以CD 为腰的黄金三角形:以点C 为圆心,CD 为半径作弧与BC 的交点为点 P 3.15.【解析】(1)直线CD 是△ABC 的黄金分割线.理由如下:设△ABC 的边AB 上的高为h .则S △ADC =12AD •h ,S △BDC =12BD •h ,S △ABC =12AB •h , ∴ADC ABC S S V V =AD AB ,BDC ADC S S V V =BD AB. 又∵点D 为边AB 的黄金分割点, ∴AD AB =BDAD, ∴ADC ABC S S V V =BDCADCS S V V . 故直线CD 是△ABC 的黄金分割线.(2)∵三角形的中线将三角形分成面积相等的两部分,∴s 1=s 2=12s ,即121S S S S ≠,故三角形的中线不可能是该三角形的黄金分割线.(3)∵DF ∥CE ,∴△DFC 和△DFE 的公共边DF 上的高也相等, ∴S △DFC =S △DFE ,∴S △ADC =S △ADF +S △DFC =S △ADF +S △DFE =S △AEF ,S △BDC =S 四边形BEFC . 又∵ADC ABC S S V V =BDCADCS S V V , ∴AEF ABCS S V V =BEFC AEF S S V 四边形.因此,直线EF 也是△ABC 的黄金分割线.(4)画法不惟一,现提供两种画法;画法一:如答图1,取EF 的中点G ,再过点G 作一条直线分别交AB ,DC 于M ,N 点,则直线MN 就是平行四边形ABCD 的黄金分割线.画法二:如答图2,在DF 上取一点N ,连接EN ,再过点F 作FM ∥NE 交AB 于点M ,连接MN ,则直线MN 就是平行四边形ABCD 的黄金分割线.。
北京市北京四中九年级数学下册第二单元《相似》检测(有答案解析)
一、选择题1.如图,一次函数y =﹣2x +10的图象与反比例函数y =kx(k >0)的图象相交于A 、B 两点(A 在B 的右侧),直线OA 与此反比例函数图象的另一支交于另一点C ,连接BC 交y 轴于点D ,若52BC BD =,则△ABC 的面积为( )A .12B .10C .9D .82.如图,在ABC 中,AB AC ≠,AC 3AD =,3AB AE =,点F 为边BC 上一点,则下列条件不能保证FDB △与ADE 相似的是( )A .A BFD ∠=∠B .//DF ACC .BD DFDE AD= D .BD BFAE DE= 3.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A ,4CF =,则点E 的坐标是( )A .()8,4-B .()10,3-C .()10,4-D .()8,3-4.如图,在菱形ABCD 中,660AB DAB =∠=︒,,A ,E 分别交BC 、BD 于点E 、F ,2CE =,连接CF ,以下结论:①ABF CBF ≌;②点E 到AB 的距离是23;③ADF 与EBF △的面积比为3∶2:④ABF 的面积为为1835,其中正确的是( )A .①④B .①③④C .①②④D .①②③④5.如图,点D 在ABC 的边AC 上,添加下列哪个条件后,仍无法判定ABC ADB ∽△△( )A .C ABD ∠=∠B .CBA ADB ∠=∠C .AB ADAC AB= D .AB BCAC BD= 6.如图所示,在矩形ABCD 中,AB =2,BC =2,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则AE 的长是( )A .2B .3C .1D .1.57.下列每个选项的两个图形,不是相似图形的是( )A .B .C .D .8.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =则EF ED ⋅的值为( )A .4B .6C .8D .169.如图△BCD 中,BE ⊥CD ,AE =CE=3,BE =DE=4.BC=5,DA 的延长线交BC 于F ,则AF=( )A .1B .0.6C .1.2D .0.810.如图,直线l 1//l 2//l 3,分别交直线m 、n 于点A 、B 、C 、D 、E 、F .若AB ∶BC =5∶3,DE =15,则EF 的长为( )A .6B .9C .10D .2511.已知P 是线段AB 的黄金分割点,且51AB =,则AP 的长为( ).A .2B 51C .251D .3512.下列判断中,不正确的有( ) A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .有一个锐角相等的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似二、填空题13.如图,D E 、分别是ABC 的边AB BC 、上的点,且//,DE AC AE CD 、相交于点O ,若:1:25DOE COA S S =△△,则BECE的值是________.14.如图,在Rt ACB 中,90C ∠=︒,30ABC ∠=︒,4AC =,N 是斜边AB 上方一点,连接BN ,点D 是BC 的中点,DM 垂直平分BN ,交AB 于点E ,连接DN ,交AB 于点F ,当ANF 为直角三角形时,线段AE 的长为________.15.如图,一个半径为2的圆P 与x 正半轴相切,过原点O 作圆P 的切线OT ,切点为T ,直线PT 分别交x y ,轴的正半轴于A B 、两点,且P 是线段AB 的三等分点,则圆心P 的坐标为__________.16.如图,已知CD 为O 的直径,弦AB CD ⊥交CD 于点E ,连接BD ,OB ,AC ,若8AB =,2DE =,则O 的半径为______.17.如图,在Rt ABC ∆中,90ACB ∠=︒,//CD AB ,ABC ∠的平分线BD 交AC 于点E ,若10AB =,6BC =,则AE =_______.18.如图是用卡钳测量容器内径的示意图,现量得卡钳上A ,D 两个端点之间的距离为10cm ,23AO DO BO CO ==,则容器的内径是______.19.如图,在矩形ABCD 中,AB =2,BC =a ,点E 在边BC 上,且BE =35a .连接AE ,将△ABE 沿AE 折叠,若点B 的对应点B′落在矩形ABCD 的边上,则a 的值为______.20.