最新临沂市河东区七年级下册期末数学试卷(有答案)

合集下载

临沂市河东区七年级下册期末数学试卷(有答案)

临沂市河东区七年级下册期末数学试卷(有答案)

山东省临沂市河东区七年级下学期期末考试数学试卷一、选择题(本题12个小题每题中只有一个答案符合要求,每小题3分,共36分)1.(3分)要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③2.(3分)下列条件中不能判定AB∥CD的是()A.∠1=∠4 B.∠2=∠3 C.∠5=∠B D.∠BAD+∠D=180°3.(3分)下列图形中,可以由其中一个图形通过平移得到的是()A.B. C.D.4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个5.(3分)下列说法正确的个数有()(1)过一点有且只有一条直线与已知直线平行(2)一条直线有且只有一条垂线(3)不相交的两条直线叫做平行线(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离A.0个B.1个C.2个D.3个6.(3分)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)7.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°8.(3分)如果一元一次不等式组的解集为x>3.则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a<39.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.10.(3分)某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A.6折B.7折C.8折D.9折11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣212.(3分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二、填空题(本题8个小题每小题3分共4分13.(3分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是.14.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是.15.(3分)将点P向下平移3个单位,向左平移2个单位后得到点Q(3,﹣1),则点P坐标为.16.(3分)若m是的立方根,则m+3=17.(3分)如果一个角的两边分别与另一个角的两边平行,那么这两个角.18.(3分)如图,已知∠1=∠2=∠3=65°,则∠4的度数为.19.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积.20.(3分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32018的末位数字是.三、解答题(本题共6个小题,共60分)21.(10分)解方程组:(1)(2).22.(10分)解不等式(组):(1)(2)23.(8分)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.24.(8分)如图,将△ABC中向右平移4个单位得到△A′B′C′.①写出A、B、C的坐标;②画出△A′B′C′;③求△ABC的面积.25.(12分)如图1,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于点O,AE∥OF.(1)若∠A=30°时①求∠DOF的度数;②试说明OD平分∠AOG;(2)如图2,设∠A的度数为α,当α为多少度时,射线OD是∠AOG的三等分线,并说明理由.26.(12分)为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型B型价格(万元/台) a b240 200处理污水量(吨/月)(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.参考答案1-10.DBBCA BBCAB 11-12.AC13、P14、0.115、(5,2)16、517、相等或互补18、115°19、4820、221、22、23、24、25、解:(1)①∵AE∥OF ∴∠A=∠BOF∵OF平分∠COF∴∠BOC=60°,∠COF=30°∴∠DOF=180-30°=150°②∵∠BOC=60°∴∠AOD=60°∵OF⊥OG∴∠BOF+∠FOG=90°. ∴∠BOG=60°∵∠BOG+∠DOG+∠AOD=180°∴∠DOG=60°=∠AOD∴OD平分∠AOG(2)设∠AOD=β∵射线OD是∠AOG的三等分线∴∠AOD=2∠DOG,或∠DOG=2∠AOD若∠AOD=2∠DOG.26、(3)当m=0,10-m=10时,每月的污水处理量为:200×10=2000吨<2040吨,不符合题意,应舍去;当m=1,10-m=9时,每月的污水处理量为:240+200×9=2040吨=2040吨,符合条件,此时买设备所需资金为:12+10×9=102万元;当m=2,10-m=8时,每月的污水处理量为:240×2+200×8=2080吨>2040吨,符合条件,此时买设备所需资金为:12×2+10×8=104万元;所以,为了节约资金,该公司最省钱的一种购买方案为:购买A型处理机1台,B型处理机9台.。

山东省临沂市七年级数学下学期期末试题(扫描版) 新人

山东省临沂市七年级数学下学期期末试题(扫描版) 新人

山东省临沂市2014-2015学年七年级数学下学期期末试题七年级数学单元作业参考答案2015.715.P 16.甲 17.(0,-8)18.4 19.115°三、解答题 (本题共7个小题,共63分)20.(本题满分2=⨯510分)解:(1)由②得:x =2y ③............................................................1分把③代入①得:2×2y +y =5...................................................2分∴y =1.................................................................................3分把y =1代入③得:x =2.........................................................4分 ∴原方程组的解为:⎩⎨⎧==12y x ............................................5分 (2) 解:①×2+②×3得:13x =26,................................................... ...... 2分x =2并代入②得:y =3.........................................4分∴原方程组的解是⎩⎨⎧==32y x ......................................5分 21.(本题满分2=⨯510分)解:(1)去分母得,x -3<24-2(3-4x ),................................1分去括号得,x -3<24-6+8x ,........................................2分移项,合并同类项得,7x >-21, (3)分解得x >-3..............................................................4分所以,不等式的解集为x >-3.................................5分(2)解不等式①,得 x >2,.............................................2分解不等式②,得 x ≤4,..............................................4分故原不等式组的解集为2<x≤4...............................5分22.(本题满分6分)解:建立坐标系如图:................................................................ .....................2分∴南门(0,0),狮子(-4,5),飞禽(3,4)两栖动物(4,1). (6)分23.(本题满分8分)解:(1)∵AE∥OF,∴∠FOB=∠A=30°,...................................................2分∵OF平分∠BOC,∴∠COF=∠FOB=30°,..............................................3分∴∠DOF=180°-∠COF=150°;....................................4分(2)∵OF⊥OG,∴∠FOG=90°,.........................................................1分∴∠DOG=∠DOF-∠FOG=150°-90°=60°,∵∠AOD=∠COB=∠COF+∠FOB=60°,....................6分∴∠AOD=∠DOG,...................................................7分∴OD平分∠AOG.....................................................8分24.(本题满分8分)解:(1)a=50-4-8-16-10=12;...............................................3分(2)根据题意画图如下:25.(本题满分9分)解:(1)设甲、乙班组平均每天掘进x 米,y 米,.................1分得⎩⎨⎧=+=-45)(56.0y x y x ,解得⎩⎨⎧==2.48.4y x . ..........................4分 ∴甲班组平均每天掘进4.8米,乙班组平均每天掘进4.2米. (5)分(2)设按原来的施工进度和改进施工技术后的进度分别还需a 天,b 天完成任务,.................................6分则a =(1755-45)÷(4.8+4.2)=190(天).................7分b =(1755-45)÷(4.8+0.2+4.2+0.3)=180(天).........8分∴a -b =10(天)∴少用10天完成任务..............................................9分26.(本题满分12分)解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,.........................................................1分依题意得:⎩⎨⎧=+=+3100104180053y x y x ,.................................3分解得:⎩⎨⎧==210250y x ,...................................................4分答:A 、B 两种型号电风扇的销售单价分别为250元、210元;.....................................................5分(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台...............................................6分依题意得:200a +170(30-a )≤5400, (7)分解得:a≤10................................................................8分答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;.............................................9分(3)依题意有:(250-200)a+(210-170)(30-a)=1400,................10分解得:a=20, (11)∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标...12分。

2020届临沂市河东区七年级下册期末数学试卷(有答案)(加精)

2020届临沂市河东区七年级下册期末数学试卷(有答案)(加精)

山东省临沂市河东区七年级下学期期末考试数学试卷一、选择题(本题12个小题每题中只有一个答案符合要求,每小题3分,共36分)1.(3分)要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③2.(3分)下列条件中不能判定AB∥CD的是()A.∠1=∠4 B.∠2=∠3 C.∠5=∠B D.∠BAD+∠D=180°3.(3分)下列图形中,可以由其中一个图形通过平移得到的是()A.B. C.D.4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个5.(3分)下列说法正确的个数有()(1)过一点有且只有一条直线与已知直线平行(2)一条直线有且只有一条垂线(3)不相交的两条直线叫做平行线(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离A.0个B.1个C.2个D.3个6.(3分)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)7.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°8.(3分)如果一元一次不等式组的解集为x>3.则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a<39.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.10.(3分)某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A.6折B.7折C.8折D.9折11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣212.(3分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二、填空题(本题8个小题每小题3分共4分13.(3分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是.14.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是.15.(3分)将点P向下平移3个单位,向左平移2个单位后得到点Q(3,﹣1),则点P坐标为.16.(3分)若m是的立方根,则m+3=17.(3分)如果一个角的两边分别与另一个角的两边平行,那么这两个角.18.(3分)如图,已知∠1=∠2=∠3=65°,则∠4的度数为.19.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积.20.(3分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32018的末位数字是.三、解答题(本题共6个小题,共60分)21.(10分)解方程组:(1)(2).22.(10分)解不等式(组):(1)(2)23.(8分)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.24.(8分)如图,将△ABC中向右平移4个单位得到△A′B′C′.①写出A、B、C的坐标;②画出△A′B′C′;③求△ABC的面积.25.(12分)如图1,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于点O,AE∥OF.(1)若∠A=30°时①求∠DOF的度数;②试说明OD平分∠AOG;(2)如图2,设∠A的度数为α,当α为多少度时,射线OD是∠AOG的三等分线,并说明理由.26.(12分)为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型B型价格(万元/台) a b240 200处理污水量(吨/月)(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.参考答案1-10.DBBCA BBCAB 11-12.AC13、P14、0.115、(5,2)16、517、相等或互补18、115°19、4820、221、22、23、24、25、解:(1)①∵AE∥OF ∴∠A=∠BOF∵OF平分∠COF∴∠BOC=60°,∠COF=30°∴∠DOF=180-30°=150°②∵∠BOC=60°∴∠AOD=60°∵OF⊥OG∴∠BOF+∠FOG=90°∴∠BOG=60°∵∠BOG+∠DOG+∠AOD=180°∴∠DOG=60°=∠AOD∴OD平分∠AOG(2)设∠AOD=β∵射线OD是∠AOG的三等分线∴∠AOD=2∠DOG,或∠DOG=2∠AOD 若∠AOD=2∠DOG26、(3)当m=0,10-m=10时,每月的污水处理量为:200×10=2000吨<2040吨,不符合题意,应舍去;当m=1,10-m=9时,每月的污水处理量为:240+200×9=2040吨=2040吨,符合条件,此时买设备所需资金为:12+10×9=102万元;当m=2,10-m=8时,每月的污水处理量为:240×2+200×8=2080吨>2040吨,符合条件,此时买设备所需资金为:12×2+10×8=104万元;所以,为了节约资金,该公司最省钱的一种购买方案为:购买A型处理机1台,B型处理机9台.。

2020届临沂市河东区七年级下册期末数学试卷(有答案)

2020届临沂市河东区七年级下册期末数学试卷(有答案)

山东省临沂市河东区七年级下学期期末考试数学试卷一、选择题(本题12个小题每题中只有一个答案符合要求,每小题3分,共36分)1.(3分)要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③2.(3分)下列条件中不能判定AB∥CD的是()A.∠1=∠4 B.∠2=∠3 C.∠5=∠B D.∠BAD+∠D=180°3.(3分)下列图形中,可以由其中一个图形通过平移得到的是()A.B. C.D.4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个5.(3分)下列说法正确的个数有()(1)过一点有且只有一条直线与已知直线平行(2)一条直线有且只有一条垂线(3)不相交的两条直线叫做平行线(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离A.0个B.1个C.2个D.3个6.(3分)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)7.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°8.(3分)如果一元一次不等式组的解集为x>3.则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a<39.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.10.(3分)某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A.6折B.7折C.8折D.9折11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣212.(3分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二、填空题(本题8个小题每小题3分共4分13.(3分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是.14.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是.15.(3分)将点P向下平移3个单位,向左平移2个单位后得到点Q(3,﹣1),则点P坐标为.16.(3分)若m是的立方根,则m+3=17.(3分)如果一个角的两边分别与另一个角的两边平行,那么这两个角.18.(3分)如图,已知∠1=∠2=∠3=65°,则∠4的度数为.19.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积.20.(3分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32018的末位数字是.三、解答题(本题共6个小题,共60分)21.(10分)解方程组:(1)(2).22.(10分)解不等式(组):(1)(2)23.(8分)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.24.(8分)如图,将△ABC中向右平移4个单位得到△A′B′C′.①写出A、B、C的坐标;②画出△A′B′C′;③求△ABC的面积.25.(12分)如图1,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于点O,AE∥OF.(1)若∠A=30°时①求∠DOF的度数;②试说明OD平分∠AOG;(2)如图2,设∠A的度数为α,当α为多少度时,射线OD是∠AOG的三等分线,并说明理由.26.(12分)为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型B型价格(万元/台) a b240 200处理污水量(吨/月)(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.参考答案1-10.DBBCA BBCAB 11-12.AC13、P14、0.115、(5,2)16、517、相等或互补18、115°19、4820、221、22、23、24、25、解:(1)①∵AE∥OF ∴∠A=∠BOF∵OF平分∠COF∴∠BOC=60°,∠COF=30°∴∠DOF=180-30°=150°②∵∠BOC=60°∴∠AOD=60°∵OF⊥OG∴∠BOF+∠FOG=90°∴∠BOG=60°∵∠BOG+∠DOG+∠AOD=180°∴∠DOG=60°=∠AOD∴OD平分∠AOG(2)设∠AOD=β∵射线OD是∠AOG的三等分线∴∠AOD=2∠DOG,或∠DOG=2∠AOD 若∠AOD=2∠DOG26、(3)当m=0,10-m=10时,每月的污水处理量为:200×10=2000吨<2040吨,不符合题意,应舍去;当m=1,10-m=9时,每月的污水处理量为:240+200×9=2040吨=2040吨,符合条件,此时买设备所需资金为:12+10×9=102万元;当m=2,10-m=8时,每月的污水处理量为:240×2+200×8=2080吨>2040吨,符合条件,此时买设备所需资金为:12×2+10×8=104万元;所以,为了节约资金,该公司最省钱的一种购买方案为:购买A型处理机1台,B型处理机9台.。

临沂市河东区2019-2020学年七年级下期末数学试卷(含答案)

临沂市河东区2019-2020学年七年级下期末数学试卷(含答案)

