自动控制原理黄坚课后习题答案

合集下载

《自动控制原理》黄坚课后习题答案

《自动控制原理》黄坚课后习题答案
4
=
-3
4
A2=
-3
4
A2=
+
-
4
3
+
f(t)=
e-t3
2
e-3t2
-t
e-t12
1
+
-
4
3
+
f(t)=
e-t3
2
e-3t2
-t
e-t12
1
= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)]
A1(s+1)2A1=(s+1)2s
(s+1)2(s+2)s=-1A1=(s+1)2s(s+1)2(s+2)s=-1A3=(s+2)
s
(s+1)2(s+2)s=-2A3=(s+2)
s
(s+1)2(s+2)s=-2
d
ds
s
s+2
][
A2= s=-1
d
R2I1(s)
Uc(s)L1L2 L1=-R2 /LsL2=-/LCs2L3=-1/sCR1Δ1=1
L1L3=R2/LCR1s2P1=R2/LCR1s2=
R1CLs2+(R1R2C+L)s+R1+R2Ur(s)
Uc(s)
R2=
R1CLs2+(R1R2C+L)s+R1+R2Ur(s)
i2Lu1 解
u1=ui-uoi2=C

自动控制原理黄坚课后习题答案解析精编版

自动控制原理黄坚课后习题答案解析精编版

自动控制原理黄坚课后习题答案解析GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-4s(s+5)G(s)=1s(s+1)G(s)=1.3tc(t)10.1解:t p ==0.121-ζπωn =0.3e -ζζπ1-2e ζζπ1-2=3.3ωn 2 ζ1- 3.140.1==31.4ζ21-ζπ/=ln3.3=1.19)21-ζπ2/ζ(=1.42=1.42-1.429.862ζ2ζζ=0.35=33.4ωn s(s+2 ωn ωn ζ)G(s)=21115.6s(s+22.7)=G(s)=s(s+1)(0.5s 2+s+1)K(0.5s+1)3-1 设温度计需要在一分钟内指示出响应值的98%,并且假设温度计为一阶R =20 k Ω R =200 k Ω(2) 求系统的单位脉冲响应,单位斜坡响应,及单位抛物响应在t 时刻的3-3 已知单位负反馈系统的开环传递函数,3-4 已知单位负反馈系统的开环传递函数,求系3-7 设二阶系统的单位阶跃响应曲线如图,系统的为单3-11 已知闭环系统的特征方程式,试用劳斯判据判断系统的稳定性。

3-12 已知单位负反馈系统的开环传3-13 已知系统结构如图,试确r(t)=I(t)+2t+t 2s 2R(s)=1s2+s 32+K r(s+1)G(s)=3-14 已知系统结构如图,试确3-16 已知单位反馈系统的开环传递函3-18 已知系统结构如图。

为使ζ=0.7时,单位斜坡输入的稳态误差e ss =0.25确定K 和τ值 。

4-1 已知系统的零、极点分布如图,大致绘制出系统的根轨迹。

4-2 已知开环传递函数,试用解析法绘制出系统4-5 已知系统的开环传递函数。

(1)试绘制出根轨迹图。

(2)增益K r 为何值时,复数特征根的实部为-2。

5-1 已知单位负反馈系统开环传递函数,当输入信号r(t)=sin(t+30o ),试求系统的稳态输出。

《自动控制原理》黄坚课后习题答案解析

《自动控制原理》黄坚课后习题答案解析

2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:du )-R 2(u i -u o )=R 1u 0-CR 1R 2(idt dt du oCR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。

(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。

A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+A 3+ A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。

自动控制原理及其应用_课后习题答案_第二章

自动控制原理及其应用_课后习题答案_第二章

自动控制原理及其应用_课后习题答案_第二章黄坚主编自动化专业课程(2-1a)第二章习题课(2-1a)2-1(a)试建立图所示电路的动态微分方程。

u+ci1=i2-ic+d)+uoR1(ui-uo+u1u[R-CR2u]R1+uoui=dtoi2---C解:CCi1R1R2ic+uoi2-duiduo输入量为ui,输出量为uo。