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB =2m ,它的影子BC =1.5m ,木竿PQ 的影子有一部分落在了墙上,PM =1.2m ,MN =0.8m ,则木竿PQ 的长度为_______m .三、解答题21.如图在ABCD 中,点E 是BA 延长线上的点,过E 、A 、C 三点作O 分别交BC于点F ,交AD 于点G ,直径EC EB =. (1)证明:EC 平分BCG ∠;(2)若6GC =,3HC EH =,求AG 的长度.22.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友爱四边形”,这条对角线叫“友爱线”.(1)如图1,在44⨯的正方形网格中,有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“友爱四边形”的是______.(2)如图2,四边形ABCD 是“友爱四边形”,对角线AC 是“友爱线”,同时也是BCD ∠的角平分线,若ABC 中,2AB =,3BC =,4AC =,求友爱四边形ABCD 的周长.(3)如图3,在ABC 中,AB BC ≠,60ABC ∠=︒,ABC 的面积为33D 是ABC ∠的平分线上一点,连接AD ,CD .若四边形ABCD 是被BD 分割成的“友爱四边形”,求BD 的长.23.如图,在平面直角坐标系中,已知ABC 三个顶点的坐标分别是(2,2)A ,(4,0)B ,(4,4)C -.(1)ABCS=______.(2)请画出ABC 向左平移6个单位长度后得到的111A B C △. (3)以点O 为位似中心,将ABC 缩小为原来的12,得到222A B C △,请在y 轴右侧画出222A B C △. 24.如图,抛物线213-222y x x =-与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC ,BC ,点M 是线段BC 下方抛物线上的任意一点,点M 的横坐标为m ,过点M 画MN ⊥x 轴于点N ,交BC 于点P .(1)填空:A ( , ),C ( , );(2)探究△ABC 的外接圆圆心的位置,并求出圆心的坐标; (3)探究当m 取何值时线段PM 的长度取得最大值,最大值为多少?25.如图,ABC 内接于⊙O ,AB AC =,过点C 作AB 的垂线CD ,垂足为点E ,交O 于点F ,连接AD ,并使AD BC ∥.(1)求证:AD 为O 的切线;(2)若5AC =,2BE =,求AD 的长. 26.四边形ABCD 内接于,O AB 是直径,延长AD BC 、交于点E ;若AB BE =.(1)求证:DC DE =(2)若6,43DE CE ==,求AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,则//BM CN ,可证得23BM BC CN CD ==,设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭,由已知可求得A 、B 、C 的坐标,则可求得直线BC 的解析式,进而求得点D 、F 的坐标,由ABD ADF BDF S S S -=△△△及:2:5ABD ABC S S =△△可求得ABCS.【详解】过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,如图,则有//BM CN , ∴BMD CND ∽,又52BC BD = ∴23BM BD CN CD ==, 设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭.∵点A ,B 在直线AB 上,∴2210223103kx x k x x⎧=-⨯+⎪⎪⎨⎪=-⨯+⎪⎩∴解得:112x k =⎧⎨=⎩,∴点()3,4A ,点()2,6B 、点()3,4C --. 设直线BC 的解析式为y=mx+n ,则有:2634m n m n +=⎧⎨-+=-⎩,解得:22m n =⎧⎨=⎩,∴直线BC 解析式为22y x =+, ∴点()0,2D ,∵点F 是直线AB 与y 轴的交点, ∴点()0,10F∴()()10232102224ABD ADF BDF S S S -==-⨯÷--⨯÷=△△△ 又∵:2:5ABD ABC S S =△△,∴55S 41022ABCABDS==⨯=, 故选:B . 【点睛】本题考查了一次函数与反比例函数的图象交点问题、待定系数法求一次函数解析式、相似三角形的判定与性质、直线上点的坐标特征、等高三角形的面积比等于底的比等知识,求出点A 、B 的坐标和作辅助线借助相似三角形解决问题是解答的关键.2.C解析:C 【分析】先根据已知条件可证得ADE ACB ∽,由此可得AED B ∠=∠,再利用相似三角形的判定对选项逐个判断即可. 【详解】解:∵AC 3AD =,3AB AE =,∴AD AE 1AC AB 3==, 又∵A A ∠=∠, ∴ADE ACB ∽, ∴AED B ∠=∠,A 选项:∵A BFD ∠=∠,B B ∠=∠,∴BFD BAC ∽, 故选项A 正确;B 选项:∵//DF AC ,∴C BFD ∠=∠,∠=∠A BDF , ∴BFD BCA △∽△, 故选项B 正确;C 选项:BD DFDE AD=无法证明FDB △与ADE 相似; D 选项:∵BD BFAE DE=, AED B ∠=∠, ∴BFD EDA △∽△, 故选项D 正确; 故选:C . 【点睛】本题考查了相似三角形的判定及性质,熟练掌握相似三角形的判定是解决本题的关键.3.B解析:B 【分析】根据题意可求得CE 、OF 的长度,根据点E 在第二象限,从而可以得到点E 的坐标. 【详解】解:∵四边形ABCO 是矩形 ∴90ECF FOA B ∠=∠=∠=︒∵将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A∴90AFE B ∠=∠=︒∴90CEF CFE OFA CFE ∠+∠=∠+∠=︒∴CEF OFA ∠=∠∴Rt ECF Rt FOA ∽根据题意可设CE x =,则8BE x =-,则8BE x =-∵4CF =∴在Rt ECF △中,()22248x x +=- ∴3x =根据题意可设OF y =∵Rt ECF Rt FOA ∽ ∴CE CF OF OA= ∴348y = ∴6y =∴6OF =∴10CO CF OF =+=∴点E 的坐标为()10,3-.