VMOS场效应管基础知识及检测方法
场效应管的测量方法
场效应管的测量方法
场效应管的测量方法一般包括以下几个步骤:
1. 确定引脚:首先要确认场效应管的引脚布置,一般有栅极(G)、源极(S)和漏极(D)三个引脚。
2. 确定测试电路:选择适当的测试电路来测量场效应管的性能。
常见的测试电路包括单端共源(Common Source)、单端共漏(Common Drain)和单端共栅(Common Gate)等。
3. 测量电流和电压:在选定的测试电路上,通过恰当的电压源和电流源,分别在引脚上施加适当的电压和电流进行测量。
常用的测量参数有栅极-源极电压(Vgs)、漏极-源极电压(Vds)和漏极电流(Ids)等。
4. 测量曲线:根据测量电流和电压的数据,绘制出I-V特性曲线。
常见的曲线有输入特性曲线和输出特性曲线等。
5. 性能分析:根据测得的曲线数据对场效应管进行性能分析,如确定场效应管的增益、截止频率以及最大功率等。
需要注意的是,在测量场效应管时,要特别注意避免超过场效应管的最大电压和电流规格,以防止损坏设备。
同时,在测量之前也需要对测量电路进行合理的连
接和参数设置。
场效应管检测方法
场效应管检测方法一、用指针式万用表对场效应管进行(1)用测电阻法判别结型场效应管的电极根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。
具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。
当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。
因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。
也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。
当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。
若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。
若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。
(2)用测电阻法判别场效应管的好坏测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。
具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。
然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。
要注意,若两个栅极在管内断极,可用元件代换法进行检测。
(3)用感应信号输人法估测场效应管的放大能力具体方法:用万用表电阻的R×100档,红表笔接源极S,黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时表针指示出的漏源极间的电阻值。
场效应管的检测方法
场效应管的检测方法
嘿,大家知道不,场效应管这玩意儿在电子领域里可是很重要的角色呢!那咱今天就来聊聊怎么检测它。
记得有一次,我在摆弄一个电子小制作,突然发现有个地方不太对劲,怀疑是场效应管出了问题。
我就开始了我的检测之旅。
先来说说第一种方法,用万用表来测。
把万用表调到合适的挡位,然后去测它的引脚电阻啥的。
就像医生给病人看病,量量这儿,测测那儿,看看有没有啥不正常的。
要是电阻值不对,那可能就有问题啦。
还有一种方法呢,就是给它加个电压,看看它的反应。
就好像逗逗小猫小狗,看看它们会不会欢快地回应。
如果它没反应或者反应很奇怪,那可能就有毛病咯。
再就是可以通过观察它的外观,有没有损坏、烧焦的痕迹。
这就像我们看一个人脸上有没有伤疤一样明显。
要是有这些情况,那肯定不太正常呀。
总之,检测场效应管就像是给它做一次全面的体检,各种方法都用上,才能准确判断它是不是健康。
所以呀,咱可得好好掌握这些检测方法,不然电子设备出了问题都不知道咋解决呢!这不就是在说场效应管的检测方法嘛!哈哈!。
VMOS场效应管
VMOS场效应管VMOS场效应管(VMOSFET)简称VMOS管或功率场效应管,其全称为V 型槽MOS场效应管。
它是继MOSFET之后新发展起来的高效、功率开关器件。
它不仅继承了MOS场效应管输入阻抗高(≥108Ω)、驱动电流小(0.1μA 左右),还具有耐压高(最高可耐压1200V)、工作电流大(1.5A~100A)、输出功率高(1~250W)、跨导的线性好、开关速度快等优良特性。
正是由于它将电子管与功率晶体管之优点集于一身,因此在电压放大器(电压放大倍数可达数千倍)、功率放大器、开关电源和逆变器中正获得广泛应用。