临沂市河东区2019-2020学年七年级下期末数学试卷(含答案)下学期期末考试七年级数学试卷一、选择题(本题12个小题每题中只有一个答案符合要求,每小题3分,共36分)1.(3分)要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③2.(3分)下列条件中不能判定AB∥CD的是()A.∠1=∠4 B.∠2=∠3 C.∠5=∠B D.∠BAD+∠D=180°3.(3分)下列图形中,可以由其中一个图形通过平移得到的是()A.B.C.D.4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个5.(3分)下列说法正确的个数有()(1)过一点有且只有一条直线与已知直线平行(2)一条直线有且只有一条垂线(3)不相交的两条直线叫做平行线(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离A.0个B.1个C.2个D.3个6.(3分)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B (1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)7.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°8.(3分)如果一元一次不等式组的解集为x>3.则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a<39.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.10.(3分)某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A.6折B.7折C.8折D.9折11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣212.(3分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二、填空题(本题8个小题每小题3分共4分13.(3分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是.14.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是.15.(3分)将点P向下平移3个单位,向左平移2个单位后得到点Q(3,﹣1),则点P 坐标为.16.(3分)若m是的立方根,则m+3=17.(3分)如果一个角的两边分别与另一个角的两边平行,那么这两个角.18.(3分)如图,已知∠1=∠2=∠3=65°,则∠4的度数为.19.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积.20.(3分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+3的末位数字是.三、解答题(本题共6个小题,共60分)21.(10分)解方程组:(1)(2).22.(10分)解不等式(组):(1)(2)23.(8分)中央电视台举办的“汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B 类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“汉字听写大会”节目不喜欢的学生人数.24.(8分)如图,将△ABC中向右平移4个单位得到△A′B′C′.①写出A、B、C的坐标;②画出△A′B′C′;③求△ABC的面积.25.(12分)如图1,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于点O,AE ∥OF.(1)若∠A=30°时①求∠DOF的度数;②试说明OD平分∠AOG;(2)如图2,设∠A的度数为α,当α为多少度时,射线OD是∠AOG的三等分线,并说明理由.26.(12分)为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.参考答案1-10.DBBCA BBCAB 11-12.AC13、P14、0.115、(5,2)16、517、相等或互补18、115°19、4820、221、22、23、24、25、解:(1)①∵AE∥OF ∴∠A=∠BOF∵OF平分∠COF∴∠BOC=60°,∠COF=30°∴∠DOF=180-30°=150°②∵∠BOC=60°∴∠AOD=60°∵OF⊥OG∴∠BOF+∠FOG=90°∴∠BOG=60°∵∠BOG+∠DOG+∠AOD=180°∴∠DOG=60°=∠AOD∴OD平分∠AOG(2)设∠AOD=β∵射线OD是∠AOG的三等分线∴∠AOD=2∠DOG,或∠DOG=2∠AOD 若∠AOD=2∠DOG26、(3)当m=0,10-m=10时,每月的污水处理量为:200×10=2000吨<2040吨,不符合题意,应舍去;当m=1,10-m=9时,每月的污水处理量为:240+200×9=2040吨=2040吨,符合条件,此时买设备所需资金为:12+10×9=102万元;当m=2,10-m=8时,每月的污水处理量为:240×2+200×8=2080吨>2040吨,符合条件,此时买设备所需资金为:12×2+10×8=104万元;所以,为了节约资金,该公司最省钱的一种购买方案为:购买A型处理机1台,B型处理机9台.。

2019-2020学年临沂市河东区七年级下册期末数学试卷(有答案)

2019-2020学年临沂市河东区七年级下册期末数学试卷(有答案)

山东省临沂市河东区七年级下学期期末考试数学试卷一、选择题(本题12个小题每题中只有一个答案符合要求,每小题3分,共36分)1.(3分)要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③2.(3分)下列条件中不能判定AB∥CD的是()A.∠1=∠4 B.∠2=∠3 C.∠5=∠B D.∠BAD+∠D=180°3.(3分)下列图形中,可以由其中一个图形通过平移得到的是()A.B. C.D.4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个5.(3分)下列说法正确的个数有()(1)过一点有且只有一条直线与已知直线平行(2)一条直线有且只有一条垂线(3)不相交的两条直线叫做平行线(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离A.0个B.1个C.2个D.3个6.(3分)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)7.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°8.(3分)如果一元一次不等式组的解集为x>3.则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a<39.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.10.(3分)某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A.6折B.7折C.8折D.9折11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣212.(3分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二、填空题(本题8个小题每小题3分共4分13.(3分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是.14.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是.15.(3分)将点P向下平移3个单位,向左平移2个单位后得到点Q(3,﹣1),则点P坐标为.16.(3分)若m是的立方根,则m+3=17.(3分)如果一个角的两边分别与另一个角的两边平行,那么这两个角.18.(3分)如图,已知∠1=∠2=∠3=65°,则∠4的度数为.19.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积.20.(3分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32018的末位数字是.三、解答题(本题共6个小题,共60分)21.(10分)解方程组:(1)(2).22.(10分)解不等式(组):(1)(2)23.(8分)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.24.(8分)如图,将△ABC中向右平移4个单位得到△A′B′C′.①写出A、B、C的坐标;②画出△A′B′C′;③求△ABC的面积.25.(12分)如图1,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于点O,AE∥OF.(1)若∠A=30°时①求∠DOF的度数;②试说明OD平分∠AOG;(2)如图2,设∠A的度数为α,当α为多少度时,射线OD是∠AOG的三等分线,并说明理由.26.(12分)为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型B型价格(万元/台) a b240 200处理污水量(吨/月)(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.参考答案1-10.DBBCA BBCAB 11-12.AC13、P14、0.115、(5,2)16、517、相等或互补18、115°19、4820、221、22、23、24、25、解:(1)①∵AE∥OF ∴∠A=∠BOF∵OF平分∠COF∴∠BOC=60°,∠COF=30°∴∠DOF=180-30°=150°②∵∠BOC=60°∴∠AOD=60°∵OF⊥OG∴∠BOF+∠FOG=90°∴∠BOG=60°∵∠BOG+∠DOG+∠AOD=180°∴∠DOG=60°=∠AOD∴OD平分∠AOG(2)设∠AOD=β∵射线OD是∠AOG的三等分线∴∠AOD=2∠DOG,或∠DOG=2∠AOD 若∠AOD=2∠DOG26、(3)当m=0,10-m=10时,每月的污水处理量为:200×10=2000吨<2040吨,不符合题意,应舍去;当m=1,10-m=9时,每月的污水处理量为:240+200×9=2040吨=2040吨,符合条件,此时买设备所需资金为:12+10×9=102万元;当m=2,10-m=8时,每月的污水处理量为:240×2+200×8=2080吨>2040吨,符合条件,此时买设备所需资金为:12×2+10×8=104万元;所以,为了节约资金,该公司最省钱的一种购买方案为:购买A型处理机1台,B型处理机9台.。

2020届临沂市河东区七年级下册期末数学试卷(有答案)(已审阅)

2020届临沂市河东区七年级下册期末数学试卷(有答案)(已审阅)

山东省临沂市河东区七年级下学期期末考试数学试卷一、选择题(本题12个小题每题中只有一个答案符合要求,每小题3分,共36分)1.(3分)要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③2.(3分)下列条件中不能判定AB∥CD的是()A.∠1=∠4 B.∠2=∠3 C.∠5=∠B D.∠BAD+∠D=180°3.(3分)下列图形中,可以由其中一个图形通过平移得到的是()A.B. C.D.4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个5.(3分)下列说法正确的个数有()(1)过一点有且只有一条直线与已知直线平行(2)一条直线有且只有一条垂线(3)不相交的两条直线叫做平行线(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离A.0个B.1个C.2个D.3个6.(3分)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)7.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°8.(3分)如果一元一次不等式组的解集为x>3.则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a<39.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.10.(3分)某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A.6折B.7折C.8折D.9折11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣212.(3分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二、填空题(本题8个小题每小题3分共4分13.(3分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是.14.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是.15.(3分)将点P向下平移3个单位,向左平移2个单位后得到点Q(3,﹣1),则点P坐标为.16.(3分)若m是的立方根,则m+3=17.(3分)如果一个角的两边分别与另一个角的两边平行,那么这两个角.18.(3分)如图,已知∠1=∠2=∠3=65°,则∠4的度数为.19.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积.20.(3分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32018的末位数字是.三、解答题(本题共6个小题,共60分)21.(10分)解方程组:(1)(2).22.(10分)解不等式(组):(1)(2)23.(8分)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.24.(8分)如图,将△ABC中向右平移4个单位得到△A′B′C′.①写出A、B、C的坐标;②画出△A′B′C′;③求△ABC的面积.25.(12分)如图1,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于点O,AE∥OF.(1)若∠A=30°时①求∠DOF的度数;②试说明OD平分∠AOG;(2)如图2,设∠A的度数为α,当α为多少度时,射线OD是∠AOG的三等分线,并说明理由.26.(12分)为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型B型价格(万元/台) a b240 200处理污水量(吨/月)(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.参考答案1-10.DBBCA BBCAB 11-12.AC13、P14、0.115、(5,2)16、517、相等或互补18、115°19、4820、221、22、23、24、25、解:(1)①∵AE∥OF ∴∠A=∠BOF∵OF平分∠COF∴∠BOC=60°,∠COF=30°∴∠DOF=180-30°=150°②∵∠BOC=60°∴∠AOD=60°∵OF⊥OG∴∠BOF+∠FOG=90°∴∠BOG=60°∵∠BOG+∠DOG+∠AOD=180°∴∠DOG=60°=∠AOD∴OD平分∠AOG(2)设∠AOD=β∵射线OD是∠AOG的三等分线∴∠AOD=2∠DOG,或∠DOG=2∠AOD 若∠AOD=2∠DOG26、(3)当m=0,10-m=10时,每月的污水处理量为:200×10=2000吨<2040吨,不符合题意,应舍去;当m=1,10-m=9时,每月的污水处理量为:240+200×9=2040吨=2040吨,符合条件,此时买设备所需资金为:12+10×9=102万元;当m=2,10-m=8时,每月的污水处理量为:240×2+200×8=2080吨>2040吨,符合条件,此时买设备所需资金为:12×2+10×8=104万元;所以,为了节约资金,该公司最省钱的一种购买方案为:购买A型处理机1台,B型处理机9台.。

2020届临沂市河东区七年级下册期末数学试卷(有答案)(精品)

2020届临沂市河东区七年级下册期末数学试卷(有答案)(精品)

山东省临沂市河东区七年级下学期期末考试数学试卷一、选择题(本题12个小题每题中只有一个答案符合要求,每小题3分,共36分)1.(3分)要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③2.(3分)下列条件中不能判定AB∥CD的是()A.∠1=∠4 B.∠2=∠3 C.∠5=∠B D.∠BAD+∠D=180°3.(3分)下列图形中,可以由其中一个图形通过平移得到的是()A.B. C.D.4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个5.(3分)下列说法正确的个数有()(1)过一点有且只有一条直线与已知直线平行(2)一条直线有且只有一条垂线(3)不相交的两条直线叫做平行线(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离A.0个B.1个C.2个D.3个6.(3分)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)7.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°8.(3分)如果一元一次不等式组的解集为x>3.则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a<39.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.10.(3分)某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A.6折B.7折C.8折D.9折11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣212.(3分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二、填空题(本题8个小题每小题3分共4分13.(3分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是.14.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是.15.(3分)将点P向下平移3个单位,向左平移2个单位后得到点Q(3,﹣1),则点P坐标为.16.(3分)若m是的立方根,则m+3=17.(3分)如果一个角的两边分别与另一个角的两边平行,那么这两个角.18.(3分)如图,已知∠1=∠2=∠3=65°,则∠4的度数为.19.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积.20.(3分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32018的末位数字是.三、解答题(本题共6个小题,共60分)21.(10分)解方程组:(1)(2).22.(10分)解不等式(组):(1)(2)23.(8分)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.24.(8分)如图,将△ABC中向右平移4个单位得到△A′B′C′.①写出A、B、C的坐标;②画出△A′B′C′;③求△ABC的面积.25.(12分)如图1,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于点O,AE∥OF.(1)若∠A=30°时①求∠DOF的度数;②试说明OD平分∠AOG;(2)如图2,设∠A的度数为α,当α为多少度时,射线OD是∠AOG的三等分线,并说明理由.26.(12分)为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型B型价格(万元/台) a b240 200处理污水量(吨/月)(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.参考答案1-10.DBBCA BBCAB 11-12.AC13、P14、0.115、(5,2)16、517、相等或互补18、115°19、4820、221、22、23、24、25、解:(1)①∵AE∥OF ∴∠A=∠BOF∵OF平分∠COF∴∠BOC=60°,∠COF=30°∴∠DOF=180-30°=150°②∵∠BOC=60°∴∠AOD=60°∵OF⊥OG∴∠BOF+∠FOG=90°∴∠BOG=60°∵∠BOG+∠DOG+∠AOD=180°∴∠DOG=60°=∠AOD∴OD平分∠AOG(2)设∠AOD=β∵射线OD是∠AOG的三等分线∴∠AOD=2∠DOG,或∠DOG=2∠AOD 若∠AOD=2∠DOG26、(3)当m=0,10-m=10时,每月的污水处理量为:200×10=2000吨<2040吨,不符合题意,应舍去;当m=1,10-m=9时,每月的污水处理量为:240+200×9=2040吨=2040吨,符合条件,此时买设备所需资金为:12+10×9=102万元;当m=2,10-m=8时,每月的污水处理量为:240×2+200×8=2080吨>2040吨,符合条件,此时买设备所需资金为:12×2+10×8=104万元;所以,为了节约资金,该公司最省钱的一种购买方案为:购买A型处理机1台,B型处理机9台.。