故选:B【点睛】本题考查了勾股定理、矩形的性质、翻折变换、坐标与图形变化(轴对称)、相似三角形的判定和性质等知识点,解题的关键是明确题意找出所求问题需要的条件,利用数形结合的思想进行解答.4.C解析:C【分析】根据菱形的性质得出△ABF 和△CBF 全等的条件,从而可判断①成立;过点E 作EG ⊥AB ,过点F 作MH ⊥AB ,求得EG 的长度,则可判断②是否成立;由AD ∥BE ,可判定△ADF ∽△EBF ,由相似三角形的性质可得△ADF 与△EBF 的面积比,从而可判断③是否成立;利用相似三角形的性质和等边三角形的性质,可求得△ABF 在AB 边上的高,进而求得△ABF 的面积,则可判断④是否成立.【详解】解:∵四边形ABCD 是菱形,AB=6,∴BC=AB=6,∵∠DAB=60°,∴AB=AD=DB=6,∠ABD=∠DBC=60°,在△ABF 与△CBF 中,AB BC ABF FBC BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△CBF (SAS ),故①成立;如图,过点E 作EG ⊥AB 延长线于点G ;过点F 作MH ⊥AB 交AB ,CD 于点H ,M , 则由菱形的对边平行可得MH ⊥CD ,∵CE=2,BC=6,∠ABC=120°,∴BE=6-2=4,∠EBG=60°∵EG ⊥AB ,∴EG=4×332= 故②成立;∵AD ∥BE , ∴△ADF ∽△EBF , ∴2269()(),44ADF EBF S AD S BE ∆∆=== 故③不成立;∵△ADF ∽△EBF ,32DF AD FB EB ∴== ∵DB=6, ∴BF= 125∴FH= 125×3263, ∴S △ABF =12AB•FH=131836255⨯⨯=, 故④成立.综上所述,一定成立的有①②④.故选:C .【点睛】本题考查了菱形的性质、全等三角形的判定、相似三角形的判定与性质及三角形的面积计算,熟练掌握相关性质及定理是解题的关键.5.D解析:D【分析】根据三角形相似的判定方法一一判断即可.【详解】解:A 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ;B 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ;C 、根据两边成比例夹角相等两三角形相似即可判定△ABC ∽△ADB ;D 、无法判断三角形相似.故选:D .【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.D解析:D【分析】先求出AC ,进而求出OA ,再证明△AOE ∽△ADC ,得到AE OA AC AD =,即可求解. 【详解】解:∵四边形ABCD 是矩形,∴∠ABC =∠ADC =90°,AD =BC =2,CD =ABOA =OC =12AC ,∴AC=∴OA ∵OE ⊥AC , ∴∠AOE =90°,∴∠AOE =∠ADC ,又∵∠OAE =∠DAC ,∴△AOE ∽△ADC , ∴AE OA AC AD=,22AE =, ∴AE =1.5.故选:D .【点睛】本题考查了矩形的性质,勾股定理,相似三角形的性质与判定等知识,能根据已知条件判定△AOE∽△ADC是解题关键.7.D解析:D【分析】根据相似图形的定义,对选项进行一一分析,排除错误答案.【详解】解:A、形状相同,但大小不同,符合相似形的定义,故不符合题意;B、形状相同,但大小不同,符合相似形的定义,故不符合题意;C、形状相同,但大小不同,符合相似形的定义,故不符合题意;D、形状不相同,不符合相似形的定义,故符合题意;故选:D.【点睛】本题考查的是相似形的定义,是基础题.8.D解析:D【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴AE EF,DE AE∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故选:D.【点睛】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.9.B解析:B【分析】根据条件和判断Rt△CEB≌Rt△AED,然后得到角相等,证明△BEC∽△BFA,利用比例关系计算.【详解】解:∵AE=3,BE=4∴BA=BE-AE=1∴在Rt △CEB 与Rt △AED 中AE CE AD CB=⎧⎨=⎩ ∴Rt △CEB ≌Rt △AED∴∠EBC=∠BAF ∵∠ADE+∠EAD=90°,∠BAF=∠EAD∴∠EBC+∠BAF=90°∵∠BEC=∠BFA=90°∴△BEC ∽△BFA ∴AF BA CE BC =即135AF = ∴AF=0.6故选:B【点睛】 本题考查相似和全等的结合,通过全等得到角关系,然后证相似得到比例关系计算边长即可..10.B解析:B【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵l 1∥l 2∥l 3,DE=15, ∴53DE AB EF BC ==,即1553EF =, 解得,EF=9,故选:B .【点睛】 本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 11.C解析:C【分析】若点P 是靠近点B 的黄金分割点,则12AP AB =,然后代入数据计算即可;若点P 是靠近点A 的黄金分割点,先求出BP ,再利用线段的和差即可求出AP .【详解】解:若P 是靠近点B 的黄金分割点,则)111222AP AB ==⨯=;若P 是靠近点A 的黄金分割点,则)12BP AB ===,∴121AP AB BP =-=-=;故选:C .【点睛】是解题的关键. 12.B解析:B【分析】由相似三角形的判定依次判断可求解.【详解】解:A 、三边对应成比例的两个三角形相似,故A 选项不合题意;B 、两边对应成比例,且夹角相等的两个三角形相似,故B 选项符合题意;C 、有一个锐角相等的两个直角三角形相似,故C 选项不合题意;D 、有一个角是100°的两个等腰三角形,则它们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D 选项不合题意;故选:B .