众所周知,传统的MOS场效应管的栅极、源极和漏极大致处于同一水平面的芯片上,其工作电流基本上是沿水平方向流动。
VMOS管则不同,其两大结构特点:第一,金属栅极采用V型槽结构;第二,具有垂直导电性。
由于漏极是从芯片的背面引出,所以ID不是沿芯片水平流动,而是自重掺杂N+区(源极S)出发,经过P沟道流入轻掺杂N-漂移区,最后垂直向下到达漏极D。
因为流通截面积增大,所以能通过大电流。
由于在栅极与芯片之间有二氧化硅绝缘层,因此它仍属于绝缘栅型MOS场效应管。
VMOS场效应管的检测方法(1)判定栅极G将万用表拨至R×1k档分别测量三个管脚之间的电阻。
若发现某脚与其它两脚的电阻均呈无穷大,并且交换表笔后仍为无穷大,则证明此脚为G 极,因为它和另外两个管脚是绝缘的。
(2)判定源极S、漏极D在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极。
用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑笔的是S极,红笔接D极。
(3)测量漏-源通态电阻RDS(on)将G-S极短路,选择万用表的R×1档,黑表笔接S极,红表笔接D极,阻值应为几欧至十几欧。
由于测试条件不同,测出的RDS(on)值比手册中给出的典型值要高一些。
例如用500型万用表R×1档实测一只IRFPC50型VMOS管,RDS (on)=3.2W,大于0.58W(典型值)。
V-MOS简介
V-MOS简介一般场效应管虽然输入阻抗较高,但输出端带负载的能力很低;一般大功率晶体管虽然能输出较大的功率,但由于输入阻抗较低,输入端需有较大的推动电流才能工作,因此还要设较复杂的推动级。
本文向读者推荐的这种VMOS管是一种功率场效应管,兼有上述两种管子的优点,在设计线路时,可使线路大为简化。
另外这种管子还有许多其它独特的优点。
这是近年(指80年代)来才发展起来的一种新型器件。
VMOS功率场效应管又叫V型槽金属氧化物半导体场效应管,用英文缩写字母可写成“VMOS FET”。
有关这种管子的结构原理及特性,本刊在1985年第4期上已有专文述及(下次再转贴),这里不说了。
仅说说这种管子在应用方面的特点,并给出几种应用电路例子,供使用参考。
与普通大功率晶体管相比较,VMOS功率场效应管有如下一些优点:(1)VMOS管具有很高的输入阻抗(10的8次方欧姆左右),其输入端能直接与CMOS、TTL集成电路和其它高阻抗器件连接。
(2)VMOS管在工作时的输入电流甚微(0.1μA以下),一般认为只要输入端有电压就可以驱动,因此对驱动器件的功率要求很低,属电压控制器件。
如从电流角度看,VMOS 管的电流放大系数高达10的9 次方。
所以单个VMOS管经常可用来代替由两三只普通晶体管组成的达林顿管(复合管)(3)VMOS管是多数载流子器件,没有普通晶体管所固有的少子存储效应。
适于高频高速工作。
例如:VMOS智能在4毫微秒(ns)内开关1A的电流。
这比普通晶体管快了10~200倍。
(4)VMOS管具有负的电流温度系数,即栅源电压不变的情况下,导通电流会随温度的上升而下降(普通晶体管正相反),因而VMOS管不存在由于二次击穿所引起管子损坏的现象,使它特别适于做大功率器件。
下面介绍几个应用电路:1.电源:串联型稳压电源所用调整管的功率不能满足要求时,通常是用几只晶体管并联起来使用,如图1所示。
一般需选用相同参数的管子来并联,否则很容易因电流分配不匀,而集中流入某一管,致使该管损坏。
用万用表测量场效应管
用万用表测量(试)VMOS功率场效应管
1、判断引脚极性(电极)
万用表置R×1k档,分别测试三个电极间的阻值,如果其中—脚与另两脚间的电阻为无穷大,且交换表笔测试仍—样.说明这—脚为栅极G。
由图1(b)可以看出,源、漏极之间相当于一个PN结,测其正、反向电阻,以阻值较小(约几千欧)的那次为准,黑表笔接的是源极(P型)S,红表笔接的就是漏极(N型)D,对N沟道VMOS管判断相反。
一般VMOS 管曲面极D与外壳(或散热片)是连在一起的,这就是更容易区分漏、源两电极了。
图1VMOS功率场效应管外形及内部结构示意图
2、判断好坏
①万用去置R×1k档,先短路一下栅-源极,泄放掉栅极上感应的电荷,然后用黑表笔接S,红表笔接D,如测出的阻值在几千欧,再短接—下G、S后交换表笔测得阻值为无穷大,说明管子漏、源极间PN结是好的。
②用导线将G、S短路起来,万用表置R×1档,黑表笔接S,红表笔接D,如测得的阻值在几欧姆,说明管子是好的,并且阻值越小,还说明管子的放大能力越强。
其判断理由是:将G、S极短路并用黑表笔接源极S时,就相当于给栅极加上了正偏压,这个正电压产生的电场会把源极N+型和P沟道区内的电子吸附到氧化膜的表面,从而分离出大量的空穴参予导电,使电流剧增,电阻减小。