临沂市七年级下学期期末数学试题及答案

临沂市七年级下学期期末数学试题及答案

临沂市七年级下学期期末数学试题及答案一、选择题1.下列各式从左到右的变形中,是因式分解的是( ). A .x (a-b )=ax-bx B .x 2-1+y 2=(x-1)(x+1)+y 2 C .y 2-1=(y+1)(y-1) D .ax+bx+c=x (a+b )+c2.现有两根木棒,它们长分别是40cm 和50cm ,若要钉成一个三角形木架,则下列四根木棒应选取( ) A .10cm 的木棒 B .40cm 的木棒 C .90cm 的木棒 D .100cm 的木棒3.下列运算正确的是 ()A .()23524a a -=B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅=4.下列分解因式正确的是( ) A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )5.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭6.如图,ABC ∆中,100ABC ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则EFD ∠ 的度数为( )A .80°B .60°C .40°D .20°7.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( )A .0B .1C .3D .78.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M的坐标是( ) A .(2,﹣5)B .(﹣2,5)C .(5,﹣2)D .(﹣5,2)9.如图所示的四个图形中,∠1和∠2是同位角...的是( )A .②③B .①②③C .①②④D .①④ 10.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( )A .1-B .1-或11-C .1D .1或11二、填空题11.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.12.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______. 13.二元一次方程7x+y =15的正整数解为_____. 14.若(x ﹣2)x =1,则x =___.15.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.16.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______. 17.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.18.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.19.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.20.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=_____.三、解答题21.(1)填一填21-20=2( )22-21=2( )23-22=2( )⋯(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)计算20+21+22+⋯+22019.22.装饰公司为小明家设计电视背景墙时需要A、B型板材若干块,A型板材规格是a⨯b,B型板材规格是b⨯b.现只能购得规格是150⨯b的标准板材.(单位:cm)(1)若设a=60cm,b=30cm.一张标准板材尽可能多的裁出A型、B型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一裁法二裁法三A型板材块数120B型板材块数3m n则上表中, m =___________, n =__________;(2)为了装修的需要,小明家又购买了若干C 型板材,其规格是a ⨯a ,并做成如下图的背景墙.请写出下图中所表示的等式:__________;(3)若给定一个二次三项式2a 2+5ab +3b 2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)23.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.24.已知:5x y +=,(2)(2)3x y --=-.求下列代数式的的值. (1)xy ;(2)224x xy y ++; (3)25x xy y ++.25.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC 的三个顶点均在格点上.(1)将三角形ABC 先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A 1B 1C 1,画出平移后的三角形A 1B 1C 1;(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标; (3)求三角形ABC 的面积. 26.如图,在方格纸内将水平向右平移4个单位得到△.(1)画出△; (2)画出边上的中线和高线;(利用网格点和直尺画图)(3)的面积为 .27.观察下列等式,并回答有关问题:3322112234+=⨯⨯;333221123344++=⨯⨯;33332211234454+++=⨯⨯; …(1)若n 为正整数,猜想3333123n +++⋅⋅⋅+= ;(2)利用上题的结论比较3()()f x g x ==与25055的大小.28.启秀中学初一年级组计划将m 本书奖励给本次期中考试中取得优异成绩的n 名同学,如果每人分4本,那么还剩下78本;如果每人分8本,那么最后一人分得的书不足8本,但不少于4本.最终,年级组讨论后决定,给n 名同学每人发6本书,那么将剩余多少本书?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积,故B 错误;C. 把一个多项式转化成几个整式积,故C 正确;D. 没把一个多项式转化成几个整式积,故D 错误; 故选C.2.B解析:B 【解析】试题解析:已知三角形的两边是40cm 和50cm ,则 10<第三边<90. 故选40cm 的木棒. 故选B.点睛:三角形的三边关系:三角形任意两边之和大于第三边.3.D解析:D 【解析】A选项:(﹣2a3)2=4a6,故是错误的;B选项:(a﹣b)2=a2-2ab+b2,故是错误的;C选项:6123aa+=+13,故是错误的;故选D.4.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A、没有完全分解,还可以利用平方差公式进行;B、正确;C、不是因式分解;D、无法进行因式分解.考点:因式分解5.C解析:C【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n≥2,S1=12π×12=12π,S2=12π﹣12π×(12)2,…S n=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2,S n+1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2﹣12π×[(12)n]2,∴S n﹣S n+1=12π×(12)2n=(12)2n+1π.故选C.【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.6.C解析:C【分析】连接FB,根据三角形内角和和外角知识,进行角度计算即可.【详解】解:如图连接FB,∵AEF AFE ∠=∠,CFD CDF ∠=∠,∴AEF AFE EFB EBF ∠=∠=∠+∠,CFD CDF BFD FBD ∠=∠=∠+∠ ∴AFE CFD EFB EBF BFD FBD ∠+∠=∠+∠+∠+∠, 即AFE CFD EFD EBD ∠+∠=∠+∠, 又∵180AFE EFD DFC ∠+∠+∠=︒, ∴2180EFD EBD ∠+∠=︒, ∵100ABC ∠=︒, ∴180100=402EFD ︒-︒∠=︒, 故选:C . 【点睛】此题考查三角形内角和和外角定义,掌握三角形内角和为180°,三角形一个外角等于不相邻两内角之和是解题关键.7.A解析:A 【分析】观察可以发现3n 的末位数字为4个一循环,故相加后末位数字为定值,而2020是4的整数倍,即可求解. 【详解】解:通过观察可以发现3n 的末位数字为3、9、7、1……,4个为一循环, 而12343333=392781=120++++++末尾数字为0, ∵20204=505÷,故234202033333+++++…的末尾数字也为0. 故选A . 【点睛】本题属于找规律题型,难度不大,是中考的常考知识点,细心观察,总结规律是顺利解题的关键.8.A解析:A 【分析】先根据到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).故选:A.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.9.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】解:图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角....故选:C.【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.10.D解析:D【解析】【分析】此题先把a2-ab-ac+bc因式分解,再结合a、b、c是正整数和a>b探究它们的可能值,从而求解.【详解】解:根据已知a2-ab-ac+bc=11,即a(a-b)-c(a-b)=11,(a-b)(a-c)=11,∵a>b,∴a-b>0,∴a-c>0,∵a、b、c是正整数,∴a-c=1或a-c=11故选D.【点睛】此题考查了因式分解;能够借助因式分解分析字母的取值范围是解决问题的关键.二、填空题11.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.12.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.13.或【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.14.0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.解析:0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.故答案为:0或3.【点睛】此题主要考查了零指数幂以及有理数的乘方运算,正确掌握运算法则是解题关键.15.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB∥CD,∴∠B=180°﹣∠C=180°﹣105°=75°,∵BC∥DE,∴∠AFE=∠B=75°,在△AEF中,∠AED=∠A+∠AFE=20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.16.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点先向上平移个单位长度,得到,再向左平移个单位长度后得到:, 故答案为:;【点睛】本题考查了坐标与图解析:()1,2--【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点()2,3P -先向上平移1个单位长度,得到()()2,312,2-+=-,再向左平移3个单位长度后得到:()()23,21,2--=--,故答案为:()1,2--;【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab 的值.【详解】解:∵(a+b )2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a 2+2ab +b 2=7,然后把a 2+b 2=5代入可计算出ab 的值.【详解】解:∵(a +b )2=7,∴a 2+2ab +b 2=7,∵a 2+b 2=5,∴5+2ab =7,∴ab =1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键. 18.15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=解析:15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.19.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.20.10cm【分析】依据AE 是△ABC 的边BC 上的中线,可得CE =BE ,再根据AE =AE ,△ACE 的周长比△AEB 的周长多2cm ,即可得到AC 的长.【详解】解:∵AE 是△ABC 的边BC 上的中线,解析:10cm【分析】依据AE 是△ABC 的边BC 上的中线,可得CE =BE ,再根据AE =AE ,△ACE 的周长比△AEB 的周长多2cm ,即可得到AC 的长.【详解】解:∵AE 是△ABC 的边BC 上的中线,∴CE =BE ,又∵AE =AE ,△ACE 的周长比△AEB 的周长多2cm ,∴AC−AB =2cm ,即AC−8cm =2cm ,∴AC =10cm ,故答案为10cm.【点睛】本题考查了三角形中线的有关计算,分析得到两个三角形的周长的差等于两边的差是解题的关键.三、解答题21.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.22.(1)m =1,n =5;(2)(a +2b )2=a 2+4ab +4b 2;(3)2a 2+5ab +3b 2=(a +b )(2a +3b ),详见解析【分析】(1)结合图形和条件分析可以得出按裁法二裁剪时,可以裁出B 型板1块,按裁法三裁剪时,可以裁出5块B 型板;(2)看图即可得出所求的式子;(3)通过画图能更好的理解题意,从而得出结果.由于构成的是长方形,它的面积等于所给图片的面积之和,从而因式分解.【详解】(1)按裁法二裁剪时,2块A 型板材块的长为120cm ,150-120=30,所以可裁出B 型板1块,按裁法三裁剪时,全部裁出B 型板,150÷30=5,所以可裁出5块B 型板; ∴m=1,n=5.故答案为:1,5;(2)如下图:发现的等式为:(a +2b )2=a 2+4ab +4b 2;故答案为:(a +2b )2=a 2+4ab +4b 2.(3)按题意画图如下:∵构成的长方形面积等于所给图片的面积之和,∴2a 2+5ab +3b 2=(a +b )(2a +3b ).【点睛】本题考查了完全平方公式和几何图形的应用及一元一次方程的应用,关键是根据学生的画图能力,计算能力来解答.23.(1)∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE,∠D=∠DPE,即可得出∠BPD=∠B-∠D;将点P移到AB、CD内部,延长BP交DC于M,由平行线的性质得出∠B=∠BMD,即可得出∠BPD=∠B+∠D;(2)由平行线的性质得出∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,即可得出结论;(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.【详解】解(1)∵AB∥CD∥PE,∴∠B=∠BPE,∠D=∠DPE,∵∠BPE=∠BPD+∠DPE,∴∠BPD=∠B-∠D,故答案为:∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,理由如下:延长BP交DC于M,如图b所示:∵AB∥CD,∴∠B=∠BMD,∵∠BPD=∠BMD+∠D,∴∠BPD=∠B+∠D;(2)∵A′B∥CD,∴∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,∴∠BPD=∠ABP+∠D+∠BQD,故答案为:∠BPD=∠ABP+∠D+∠BQD;(3)过点E作EN∥BF,如图d所示:则∠B=∠BEN ,同(1)得:∠FQE=∠F+∠QEN ,∴∠EQF=∠B+∠E+∠F ,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A ,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F ; ∵∠AMP=∠FMQ ,∴126°-∠A=80°-∠F ,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.24.(1)3;(2)31;(3)25.【分析】(1)把多项式乘积展开,再将已知5x y +=代入,即可求解;(2)根据(1)得到3xy =,再利用完全平方公式,即可求解;(3)根据5x y +=将x 用y 来表示,再代入25x xy y ++,合并同类项即可求解.【详解】解:(1)∵()(2)(2)22424=3x y xy x y xy x y --=--+=-++-,而5x y +=, ∴ ()=324=3254=3xy x y -++--+⨯-.故答案为3.(2)由(1)知3xy =,∴ ()22224=2=523=31x xy y x y xy +++++⨯. 故答案为31.(3)∵5x y +=,得5x y =-,则()()22225=55525105525x xy y y y y y y y y y y ++-+-+=-++-+=. 故答案为25.【点睛】本题目考查整式的乘法,难度一般,是常考知识点,熟练掌握代数式之间的转化是顺利解题的关键.25.(1)见解析;(2)(2,6);(3)19 2【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;(2)利用A点坐标画出直角坐标系,再写出A1坐标即可;(3)利用分割法求出坐标即可.【详解】解:(1)画出平移后的△A1B1C1如下图;;(2)如上图建立平面直角坐标系,使得点A的坐标为(-4,3),由图可知:点A1的坐标为(2,6);(3)由(2)中的图可知:A(-4,3),B(5,-1),C(0,0),∴S△ABC=11119 (45)434512222 +⨯-⨯⨯-⨯⨯=.【点睛】本题考查了作图——平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.26.(1)见解析; (2) 见解析;(3) 4.【解析】【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)先取AB的中点D,再连接CD即可;过点C作CD⊥AB交AB的延长线于点E,CE即为所求;(3)利用割补法计算△ABC的面积.【详解】(1)如图所示:(2)如图所示;(3)S △BCD =20-5-1-10=4.27.(1)221(1)4n n + (2)< 【分析】(1)根据所给的数据,找出变化规律,即是14乘以最后一个数的平方,再乘以最后一个数加1的平方,即可得出答案;(2)根据(1)所得出的规律,算出结果,再与50552进行比较,即可得出答案.【详解】解:(1)根据所给的数据可得:13+23+33+…+n 3=14n 2(n+1)2. 故答案为:14n 2(n+1)2. (2)13+23+33+ (1003)2211001014⨯⨯ =21(100101)2⨯⨯=25050<25055 所以13+23+33+…+1003=<25055.【点睛】此题考查规律型:数字的变化类,通过观察、分析、总结得出题中的变化规律是解题的关键.28.38本【分析】先表示书的总量,利用不等关系列不等式组,求不等式组的正整数解即可得到答案.【详解】解:由题意得:4788(1)84788(1)4n n n n +--⎧⎨+--≥⎩< ①② 由①得:12n >19由②得:1202n ≤ ∴ 不等式组的解集是:111922≤<n 20 n 为正整数, 20,n ∴=478158,m n ∴=+= 15820638.∴-⨯= 答:剩下38本书.【点睛】本题考查的是不等式组的应用,掌握利用不等关系列不等式组是解题的关键.。

七年级下册临沂数学期末试卷练习(Word版 含答案)

七年级下册临沂数学期末试卷练习(Word版 含答案)

七年级下册临沂数学期末试卷练习(Word 版 含答案)一、选择题1.9的算术平方根是()A .-3B .3C .3±D .192.下列运动中,属于平移的是( )A .冷水加热过程中,小气泡上升成为大气泡B .急刹车时汽车在地面上的滑动C .随手抛出的彩球运动D .随风飘动的风筝在空中的运动 3.在平面直角坐标系中,平行于坐标轴的线段5PQ =,若点P 坐标是()2,1-,则点Q 不在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题:①过直线外一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.其中真命题为( )A .①②B .①④C .①②③D .①②④ 5.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒ 6.下列说法正确的是( ) A .9的立方根是3 B .算术平方根等于它本身的数一定是1C .﹣2是4的一个平方根D .4的算术平方根是2 7.如图,直线l 1∥l 2且与直线l 3相交于A 、C 两点.过点A 作AD ⊥AC 交直线l 2于点D .若∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70°8.如图,在平面直角坐标系中,一动点从原点O 出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到()10,1A ,()21,1A ,()31,0A ,()42,0A ,…那么点2021A 的坐标为( )A .()505,0B .()505,1C .()1010,0D .()1010,1二、填空题9.若|y+6|+(x ﹣2)2=0,则y x =_____.10.已知点P (3,﹣1),则点P 关于x 轴对称的点Q _____.11.如图,在△ABC 中,∠ABC ,∠ACB 的角平分线相交于O 点. 如果∠A=α,那么∠BOC 的度数为____________.12.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.14.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________.15.点()2,28M a a +-是第四象限内一点,若点M 到两坐标轴的距离相等,则点M 的坐标为__________.16.如图,在平面直角坐标系中,x AB //EG //轴,BC DE HG AP y ////////轴,点D 、C 、P 、H 在x 轴上,()1,2A ,()1,2B -,()3,0D -,()3,2E --,()3,2G -.把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A B C D E F G H P A -------⋅⋅⋅-⋅⋅⋅的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标是_______.三、解答题17.计算下列各式的值:(1)23(7)--(2)313(3)83+-18.求下列各式中的x 值.(1)2164x -=(2)3(1)64x -=19.如图,直线AB ,CD 被直线MN ,PM 所截,//AB CD ,直线MN 分别交AB 和CD 于点E ,F .点Q 在直线PM 上,AEP CFQ ∠=∠,求证:180∠+∠=︒EPQ FQP .请在下列括号中填上理由:证明:因为//AB CD (已知),所以AEM CFM ∠=∠(_______).又因为AEP CFQ ∠=∠(已知),所以∠+∠=∠+∠AEM AEP CFM CFQ ,即∠=∠MEP MFQ ,所以_______(同位角相等,两直线平行),所以180∠+∠=︒EPQ FQP (_______). 20.如图,()3,2A -,()1,2B --,()1,1C -.将 ABC 向右平移 3 个单位长度,然后再向上平移 1 个单位长度,可以得到 111A B C .(1)画出平移后的 111A B C ,111A B C 的顶点 1A 的坐标为 ;顶点 1C 的坐标为 . (2)求 111A B C 的面积.(3)已知点 P 在 x 轴上,以 1A ,1C ,P 为顶点的三角形面积为 32,则 P 点的坐标为 .21.22124<122<<212减去其整数部分后,得到的差就是小数部分,221(16(2)求出13(3)如果25的整数部分是a ,小数部分是b ,求出-a b 的值.二十二、解答题22.已知足球场的形状是一个长方形,而国际标准球场的长度a 和宽度b (单位:米)的取值范围分别是100110a ≤≤,6475b ≤≤.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由. 二十三、解答题23.已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED = .(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,∠AED =32°,∠P =30°,求∠EKD 的度数.24.如图1,//AB CD ,在AB 、CD 内有一条折线EPF .(1)求证:AEP CFP EPF ∠+∠=∠;(2)在图2中,画BEP ∠的平分线与DFP ∠的平分线,两条角平分线交于点Q ,请你补全图形,试探索EQF ∠与EPF ∠之间的关系,并证明你的结论;(3)在(2)的条件下,已知BEP ∠和DFP ∠均为钝角,点G 在直线AB 、CD 之间,且满足1BEG BEP n ∠=∠,1DFG DFP n∠=∠,(其中n 为常数且1n >),直接写出EGF ∠与EPF ∠的数量关系.25.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 .拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 .26.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,我们把形如图1的图形称之为“8字形”.如图2,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题:(1)仔细观察,在图2中有 个以线段AC 为边的“8字形”;(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数;(3)在图2中,若设∠C=α,∠B=β,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的概念可直接进行求解.【详解】解:∵()239±=,∴9的算术平方根是3;故选B.【点睛】本题主要考查算术平方根,熟练掌握求一个数的算术平方根是解题的关键.2.B【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的树叶在空中的运动,解析:B【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的树叶在空中的运动,既发生了平移,也发生了旋转.故选B.【点睛】此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一致,并且移动的距离相等.3.D【分析】设点(),Q a b ,分//PQ x 轴和//PQ y 轴,两种情况讨论,即可求解.【详解】解:设点(),Q a b ,若//PQ x 轴,则点P 、Q 的纵坐标相等,∵线段5PQ =,若点P 坐标是()2,1-,∴()25a --= ,1b = ,解得:3a = 或7- ,∴()3,1Q 或()7,1- ;若//PQ y 轴,则点P 、Q 的横坐标相等,∵线段5PQ =,若点P 坐标是()2,1-, ∴15b -= ,2a =- ,解得:6b = 或4- ,∴()2,6Q - 或()2,4-- ,∴点()3,1Q 或()7,1-或()2,6- 或()2,4-- ,∴点Q 不在第四象限.故选:D .【点睛】本题主要考查了坐标与图形,线段与坐标轴平行时点的坐标特征,分//PQ x 轴和//PQ y 轴,两种情况讨论是解题的关键.4.A【分析】根据两直线的位置关系即可判断.【详解】①过直线外一点有且只有一条直线与已知直线平行,正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③图形平移的方向不一定是水平的,故错误;④两直线平行,内错角才相等,故错误.故①②正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5.B【分析】根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。