Rui=u1+uoR2ui=uoR1-CdtR1R2+CdtR12+uoR2ducd(ui-uo)uoic=Cidt=dtu1=i1R1duodui2=RuoR1+CdtR1R2+uoR2=R2ui+CdtR1R22黄坚主编自动化专业课程(2-1b)第二章习题课(2-1b)2-1(b)试建立图所示电路的动态微分方程。

ducCLd2uoduoLduoLic==2+CdtR1uL=dtR2dt+uR2dtd2u+uooCCLoR2duou=+uo+Ci1ii2=Rui=u1+uo2dt-R2R2dt2-输入量为ui,输出量为uo。

u1=i1R1i1=iL+icdiLuL=Ldtducd(ui-uo)ic=Cdt=dtuoiL=i2=R2习题课一(2-2)求下列函数的拉氏变换。

(1)f(t)=in4t+co4tf(t)=in4t+co4tw:L解:∵L[inwt]=22w+L[cowt]=22w+ 4+L∴L[in4t+co4t]=2+162+16+4=2+16黄坚主编自动化专业课程(2)f(t)=t3+e4tf(t)=t3+e4t]=3!+:解:L[t3+1(3)f(t)=tneatf(t)=)=t13!1-4=4+-4:解:L[tneat]=n!(-a)n+1(4)f(t)=(t-1)2e2tf(t)=(t-1)2e2t]=e-(-2)2:解:L[(t-1)(-2)3黄坚主编自动化专业课程2-3-1函数的拉氏变换。

F()=(+1)(+3)F()=+1+1A解:A1=(+2)(+1)(+3)+1A2=(+3)(+1)(+3)1F()=+3-+2F()=2=-3=-1=-2=2f(t)=2e-3t-e-2tf(t)=2e黄坚主编自动化专业课程2-3-2函数的拉氏变换。

自动控制原理 答案 黄坚习题详解

自动控制原理 答案 黄坚习题详解

第二章 自动控制系统的数学模型习题2-1 试建立图示电路的动态微分方程。

解:(a )解法一:直接列微分方程组法⎪⎩⎪⎨⎧-==+O i C O C C u u u Ru R u dt du C 21i i O O u CR dt du u R CR R R dt du 121211+=++⇒ 解法二: 应用复数阻抗概念求)()(11)(11s U s I Cs R Cs R s U O i ++= (1) 2)()(R s U s I O = (2) 联立式(1)、(2),可解得: Cs R R R R Cs R R s U s U i o 212112)1()()(+++= 微分方程为: i ioo u CR dt du u R CR R R dt du 121211+=++ (b )解法一:直接列微分方程组法⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++=+===COC i O L C O L L L u R u dt du C R u u u u R u i dt di L u)(212 (a) (b) + u C -io oo u R u R R dt du C R R L dt u d LC R 22121221)()(=++++⇒解法二: 应用复数阻抗概念求⎪⎪⎩⎪⎪⎨⎧++=+=)(]1)()([)()()()(2122s U sC s U R s U R s U Ls R R s U s U CC O i O C)()()()()()(2212121s U R s U R R s sU C R R L s U LCs R io o o =++++⇒ 拉氏反变换可得系统微分方程:io o o u R u R R dt du C R R L dt u d LC R 22121221)()(=++++2-7 证明图示的机械系统(a)和电网络系统(b)是相似系统(即有相同形式的数学模型)。

解:(a)取A 、B 两点分别进行受力分析。

自动控制原理 黄坚 第二版 课后答案 第三章

自动控制原理 黄坚 第二版 课后答案 第三章

3-1设温度计需要在一分钟内指示出响应值的98%,并且假设温度计为一阶系统,求时间常数T 。

如果将温度计放在澡盆内,澡盆的温度以10C/min 的速度线性变化。

求温度计的误差。

解:c(t)=c(∞)98%t=4T=1 min r(t)=10te(t)=r(t)-c(t)c(t)=10(t-T+e )-t/T =10(T-e )-t/T =10T =2.5T=0.253-2电路系统如图所示,其中F C k R k R μ5.2,200,20110=Ω=Ω=。