③万用表置R×10档,分别测量G-S、G-D极间的正反向电阻,如果都为无穷大,说明管于是好的,否则说明栅极与漏、源极间有漏电或者击穿损坏。
对于N沟道管交换表笔测试即可。
3、放大能力(跨导)的测量
VMOS管的放大能力(跨导)的测量可参考《绝缘栅场效应管的测量》一文中关于MOS 管放大能力的测试方法。
VMOS场效应管
VMOS场效应管 3、特性曲线及主要参数 注意其纵轴漏极电流iD的单位是安培,横轴漏-源极电压uDS也 较高,达100伏,因此有较大的功率。
除了耗散功率大以外, VMOS管的另一个特点是, 当漏极电流大于某个值(例 如 500mA ) 以 后 , iD 与 uDS 基本呈线性关系。N沟道 MOS管的特性曲线,其漏极 电流iD与漏-源极电压uDS的 关系是平方关系。
VMOS场效应管
2、工原理
与N沟道增强型MOS管的情况类似,在栅极-源极之间加正电 压,当这一电压UGS大于某一电压(称为开启电压UGS(th))时, 栅极带正电荷,排斥P区的空穴,并吸引电子,在P区靠近V 型槽氧化层表面的地方会形成反型层为VMOS管的导电沟道。 栅极电压通过导电沟道的调节控制漏极电流,于是就实现了栅 极电压对于漏极电流的控制。
VMOS管的主要参数有开启电压、漏源击穿电压、最大漏 极耗散功率等,其定义和前面介绍的MOS管一样。
模拟电子技术
模拟电子技术
VMOS场效应管 VMOS场效应管是垂直导电型功率场效应管的简称。VMOS 管既具有MOS结构的优点,又有很高的输出功率,其输出电 流可以达到几千安培,是当前应用十分广泛的功率场效应管 1之、一V。MOS管的结构
它以高掺杂的N+型硅衬底为漏极D。P型区和N+型区都是环 状的,所引出的电极为源极S。用酸腐蚀掉图中虚线划出的部 分,形成V型槽,在V型槽上生长一层绝缘层(SiO2层),再 覆盖一层金属,引出电极作为栅极G。
VMOS场效应管
VMOS管与N沟道增强型MOS管比较
VMOS管从原理上看,也是利用栅极的正电压形成电子组成 的反型层作为导电沟道,栅极电压通过导电沟道的调节控制漏 极电流,这和N沟道增强型MOS管相同 不同的是N沟道增强型MOS管的导电沟道沿着衬底的表面, 是很薄的一层,因此通过的电流比较小;VMOS管的导电沟 道沿垂直方向,能流过很大的电流,而且漏极从N+型衬底引 出,散热面积大,便于安装散热器,其耗散功率最大可以达到 几千瓦。
VMOS场效应管基础知识及检测方法
VMOS场效应管基础知识及检测方法VMOS(Vertical Metal-Oxide-Semiconductor Field-Effect Transistor,垂直金属-氧化物-半导体场效应晶体管)是一种特殊的场效应晶体管。
与传统的MOSFET(金属-氧化物-半导体场效应晶体管)相比,VMOS的结构更加紧凑,具有更高的功率密度和更低的开通电阻。
本文将介绍VMOS场效应管的基础知识和检测方法。
一、VMOS场效应管的基础知识1.结构与工作原理2.优点与应用3.特征参数二、VMOS场效应管的检测方法1.静态参数测量静态参数是指在没有交流信号作用下,对场效应管进行直流参数测量的过程。
-零门源电流(IDSS):将栅极与源极短接,通过漏极施加一定的电压,可以测量到的漏极电流即为零门源电流。
其值越大,场效应管的增益越高。
-零栅源电压漏极电流(IGSS):在零栅源电压下,测量出的漏极电流即为零栅源电压漏极电流。
其值越小,场效应管的绝缘性能越好。
-耗散功率(PD):在一定的漏源电压下,测量出的场效应管的耗散功率。
其值应小于最大耗散功率,以保证场效应管的安全工作。
-开通电阻和关断电阻:通过测量开通电压和电流,关断电压和电流,可以计算出场效应管的开通电阻和关断电阻。
开通电阻应尽可能小,关断电阻应尽可能大。
2.动态参数测量动态参数是指在有交流信号作用下,对场效应管进行参数测量的过程。
动态参数测量通常需要示波器等测试仪器,以下是几个常用的动态参数测量方法:-开通和关断时间:通过示波器观察开通时间和关断时间,可以评估场效应管的开关速度。
-频率响应:通过给场效应管施加一定频率的信号,测量输出的电压和电流,可以评估场效应管的频率响应能力。
-功率增益:通过测量输入和输出的电压和电流,可以计算功率增益,评估场效应管的放大能力和功率损耗。
总结起来,VMOS场效应管的检测方法包括静态参数测量和动态参数测量。
静态参数测量主要包括零门源电流、零栅源电压漏极电流、耗散功率以及开通电阻和关断电阻的测量。
VMOS场效应管基础知识及检测方法
VMOS场效应管基础知识及检测方法VMOS(Vertical Metal-Oxide-Semiconductor)场效应管是一种特殊类型的场效应管。
它具有垂直结构和金属-氧化物-半导体器件的特点。