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.二、填空题13.【分析】先证明然后根据相似三角形的面积比等于相似比的平方求出的值继而可求的值最后可求的值【详解】解:又故答案是:【点睛】本题考查了相似三角形的判定和性质掌握相似三角形的面积比等于相似比的平方是解题关键 解析:14【分析】先证明DOE COA ∽,然后根据相似三角形的面积比等于相似比的平方求出DE AC 的值,继而可求BE BC 的值,最后可求BE EC的值. 【详解】 解://DE AC ,DOE COA ∴∽,又:1:25DOE COA S S =△△, 15DE AC ∴=, //DE AC ,BDE BAC ∴∽△△,15BE DE BC AC ∴==, 14BE EC ∴=. 故答案是:14. 【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题关键.14.或【分析】(1)分别在中应用含角的直角三角形的性质以及勾股定理求得再根据垂直平分线的性质等边三角形的判定和性质等腰三角形的判定求得最后利用线段的和差即可求得答案;根据垂直平分线的性质全等三角形的判定 解析:6或285 【分析】(1)分别在Rt ACB ∆、Rt BDF ∆、Rt DEF ∆中应用含30角的直角三角形的性质以及勾股定理求得1EF =,2DE =,再根据垂直平分线的性质、等边三角形的判定和性质、等腰三角形的判定求得2BE =,最后利用线段的和差即可求得答案;根据垂直平分线的性质、全等三角形的判定和性质、分线段成比例定理可证得//DM CN ,然后根据平行线的性质、相似三角形的判定和性质列出方程,解方程即可求得125BE =,最后利用线段的和差即可求得答案.【详解】解:①当90AFN ∠=︒时,如图1:∵在Rt ACB ∆中,90C ∠=︒,4AC =,30ABC ∠=︒∴28AB AC ==∴2243BC AB AC∵90AFN DFB ∠=∠=︒,30ABC ∠=︒∴60FDB ∠=︒∵23==CD DB∴132DF BD == ∴ 在Rt DEF △中,设EF x =,则22DE EF x == ∵222EF DF DE +=∴()()22223x x -= ∴1x =∴1EF =,2DE =∵DM 垂直平分线段BN∴DBDN ∵60FDB ∠=︒ ∴BDN 是等边三角形∴30FDM EDB EBD ∠=∠=∠=︒∴2BE DE ==∴826=-=-=AE AB BE ;②当90ANF ∠=︒时,连接AD 、CN 交于点O ,过点E 作⊥EH DB 于H ,如图2:设EH x =,则3BH x =,233DH x = ∵DM 垂直平分线段BN ,点D 是BC 的中点∴CD DN BD ==∵AD AD = ∴()Rt ACD Rt AND HL ≌∵AC AN =∵CD DN =∴AD 垂直平分线段CN∴90AON ∠=︒∵CD DB =,MN BM =∴//DM CN∴90ADM AON ∠=∠=︒∵90ACD EHD ∠=∠=︒∴90ADC EDH ∠+∠=︒,90EDH DEH ∠+∠=︒∴∠=∠ADC DEH∴ACD DHE ∽ ∴AC CD DH EH =∴=x ∴65x =∴1225==BE x ∴1228855=-=-=AE AB BE . ∴综上所述,满足条件的AE 的值为6或285. 故答案是:6或285【点睛】 本题考查了垂直平分线的性质和判定、含30角的直角三角形的性质、勾股定理、全等三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等,渗透了逻辑推理的核心素养以及分类讨论的数学思想.15.或【分析】分两种情况①当AP=2BP 时当BP=2AP 时讨论解答即可【详解】解:P 是线段AB 的三等分点有两种情况:连接OP 过点P 作PC ⊥y 轴设OD=x 则CP=x①当AP=2BP 时∵PD ∥OB ∴∴AD=解析:或2)【分析】分两种情况①当AP=2BP 时,当BP=2AP 时讨论解答即可.【详解】解:P 是线段AB 的三等分点,有两种情况:连接OP ,过点P 作PC ⊥y 轴,设OD=x ,则CP=x ,①当AP=2BP 时,∵PD ∥OB , ∴=2AP AD PB DO=, ∴AD=2DO ,即AD=2x ,在RT △ADP 中,==,∵23AP PD AB OB ==,PD=2, ∴OB=3, ∵1122BOP S BO CP BP OT =⋅=⋅, ∴3x=21x +·x , 解得122x =,222x =-(舍去), ∴P(22,2); ②当BP=2AP 时, ∵PD ∥OB , ∴1=2AP AD PB DO =, ∴AD=12DO ,即AD=12x , 在RT △ADP 中, AP=2222211()2424AD DP x x +=+=+,BP=216x +, ∵13AP PD AB OB ==,PD=2, ∴OB=6, ∵1122BOP S BO CP BP OT =⋅=⋅, ∴6x=216x +·x , 解得125x =,225x =-(舍去), ∴P(22,2); 故答案为:P(22,2)或P(22,2).【点睛】本题考查了切线的性质、平行线分线段成比例及勾股定理,解题的关键是分情况讨论. 16.5【分析】设的半径为则由垂径定理得证明根据对应边成比例列式求出r 的值【详解】解:∵∴∵∴∴设的半径为则∵∴∴解得故答案是:5【点睛】本题考查圆的性质和相似三角形的性质和判定解题的关键是掌握圆周角定理 解析:5【分析】设O 的半径为r ,则22CE r =-,由垂径定理得142AE BE AB ===,证明AEC DEB ,根据对应边成比例列式求出r 的值.【详解】 解:∵AB CD ⊥,∴90ACE DBE ∠=∠=︒,∵AEC DEB ∠=∠,∴AEC DEB , ∴AE EC DE EB=, 设O 的半径为r ,则22CE r =-,∵AB CD ⊥, ∴142AE BE AB ===, ∴42224r -=,解得=5r . 故答案是:5.