设系统初始状态为零,试求:系统的单位阶跃响应8)()(1=t u t u c c 以及时的1t 值;解:R 1Cs+1R 1/R 0G (s )= u c (t)=K(1–e t T -)KTs +1=T=R 1C=0.5 K=R 1/R 0=10=10(1–e -2t )8=10(1–e -2t)0.8=1–e-2te -2t =0.2 t=0.8g(t)=e -t/T T Kt 1=0.8=4u c (t)=K(t-T+T e -t/T )=4R(s)=1s 2R(s)=1R(s)=1s 3T 2=K(s s+1/T +T s 2-1s 3-T 2)=1.2Ts 1s 3K +1U c (s)= -0.5t+0.25-0.25e -2t )12t 2u c (t)=10(3-3已知单位反馈系统的开环传递函数为)5(4)(+=s s s G 试求该系统的单位阶跃响应。

解:C(s)=s 2+5s+4R(s)4s(s+1)(s+4)C(s)=4R(s)=s1s+41+1/3s =4/3s +1-c(t)=1+ 4e 13-4t -t 3-e3-4已知单位负反馈系统的开环传递函数为 )1(1)(+=s s s G 试求该系统的上升时间r t 。

、峰值时间p t 、超调量%σ和调整时间s t 。

1s(s+1)G(s)=t p =d ωπ 3.140.866= =3.63t s = ζ3ωn=6t s = ζ4ωn =8解:C(s)=s 2+s+1R(s)12= 1ωn 2ωn ζ=1ζ=0.5=1ωn =0.866d ω= ωn 2 ζ1-=60o -1ζ=tg β21-ζt r =d ωπβ-= 3.14-3.14/30.866=2.42σ%=100%e -ζζπ1-2=16%-1.8e3-6已知系统的单位阶跃响应为t te et c 10602.12.01)(---+= ,试求:(1)系统的闭环传递函数;(2)系统的阻尼比ζ和无阻尼自然震荡频率n ω;解:s+601+0.2s C(s)= 1.2s +10-s(s+60)(s+10)=600=s 2+70s+600C(s)R(s)600R(s)=s 12=600ωn2ωn ζ=70ζ=1.43=24.5ωn3-7设二阶控制系统的单位阶跃响应曲线如图所示,如果该系统为单位负反馈系统,试确定其开环传递函数。

自动控制原理黄坚第二版课后答案第四章

自动控制原理黄坚第二版课后答案第四章

4-1 已知系统的零、极点分布如图,大解:(5)(7)(8)4-2 已知开环传递函数,试用解析法绘制出系统的根轨迹,并判断点(-2+j0),(0+j1),(-3+j2)是否在根轨迹上。

解:K r (s+1)G(s)=K rΦ(s)=s+1+Kr K r =0s=-1-K r系统的根轨迹s=-1K r =→∞s=-∞s=-2+j0s=0+j14-3 已知系统的开环传递函数,试绘制出根轨迹图。

解: 1p 1=0 p 2=-1 2p 1~p 2 z 1=-1.5 z 2z 1~p 3 3)根轨迹的渐近线 n-m= 1 θ= + 180o4)分离点和会合点A (s )B'(s )=A'(s )B (s )A(s)=s 3+6s 2+5s B(s)=s 2+7s+8.25A(s)'=3s 2+12s+5B(s)'=2s+7s 1=-0.63s 2=-2.5s 3=-3.6s 4=-7.28解得K s(s+1)(s+4)(2) G(s)=r (s+1.5)1)开环零、极点p 1=0p 2=-1p3=-42)实轴上根轨迹段p 1~p 2z 1=-1.5p 3~z 13)根轨迹的渐近线n-m= 2θ= +90o 2σ=-1-4+1.5=-1.754)分离点和会合点 A(s)=s 3+5s 2+4s B(s)=s+1.5 A(s)'=3s 2+10s+4 B(s)'=1 解得 s=-0.62 5)系统根轨迹K s(s+1)2(3) G(s)=r1)开环零、极点p 1=0p 2=-1p 3=-12)实轴上根轨迹段p 1~p 2p 3~-∞3)根轨迹的渐近线n-m=34θ= +180+60o ,闭环特征方程为s 3+2s 2+s+K r =05)分离点和会合点A(s)=s 3+2s 2+s B(s)=1A(s)'=3s 2+4s+1B(s)'=0解得s=-0.336)系统根轨迹1p 1=0p2p 1~p 2p 4=-15p 3~z 143)根轨迹的渐近线n-m=3(4) G(s)=3σ=-3-7-15+8=-5.67θ= +180o +60o , K r =0 ω1=0K r =638 ω2,3=±6.25)分离点和会合点A(s)=s 4+25s 3+171s 2+315s B(s)=s+8A(s)'=4s 3+75s 2+342s+315B(s)'=2s+7解得s=-1.44)根轨迹与虚轴的交点闭环特征方程为s 4+25s 3+171s 2+323s+8K r =04-5 已知系统的开环传递函数。