【3套打包】临沂市七年级下册数学期末考试试题(含答案)

【3套打包】临沂市七年级下册数学期末考试试题(含答案)

最新人教版七年级(下)期末模拟数学试卷及答案一、选择题:本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的1.下列四个数中,无理数是( ) AB .13C .0D .π2.在平面直角坐标系中,点P (-1,2)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.下列调查中,适合采用全面调查方式的是( ) A .了解某班同学某次体育模拟考的测试成绩 B .调查福州闯江的水质情况 C .调查“中国诗词大会”的收视率 D .调查某批次汽车的抗撞击能力4.不等式2x+3>1的解集在数轴上表示正确的是( ) A.B .C .D .5.下列算式中,计算结果为a 3b 3的是( )A .ab+ab+abB .3abC .ab•ab•abD .a•b 36.如图,在一次“寻宝”游戏中,寻宝人找到了两个标志点A (2,1),C (0,1).则“宝藏”点B 的坐标是( )A .(1,1)B .(1,2)C .(2,1)D .(l ,0)7.如图,BC ⊥AE ,垂足为C ,过C 作CD ∥AB ,若∠ECD=43°,则∠B=( )A .43°B .57°C .47°D .45°8.某品牌电脑每台的成本为2400元,标价为3424元,若商店要以利润率不低于7%的售价打折销售,则至少打几折出售?设该品牌电脑打x折出售,则下列符合题意的不等式是( )A .3424x-2400≥2400×7%B .3424x-2400≤2400×7%C .3424×10x-2400≤2400×7% D .3424×10x-2400≥2400×7% 9.用一根长为10cm 的绳子围成一个三角形,若所围成的三角形中一边的长为2cm ,且另外两边长的值均为整数,则这样的围法有( ) A .1种B .2种C .3种D .4种10.如图,四边形ABCD 的两个外角∠CBE ,∠CDF 的平分线交于点G ,若∠A=52°,∠DGB=28°,则∠DCB 的度数是( )A .152°B .128°C .108°D .80°二、填空题:本题共6小题,每小题4分,共24分.11.正n 边形的一个外角为72°,则n 的值是 .12.已知AD 为△ABC 的中线,若△ABC 的面积为8,则△ABD 的面积是 . 13.如图是某班45个学生在一次数学测试中成绩的频数分布直方图(成绩为整数),图中从左到右的小长方形的高度比为1:3:5:4:2,则该次数学测试成绩在80.5到90.5之间的学生有 个.14.若3m •9n =27(m ,n 为正整数),则m+2n 的值是 . 15.已知点A (-1,-2),B (3,4),将线段AB 平移得到线段CD .若点A 的对应点C 在x 轴上,点B 对应点D 在y 轴上,则点C 的坐标是 .16.为准备母亲节礼物,同学们委托小明用其支付宝余额团购鲜花或礼盒.每束鲜花的售价相同,每份礼盒的售价也相同.若团购15束鲜花和18份礼盒,余额差80元;若团购18束鲜花和15份礼盒,余额剩70元.若团购19束鲜花和14份礼盒,则支付宝余额剩 元.三、解答题:本共9小题,共86分,解答应写出文字说明、证明过程或演算步骤.17|1 18.解方程组:32528x y x y ⎨+⎩-⎧==19.以下是推导“三角形内角和定理”的学习过程,请补全证明过程及推理依据.已知:如图,△ABC . 求证:∠A+∠B+∠C=180°. 证明:过点A 作DE ∥BC ,(请在图上画出该辅助线并标注D ,E 两个字母) ∠B=∠BD ,∠C= .( ) ∵点D ,A ,E 在同一条直线上,∴ (平角的定义) ∴∠B+∠BAC+∠C=180° 即三角形的内角和为180°.20.如图,线段AB ,CD 交于点E ,且∠ACE=∠AEC ,过点E 在CD 上方作射线EF ∥AC ,求证:ED 平分∠BEF .21.为了鼓励更多学生参与科艺节的“数独”游戏,数学组决定购买某款笔记本和中性笔作为奖品,请你根据图中所给的该款笔记本和中性笔的价格信息,求出该款笔记本和中性笔的单价分别是多少元?22.近年来,随着电子商务的快速发展,电商包裹件总量占当年快递件总量的比例逐年增(1)直接写出m,n的值,并在图中画出电商包裹件总量占快递件总量百分比的折线统计图;(2)若2019年该网点快递件总量预计达到7万件,请根据图表信息,估计2019年电商包裹件总量约为多少万件?23.已知关于x的不等式(x-5)(ax-3a+4)≤0.(1)若x=2是该不等式的解,求a的取值范围;(2)在(1)的条件下,且x=1不是该不等式的解,求符合题意的一个无理数a.24.如图,在△ABC中,∠ABC的平分线交AC于点D.作∠BDE=∠ABD交AB于点E.(1)求证:ED ∥BC ;(2)点M 为射线AC 上一点(不与点A 重合)连接BM ,∠ABM 的平分线交射线ED 于点N .若∠MBC=12∠NBC ,∠BED=105°,求∠ENB 的度数. 25.如图,在平面直角坐标系xOy 中,A 点的坐标为(1,0).以OA 为边在x 轴上方画一个正方形OABC .以原点O 为圆心,正方形的对角线OB 长为半径画弧,与x 轴正半轴交于点D .(1)点D 的坐标是 ; (2)点P (x ,y ),其中x ,y 满足2x-y=-4.①若点P 在第三象限,且△OPD 的面积为P 的坐标; ②若点P 在第二象限,判断点E (2x+1,0)是否在线段OD 上,并说明理由.2018-2019学年福建省福州市七年级(下)期末数学试卷参考答案与解析一、选择题:本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的1.【分析】利用无理数是无限不循环小数分析求解即可求得答案,注意掌握排除法在解选择题中的应用.【解答】解:A=2,是有理数,故选项错误;B、13,是分数,故是有理数,故选项错误;C、0是整数,故是有理数,故选项错误;D、π是无理数.故选:D.【点评】此题主要考查了无理数的定义.无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式,注意带根号的要开不尽方才是无理数,2.【分析】应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.【解答】解:∵点P(-1,2)的横坐标-1<0,纵坐标2>0,∴点P在第二象限.故选:B.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A.了解某班同学某次体育模拟考的测试成绩适合普查;B.调查福州闯江的水质情况适合抽样调查;C.调查“中国诗词大会”的收视率适合抽样调查;D.调查某批次汽车的抗撞击能力适合抽样调查;故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:2x>1-3,2x>-2,x>-1,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.【分析】利用合并同类项、单项式乘单项式的法则、同类项的定义分别计算得出答案.【解答】解:A、ab+ab+ab=3ab,故此选项错误;B 、3ab=3ab ,故此选项错误;C 、ab•ab•ab=a 3b 3,故此选项正确;D 、a•b 3=a•b 3,故此选项错误; 故选:C .【点评】此题主要考查了合并同类项、单项式乘单项式、同类项,正确掌握运算法则是解题关键.6. 【分析】根据点A 、B 的坐标可知平面直角坐标系,据此可得答案. 【解答】解:根据题意可建立如图所示坐标系,则“宝藏”点B 的坐标是(1,2), 故选:B . 【点评】本题考查了坐标确定位置,根据已知点的坐标确定出平面直角坐标系是解题的关键. 7. 【分析】利用平行线的性质和三角形内角和定理计算即可. 【解答】解:∵BC ⊥AE , ∴∠ACB=90°, ∵CD ∥AB ,∴∠ECD=∠A=43°, ∴∠B=90°-∠A=47°, 故选:C .【点评】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8. 【分析】直接利用标价×10打折数-进价≥进价×7%,进而代入数据即可. 【解答】解:设该品牌电脑打x 折出售, 根据题意可得:3424×10x-2400≥2400×7%. 故选:D . 【点评】此题主要考查了由实际问题抽象出一元一次不等式,正确理解打折与利润的意义是解题关键.9. 【分析】根据三角形的两边之和大于第三边,根据周长是10厘米,可知最长的边要小于5厘米,进而得出三条边的情况.【解答】解:∵三角形中一边的长为2cm ,且另外两边长的值均为整数, ∴三条边分别是2cm 、4cm 、4cm .故选:A.【点评】本题主要考查了学生根据三角形三条边之间的关系解决问题的能力.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.【分析】连接AC,BD,由三角形外角定义可得∠FDC=∠DAC+∠DCA,∠CBE=∠BAC+∠BCA,再由DG平分∠FDC,BG平分∠CBE,可得∠CBG+∠CDG=12(∠DAB+∠DCB),在△BDG中,根据三角形内角和定理可得∠G+∠CDG+∠CBE+∠CDB+∠DBC=180°,将式子进行等量代换即可求解.【解答】解:连接AC,BD,∴∠FDC=∠DAC+∠DCA,∠CBE=∠BAC+∠BCA,∵DG平分∠FDC,BG平分∠CBE,∴∠CBG+∠CDG=12(∠DAB+∠DCB),在△BDG中,∠G+∠CDG+∠CBE+∠CDB+∠DBC=180°,∴∠G+12(∠DAB+∠DCB)+∠CDB+∠DBC=180°,∴∠G+12(∠DAB+∠DCB)+(180°-∠DCB)=180°,∵∠A=52°,∠DGB=28°,∴28°+12×52°+12×∠DCB+180°-∠DCB=180°,∴∠DCB=108°;故选:C.【点评】本题考查三角形内角和定理,三角形外角定义;熟练掌握角平分线的性质,三角形的外角定义和三角形内角和定理,进行等量代换是求角的关键.二、填空题:本题共6小题,每小题4分,共24分.11.【分析】多边形的外角和等于360度.【解答】解:n=360°÷72°=5,故答案为5.【点评】本题考查了多边形外角和,熟记多边形的外角和等于360度是解题的关键.12.【分析】设△ABC的高为h,S△ABD=12BD×h=14BC•h,即可求解.【解答】解:设△ABC的高为h,S△ABD=12BD×h=14BC•h=12S△ABC=4,故答案为4.【点评】此题主要考查三角形的面积计算,关键是确定△ABC和△ABD时同高的关系,进而求解.13.【分析】根据小长方形的高度比为1:3:5:4:2,可以求出成绩在80.5到90.5之间的部分所占的比,从而求出结果.【解答】解:45×413542++++=12人故答案为:12【点评】考查频数分布直方图制作方法以及各个小长方形的高所表示的意义,用总人数去乘以80.5到90.5之间的学生所占的比即可.14.【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:∵3m•9n=27(m,n为正整数),∴3m•32n=33,∴m+2n=3.故答案为:3.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确将原式变形是解题关键.15.【分析】根据点A的对应点C在x轴上得出纵坐标变化的规律,根据点B对应点D在y轴上得出横坐标变化的规律,再根据平移规律解答即可.【解答】解:∵点A(-1,-2),B(3,4),将线段AB平移得到线段CD,点A的对应点C 在x轴上,点B对应点D在y轴上,∴点A的纵坐标加2,点B的横坐标减3,∴点A的对应点C的坐标是(-1-3,-2+2),即(-4,0).故答案为(-4,0).【点评】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16.【分析】设团购鲜花的单价为x元/束,团购礼盒的单价为y元/份,支付宝余额原有a 元,根据“若团购15束鲜花和18份礼盒,余额差80元;若团购18束鲜花和15份礼盒,余额剩70元”,即可得出关于x,y的二元一次方程组,用(①-②)÷3可得出y-x=50,结合方程①可得出19x+14y=a-120,此题得解.【解答】解:设团购鲜花的单价为x元/束,团购礼盒的单价为y元/份,支付宝余额原有a 元,依题意,得:151880 181570x y ax y a+⎧⎩++-⎨=①=②,(①-②)÷3,得:y-x=50,∴19x+14y=15x+18y-4(y-x)=a+80-200=a-120.∴若团购19束鲜花和14份礼盒,余额剩120元.故答案为:120.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题:本共9小题,共86分,解答应写出文字说明、证明过程或演算步骤.17.【分析】直接利用二次根式以及立方根、绝对值的性质分别化简得出答案.【解答】解:原式=1+1 212.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】方程组利用加减消元法求出解即可.【解答】解:32528x yx y-+⎧⎨⎩=①=②,①+②×2得:7x=21,解得:x=3,把x=3代入②得:y=2,则方程组的解为32xy⎧⎨⎩==.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.19.【分析】过点A作DE∥BC,依据平行线的性质,即可得到∠B=∠BD,∠C=∠EAC,再根据平角的定义,即可得到三角形的内角和为180°.【解答】证明:如图,过点A作DE∥BC,则∠B=∠BD,∠C=∠EAC.(两直线平行,内错角相等)∵点D,A,E在同一条直线上,∴∠DAB+∠BAC+∠CAE=180°(平角的定义)∴∠B+∠BAC+∠C=180°即三角形的内角和为180°.故答案为:∠EAC;两直线平行,内错角相等;∠DAB+∠BAC+∠CAE=180°.【点评】本题主要考查了平行线的性质以及三角形内角和定理的运用,解题时注意运用:内错角相等,两直线平行.20.【分析】依据平行线的性质以及对顶角相等,即可得到∠DEF=∠DEB,进而得出ED 平分∠BEF.【解答】证明:∵EF∥AC,∴∠C=∠FED,∵∠ACE=∠AEC,∴∠DEF=∠AEC,又∵∠AEC=∠DEB,∴∠DEF=∠DEB,∴ED平分∠BEF.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.21.【分析】设该款笔记本的单价为x元,中性笔的单价为y元,根据总价=单价×数量结合图中给定的数据,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设该款笔记本的单价为x元,中性笔的单价为y元,依题意,得:2339 5281 x yx y+⎨⎩+⎧==,解得:153xy⎧⎨⎩==.答:该款笔记本的单价为15元,中性笔的单价为3元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.【分析】(1)依据电商包裹件总量与快递件总量的比值,即可得到m和n的值;进而得到电商包裹件总量占快递件总量百分比的折线统计图;(2)从增长的趋势看,每年的百分比比上一年增长2%左右,故2019年电商包裹件总量占当年快递件总量百分比约为83%,即可得到2019年电商包裹件总量.【解答】解:(1)m=1.48÷2=74%;n=3.555÷4.5=79%;折线统计图如图所示:(2)从增长的趋势看,每年的百分比比上一年增长2%左右,故2019年电商包裹件总量占当年快递件总量百分比约为83%,∴2019年电商包裹件总量约为7×83%=5.81(万件).【点评】本题考查了折线统计图以及百分比的计算,解决问题的关键是明确折线统计图的特点:①能清楚地反映事物的变化情况.②显示数据变化趋势.23.【分析】(1)把x=2代入不等式,求出不等式的解即可;(2)取a=π,再代入求出即可.【解答】解:(1)把x=2代入(x-5)(ax-3a+4)≤0得:(2-5)(2a-3a+4)≤0,解得:a≤4,所以a的取值范围是a≤4;(2)由(1)得:a≤4,取a=π,此时该不等式为(x-5)(πx -3π+4)≤0,当x=1时,不等式的左边=(1-5)(πx -3π+4)=-4(4-2π),∵4-2π<0,∴不等式的左边大于0,∴x=1不是该不等式的解,∴在(1)的条件下,满足x=1不是该不等式的解的无理数a 可以是π.【点评】本题考查了解一元一次不等式和不等式的解集,能求出a 的范围是解此题的关键.24. 【分析】(1)利用角平分线的定义,进行等量代换,得出内错角相等,从而两直线平行;(2)分两种情况分别进行解答,根据每一种情况画出相应的图形,依据图形中,角之间的相互关系,转化到一个三角形中,利用三角形的内角和定理,设未知数,列方程求解即可.【解答】解:(1)∵BD 平分∠ABC ,∴∠ABD=∠DBC ,又∵∠BDE=∠ABD ,∴∠BDE=∠DBC ,∴ED ∥BC ;(2)∵BN 平分∠ABM ,∴∠ABN=∠NBM ,①当点M 在线段AC 上时,如图1所示:∵DE ∥BC ,∴∠ENB=∠NBC ,∵∠MBC=12∠NBC , ∴∠NBM=∠MBC=12∠NBC , 设∠MBC=x°,则∠EBN=∠NBM最新七年级(下)数学期末考试题【答案】一、选择题(共10小题,每小题3分,满分30分)1.下列实数中,属于无理数的是( )A 、227B 、3.14CD 、0 答案:C2.下面调查中,适宜采用全面调查方式的是( )A 、调查某批次汽车的抗撞击能力B 、调查市场上某种食品的色素含量是否符合国家C 、了解某班学生的视力情况D 、调查春节联欢晚会的收视率答案:C3.如图,直线a ∥b ,直角三角形的直角顶点在直线b 上,已知∠1=48°,则∠2的度数是( )A 、42°B 、52°C 、48°D 、58°答案:A4.若m >n ,则下列不等式变形错误的是( )A 、m ﹣5>n ﹣5B 、6m >6nC 、﹣3m >﹣3nD 、21m x +>21n x + 答案:C5.方程组3759y x x y =+⎧⎨+=⎩的解是( ) A 、1272x y ⎧=⎪⎪⎨⎪=⎪⎩ B 、1252x y ⎧=-⎪⎪⎨⎪=⎪⎩ C 、41x y =-⎧⎨=-⎩ D 、21x y =⎧⎨=-⎩ 答案:B6.点A 在第二象限,且距离x 轴2个单位长度,距离y 轴4个单位长度,则点A 的坐标是( )A 、(﹣4,2)B 、(﹣2,4)C 、(4,﹣2)D 、(2,﹣4)答案:A7.如图所示,下列条件中,不能判断AD ∥BC 的是( )A 、∠1=∠4B 、∠3=∠4C 、∠2+∠3=180°D 、∠1+∠D =180°8.将正整数依次按下表规律排列,则数2009应排的位置是第__行第__列A 、第669行第2列B 、第669行第3列C 、第670行第2列D 、第670行第3列答案:D9.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( )A 、54573y x y x =+⎧⎨=+⎩B 、54573y x y x =-⎧⎨=+⎩C 、54573y x y x =+⎧⎨=-⎩D 、54573y x y x =-⎧⎨=-⎩答案:A10.若关于x 的不等式6234x x a x x +<+⎧⎪⎨+>⎪⎩有且只有四个整数解,则实数a 的取值范围是( ) A 、6<a ≤7 B 、18<a ≤21 C 、18≤a <21 D 、18≤a ≤21答案:B ;二、填空题(共6小题,每小题3分,共18分)11的值是 .答案:312.如图,已知直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOC =70°,则∠BOD 的度数等于度.答案:3513.将点P(a+1,﹣2a)向上平移2个单位得到的点在第一象限,则a的取值范围是.答案:﹣1<a<114.来自某综合市场财务部的报告表明,商场2014年1﹣4月份的投资总额一共是2017万元,商场2014年第一季度每月利润统计图和2014年1﹣4月份利润率统计图如下(利润率=利润÷投资金额).则商场2014年4月份利润是万元.答案:12315.在关于x,y的方程组:①841ax ybx y+=⎧⎨+=-⎩:②(1)8(1)41a x yb x y--=⎧⎨--=-⎩中,若方程组①的解是31xy=⎧⎨=-⎩,则方程组②的解是.答案:41 xy=⎧⎨=⎩16.已知:a、b、c是三个非负数,并且满足3a+2b+c=5,2a+b﹣3c=1,设m=3a+b﹣7c,设s为m的最大值,则s的值为.答案:-1 11三.(解答题,共8小题,共72分)17.(8分)解方程组:4421x y x y -=⎧⎨+=-⎩. 解:化为:228421x y x y -=⎧⎨+=-⎩,解得:76176x y ⎧=⎪⎪⎨⎪=-⎪⎩18.(8分)解不等式组,并把解集在数轴上表示出来:3(2)41213x x x x --≥⎧⎪+⎨>-⎪⎩ 解:由(1)得:x ≤1,由(2)得:x <4,解集为:x ≤1,数轴上表示如下:19.(8分)某校有1000名学生,小明想了解全校学生每月课外阅读书籍的数量情况,随机抽取了部分学生,得到如统计图(1)一共抽查了多少人?(2)每月课外阅读书籍数量是1本的学生对应的圆心角度数是?(3)估计该校全体学生每月课外阅读书籍的总量大约是多少本?解:(1)一共抽查了:2222%=100(人); (2)每月课外阅读书籍数量是1本的学生比例:30100=30%, 对应的圆心角为30360100⨯︒=108° (3)每月课外阅读书籍数量是2本的学生比例:1-0.22-0.30=48%,总量:30%×1000×1+48%×1000×2+22%×1000×3=1920(本)20.(8分)完成下面证明如图,AB和CD相交于点O,∠A=∠D,OE∥AC且OE平分∠BOC求证:AC∥BD证明:∵OE∥AC∠A=()OE平分∠BOC∠1=∠2()∠A=∠D()∠D=()OE∥()AC∥BD()解:∠1;两直线平行同位角相等;角平分线的定义;已知;∠2;等量代换;BD;同位角相等两直线平行;平行于同一直线的两条直线平行;21.(8分)如图,在边长为1的正方形网格中,A(2,4),B(4,1),C(﹣3,4)(1)平移线段AB到线段CD,使点A与点C重合,写出点D的坐标.(2)直接写出线段AB平移至线段CD处所扫过的面积.(3)平移线段AB,使其两端点都在坐标轴上,则点A的坐标为.解:(1)D (-1,1)(2)15(3)(0,3)或(﹣2,0);22.(10分)某木板加工厂将购进的A 型、B 型两种木板加工成C 型,D 型两种木板出售,已知一块A 型木板的进价比一块B 型木板的进价多10元,且购买2块A 型木板和3块B 型木板共花费220元.(1)A 型木板与B 型木板的进价各是多少元?(2)根据市场需求,该木板加工厂决定用不超过8780元购进A 型木板、B 型木板共200块,若一块A 型木板可制成2块C 型木板、1块D 型木板;一块B 型木板可制成1块C 型木板、2块D 型木板,且生产出来的C 型木板数量不少于D 型木板的数量的1113. ①该木板加工厂有几种进货方案?②若C 型木板每块售价30元,D 型木板每块售价25元,且生产出来的C 型木板、D 型木板全部售出,哪一种方案获得的利润最大,求出最大利润是多少?解:(1)设A 型木板与B 型木板的进价各是x ,y 元,则有 1023220x y x y ⎧⎨+=⎩-=,解得:5040x y =⎧⎨=⎩, 所以,A 型木板的进价是50元, B 型木板的进价是40元。