本文将介绍VMOS场效应管的基础知识以及常见的检测方法。
1.VMOS场效应管的基础知识VMOS场效应管由垂直结构的N型沟道和PN结构的壳结构组成。
其结构可分为漏极、源极、栅极和底座四部分。
漏极和源极是栅极的两侧,其中沟道绝缘层上形成了沟道结构。
应用正向偏压时,沟道导通,电流流经漏极和源极;应用反向偏压时,沟道断开,电流无法流过。
VMOS场效应管的主要特点有以下几点:-较低的电流漏失:由于沟道呈直线结构,电流在沟道中流动的路径更短,从而减小了电流的漏失。
-高阻断电压:由于底座厚度的增加,VMOS场效应管能够承受更高的阻断电压。
-高速驱动特性:由于栅极距沟道较近,栅极控制能力强,提高了开关速度。
-低导通电阻:VMOS场效应管具有较低的导通电阻,减小了功率损耗。
2.VMOS场效应管的检测方法-观察外观:首先检查VMOS场效应管的外观,观察是否有焊点断裂、外壳破损等情况。
-测试管子是否短路:使用万用表的二极管测试功能,将正极接到栅极,负极接到漏极或源极,观察测试结果。
正常情况下,只有漏极和源极之间的电导很小,其他管子应该是正向断路的。
-测试管子是否导通:同样使用万用表的二极管测试功能,将正极接到栅极,负极接到漏极或源极。
正常情况下,只有当正负极交叉接到栅极和漏极(或源极)时,才会出现导通现象。
-测试漏极、源极和栅极之间的电阻:使用万用表的电阻测试功能,测量漏极和源极之间的电阻以及漏极和栅极之间的电阻。
正常情况下,漏极和源极之间的电阻应该为无穷大,漏极和栅极之间的电阻应该很大。
-漏极和源极之间的主极工作电流测试:可以使用数字万用表的电流测量功能,将正极接到漏极(或源极),负极接到源极(或漏极),通过测量电流来判断是否存在漏极和源极之间的短路。
测量MOS管好坏方法
一、用指针式万用表对场效应管进行判别(1)用测电阻法判别结型场效应管的电极根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。
具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。
当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。
因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。
也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。
当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。
若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。
若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。
(2)用测电阻法判别场效应管的好坏测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。
具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。
然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。
要注意,若两个栅极在管内断极,可用元件代换法进行检测。
(3)用感应信号输人法估测场效应管的放大能力具体方法:用万用表电阻的R×100档,红表笔接源极S,黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时表针指示出的漏源极间的电阻值。
VMOS场效应管的检测方法
VMOS场效应管的检测方法VMOS 场效应管(VMOSFET)简称VMOS 管或功率场效应管,其全称为V 型槽MOS 场效应管。
它是继MOSFET 之后新发展起来的高效、功率开关器件。
它不仅继承了MOS 场效应管输入阻抗高(≥108W)、驱动电流小(左右0.1μA左右),还具有耐压高(最高可耐压1200V)、工作电流大(1.5A~100A)、输出功率高(1~250W)、跨导的线性好、开关速度快等优良特性。
正是由于它将电子管与功率晶体管之优点集于一身,因此在电压放大器(电压放大倍数可达数千倍)、功率放大器、开关电源和逆变器中正获得广泛应用。
众所周知,传统的MOS 场效应管的栅极、源极和漏极大大致处于同一水平面的芯片上,其工作电流基本上是沿水平方向流动。
VMOS 管则不同,从左下图上可以看出其两大结构特点:第一,金属栅极采用V 型槽结构;第二,具有垂直导电性。
由于漏极是从芯片的背面引出,所以ID 不是沿芯片水平流动,而是自重掺杂N+区(源极S)出发,经过P 沟道流入轻掺杂N-漂移区,最后垂直向下到达漏极D。