《自动控制原理》黄坚课后习题答案解析word版本

《自动控制原理》黄坚课后习题答案解析word版本

《⾃动控制原理》黄坚课后习题答案解析word版本2-1试建⽴图所⽰电路的动态微分⽅程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:)-R 2(u i -u o )=R 1u 0-CR 1R 2(dui dt dt duo CR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉⽒变换。

(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:(2) f(t)=t 3+e 4t解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉⽒反变换。

A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+ A 3+A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds s s+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++(4) F(s)=s+2s(s+1)2(s+3)解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分⽅程。

《自动控制原理》黄坚课后习题答案教学提纲

《自动控制原理》黄坚课后习题答案教学提纲

《自动控制原理》黄坚课后习题答案2-1试建立图所示电路的动态微分方程u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:)-R 2(u i -u o )=R 1u 0-CR 1R 2(du idt dt duo CR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。

(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:(2) f(t)=t 3+e 4t解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。

A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+ A 3+A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++(4) F(s)=s+2s(s+1)2(s+3)解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。

《自动控制原理》黄坚课后习题答案解析word版本

《自动控制原理》黄坚课后习题答案解析word版本

2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:)-R 2(u i -u o )=R 1u 0-CR 1R 2(dui dt dt duo CR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。

(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:(2) f(t)=t 3+e 4t解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。

A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+ A 3+A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++(4) F(s)=s+2s(s+1)2(s+3)解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。

《自动控制原理》黄坚课后习题答案解析

《自动控制原理》黄坚课后习题答案解析

2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:du )-R 2(u i -u o )=R 1u 0-CR 1R 2(idt dt du oCR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。

(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。

A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+A 3+ A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。

自动控制原理答案黄坚习题详解汇总

自动控制原理答案黄坚习题详解汇总

⾃动控制原理答案黄坚习题详解汇总第⼆章⾃动控制系统的数学模型习题2-1 试建⽴图⽰电路的动态微分⽅程。

解:(a )解法⼀:直接列微分⽅程组法-==+O i C O C C u u u R u R u dt du C 21i i O O u CR dt du u R CR R R dt du 121211+=++? 解法⼆:应⽤复数阻抗概念求)()(11)(11s U s I Cs R Cs R s U O i ++= (1) 2)()(R s U s I O = (2)联⽴式(1)、(2),可解得: Cs R R R R Cs R R s U s U i o 2 12112)1()()(+++= 微分⽅程为: i ioo u CR dt du u R CR R R dt du 121211+=++ (b )解法⼀:直接列微分⽅程组法++=+===COC i O L C O L L L u R u dt du C R u u u u R u i dt di L u)(212 (a) (b) + u C -io o o u R u R R dt du C R R L dt u d LC R 22121221)()(=++++?解法⼆:应⽤复数阻抗概念求++=+=)(]1)()([)()()()(2122s U sC s U R s U R s U Ls R R s U s U CC O i OC)()()()()()(2212121s U R s U R R s sU C R R L s U LCs R io o o =++++? 拉⽒反变换可得系统微分⽅程:io o o u R u R R dt du C R R L dt u d LC R 22121221)()(=++++2-7 证明图⽰的机械系统(a)和电⽹络系统(b)是相似系统(即有相同形式的数学模型)。