临沂市河东区2019-2020学年七年级下期末数学试卷(有答案)

临沂市河东区2019-2020学年七年级下期末数学试卷(有答案)

山东省临沂市河东区2019-2020学年下学期期末考试七年级数学试卷一、选择题(本题12个小题每题中只有一个答案符合要求,每小题3分,共36分)1.(3分)要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③2.(3分)下列条件中不能判定AB∥CD的是()A.∠1=∠4 B.∠2=∠3 C.∠5=∠B D.∠BAD+∠D=180°3.(3分)下列图形中,可以由其中一个图形通过平移得到的是()A.B.C.D.4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个 C.4个 D.5个5.(3分)下列说法正确的个数有()(1)过一点有且只有一条直线与已知直线平行(2)一条直线有且只有一条垂线(3)不相交的两条直线叫做平行线(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离A.0个B.1个 C.2个 D.3个6.(3分)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2) B.(5,2) C.(6,2) D.(5,3)7.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°8.(3分)如果一元一次不等式组的解集为x>3.则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a<39.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.10.(3分)某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A.6折B.7折 C.8折 D.9折11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣212.(3分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二、填空题(本题8个小题每小题3分共4分13.(3分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是.14.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是.15.(3分)将点P向下平移3个单位,向左平移2个单位后得到点Q(3,﹣1),则点P坐标为.16.(3分)若m是的立方根,则m+3=17.(3分)如果一个角的两边分别与另一个角的两边平行,那么这两个角.18.(3分)如图,已知∠1=∠2=∠3=65°,则∠4的度数为.19.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积.20.(3分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32018的末位数字是.三、解答题(本题共6个小题,共60分)21.(10分)解方程组:(1)(2).22.(10分)解不等式(组):(1)(2)23.(8分)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.24.(8分)如图,将△ABC中向右平移4个单位得到△A′B′C′.①写出A、B、C的坐标;②画出△A′B′C′;③求△ABC的面积.25.(12分)如图1,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于点O,AE∥OF.(1)若∠A=30°时①求∠DOF的度数;②试说明OD平分∠AOG;(2)如图2,设∠A的度数为α,当α为多少度时,射线OD是∠AOG的三等分线,并说明理由.26.(12分)为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.参考答案- 1-10.DBBCA BBCAB 11-12.AC13、P14、0.115、(5,2)16、517、相等或互补18、115°19、4820、221、22、23、24、25、解:(1)①∵AE∥OF∴∠A=∠BOF∵OF平分∠COF∴∠BOC=60°,∠COF=30°∴∠DOF=180-30°=150°②∵∠BOC=60°∴∠AOD=60°∵OF⊥OG∴∠BOF+∠FOG=90°∴∠BOG=60°∵∠BOG+∠DOG+∠AOD=180°∴∠DOG=60°=∠AOD∴OD平分∠AOG(2)设∠AOD=β∵射线OD是∠AOG的三等分线∴∠AOD=2∠DOG,或∠DOG=2∠AOD 若∠AOD=2∠DOG26、(3)当m=0,10-m=10时,每月的污水处理量为:200×10=2000吨<2040吨,不符合题意,应舍去;当m=1,10-m=9时,每月的污水处理量为:240+200×9=2040吨=2040吨,符合条件,此时买设备所需资金为:12+10×9=102万元;当m=2,10-m=8时,每月的污水处理量为:240×2+200×8=2080吨>2040吨,符合条件,此时买设备所需资金为:12×2+10×8=104万元;所以,为了节约资金,该公司最省钱的一种购买方案为:购买A型处理机1台,B 型处理机9台.。

临沂市河东区七年级下期末数学试卷(有答案)

临沂市河东区七年级下期末数学试卷(有答案)

山东省临沂市下学期期末考试七年级数学试卷一、选择题(本题12个小题每题中只有一个答案符合要求,每小题3分,共36 分)1. (3分)要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B .①③C.②③ D.①②③2. (3分)下列条件中不能判定AB// CD的是()R C 莖A.Z 仁/4B.Z 2=7 3C.Z 5=/ BD.Z BAD+Z D=1803. (3分)下列图形中,可以由其中一个图形通过平移得到的是()A B C D--4. ----------------------------------------------------------------------------------------------(3分)下列说法:①:■;②数轴上的点与实数成--------------------------------------------------------对应关系;③- 2是汁;乘的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A. 2个B. 3个C. 4个D. 5个5. (3分)下列说法正确的个数有()(1)过一点有且只有一条直线与已知直线平行(2)一条直线有且只有一条垂线(3)不相交的两条直线叫做平行线(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离A. 0个B. 1个C. 2个D. 3个6. (3分)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A (- 1,- 1), B( 1, 2),平移线段AB,得到线段A B',已知A的坐标为(3, - 1),则点B'的坐标为()A. (4, 2)B. (5, 2)7. ( 3分)如图,把长方形C. (6, 2)D. ( 5, 3)ABCD沿EF按图那样折叠后,A、B分别落在G H点处,若/ 1=50°,则/ AEF=A.9.A.C. 120°D. 125°f沖•… 论比的解集为x>3.则a的取值范围是(a > 3 B . a > 3 C. a< 3 D . a v 3(3分)如果方程组|与D.(3分)如果一元一次不等式组有相同的解,贝U a, b的值是(A.110°B.115°店准备打折销售,但要保证利润率不低于5%则至多可以打()A. 6折B . 7折C. 8折D. 9折 11.(3 分)对于非零的两个实数 a , b ,规定 a ® b=am- bn ,若 3 ® (- 5) =15, 4® (- 7)=28,则(-1) ® 2的值为( )A - 13B . 13 C. 2 D.- 212. ( 3分)运行程序如图所示,规定:从“输入一个值x ”到“结果是否〉95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是()A. x > 11B. 11 w x v 23C. 11 v x < 23D. x < 2319 . ( 3 分)如图,两个直角三角形重叠在一起, 将其中一个沿点 B 到点C 的方向平移到△DH=4平移距离为6,则阴影部分的面积 ___________ .B逛20 ( 3 分)观察下列等式:31=3, 32=9, 33=27, 34=81,35=243, 36=729, 37=2187…解答下列问题:3+32+33+34- +32018的末位数字是 ________ .三、解答题(本题共 6个小题,共60 分) 21 . ( 10分)解方程组:二、填空题 13. ( 38个小题每小题3分共4分 M N P 、Q 是数轴上的四个点,这四个点中最适合表示二的点是(本题 如图, M NP Q0 弗 戈 邹 414. ( 3分)已知一组数据有 40个,把它分成六组,第一组到第四组的频数分别是频率是0.2,则第六组的频率是 _________ .15. 16.17.10, 5, 7, 6,第五组的(3分) (3 分) 将点P 向下平移3个单位,向左平移 2个单位后得到点 Q ( 3, - 1),贝U 点 若m 是’的立方根,贝U m+3= __________ 如果一个角的两边分别与另一个角的两边平行,那么这两个角 _______ . 仁/ 2=7 3=65°,则/ 4的度数为 __________ .P 坐标为 DEF 的位置,AB=10,(1)22 . (10分)解不等式(组)怦心0的$(2)■- I23. (8分)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注•某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢)•已知A类和B类所占人数的比是5: 9,请结合两幅统计图,回答下列问题* K(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.24. (8分)如图,将△ ABC中向右平移4个单位得到△ A B' C'.①写出A、B、C的坐标;②画出△ A B' C';@126. (12分)为了更好改善河流的水质,其中每台的价格,月处理污水量如下表:台A型设备比购买3台B型设备少6万元.③求△ ABC的面积.2\B \ 0El in 十¥曲和・爭同■吨・5l»1虽■!*<*1触・25. (12分)如图1,已知射线AB与直线CD交于点0, OF平分/ BOC OGLOF于点0, AE// 0F(1)(2)若/ A=30°时①求/ DOFF度数; 如图2,设/ A的度数为a,当②试说明OD平分/ AOG a为多少度时,射线0D是/ AOG 勺三等分线,并说明理由.图2治污公司决定购买经调查:购买一台10台污水处理设备.现有A, B两种型号的设备,A型设备比购买一台B型设备多2万元,购买222、105万元,你认为该公司有哪几种购买方案; 2040吨,为了节约资金,请你为治污公司设计一种参考答案1-10.DBBCA BBCAB 11-12.AC 13、 P 14、 0.1 15、 (5,2) 16、 517、 相等或互补 18、 115 ° 19、 48 20、 2 21、由②得;x= 2y® .把③代入①得:2x2y + y=5 # ■ ■y = l ,把y “代入③得:x = 2 , • -原方程组的解尢!"一亠;b = if2x-3> = -5®(2) J 』[3x-2v=12 ②①x2 +②得:13x = 26「 把x = 2代入②得:戸3 , 人原方程給的解'_2 *b = 3解;⑴2XT >, = 5® x-2y-0 ②(2) 治污公司经预算购买污水处理设备的资金不超过 (3) 在(2)的条件下,若每月要求处理污水量不低于 最省钱的购买方案.解:⑴ *3 <24-2 ( 3-x ),x-3 < 24-6 + 2x ,x-2x<24-6 + 3 ,-x<21 ,x>-21 :(2 )辉不等式5x-1 > 3 (x+1 ).得:x> 2 ,解不等式匸二>x-l ,得;—2 *则不等式组无解.23、< 1 ) 20*20^=100 ...本次柚样-周苣的拝本容昂为10。