【点睛】本题考查圆的性质和相似三角形的性质和判定,解题的关键是掌握圆周角定理和垂径定理,以及相似三角形对应边成比例的性质.17.5【分析】首先由勾股定理求出AC 再证明得到进而列方程求解即可【详解】解析:5【分析】首先由勾股定理求出AC ,再证明~ABE CDE ∆∆,得到AB AE CD CE=,进而列方程求解即可.【详解】 90ACB ∠=︒,10AB =,6BC =,8AC ∴==,∴设AE x =,则8CE x =-, BD 平分ABC ∠,ABD DBC ∴∠=∠,又//AB CD ,ABD BDC ∴∠=∠,DBC BDC ∴∠=∠,6BC CD ∴==,//AB CD ,∴~ABE CDE ∆∆, AB AE CDCE ∴= 1068x x ∴=- 解得5x =,5AE ∴=故答案为:5.【点睛】此题主要考查了相似三角形和判定与性质,熟练掌握并能灵活运用相似三角形和判定与性质定理是解答此题的关键.18.【分析】连接ADBC 后可知△AOD ∽△BOC 再由相似三角形的性质和已知条件可以得到问题解答【详解】解:如图连接ADBC 则在△AOD 和△BOC 中∴△AOD ∽△BOC (cm )故答案为15cm 【点睛】本题解析:15cm【分析】连接AD 、BC 后可知△AOD ∽△BOC ,再由相似三角形的性质和已知条件可以得到问题解答.【详解】解:如图,连接AD 、BC ,则在△AOD 和△BOC 中,AO DO BO CO DOA BOC⎧=⎪⎨⎪∠=∠⎩,∴△AOD ∽△BOC ,233,1015322AD AO BC AD BC BO ====⨯=(cm ), 故答案为15cm .【点睛】本题考查相似三角形的应用,熟练掌握相似三角形的判定及性质并灵活运用是解题关键. 19.或【分析】分两种情况:①点落在AD 边上根据矩形与折叠的性质易得即可求出a 的值;②点落在CD 边上证明根据相似三角形对应边成比例即可求出a 的值【详解】解:分两种情况:①当点落在AD 边上时如图1四边形AB 解析:103或253. 【分析】分两种情况:①点'B 落在AD 边上,根据矩形与折叠的性质易得=AB BE ,即可求出a 的值;②点'B 落在CD 边上,证明''ADB B CE ∆∆,根据相似三角形对应边成比例即可求出a 的值.【详解】解:分两种情况:①当点B '落在AD 边上时,如图1.四边形ABCD 是矩形,90BAD B ∴∠=∠=︒,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上,'1452BAE B AE BAD ∴∠=∠=∠=︒, AB BE ∴=,325a ∴=, 103a ∴=;②当点'B 落在CD 边上时,如图2.∵四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点'B 落在CD 边上,'90B AB E ∴∠=∠=︒,'2AB AB ==,'35BE B E a ==, 2224DB B A AD a ''∴-=-3255EC BC BE a a a =-=-=. 在ADB '∆与B CE '∆中,9090B AD EB C AB D D C ∠=∠=︒-∠''⎧⎨∠=∠=︒'⎩, ''ADB B CE ∴∆∆, '''DB AB CE B E ∴=,即2422355a a a -=, 解得125a =,225a = 综上,所求a 的值为10325. 故答案为103或53. 【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,勾股定理,相似三角形的判定与性质.进行分类讨论与数形结合是解题的关键.20.24【分析】过N 点作ND ⊥PQ 于D 先根据同一时刻物高与影长成正比求出QD 的影长再求出PQ 即可【详解】解:如图过N 点作ND ⊥PQ 于D ∴又∵AB=2BC=15DN=PM=12NM=08∴∴QD=16∴P解析:2.4【分析】过N 点作ND ⊥PQ 于D ,先根据同一时刻物高与影长成正比求出QD 的影长,再求出PQ 即可.【详解】解:如图,过N点作ND⊥PQ于D,∴BC DN AB QD=,又∵AB=2,BC=1.5,DN=PM=1.2, NM=0.8,∴1.5 1.22QD=,∴QD=1.6,∴PQ=QD+DP=QD+NM=1.6+0.8=2.4(m).故答案为:2.4.【点睛】在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.三、解答题21.(1)见详解;(2)9【分析】(1)连接EF,EG,先推出BF=CF=12BC,再证明HF=CF=GC,即证明四边形CFHG为菱形,即可证明结论;(2)根据平行线分线段成比例定理可得1==3EH AHHC HD,由(1)知Rt△EFC≌Rt△EGC,求出AH,根据GH=GC=6,即可得出答案.【详解】(1)连接EF,EG,∵CE是O的直径,∴∠EFC=∠EGC=90°,又∵EC=EB,EF⊥BC,∴F为BC中点,即BF=CF=12BC,连接BH,FH,AC,则∠CAE=90°,即AC ⊥EB ,由对称可知:BH ⊥EC ,∴在Rt △BHC 中,F 为BC 中点,∴HF=12BC , ∴HF=CF=GC ,∴四边形CFHG 为菱形,∴CE 为∠BCG 的平分线;(2)∵AB ∥CD , ∴1==3EH AH HC HD , 由(1)知Rt △EFC ≌Rt △EGC ,∴FC=GC=6,∴BC=AD=2FC=12,∴AH=14AD=3, 又GH=GC=6, ∴AG=AH+GH=3+6=9.【点睛】本题考查了菱形的判定,平行线分线段成比例定理,圆的性质,掌握这些知识灵活运用是解题关键.22.(1)四边形ABCE ;(2)13或10;(2)3【分析】(1)根据勾股定理分别求出三个三角形的各边长,根据三边对应成比例的三角形相似、“友爱四边形”的定义判断;(2)根据旋转变换的性质、平行线的性质、两角相等的两个三角形相似证明;(3)AM ⊥BC ,根据含30°的直角三角形的特殊性质及勾股定理用AB 表示出AM ,根据三角形的面积公式得到BC ×AB =12,根据相似三角形的性质列式计算,得到答案.