解:(a)取A 、B 两点分别进⾏受⼒分析。

自动控制原理 黄坚 课后答案

自动控制原理 黄坚 课后答案

5-1设单位负反馈系统的开环传递函数110)(+=s s G ,当把下列输入信号作用在闭环系统输入端时,试求系统的稳态输出。

(1))30sin()( +=t t r(2) )452cos(2)( -=t t r计算的最后结果:(1)) 83.24sin(905.0)(+=t t c ;(2)) 3.532cos(785.1)(-=t t c ;5-2设控制系统的开环传递函数如下,试绘制各系统的开环幅相频率特性曲线和开环对数频率特性曲线。

(1))15)(5(750)(++=s s s s G (2))1110)(1(200)(2++=s s s s G (3))18)(12(10)(++=s s s G (4))1008()1(1000)(2+++=s s s s s G (5))1(10)(-=s s s G (6)13110)(++=s s s G (7))15)(1.0()2.0(10)(2+++=s s s s s G (8)13110)(+-=s s s G 绘制各系统的开环幅相频率特性曲线:绘制各系统的开环对数频率特性曲线:5-3已知电路如图所示,设R 1=19k Ω,R 2=1 k Ω,C=10μF 。

试求该系统传递函数,并作出该系统的伯德图。

计算的最后结果:19.0,2.0)(,1)(1221112===+=+=c R T c R R T s T s T s G ; 5-4已知一些最小相位系统的对数幅频特性曲线如图所示,试写出它们的传递函数(并粗略地画出各传递函数所对应的对数相频特性曲线)。

计算的最后结果数字:(a) 11010)(+=s s G (b) 101)(s s G +=; (c) )1100)(101.0(100)(++=s s s s G ; (d) )1100)(110)(1(250)(+++=s s s s G ;(e) 3.0,3.50,]12)[(100)(2==++=ξωωξωn nn s ss s G 5-6画出下列给定传递函数的极坐标图。

《自动控制原理》黄坚课后习题答案解析

《自动控制原理》黄坚课后习题答案解析

2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:)-R 2(u i -u o )=R 1u 0-CR 1R 2(dui dt dt duo CR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。

(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:(2) f(t)=t 3+e 4t解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。

A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+ A 3+A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++(4) F(s)=s+2s(s+1)2(s+3)解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。

自动控制原理黄坚第二版第四章习题答案

自动控制原理黄坚第二版第四章习题答案

σ根 s=3-K+ω轨4r3--s+p14迹32ω13-+~3ω的3p2==s2=+-分001K.离p3r=3~KK点0θrr-===:012+ωω6012o=,,3+=01±810.7o
ζ=AK0sss(2.3rs1没5====)3B|--s有4.03系3'2+(得|.s|64s位s20统)×5+3.=+23s8于A根.171s2=|'×+根|6(轨s-23s×03=s)=+0轨.B2迹3-.0=332(7迹|-s.6+22)=j.6上201..8,9 舍s去3 p-33。
第四章习题课 (4-1)
4-1 已知系统的零、极点分布如图,大 致绘制出系统的根轨迹。
解: (1)
jω (2)

600


(3)

(4)

900

600

第四章习题课 (4-1)
(5)

(6)

600


(7)

1350
450

(8)

1080
360

第四章习题课 (4-2)
p4
5)p4分=-离15点和z1会=-8合点
pp z13 -5.672
p
01 σ
2A)(s实)=轴s4+上25根s3轨+1迹71段s2+3p115~sp2 p3~z1
-6.2
3A)(s根)'=轨4s迹3+的75渐s2+近3线42s+315p4~-∞
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:)-R 2(u i -u o )=R 1u 0-CR 1R 2(dui dt dt duo CR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。

(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:(2) f(t)=t 3+e 4t解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e at L [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2te L [(t-1)22t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。