【3套打包】临沂市最新七年级下册数学期末考试试题(含答案)

【3套打包】临沂市最新七年级下册数学期末考试试题(含答案)

最新七年级下册数学期末考试题【含答案】一、选择题:(本大题有10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应的位置上)1.下列运算中,正确的是( )A .33a a a ⋅=B .632a a a ÷=C .22(2)4a a -=- D .2(3)(2)6a a a a -+=-- 2.若a b >,则下列判断中错误的是( )A .22a b +>+B . 22ac bc <C . 33a b -<-D .44a b > 3.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为( )4.已知21x y =⎧⎨=-⎩是二元一次方程21x my +=的一个解,则m 的值为( )A .3B .-5C .-3D .55.下列命题中真命题...的是( ) A .同旁内角互补 B .三角形的一个外角等于两个内角的和 C .若22a b =,则a b = D .同角的余角相等6.如图,已知ADB ADC ∠=∠,添加条件后,可得ABD ACD ∆≅∆,则在下列条件中,不能添加的是( )A .BAD CAD ∠=∠B .BC ∠=∠ C . BD CD = D .AB AC = 7.若311393m ⨯=,则m 的值为( )A . 2B . 3C . 4D . 5 8.若2216x mx ++是一个完全平方式,则m 的值为( ) A .±4 B .±2 C . 4 D .-4 9.若一个多边形的内角和等于外角和的2倍,则这个多边形的边数为( ) A . 8 B . 6 C .5 D . 4 10.若(1)(5)M x x =--,(2)(4)N x x =--,则M 与N 的关系为( )A. M N =B. M N >C. M N <D. M 与N 的大小由x 的取值而定 A . 3个 B . 2个 C . 1个 D . 0个二、填空题:(本大题有8小题,每小题2分,共16分.不需要写出解答过程,请把答案直接填写在答题卡对应的横线上)11.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 mm .12.若4,9n n x y ==,则()nxy = .13.已知25x y -=,若用含x 的代数式表示y ,则y = . 14.若2x y +=,则代数式224x y y -+的值等于 .15.如图,//a b ,将三角尺的直角顶点落在直线a 上,若160∠=︒, 250∠=︒新七年级(下)数学期末考试试题(含答案)一、填空题(本大题共6个小题,每小题3分,满分18分) 1.9的平方根是 .2.如果水位升高2m 时水位变化记作m 2+,那么水位下降3m 时的水位变化记 作 m .3. 点P 在第四象限内,点P 到x 轴的距离是1,到y 轴的距离是2,那么点P 的坐标为 .4. 若1-=x 是关于x 的方程22=+a x 的解,则a 的值为 .5.如图,AB ∥CD ,AD ⊥BD ,∠A =56°, 则∠BDC 的度数为__________.6.某次知识竞赛共有道25题,每一道题答对得5分,答错或不答扣3分,在这次竞赛中小明的得分超过了100分,他至少答对 题. 二、选择题(本大题共8个小题,每小题4分,满分32分) 7.下列各点中,在第二象限的点是( ). A .(-4,2) B .(-2,0) C .(3,5)D .(2,-3)8.据统计,今年全国共有10310000名考生参加高考,10310000用科学记数法可表示为( ).A .4101031⨯B .61031.10⨯C .710031.1⨯ D .810031.1⨯9.如图,已知直线a //b ,∠1=100°,则∠2等于( ). A .60° B .70° C .80° D .100° 10.下列调查中,适宜采用全面调查方式的是( ). A .了解我县中学生每周使用手机所用的时间ABCDB .了解一批手机电池的使用寿命C .调查端午节期间市场上粽子质量情况D .调查某校七年级(三)班45名学生视力情况 11.下列不等式中一定成立的是( ). A .a 5>a 4B .a ->a 2-C .a 2<a3D .2+a <3+a 12.不等式5--x ≤0的解集在数轴上表示正确的是( ).13. 已知,如图,直线AB ,CD 相交于点O ,OE ⊥AB 于点O , ∠BOD =35°.则∠COE 的度数为( ). A .35° B .55° C .65° D .70°14.如图,已知点A ,B 的坐标分别为(3,0),(0,4),将线段AB 平移到CD ,若点A 的对应点C 的坐标为(4,2),则B 的对应 点D 的坐标为( ).A .(1,6)B .(2,5)C .(6,1)D .(4,6)三、解答题(本大题共9个小题,满分70分) 15. (本小题6分)计算:168)2(32-+-3223---16. (本小题10分) (1)解方程组⎩⎨⎧=+=-24352y x y x(2)不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解.0 5 0 5 -5 0 -5 0 ABCDABCD O① ②①②17.(本小题6分)某班去看演出,甲种票每张25元,乙种票每张20元.如果 40名学生购票恰好用去880元,甲乙两种票各买了多少张?18.(本小题7分)如图,已知, OA ⊥OB , 点C 在射线OB 上,经过C 点的直线DF ∥OE ,∠BCF =60°.求∠AOE 的度数.19.(本小题7分)完成下列推理结论及推理说明:如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE . 证明:∵∠B +∠BCD =180°(已知) ∴AB ∥CD ( ) ∴∠B = ( ) 又∵∠B =∠D (已知)= (等量代换)∴AD ∥BE ( ) ∴∠E =∠DFE ( )20.(本小题8分)如图所示,△ABC 在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A (﹣2,0),B (﹣5,﹣2),C (-3,﹣4),先将△ABC 向右平移4个单位长度,再向上平移3个单位长度,得到△111C B A . (1)在图中画出△111C B A ;ABCDEF-1 1 2 3 4 5 -2 -3 -4 -5 10 2 3 4-165 -6 A AOECDFB(2)写出△111C B A 的三个顶点 的坐标;(3)求△111C B A 的面积.21. (本小题7分) 如图,已知: DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG最新七年级(下)期末考试数学试题【含答案】一、选择题(本大题共6小题,每小题3分,共18分) 1、下列实数是无理数的是( )A 、- 1B 、0C 、 3.14D 、 5 2、如图,能判断AB ∥CD 的条件是( )A 、∠1=∠2B 、∠3=∠4C 、∠1+∠3=180°D 、∠3+∠4=180° 3、下列结论正确的是( )A 、-(-6)2 =-6B 、(- 3 )2=9C 、(-16)2 =±16D 、-(-1625 )2=16254、已知二元一次方程3x +y =0的一个解是⎩⎨⎧x =ay =b,其中a ≠0,那么( )A 、b a >0B 、b a =0C 、ba <0 D 、以上都不对5、下列说法错误的是( )A 、不等式x -3>2的解是x >5B 、不等式x <3的整数解有无数个C 、x =0是不等式2x <3的一个解D 、不等式x +3<3的整数解是0 6、如图,矩形BCDE 的各边分别平等于x 轴或y 轴,物体甲 和物体乙分别由点A (2,0)同时出发,沿矩形BCDE 的边 作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动, 物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体 运动后第26次相遇地点的坐标是( )A 、(2,0)B 、(-1,-1)C 、(-2,1)D 、(-1,1) 二、填空题(本大题共8小题,每小题3分,共24分) 7、1的平方根是 。

山东临沂七年级数学第二学期期末测试题

山东临沂七年级数学第二学期期末测试题

山东省临沂市河东区2021-2021学年度第二学期七年级期末质量检测数学试卷考前须知:本试题分第一卷与第二卷两局部.第一卷为选择题,24分;第二卷为非选择题,96分;总分值l20分,考试时间为120分钟。

第一卷〔选择题 共24分〕一、选择题:本大题共8小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来.每题选对得3分,选错、不选或选出的答案超过一个均记零分.1.观察下面图案在A 、B 、C 、D 四幅图案中,能通过图案平移得到的是〔 〕2.b a <,那么以下不等式一定成立的是〔 〕.A .55+>+b aB .b a 22-<-C .b a 2323> D .077<-b a3.如图,由可以得到的结论是〔 〕.A .∠1=∠2B .∠1=∠4C .∠2=∠3D .∠3=∠4 4.在平面坐标系中,假设点P 〔3+m ,1-m 〕在第四象限,那么m 的取值范围为〔 〕A .13<<-mB .1>mC .3-<mD .3->m5.假设方程组⎩⎨⎧=+=-223y ax y bx 的解是⎩⎨⎧==24y x ,那么a 、b 的值为〔 〕A .⎩⎨⎧-=-=23b aB .⎩⎨⎧=-=315b aC .⎩⎨⎧==20b aD .⎩⎨⎧==11b a 6.如图,∠∠∠∠∠∠F 等于〔 〕A .180°B .360°C .540°D .720° 7.一个容量为80的样本最大值为143,最小值为50,取组距为10,那么可以分成〔 〕A .10组B .9组C .8组D .7组 8.如图,从边长为)4(+a 的正方形纸片中剪去一个边长为〔a +1〕的正方形〔a >0〕,剩余局部沿虚线又剪拼成一个矩形〔不重叠无缝隙〕,那么矩形的面积为〔 〕.A .22)52(cm a a +B .2)153(cm a +C .2)96(cm a +D .2)156(cm a +第二卷〔非选择题 共96分〕二、填空题:〔本大题共8小题,共32分,只要求填写最后结果,每题填对得4分.〕9.在直角坐标系中,假设点A 〔m +1,2〕及点B 〔3,-n 2〕关于y 轴对称,m ,n = 。

【3套打包】临沂市最新七年级下册数学期末考试试题(含答案)(2)

【3套打包】临沂市最新七年级下册数学期末考试试题(含答案)(2)