【详解】解:(1)∵AB =2,BC =1,AD =4,∴由勾股定理得,AC 2221+5CD 2223+13AE 2224+=5CE 2234+5,∴BC AC =AB AE =AC CE , ∴ABC ∽EAC ,∴四边形ABCE 是“友爱四边形”, ∵BC AC ≠AC CD , ∴ABC 与ACD 不相似,∴四边形ABCD 不是“友爱四边形”,故答案为:四边形ABCE ;(2)∵AC 平分∠BCD ,∴∠ACB=∠ACD ,当∠B=∠DAC 时,ABC ∽DAC , 则BC AC =AB AD =AC CD, ∵2AB =,3BC =,4AC =, ∴34=2AD =4CD, 解得AD =83,CD =163, ∴友爱四边形ABCD 的周长为816321333+++=; 当∠B=∠D 时,ABC ∽ADC , 则BC DC =AB AD =AC AC=1, ∵2AB =,3BC =,4AC =, ∴3DC =2AD=1, 解得AD =2,CD =3,∴友爱四边形ABCD 的周长为233210+++=,综上所述,友爱四边形ABCD 的周长为13或10;(3)如图3,过点A 作AM ⊥BC 于M ,则∠AMB =90°,∵60ABC ∠=︒,∴∠BAM =30°,∴BM =12AB , ∴在Rt △ABM 中,AM=32AB , ∵ABC 的面积为33, ∴12BC ×3AB =33, ∴BC ×AB =12,∵四边形ABCD 是被BD 分割成的“友爱四边形”,且AB ≠BC ,∴ABD ∽DBC ∴AB BD BD BC=, ∴BD 2=AB ×BC =12,∴BD =12=23.【点睛】本题考查的是相似三角形的判定和性质、旋转变换的性质、三角形的面积计算,掌握相似三角形的判定定理和性质定理、理解“友爱四边形”的定义是解题的关键.23.(1)4;(2)画图见解析;(3)画图见解析.【分析】(1)直接利用三角形面积求法进而得出答案;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用位似变换得出对应点位置进而得出答案.【详解】(1)12442ABC S=⨯⨯=, 故答案为:4. (2)如图所示111A B C △,即为所求.(3)如图所示222A B C △,即为所求.【点睛】此题主要考查了位似变换以及平移变换,正确得出对应点位置是解题关键.24.(1)-1,0;0,-2;(2)3,02⎛⎫ ⎪⎝⎭;(3)当m=2时,PM 的最大值是2【分析】(1)利用抛物线解析式容易求得A 、C 的坐标;(2)证明△AOC ∽△COD ,Rt △ACB 的外接圆圆心为AB 的中点,由此求得圆心的坐标即可;(3)可求得直线BC 的解析式,利用m 可表示出PM 的长,则可利用二次函数的性质求得PM 的最大值.【详解】 解:(1)当y=0,则213-222y x x =-=0,得方程的解121,4x x =-= ∴A (-1,0)B (4,0),当x=0时,y=-2∴C (0,-2). (2)1,2,4OA OC OB ===∠AOC=∠COB=90° ∴12OA OC OC OB ==∴△AOC ∽△COB∴∠ACO=∠OBC∠ACO+∠OCB=90°∠OBC+∠OCB=90°=∠ACB∴Rt △ACB 的外接圆圆心为AB 的中点,∵A (-1,0)B (4,0),∴圆心的坐标(3,02). (3)C (0,-2),B (4,0)又∵直线BC 解析式1y 22x =- 1(,2)2p m m -,M (m, 213222m m --) PM=(122m -)-(213222m m --) 2122PM m m =-+ 21=(2)22m --+ 当m=2时,PM 最大值=2.【点睛】本题考查了二次函数的性质,掌握性质是解题的关键.25.(1)证明见解析;(2)35【分析】(1)连接AO 后交DC 于点H ,交BC 于点G ,由垂径定理可知AG ⊥BC ,然后根据互余关系得到∠HAE=∠HCG ,然后利用平行关系得到∠ADE=∠HCG=∠HAE ,等量代换后可得∠HAE +∠EAD=90°;(2)根据AC 和BE 可算出AE ,然后在Rt △AEC 中算出EC ,然后证明△AED ∽△BEC ,然后利用比例关系算出DE ,在Rt △AED 中计算AD 即可.【详解】解:(1)如图,连接AO 交DC 于点H ,交BC 于点G ,则AG ⊥BC∵AG⊥BC,AB⊥DC,∠AHE=∠CHG∴∠HAE=∠HCG∵AB⊥DC∴∠ADE+∠EAD=90°∵AD∥BC∴∠ADE=∠HCG=∠HAE∴∠HAE +∠EAD=90°∴AD为O的切线(2)∵AC=AB,AC=5,BE=2∴AE=3在Rt△AEC由勾股定理可得:4EC=∵AD∥BC∴△AED∽△BEC∴BE ECAE DE=∴DE=6在Rt△AED由勾股定理可得:=【点睛】本题主要考查圆的相关定理,掌握切线的证明方法,灵活转化角关系是证明切线的关键,在圆中计算线段长度,找准相似三角形,结合勾股定理,是解题的关键.26.(1)见详解;(2)【分析】(1)根据四边形ABCD内接于O,∠BCD+∠ECD=180°,得出∠BAD=∠ECD,再根据AB=EB,可得∠BED=∠ECD,即可得证;(2)连接OD,先求出AE,然后证明△BAE∽△DCE,根据CEAE=DEBE,即CE AE =DEBC+CE,求出BC,即可求出答案.【详解】(1)∵四边形ABCD内接于O,∴∠BAD+∠BCD=180°,∵∠BCD+∠ECD=180°,∴∠BAD=∠ECD,∵AB=EB,∴∠BAD=∠BED,∴∠BED=∠ECD,∴DC=DE;(2)连接OD,∵OA=OD,∴∠OAD=∠ODA,又∵∠BAE=∠E,∴∠ODA=∠E,∴OD∥BE,∵O是AB中点,∴D为AE中点,∴DA=DE=6,∴AE=12,∵∠BAD=∠ECD,∠E=∠E,∴△BAE∽△DCE,∴CEAE =DE BE,∴CEAE =DEBC+CE,即为312BC+43解得BC=23∴BE=BC+CE=63∴AB=BE=3【点睛】本题考查了等腰三角形的性质,圆的内接四边形的性质,相似三角形的判定和性质,中位线的性质,掌握这些知识点灵活运用是解题关键.。
北京市第四中学中考数学冲刺复习专题训练相似第3讲相似三角形的判断2(无答案)
相似三角形的判定(2)一、知识回顾判定两个三角形相似的方法?1.定义.2.平行截出相似(预备定理).3.三个判定定理(1)三边(2)两边和夹角(3)两角 二、知识巩固例1.如图,在□ABCD 中,EF//AB ,DE:EA=2:3,EF=6,DB=10,求CD 和BF 的长.例2.如图,P 是□ABCD 的边BC 延长线上任意一点,AP 分别交BD 和CD于点M 和N .求证:AM 2=MN •MP .AB BC AC AD DE AE ==。