A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2s (2) F(s)=(s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+ A 3+A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-22s (3) F(s)=2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++(4) F(s)=s+2s(s+1)2(s+3)解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。

y(0)=y(0)=2 ·+6y (t )=6+5d 2y (t )dt 2dy (t )dt(1)解:s 2Y(s)-sy(0)-y'(0)+5sY(s)-5y(0)+6Y(s)= 6sA 1=1y(t)=1+5e -2t -4e -3tA 2=5 A 3=-46+2s Y(s)=2+12s s(s 2+5s+6)= A 1s+2s+3+ A 3s + A 22-5试画题图所示电路的动态结构图,并求传递函数。

c+-( U r (s)U c (s)=1R 11+(+sC)R 21R 1+sC)R 2=R 2+R 1R 2sC R 1+R 2+R 1R 2sC(2)cL 1=-R 2 /Ls L 2=-/LCs 2L 3=-1/sCR 1Δ1=1L 1L 3=R 2/LCR 1s 2P 1=R 2/LCR 1s 2=R 1CLs 2+(R 1R 2C+L)s+R 1+R 2U r (s)U c (s)R 22-8 设有一个初始条件为零的系统,系统的输入、输出曲线如图,求G(s)。

δ(t)δ(t)解:K t-T c(t)=T (t-T)K C(s)=Ts K (1-e )2-TS C(s)=G(s)2-9 若系统在单位阶跃输入作用时,已知初始条件为零的条件下系统的输出响应,求系统的传递函数和脉冲响应。

r(t)=I(t)c(t)=1-e +e-2t -t R (s )=1s 解:G(s)=C(s)/R(s)s+21-1s C(s)=1s +1+=s(s+1)(s+2)(s 2+4s+2)=(s+1)(s+2)(s 2+4s+2)C(s)=(s+1)(s+2)(s 2+4s+2)c(t)=δ(t)+2e -2t -e -t2-10 已知系统的拉氏变换式,试画出系统的动态结构图并求传递函数。