新七年级(下)数学期末考试试题(含答案)一、填空题(本大题共6个小题,每小题3分,满分18分) 1.9的平方根是 .2.如果水位升高2m 时水位变化记作m 2+,那么水位下降3m 时的水位变化记 作 m .3. 点P 在第四象限内,点P 到x 轴的距离是1,到y 轴的距离是2,那么点P 的坐标为 .4. 若1-=x 是关于x 的方程22=+a x 的解,则a 的值为 .5.如图,AB ∥CD ,AD ⊥BD ,∠A =56°, 则∠BDC 的度数为__________.6.某次知识竞赛共有道25题,每一道题答对得5分,答错或不答扣3分,在这次竞赛中小明的得分超过了100分,他至少答对 题. 二、选择题(本大题共8个小题,每小题4分,满分32分) 7.下列各点中,在第二象限的点是( ). A .(-4,2) B .(-2,0) C .(3,5)D .(2,-3)8.据统计,今年全国共有10310000名考生参加高考,10310000用科学记数法可表示为( ).A .4101031⨯B .61031.10⨯C .710031.1⨯ D .810031.1⨯9.如图,已知直线a //b ,∠1=100°,则∠2等于( ). A .60° B .70° C .80° D .100° 10.下列调查中,适宜采用全面调查方式的是( ). A .了解我县中学生每周使用手机所用的时间 B .了解一批手机电池的使用寿命 C .调查端午节期间市场上粽子质量情况D .调查某校七年级(三)班45名学生视力情况 11.下列不等式中一定成立的是( ).ABCDA .a 5>a 4B .a ->a 2-C .a 2<a3D .2+a <3+a 12.不等式5--x ≤0的解集在数轴上表示正确的是( ).13. 已知,如图,直线AB ,CD 相交于点O ,OE ⊥AB 于点O , ∠BOD =35°.则∠COE 的度数为( ). A .35° B .55° C .65° D .70°14.如图,已知点A ,B 的坐标分别为(3,0),(0,4),将线段AB 平移到CD ,若点A 的对应点C 的坐标为(4,2),则B 的对应 点D 的坐标为( ).A .(1,6)B .(2,5)C .(6,1)D .(4,6)三、解答题(本大题共9个小题,满分70分) 15. (本小题6分)计算:168)2(32-+-3223---16. (本小题10分) (1)解方程组⎩⎨⎧=+=-24352y x y x(2)不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解.17.(本小题6分)某班去看演出,甲种票每张25元,乙种票每张20元.如果 40名学生购票恰好用去880元,甲乙两种票各买了多少张?ABCDx① ②① ②18.(本小题7分)如图,已知, OA ⊥OB , 点C 在射线OB 上,经过C 点的直线DF ∥OE ,∠BCF =60°.求∠AOE 的度数.19.(本小题7分)完成下列推理结论及推理说明:如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE . 证明:∵∠B +∠BCD =180°(已知) ∴AB ∥CD ( ) ∴∠B = ( ) 又∵∠B =∠D (已知)= (等量代换)∴AD ∥BE ( ) ∴∠E =∠DFE ( )20.(本小题8分)如图所示,△ABC 在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A (﹣2,0),B (﹣5,﹣2),C (-3,﹣4),先将△ABC 向右平移4个单位长度,再向上平移3个单位长度,得到△111C B A . (1)在图中画出△111C B A ;(2)写出△111C B A 的三个顶点 的坐标;ABCDEF-1 -4 1 2 3 4 5 -2 -3 -4 -5 1-3-20 2 3 4-1-1 xy65 -5-6 AB CAOEC DFB(3)求△111C B A 的面积.21. (本小题7分) 如图,已知: DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FGA .x=-1B .-6C .-19D .-92.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .3.若a >b ,则下列各式中正确的是( )A .a-c <b-cB .ac >bcC .-a b c c<(c≠0)D .a (c 2+1)>b (c 2+1)A .1B .2C .3D .45.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=100°,∠CDE=15°,则∠DEF的度数是()A.110°B.115°C.120°D.125°6.已知21xy-⎧⎨⎩==是二元一次方程组531ax byax by+-⎧⎨⎩==的解,则2a+b的值为()A.3 B.4 C.5 D.6 7.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是()A.52<x<5B.0<x<2.5 C.0<x<5 D.0<x<108.能够铺满地面的正多边形组合是()A.正三角形和正五边形B.正方形和正六边形C.正方形和正五边形D.正五边形和正十边形9.若四边形ABCD中,∠A:∠B:∠C=1:2:5,且∠C=150°,则∠D的度数为()A.90°B.105°C.120°D.135°10.如图,将正方形纸片ABCD折叠,使点D落在边AB上的D'处,点C落在C'处,若∠AD'M=50°,则∠MNC'的度数为()A.100°B.110°C.120°D.130°二、填空题(每小题3分,共15分)11.若一个多边形的每个外角都等于30°,则这个多边形的边数为12.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有只,兔有只.13.如图,一副三角尺△ABC与△ADE的两条斜边在一条直线上,直尺的一边GF∥AC,则∠DFG的度数为.14.若不等式组5512x xx m⎨⎩++-⎧<>的解集是x>1,则m的取值范围是15.如图是由四块长方形纸片和一块正方形纸片拼成一个大正方形.已知其中的两块,一块长为5cm,宽为2cm;一块长为4cm,宽为1cm,则大正方形的面积为cm2.21.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案.在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.22.张师傅在铺地板时发现:用8个大小一样的长方形瓷砖恰好可以拼成一个大的长方形(如图①),然后,他用这8块瓷砖七拼八凑,又拼出了一个正方形,中间还留下一个边长为3的小正方形(阴影部分),请你根据提供的信息求出这些小长方形的长和宽.23.如图,点D、E分别是等边三角形ABC的边BC、AC上的点,连接AD、BE交于点O,且△ABD≌△BCE.(1)若AB=3,AE=2,则BD= ;(2)若∠CBE=15°,则∠AOE= ;(3)若∠BAD=a,猜想∠AOE的度数,并说明理由.参考答案与试题解析1.【分析】方程x系数化为1,即可求出解.【解答】解:方程-13x=3,解得:x=-9,故选:D.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.2.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形但不是中心对称图形,故本选项正确;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】根据不等式的性质对各选项分析判断即可得解.【解答】解:A、根据不等式的基本性质1,A选项结论错误,不符合题意;B、因为c可正可负可为0,所以无法判断ac和bc的大小关系,B选项结论错误,不符合题意;C、因为c可正可负,所以无法判断两者的大小关系,C选项结论错误,不符合题意;D、因为c2+1>0,所以根据不等式的基本性质2,D选项结论正确,符合题意;故选:D.【点评】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.【分析】①移项注意符号变化;②去分母后,x-1=3,x=4,中间的等号应为逗号,故错误;③去分母后,注意符号变化.④去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解答】解:①方程2x-1=x+1移项,得x=2,即3x=6,故错误;②方程13x-=1去分母,得x-1=3,解得:x=4,中间的等号应为逗号,故错误;③方程1-2142x x--=去分母,得4-x+2=2(x-1),故错误;④方程1210.50.2x x--+=去分母,得2(x-1)+5(2-x)=1,即2x-2+10-5x=1,是正确的.错误的个数是3.故选:C.【点评】本题主要考查解一元一次方程,注意移项去分母时的符号变化是本题解答的关键.5.【分析】直接利用平行线的性质结合三角形外角的性质得出答案.【解答】解:延长FE交DC于点N,∵AB∥EF,∴∠BCD=∠FND=100°,∵∠CDE=15°,∴∠DEF=∠CDE+∠DNF=115°.故选:B.【点评】此题主要考查了平行线的性质,正确作出辅助线是解题关键.6.【分析】把x与y的值代入方程组求出a与b的值,即可求出所求.【解答】解:把21xy-⎧⎨⎩==代入方程组得:25231a ba b-+⎧⎨⎩=①=②,【解答】解:设鸡有x只,兔有y只,由题意,得:33 2488 x yx y++⎧⎨⎩==,解得:2211xy⎧⎨⎩==,∴鸡有22只,兔有11只.故答案为:22,11.【点评】本题考查了列二元一次方程解生活实际问题的运用,二元一次方程的解法的运用,根据条件找到反映全题题意的等量关系建立方程是关键.13.【分析】依据平行线的性质以及三角形内角和定理或三角形外角性质,即可得到∠DFG 的度数.【解答】解法一:∵GF∥AC,∠C=90°,∴∠CFG=180°-90°=90°,又∵AD,CF交于一点,∠C=∠D,∴∠CAD=∠CFD=60°-45°=15°,∴∠DFG=∠CFD+∠CFG=15°+90°=105°.解法二:∵GF∥AC,∠CAB=60°,∴∠FGE=60°,又∵∠DFG是△EFG的外角,∠FEG=45°,∴∠DFG=∠FGE+∠FEG=60°+45°=105°,故答案为:105°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补.14.【分析】首先解每个不等式,然后根据不等式组的解集是x>1,即可得到一个关于m 的不等式,从而求解.【解答】解:5512x xx m⎧⎩-⎨++<①>②解①得x>1,解②得x>m+2,∵不等式组的解集是x>1,∴m+2≤1,解得m≤-1.故答案是:m≤-1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【分析】设大正方形的边长为x,则AB=x-1-2=x-3,BC=4+5-x=9-x,依据AB=BC,即可得到x的值,进而得出大正方形的面积.【解答】解:如图,设大正方形的边长为x,则AB=x-1-2=x-3,BC=4+5-x=9-x,∵AB=BC,∴x-3=9-x,解得x=6,∴大正方形的面积为36cm2.故答案为:36.【点评】本题主要考查了正方形与矩形的性质,解题时注意:正方形的四条边相等.16.【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程组利用加减消元法求出解即可.【解答】解:(1)去分母得:4x-2-x-1=6,移项合并得:3x=9,解得:x=3;(2)32121x yx y-+-⎧⎨⎩=①=②,①+②×2得:5x=10,解得:x=2,把x=2代入②得:y=-3,则方程组的解为23 xy-⎧⎨⎩==.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.17.【分析】首先解每个不等式,然后确定两个不等式的解集的公共部分就是不等式组的解集.【解答】解:()3242532xx x-+⎧⎨≤+⎩<①②,解不等式①,得x<2.解不等式②,得x≥-1.在同一条数轴上表示不等式①②的解集,如图:所以原不等式组的解集为-1≤x<2.【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.【分析】(1)如图①,以点C为对称中心画出△DEC;(2)如图②,以AC边所在的性质为对称轴画出△ADC;(3)如图③,利用网格特点和和旋转的性质画出A、B的对应点D、E,从而得到△DEC;(4)如图④,利用等腰三角形的性质和网格特点作图.【解答】解:(1)如图①,△DEC为所作;(2)如图②,△ADC为所作;(3)如图③,△DEC为所作;(4)如图④,△BCD和△BCD′为所作.(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则18a+35(11-a新七年级(下)数学期末考试题(含答案)一、填空题(本大题共6个小题,每小题3分,共18分) .1.2的相反数是_____________.2.6的算术平方根是_____________.3.不等式组1 1120xx+<⎧⎨->⎩的解集是_____________.4.如图1,将块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为______________.图15.已知直线AB//x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为_____________.6.如图,用黑白两色正方形瓷砖按一定的规律铺设地面,第n个图案中白色瓷砖有_____________.块(用含n的式子表示) .二、选择题(本大题共8个小题,每小题4分,共32分) .7. 2019年一季度,曲靖市经济保持了较快增长,全市生产总值437.74亿元,同比增长10.1%,实现“开门红”. 437.74亿元用科学记数法表示为( )A. 437.74×109元B. 4.3774×1010元C. 0. 43774×1011元D. 4. 3774×1011元8.下面的调查中,不适合抽样调查的是( )A. 一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全面人口普查D.全市学生每天参加体育锻炼的时间9.下列图形中,不能通过其中一个四边形平移得到的是( )10.若点P(x ,y)在第四象限,且|x|=2, |y|=3, 则x+y= ( )A. ─1B.1C. 5D. ─511.不等式组31 2 840x x ->⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A. B.C. D.12.如图2所示,点E 在AC 的延长线上,下列条件中能判断AB//CD 的是( )A.∠3=∠4B.∠1=∠2C.∠D=∠DCED. ∠D+∠ACD=180°图213.小颖家离学校1200米,其中有一段为上坡路, 另一段为下坡路,她去学校共用了16分钟,上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,设小颖上坡用了x 分钟,下坡用了y 分钟,据题意可列方程组为( )A.351200 16 x y x y +=⎧⎨+=⎩B.35 1.2 606016x y x y ⎧+=⎪⎨⎪+=⎩ C.35 1.2 16 x y x y +=⎧⎨+=⎩ D.351200 606016x y x y ⎧+=⎪⎨⎪+=⎩ 14.如图3,△ABC 中,AH ⊥BC ,BF 平分∠ABC ,BE ⊥BF ,EF//BC ,以下四个结论①AH ⊥EF , ②∠ABF=∠EFB ,③AC // BE ,④∠E= ∠ABE.其中正确的有( )A.①②③④B.①②C.①③④D.①②④图3三、解答题(本大题共9个小题,共70分)15. (5分)2|1+-16. (6 分)解方程组29 32 1 x yx y+=⎧⎨-=-⎩①②17.(6分)解不等式组5(1)312151132x xx x-<+⎧⎪-+⎨-≤⎪⎩并将解集在数轴上表示出来.18.(7 分)完成推理填空:如图4,在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+ 6 EFD=180°(邻补角定义) ,∠1+∠2=180° (已知)∴_________________________(同角的补角相等) ①∴_________________________(内错角相等,两直线平行) ②∴∠ADE=∠3( ) ③∵∠3=∠B( ) ④∴______________=___________( 等量代换) ⑤∴DE//BC ( ) ⑥图4 ∴∠AED=∠C( ) ⑦19. (8分) 已知2m+3和4m+9是x的平方根,求x的值.20. (8 分)在读书月活动中,学校准备购买─批课外读物. 为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类) ,如图5是根据调查结果绘制的两幅不完整的统计图.条形统计图扇形统计图图5请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了____________名同学;(2)条形统计图中,m________,n=_______(3)扇形统计图中,艺术类读物所在扇形的圆心角是__________度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买“其他”类读物多少册比较合理?21. (8分)如图6,已知AB// DE,∠B=60°,AE⊥BC,垂足为点E.(1)求∠AED的度数:(2)当∠EDC满足什么条件时,AE// DC ?证明你的结论。

山东省临沂市河东区2022-2023学年七年级下学期期末数学试题

山东省临沂市河东区2022-2023学年七年级下学期期末数学试题

山东省临沂市河东区2022-2023学年七年级下学期期末数学试题学校:___________姓名:___________班级:___________考号:___________5.如果()214x -=,那么x 的值是( )A .4B .3或1-C .1-D .3 6.在平面直角坐标系中,将点()2,3--向右平移3个单位长度,则平移后的点的坐标为( )A .()1,3-B .()5,3--C .()0,2-D .()2,0- 7.甲种蔬菜保鲜适宜的温度是3~8℃℃,乙种蔬菜保鲜适宜的温度是5~10℃℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .3~5℃℃B .3~10℃℃C .5~8℃℃D .8~10℃℃ 8.在直角坐标系中,点()1P m m +,不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.下列调查适合采用抽样调查的是( )A .对乘坐某次高铁的乘客进行安全检查B .为保证神舟十四号载人飞船的成功发射,对其部件进行检查C .调查某校九年级学生的身高状况D .调查一批节能灯泡的使用寿命10.中国传统数学重要著作《九章算术》中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?据此设计一类似问题:今有人组团购一物,如果每人出9元,则多了4元;如果每人出6元,则少了5元,问组团人数和物价各是多少?若设x 人参与组团,物价为y 元,则以下列出的方程组正确的是( )A .9465x y y x -=⎧⎨-=⎩B .9465x y x y -=⎧⎨-=⎩C .9465y x y x -=⎧⎨-=⎩D .9465y x x y -=⎧⎨-=⎩11.利用两块大小一样的长方体木块测量一张桌子的高度,首先按图①方式放置,再交换两木块的位置,按图②方式放置,测量的数据如图,则桌子的高度是( )A .73cmB .74cmC .75cmD .76cm12.某校七年级开展“阳光体育”活动,对喜欢乒乓球、足球、篮球、羽毛球的学生人数进行统计(每人只能选择其中一项),得到如图所示的扇形统计图.若喜欢羽毛球的人数是喜欢足球的人数的4倍,喜欢乒乓球的人数是24人,则下列说法正确有( ) ①被调查的学生人数为70人②喜欢篮球的人数为16人③喜欢足球的扇形的圆心角为36︒④喜欢羽毛球的人数占被调查人数的40%A.1个 B .2个 C .3个 D .4个二、填空题三、解答题(1)数学实践小组在这次活动中,调查的居民共有_____人;(2)将上面的最关注话题条形统计图补充完整;(3)最关注话题扇形统计图中的=a _____,话题D 所在扇形的圆心角是_____度. 19.如图,已知12∠=∠,34∠∠=,5A ∠=∠,试说明:BE CF ∥.完善下面的解答过程,并填写理由或数学式:解:∵34∠∠=(已知)∴AE P _________(_________)∴5EDC ∠=∠(_________)∵5A ∠=∠(已知)∴EDC ∠=_________(_________)∴DC AB ∥(_________)∴5180ABC ∠+∠=︒(_________)即523180∠+∠+∠=︒∴12∠=∠(已知)∴513180∠+∠+∠=︒即3+∠_________180=︒∴BE CF ∥(_________).20.如图,已知在平面直角坐标系中有三个点()0,2A ,()3,1B -,()4,3C -.请解答以下问题:∠BCD的平分线,∠α=74°,∠β=32°.∠的度数;①如图2,求AEC∠的度数.②如图3,将线段AD沿CD方向平移,其他条件不变,直接写出AEC。