断∠BAD 和∠例3.如图,已知CAE 的大小关系,并说明理由.例4.如图,已知AC和BD相交于点E,CE•AE=BE•DE,△ABE与△DCE是否相似?【变式应用】如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.例5.如图,已知CD为Rt△ABC斜边上的高.求证:(1)(1)△ABC∽△ACD∽△CBD(2)CD2=AD•BD;AC2=AD•AB;BC2=BD•AB.(3)AC•BC=AB•CD.(4)若AC=4,BC=3,求AB、CD、AD和BD的长.例6.如图,D是△ABC的边BC上的一点,AB=2,BD=1,DC=3,△ABD与△C BA是否相似?例7.如图,△ABC中,D是BC中点,E是AD上一点,CE的延长线交AB 于F,求证:AE:ED=2AF:FB.三、方法总结1.基本图形结构2。
图形之间的联系3.证明方法小结(1)根据已知,选择最佳判定方法;(2)若证等积式,先化比例式.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release ofthis article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
北京市第四中学2017届九年级中考复习学案相似(6分打包无答案)
最大最全最精的教育资源网图形的相像北京四中一、预备知识1.线段的比:假如采用同一长度单位量得两条线段a、 b 长度分别是m、 n,那么就说这两条线段的比是a: b=m: n ,或写成a m.b n2.成比率线段:关于四条线段a、 b、 c、 d,假如此中两条线段的比与另两条线段的比相等,如a: b=c: d,我们就说这四条线段是成比率线段,简称比率线段.3.比率的基天性质:(1)若a: b=c: d,则ad=bc;(2)若a: b=b: c,则b 2=ac(b称为a、c的比率中项).练习 .已知四条线段 a=0.5m, b=25cm, c=0.2m, d=10cm,试判断四条线段能否成比率?已知线段 a、 b、 c、d,知足ac,求证:ac a .b d b d b二、图形的相像1.相像形的观点:我们把形状同样的图形叫做相像形.2.相像多边形的观点:假如两个多边形的对应角相等,对应边的比相等,我们就说它们是相像多边形.(1)相像多边形的定义既是判断方法,又是它的性质.(2)相像多边形对应边的比称为相像比.3.说明:( 1)任何(边数相等的)正多边形都相像.( 2)全等与相像的关系:全等就是相像比为 1 的相像( 3)在相像多边形中,最简单的就是相像三角形.在△ ABC与△ A’B’C’中,假如∠ A=∠ A’,∠ B=∠ B’,∠ C=∠C’,AB BC CAk即对应角相等,对应边的比相等,我们就说A'B' B'C' C'A'△ABC与△ A’B’C’相像,记作△ ABC∽ △ A’B’C’.△ ABC与△ A’B’C’的相像比为 k.三、例题剖析例 1.以下图形中,必是相像形的是().A.都有一个角是40°的两个等腰三角形B.都有一个角为50°的两个等腰梯形C.都有一个角是30°的两个菱形D.邻边之比为2:3 的两个平行四边形例 2.如图,将一张矩形纸片沿较长边的中点对折,假如获得地两个矩形都和本来的矩形相像,那么本来矩形的长宽比是多少?例 3.分别依据以下条件,说出各组相像三角形的对应边的比率式和相等的对应角.( 1)△ABC与△ADE相像,此中DE//BC.假如 AD=4, BD=2,DE=3你能求出哪条线段的长?(2)△ABO与△A’B’O相像,此中OB:OB’=OA:OA’.三角形相像是我们研究的要点,怎样判断三角形相像更为简捷?。
北京四中九年级数学下册第二十七章《相似》综合知识点总结(含答案解析)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列四个选项中的三角形,与图中的三角形相似的是( )A .B .C .D .2.如图,在ABC 中,AB AC ≠,AC 3AD =,3AB AE =,点F 为边BC 上一点,则下列条件不能保证FDB △与ADE 相似的是( )A .A BFD ∠=∠B .//DF AC C .BD DF DE AD = D .BD BF AE DE= 3.如图,直线////a b c ,直线m 分别交直线a ,b ,c 于点A ,B ,C ,直线n 分别交直线a ,b ,c 于点D ,E ,F ,若23=AB BC ,则DE DF 的值为( )33554.如图,点D 在ABC 的边AC 上,添加下列哪个条件后,仍无法判定ABC ADB ∽△△( )A .C ABD ∠=∠B .CBA ADB ∠=∠C .AB AD AC AB = D .AB BC AC BD = 5.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图一定相似的有( )A .1个B .2个C .3D .4个6.有下列四种说法:其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个 B .3个 C .2个 D .1个7.如图,在ABC ,AB AC a ==,点D 是边BC 上的一点,且BD a =,1AD DC ==,则a 等于( )A .512+ B .512- C .1 D .2 8.如图,ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG ∥BC),若AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的( )99399.如图,直线l 1//l 2//l 3,分别交直线m 、n 于点A 、B 、C 、D 、E 、F .若AB ∶BC =5∶3,DE =15,则EF 的长为( )A .6B .9C .10D .25 10.已知P ,Q 是线段AB 的两个黄金分割点,且AB=10,则PQ 长为( ) A .5(5-1) B .5(5+1) C .10(5-2) - D .5(3-5) 11.如图,直线12//l l ,:2:3AF FB =,:2:1BC CD =,则:AE EC 是( )A .1:2B .1:4C .2:1D .3:2 12.