解:X 1(s)=R(s)G 1(s)-G 1(s)[G 7(s)-G 8(s)]C(s)X 2(s)=G 2(s)[X 1(s)-G 6(s)X 3(s)]X 3(s)=G 3(s)[X 2(s)-C(s)G 5(s)]C(s)=G 4(s)X 3(s)={R(s)-C(s)[G 7(s)-G 8(s)]}G 1(s)C 1+G 3G 2G 6 +G 3G 4G 5+G 1G 2G 3G 4(G 7 -G 8)G 1G 2G 3G 4R (s )(s )=2-11求系统的传递函数解:L 1=-G 2H 1L 2=-G 1G 2H 2P 1=G 1G 2P 2=G 3G 2Δ1 =1Δ2 =1R (s )C (s )=Σnk=1P k Δk ΔΔ=1+G 2H 1+G 1G 2H 21+G 2H 1+G 1G 2H 2G 2G 1+G 2G 3=解:C R (s )(s )=1+G 1G 2H +G 1G 4HG 1G 2+G 2G 3+G 1G 2G 3G 4 H L 1=-G 1G 2H L 2=-G 1G 4H P 1=G 1G2Δ1 =1P 2=G 3G 2Δ=1+G 1G 4H+G 1G 2H Δ2=1+G 1G 4H(c)C(s)R(s)1+G 1G 2+G 1H 1–G 3H 1G 1G 2(1–G 3H 1)=(d)解: L 1=-G 2HP 1=G 1Δ1 =1P 2=G 2Δ2 =11+G 2H1(G 1+G 2 )R(s)C(s)=(e)解: L 2=G 1G 4L 3=-G 2G 3L 4=G 2G 4L 1=-G 1G 3P 1=G 1Δ1=1P 2=G 2Δ2=11+G 1G 3+G 2G 3–G 1G 4-G 2G 4=(G 1+G 2)C(s)R(s)(f)解: L 1=-G 1G 2L 2=G 2P 1=G 1Δ1=1-G 2Δ=1+G 1G 2-G 2C(s)R(s)1+G1G 2–G 2G 1(1–G 2)=L 1=G 2H 2L 2=-G 1G 2H 3Δ1=1P 1=G 1G 21-G 2H 2+G 1G 2H 3G 2G 1=R (s )C (s )P 1=G 2Δ1=1P 2=-G 1G 2H 1Δ2=11-G 2H 2+G 1G 2H 3G 2(1-G 1H 1 )=D (s )C (s )(b)解:L 1=-G 1G 2L 2=-G 1G 2H Δ1=1P 1=G 1G 21+G 1G 2H+G 1G 2G 1G 2=R (s )C (s )P 1=G n G 2Δ1=1P 2=1Δ2=1+G 1G 2HD (s )C (s )1+G 1G 2+G 1G 2H =1+G n G 2+G 1G 2H解:L 1=-G 2L 2=-G 1G 2G 3P 1=G 2G 3P 2=G 1G 2G 3R (s )C (s )=1+G 2+G 1G 2G 3G 2G 3+G 1G 2G3Δ1=1Δ2=1P 1=-G 2G 3Δ2=1+G 2Δ1=1P 2=1R (s )C (s )=1+G 2+G 1G 2G 3-G 2G 3+1+G 2解:L 1=-G 3G 4L 2=-G 2G 3G 5Δ1=1P 1=G 1G 5P 1=G 1G 5Δ1=1P 2=1Δ2=1+G 3G 4P 2=G 2G 3G 5Δ2=11+G 2G 3G 5+G 3G 4=R (s )C (s )G 1G 2G 5+G 1G 51+G 2G 3G 5+G 3G 4=R (s )E (s )G 1G 5+(1+G 1G 5 )C(s)R(s)=1+G 3(G 1+G 2)(G 1+G 2)(G 3+G 4)解:L 1=-G 1G 3L 2=-G 2G 3Δ1=1P 1=G 1G 3P 2=G 2G 3Δ2=1P 3=G 1G 4Δ3=1P 4=G 2G 4Δ4=1 E (s )R (s )=1+G 3(G 1+G 2)1(C D s )(s )=1=G 2(s)E (s )X (s )解:L 1=G 1G 2L 3=-G 4L 2=-G 1G 4G 5H 1H 2P 1=G 1G 2G 3Δ=1-G 1G 2+G 1G 4G 35H 1H 2+G 4 -G 1G 2G 4Δ1=1+G 41+G 4+G 1G 4G 5H 1H 2-G 1G 2-G 1G 2G 4G 1G 2G 3(1+G 4 )=C 1(s)R 1(s)1+G 4+G 1G 4G 5H 1H 2-G 1G 2-G 1G 2G 4G 4G 5G 6(1-G 1G 2)=C 2(s)R 2(s)1+G 4+G 1G 4G 5H 1H 2-G 1G 2-G 1G 2G 4-G 1G 2G 3G 4G 5H 1=C (s)1(s)R 21+G 4+G 1G 4G 5H 1H 2-G 1G 2-G 1G 2G 4G 1G 4G 5G 6H 2=C 2(s)R 1(s)解:c(t)=c(∞)98%t=4T=1 min r(t)=10te(t)=r(t)-c(t)c(t)=10(t-T+e )-t/T =10(T-e )-t/T e ss =lim t →∞e(t)=10T =2.5T=0.25解:R 1Cs+1R 1/R 0G (s )= u c (t)=K(1–et T-)K Ts +1=T=R 1C=0.5 K=R 1/R 0=10 =10(1–e -2t )8=10(1–e -2t )0.8=1–e-2te -2t =0.2t=0.8g(t)=e -t/T T Kt 1=0.8=4解:u c (t)=K(t-T+T e -t/T )=4R(s)=1s 2R(s)=1R(s)=1s 3s s+1/T +T 2=K(T s 2-1s 3-T 2)=1.2Ts 1s 3K +1U c (s)= -0.5t+0.25-0.25e -2t )12t 2u c (t)=10(4s(s+5)G(s)= 3-1 设温度计需要在一分钟内指示出响应值的98%,并且假设温度计为一阶系统,求时间常数T 。

相关文档
最新文档