2022年山东临沂河东区七下期末数学试卷

2022年山东临沂河东区七下期末数学试卷

2022年山东临沂河东区七下期末数学试卷1.为了解某校2000名学生的视力情况,从中随机调查了400名学生的视力情况,下列说法正确的是( )A.该调查的方式是抽样调查B.该调查的方式是普查C.2000名学生是样本D.样本容量是400名学生2.点M(2,−3)关于原点对称的点N的坐标是( )A.(−2,−3)B.(−2,3)C.(2,3)D.(−3,2)3.a,b都是实数,且a<b,则下列不等式的变形正确的是( )A.a+x>b+x B.−a+1<−b+1C.3a<3b D.a2>b24.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等5.如图所示,将含有30∘角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1= 35∘,则∠2的度数( )A.55∘B.25∘C.30∘D.50∘6.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,则两次拐弯的角度可以是( )A.第一次向右拐40∘,第二次向左拐140∘B .第一次向左拐 40∘,第二次向右拐 40∘C .第一次向左拐 40∘,第二次向右拐 140∘D .第一次向右拐 40∘,第二次向右拐 40∘7. 如图,数轴上表示 1,√3 的点分别为 A 和 B ,若 A 为 BC 的中点,则点 C 表示的数是 ( )A . √3−1B . 1−√3C . √3−2D . 2−√38. 在平面直角坐标系中,第二象限内的点 P 到 x 轴的距离是 2,到 y 轴的距离是 3,已知线段 PQ ∥y 轴且 PQ =5,则点 Q 的坐标是 ( ) A . (−3,7) 或 (−3,−3) B . (−3,−3) 或 (7,−3) C . (−2,2) 或 (−8,2)D . (−2,8) 或 (−2,−2)9. 已知 △ABC 内一点 P (a,b ) 经过平移后对应点 Pʹ(c,d ),顶点 A (−2,2) 在经过此次平移后对应点 Aʹ(5,−4),则 a −b −c +d 的值为 ( ) A . 13 B . −13 C . 1 D . −110. 已知方程组 {2x +y =7,x +2y =8, 则 5x −5y +10 的值是 ( )A . 5B . −5C . 15D . 2511. 利用加减消元法解方程组 {2x +5y =−10, ⋯⋯①5x −3y =6, ⋯⋯② 下列做法正确的是 ( )A .要消去 y ,可以将 ①×5+②×2B .要消去 x ,可以将 ①×3+②×(−5)C .要消去 y ,可以将 ①×5+②×3D .要消去 x ,可以将 ①×(−5)+②×212. 若不等式组 {x <m,x −2<3x −6 无解,那么 m 的取值范围是 ( )A . m ≤2B . m ≥2C . m <2D . m >213. 已知关于 x 的不等式组 {x −a ≥b,2x −a <2b +1的解集是 3≤x <5,则 b a 的值是 ( )A . −4B . −12C . −2D . −1414. 在平面直角坐标系中,一个智能机器人接到如下指令:从原点 O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动 1 m ,其行走路线如图所示,第 1 次移动到 A 1,第 2 次移动到 A 2,⋯ 第 n 次移动到 A n ,则 △OA 3A 2022 的面积是 ( )A . 504.5 m 2B . 505 m 2C . 505.5 m 2D . 1010 m 215. √64 相反数的立方根是 .16. 把 40 个数据分成 6 组,第一到第四组的频数分别为 9,5,8,6 第五组的频率是 0.1,则第六组的频数是 .17. 已知方程组 {y −2x =m,2y +3x =m +1 的解 x ,y 满足 x +3y =3,则 m 的值是 .18. 如图,△ABC 中,∠B =90∘,AB =6,BC =8,将 △ABC 沿着 BC 平移至 △DEF 的位置,若 CF =3,则 DG = .19. 已知关于 x 的不等式组 {x −a >0,1−2x >−3 只有五个整数解,则实数 a 的取值范围是 .20. 计算:√81+∣2−√3∣+√−273+6÷(−34).21. 解方程组:{m2+n3=13,m 3−n 4=3.22. 解不等式组 {4x ≤3(x +1),2x −x−13>2x−53,并写出这个不等式组的最小整数解.23. 某校举行“汉字听写”比赛,每位学生听写汉字 39 个.比赛结束后随机抽查部分学生听写结果,图 1,图 2 是根据抽查结果绘制的统计图的一部分.组别听写正确的个数x 人数A 0≤x <810B8≤x <1615C 16≤x <2425D 24≤x <32m E 32≤x <40n根据以上信息解决下列问题:(1) 本次共随机抽查了多少名学生,求出 m ,n 的值并补全图 2 的条形统计图. (2) 求出图 1 中 ∠α 的度数.(3) 该校共有 3000 名学生,如果听写正确的个数少于 24 个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.24. 如图所示,在平面直角坐标系中,已知 A ,B ,C 三点的坐标分别为 A (−1,5),B (−3,0),C (−4,3).(1) 画出把 △ABC 向右平移 6 个单位,再向上平移 1 个单位长度的三角形 AʹBʹCʹ. (2) 写出平移后三角形 AʹBʹCʹ 的各顶点的坐标. (3) 求三角形 AʹBʹCʹ 的面积.25. 某商场经销甲、乙两种商品,甲种商品每件进价 15 元,售价 20 元;乙种商品每件进价 35元,售价45元.(1) 若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?(2) 该商场为使甲、乙两种商品共100件的总利润(利润=售价−进价)不少于750元,且甲商品的件数不能低于48件,请你帮忙求出该商场的进货方案.26.问题情境:如图1,AB∥CD,∠PAB=130∘,∠PCD=120∘,求∠APC度数.小明的思路是:如图2,过点P作PE∥AB,通过平行线性质,可得∠APC=50∘+60∘=110∘.问题迁移:(1) 如图3,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,∠ADP=∠α,∠BCP=∠β.猜想∠CPD,∠α,∠β之间有何数量关系?请说明理由.(2) 在(1)的条件下,如果点P在A,B两点外侧运动时(点P与点A,B,O三点不重合),请写出∠CPD,∠α,∠β之间的数量关系.选择其中一种情况画图并证明.答案1. 【答案】A2. 【答案】B3. 【答案】C4. 【答案】A5. 【答案】B【解析】由蹄子模型得:∠3=∠1+∠2,∴∠2=∠3−∠1=60∘−35∘=25∘.6. 【答案】B7. 【答案】D【解析】设C点横坐标为x,,由中点公式得1=x+√32∴x=2−√3.8. 【答案】A【解析】点P到x轴的距离是2,则点P的纵坐标为±2,点P到y轴的距离是3,则点P的横坐标为±3,由于点P在第二象限,故P坐标为(−3,2),∵线段PQ∥y轴且PQ=5,∴点Q的坐标是(−3,7)或(−3,−3).9. 【答案】B【解析】∵A(−2,2)在经过此次平移后对应点Aʹ的坐标为(−5,−4),∴△ABC的平移规律为:向右平移7个单位,向下平移6个单位,∵点P(a,b)经过平移后对应点Pʹ(c,d),∴a+7=c,b−6=d,∴a −c =−7,b −d =6,∴a −b −c +d =a −c −(b −d )=−7−6=−13, 故选:B .10. 【答案】A【解析】 {2x +y =7, ⋯⋯①x +2y =8, ⋯⋯②① − ②得 x −y =−1, ∴5x −5y =−5, ∴5x −5y +10=−5+10= 5.11. 【答案】D12. 【答案】A【解析】 {x <m, ⋯⋯①x −2<3x −6. ⋯⋯②由①得 x <m ,由②得 x >2, ∵ 无解, ∴m <2,当 m =2 时,{x <2,x >2 无解,∴m ≤2.13. 【答案】C【解析】不等式组 {x −a ≥b, ⋯⋯①2x −a <2b +1. ⋯⋯②由①得 x ≥a +b ,由②得 x <a+2b+12,∴a +b ≤x <a+2b+12,又 3≤x <5,∴{a +b =3,a+2b+12=5⇒{a =−3,b =6,∴ba =−2.14. 【答案】B【解析】由题意可知,每四次一个周期,2022÷4=505,∵A4(2,0),A8(4,0),A12(6,0),∴A4n(2n,0),∴A2022(1010,0),OA2022=1010,∵A3(2,1),∴S△OA3A2022=12×1010×1=505m2.15. 【答案】−2【解析】因为√64=8,又8的相反数是−8,−8的立方根是−2,所以√64的相反数的立方根是−2.16. 【答案】8【解析】第六组频数为40−(9+5+8+6)−40×0.1=8.17. 【答案】1【解析】{y−2x=m, ⋯⋯①2y+3x=m+1. ⋯⋯②① +②得:x+3y=2m+1,∵方程组的解满足x+3y=3,∴2m+1=3,2m=2,m=1.故答案为:1.18. 【答案】94【解析】设GE=x,则DG=6−x,S△ABC=12⋅AB⋅BC=12×6×8=24,S△GEC=12⋅GE⋅BC=12x×5=2.5x,S梯形ABEG =(AB+GE)⋅BE2=3(6+x)2=9+1.5x,∵S△ABC=S△GEC+S梯形ABEG,∴24=2.5x+9+1.5x⇒x=154,∴DG =6−x =94.19. 【答案】 −4≤a <−3【解析】 x −a >0,则 x >a , 1−2x >−3, −2x >−3−1, −2x >−4, x <2,∵{x −a >0,1−2x >−3有五个整数解,∴a <x <2 有五个整数解分别为 1,0,−1,−2,−3, ∴−4≤a <−3.20. 【答案】 原式=9+2−√3−3−8=−√3.21. 【答案】{m2+n3=13, ⋯⋯①m3−n 4=3. ⋯⋯②原方程组化简得:{3m +2n =78, ⋯⋯③4m −3n =36. ⋯⋯④③ ×3+ ④×2 得:17m =306,解得:m =18,将 m =18 代入③中得:54+2n =78,解得:n =12,所以原方程组的解为{m =18,n =12.故答案为:原方程组的解为 {m =18,n =12..22. 【答案】解不等式组{4x ≤3(x +1), ⋯⋯①2x −x−13>2x−53, ⋯⋯②解不等式①得4x≤3x +3,x ≤3.解不等式②得6x −x +1>2x −5,5x −2x>−5−1,3x >−6,x >−2,∴ 这个不等式组的解集为−2<x ≤3.∴ 这个不等式组的最小整数解为 −1.23. 【答案】(1) 15÷15%=100(名), m =30%×100=30, n =20%×100=20, 条形图如图所示:(2) C 组的圆心角度数 =25%×360∘, ∠α=25100×360=90∘. (3) 3000×10+15+25100=1500(名).∴ 估计这所学校本次比赛听写不合格的学生人数有 1500 名.24. 【答案】(1) 如图,AʹBʹCʹ 即为所求.(2) 由图可知:Aʹ(5,6);Bʹ(3,1);Cʹ(2,4).(3)△AʹBʹCʹ的面积=3×5−12×1×3−12×2×5−12×2×3=15−1.5−5−3=15−9.5= 5.5.25. 【答案】(1) 设能购进甲商品 x 件,乙商品 y 件,由题意得{x +y =100,15x +35y =2700,解得{x =40,y =60.答:能购进甲商品 40 件,乙商品 60 件.(2) 设进甲商品 a 件,则进乙商品 (100−a ) 件,由题意得{a ≥48,(20−15)a +(45−35)(100−a )≥750,解得48≤a ≤50,又 a 为整数,∴a =48,49或50.方案一:甲商品 48 件,乙商品 52 件; 方案二:甲商品 49 件,乙商品 51 件; 方案三:甲商品 50 件,乙商品 50 件.26. 【答案】(1) ∠CPD =∠α+∠β.如图 3,过 P 作 PE ∥AD 交 CD 于 E , ∵AD ∥BC , ∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE , ∴∠CPD =∠DPE +∠CPE =∠α+∠β.(2) 当 P 在 BA 延长线时,∠CPD =∠β−∠α. 如图 4,过 P 作 PE ∥AD 交 CD 于 E , ∵AD ∥BC , ∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE , ∴∠CPD =∠CPE −∠DPE =∠β−∠α. 当 P 在 BO 之间时,∠CPD =∠α−∠β. 【解析】(2) 当 P 在 BO 之间时,∠CPD =∠α−∠β. 如图 5,过 P 作 PE ∥AD 交 CD 于 E , ∵AD ∥BC ,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE−∠CPE=∠α−∠β.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省临沂市河东区七年级下学期期末考试
数学试卷
一、选择题(本题12个小题每题中只有一个答案符合要求,每小题3分,共36分)
1.(3分)要调查下列问题,你认为哪些适合抽样调查()
①市场上某种食品的某种添加剂的含量是否符合国家标准
②检测某地区空气质量
③调查全市中学生一天的学习时间.
A.①②B.①③C.②③D.①②③
2.(3分)下列条件中不能判定AB∥CD的是()
A.∠1=∠4 B.∠2=∠3 C.∠5=∠B D.∠BAD+∠D=180°
3.(3分)下列图形中,可以由其中一个图形通过平移得到的是()
A.B. C.D.
4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()
A.2个B.3个C.4个D.5个
5.(3分)下列说法正确的个数有()
(1)过一点有且只有一条直线与已知直线平行
(2)一条直线有且只有一条垂线
(3)不相交的两条直线叫做平行线
(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离
A.0个B.1个C.2个D.3个
6.(3分)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)
7.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,
则∠AEF=()
A.110°B.115°C.120°D.125°
8.(3分)如果一元一次不等式组的解集为x>3.则a的取值范围是()
A.a>3 B.a≥3 C.a≤3 D.a<3
9.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.
10.(3分)某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()
A.6折B.7折C.8折D.9折
11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()
A.﹣13 B.13 C.2 D.﹣2
12.(3分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()
A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23
二、填空题(本题8个小题每小题3分共4分
13.(3分)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是.
14.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是.
15.(3分)将点P向下平移3个单位,向左平移2个单位后得到点Q(3,﹣1),则点P坐标为.
16.(3分)若m是的立方根,则m+3=
17.(3分)如果一个角的两边分别与另一个角的两边平行,那么这两个角.18.(3分)如图,已知∠1=∠2=∠3=65°,则∠4的度数为.
19.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积.
20.(3分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32018的末位数字是.
三、解答题(本题共6个小题,共60分)
21.(10分)解方程组:
(1)
(2).
22.(10分)解不等式(组):
(1)
(2)
23.(8分)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题
(1)写出本次抽样调查的样本容量;
(2)请补全两幅统计图;
(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.24.(8分)如图,将△ABC中向右平移4个单位得到△A′B′C′.
①写出A、B、C的坐标;
②画出△A′B′C′;
③求△ABC的面积.
25.(12分)如图1,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于点O,AE∥OF.(1)若∠A=30°时①求∠DOF的度数;②试说明OD平分∠AOG;
(2)如图2,设∠A的度数为α,当α为多少度时,射线OD是∠AOG的三等分线,并说明理由.
26.(12分)为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两
种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
A型B型
价格(万元/台) a b
240 200
处理污水量(吨/
月)
(1)求a,b的值;
(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;
(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
参考答案1-10.DBBCA BBCAB 11-12.AC
13、P
14、0.1
15、(5,2)
16、5
17、相等或互补
18、115°
19、48
20、2
21、
22、
23、
24、
25、解:(1)①∵AE∥OF ∴∠A=∠BOF
∵OF平分∠COF
∴∠BOC=60°,∠COF=30°∴∠DOF=180-30°=150°②∵∠BOC=60°
∴∠AOD=60°
∵OF⊥OG
∴∠BOF+∠FOG=90°
.. ∴∠BOG=60°
∵∠BOG+∠DOG+∠AOD=180°
∴∠DOG=60°=∠AOD
∴OD平分∠AOG
(2)设∠AOD=β
∵射线OD是∠AOG的三等分线
∴∠AOD=2∠DOG,或∠DOG=2∠AOD
若∠AOD=2∠DOG
..
26、
(3)当m=0,10-m=10时,每月的污水处理量为:200×10=2000吨<2040吨,不符合题意,应舍去;
当m=1,10-m=9时,每月的污水处理量为:240+200×9=2040吨=2040吨,符合条件,此时买设备所需资金为:12+10×9=102万元;
当m=2,10-m=8时,每月的污水处理量为:240×2+200×8=2080吨>2040吨,符合条件,
此时买设备所需资金为:12×2+10×8=104万元;
所以,为了节约资金,该公司最省钱的一种购买方案为:购买A型处理机1台,B
型处理机9台.。

相关文档
最新文档