已知线段a 、b 有52a b a b +=-,则:a b 为( ) A .5:1 B .7:2 C .7:3 D .3:713.如图,在矩形OABC 中,点A 和点C 分别在y 轴和x 轴上.AC 与BO 交于点D ,过点C 作CE BD ⊥于点E ,2DE BE =.若5CE =,反比例函数(0,0)k y k x x=>>经过点D ,则k =( )A .2B 352C .36D 3014.如图,△ABC 中,DE ∥BC ,25AD AB =,DE =3,则BC 的长为( )A .7.5B .4.5C .8D .6二、填空题15.如图圆内接正六边形ABCDEF 中,AC 、BF 交于点M .则:ABM AFM S S =△△___________.16.如图,点P 是ABC 的重心,过P 作BC 的平行线,分别交AC ,AB 于点D ,E ,作//DF EB ,交CB 于点F ,若ABC 的面积为227cm ,则DFC △的面积为______2cm .17.如图,D 是AC 上一点,//BE AC ,BE AD =,AE 分别交BD 、BC 于点F 、G ,12∠=∠.若8DF =,4FG =,则GE =________.18.如图,ABC 中,1BC =.若113AD AB =,且11//D E BC ,照这样继续下去,12113D D D B =,且22//D E BC ;23213D D D B =,且33//DE BC ;…;1113n n n D D D B --=,且//n n D E BC 则101101=D E _________.19.贺哲同学的身高1.86米,影子长3米,同一时刻金老师的影子长2.7米,则金老师的身高为________米(结果保留两位小数)。
北京四中高中数学精品全套-高一数学-4(相似三角形的判定及有关性质、直线与圆的位置关系)- 4页
相似三角形的判定及有关性质北京四中一、相似三角形:两个三角形的对应角相等,对应边成比例.相似三角形判定定理判定定理1:两角对应相等的两个三角形相似.判定定理2:三边对应成比例的两个三角形相似.判定定理3:两边对应成比例,并且夹角相等的两个三角形相似.相似三角形的性质性质定理1:相似三角形对应边上的高、中线和它们的周长比都等于相似比. 性质定理2:相似三角形的面积比等于相似比的平方.平行截割定理:三条平行线截任两条直线,所截出的对应线段成比例.推论:平行于三角形一边的直线截其它两边(或两边的延长线),所得的对应线段成比例.射影定理:CD是Rt△ABC的斜边AB上的高,则(1)AC 2=AD·AB;(2)BC2=BD·AB;(3)CD2=AD·BD.二、例题例1 在梯形ABCD中,AD//BC,AC,BD相交于O,AO=2 cm,AC=8 cm,且S△BCD =6 cm2,求S△AOD.例2 AD是△ABC的中线,M是AD的中点,CM延长线交AB于N,AB=24 cm,求AN的长.例3如图,在△ABC中,AB=15 cm,AC=12 cm,AD是∠BAC的外角平分线,DE//AB交AC的延长线于点E,则CE=_____cm.三、总结直线与圆的位置关系北京四中一、直线与圆的位置关系1、位置关系的分类:(1)公共点的个数;(2)圆心到直线的距离与半径的比较.2、切线的判定定理:经过圆的半径的外端且垂直于这条半径的直线,是圆的切线.3、切线的性质定理:圆的切线垂直过切点的半径.推论1:从圆外的一个已知点所引的两条切线长相等.推论2:经过圆外的一个已知点和圆心的直线,平分从这点向圆所作的两条切线的夹角.4、与圆有关的角:(1)圆周角与圆心角;(2)弦切角推论:(1)直径所对的圆周角为直角;(2)同弧或等弧所对的圆周角相等.5、与圆有关的线:(1)相交弦定理;(2)切割线定理.6、与圆有关的形:圆内接四边形.(1)性质;(2)判定.定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角. 定理:如果一个四边形的一组对角互补,那么这个四边形内接于圆.二、例题例1 圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC=________.例2 AD是圆O的直径,∠DAC=60°,AC=3,则圆O的直径=________.例3 AB是圆O的直径,BC是圆O的切线,D在圆O上,且OC//AD,求证:DC是圆O的切线.例4 △ABC是圆O的内接三角形,PA是圆O的切线,PB交AC于点E,交圆O于点D,若PE=PA,PD=1,BD=8,∠ABC=60°,则BC=________.三、总结直线与圆的位置关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的判定(2)
一、知识回顾
判定两个三角形相似的方法?
1.定义.
2.平行截出相似(预备定理).
3.三个判定定理
(1)三边
(2)两边和夹角
(3)两角 二、知识巩固
例1.如图,在□ABCD 中,EF//AB ,DE:EA=2:3,EF=6,DB=10,求CD 和 BF 的长.
例2.如图,P 是□ABCD 的边BC 延长线上任意一点,AP 分别交BD 和CD
于点M 和N .求证:AM 2=MN •MP .
例3.如图,已知
AB BC AC AD DE AE
==.断∠BAD 和 ∠CAE 的大小关系,并
说明理由.
例4.如图,已知AC 和BD 相交于点E ,CE •AE=BE •DE ,△ABE 与△DCE 是否 相似?
【变式应用】
如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.
例5.如图,已知CD为Rt△ABC斜边上的高.求证:
(1)(1)△ABC∽△ACD∽△CBD
(2)CD2=AD•BD;
AC2=AD•AB;
BC2=BD•AB.
(3)AC•BC=AB•CD.
(4)若AC=4,BC=3,求AB、CD、AD和BD的长.
例6.如图,D是△ABC的边BC上的一点,AB=2,BD=1,DC=3,△ABD与
△C BA是否相似?
例7.如图,△ABC中,D是BC中点,E是AD上一点,CE的延长线交AB
于F,求证:AE:ED=2AF:FB.
三、方法总结
1.基本图形结构
2.图形之间的联系
3.证明方法小结
(1)根据已知,选择最佳判定方法;(2)若证等积式,先化比例式.。