电流方向如图中箭头所示,因为流通截面积增大,所以能通过大电流。
由于在栅极与芯片之间有二氧化硅绝缘层,因此它仍属于绝缘栅型MOS 场效应管。
国内生产VMOS 场效应管的主要厂家有877 厂、天津半导体器件四厂、杭州电子管厂等,典型产品有VN401、VN672、VMPT2 等。
表1 列出六种VMOS 管的主要参数。
其中,IRFPC50 的外型如右上图所示。
VMOS 场效应管的检测方法(1).判定栅极G将万用表拨至R×1k档分别测量三个管脚之间的电阻。
若发现某脚与其字两脚的电阻均呈无穷大,并且交换表笔后仍为无穷大,则证明此脚为G 极,因为它和另外两个管脚是绝。
vmos场效应管工作原理
VMOS场效应管工作原理1. 场效应管简介场效应管(Field Effect Transistor,简称FET)是一种常见的半导体器件,用于放大电信号或作为开关。
它具有高输入阻抗、低输出阻抗、低噪声和高频特性等优点,广泛应用于各种电子设备中。
场效应管主要包括三种类型:JFET(结型场效应管)、MOSFET(金属氧化物半导体场效应管)和IGBT(绝缘栅双极型晶体管)。
其中,VMOS(Vertical MOS)场效应管是一种常见的MOSFET管型。
2. VMOS场效应管结构VMOS场效应管的结构相对复杂,但其基本原理与其他MOSFET相似。
下面是VMOS 场效应管的结构示意图:_____________| || || || || ||_____________|| | || | || | ||______|______|| || || || || ||_____________|| | || | || | ||______|______|Source DrainVMOS场效应管的结构可以简单分为三个区域:沟道区、源极区和漏极区。
其中,沟道区是导电效应的主要发生区域。
3. VMOS场效应管工作原理VMOS场效应管的工作原理与其他MOSFET相似,主要是通过控制栅极电压来控制沟道中的电流。
以下是VMOS场效应管的工作原理的详细解释:1.没有栅极电压(截止区):当栅极电压为0V时,栅极和沟道之间没有电场,沟道中没有形成导电通道,导致漏极和源极之间没有电流流动。
此时,VMOS场效应管处于截止状态。
2.正向栅极电压(放大区):当给栅极施加正向电压时,栅极和沟道之间形成电场,电场越强,沟道中的电子越容易受到吸引,形成导电通道。
此时,漏极和源极之间开始有电流流动,且电流的大小与栅极电压成正比。
这种状态下,VMOS场效应管处于放大区。
3.超过临界电压(饱和区):当栅极电压进一步增加,超过了一定的临界电压(也称为阈值电压),沟道中的导电通道已经形成,不再受栅极电压的影响。
如何测试场效应管
如何测试场效应管1、结型场效应管的管脚识别:场效应管的栅极相当于晶体管的基极,源极和漏极分别对应于晶体管的发射极和集电极。
将万用表置于R×1K档,用两表笔分别测量每两个管脚间的正、反向电阻。
当某两个管脚间的正、反向电阻相等,均为数KΩ时,则这两个管脚为漏极D和源极S(可互换),余下的一个管脚即为栅极G。
对于有个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。
2、判定栅极用万用表黑表笔碰触管子的一个电极,红表笔分别碰触另外两个电极.若两次测出的阻值都很小,说明均是正向电阻,该管属于N沟道场效应管,黑表笔接的也是栅极。
制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以区分。
源极与漏极间的电阻约为几千欧。
注意不能用此法判定绝缘栅型场效应管的栅极。
因为这种管子的输入电阻极高,栅源间的极间电容又很小,测量时只要有少量的电荷,就可在极间电容上形成很高的电压,容易将管子损坏。
3、估测场效应管的放大能力将万用表拨到R×100档,红表笔接源极S,黑表笔接漏极D,相当于给场效应管加上1。
5V的电源电压.这时表针指示出的是D-S极间电阻值.然后用手指捏栅极G,将人体的感应电压作为输入信号加到栅极上.由于管子的放大作用,UDS 和ID都将发生变化,也相当于D-S极间电阻发生变化,可观察到表针有较大幅度的摆动。
如果手捏栅极时表针摆动很小,说明管子的放大能力较弱;若表针不动,说明管子已经损坏。
由于人体感应的0Hz交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同,因此用手捏栅极时表针可能向右摆动,也可能向左摆动。
少数的管子RDS减小,使表针向右摆动,多数管子的RDS增大,表针向左摆动。
无论表针的摆动方向如何,只要能有明显地摆动,就说明管子具有放大能力。
本方法也适用于测MOS管。
为了保护MOS场效应管,必须用手握住螺钉旋具绝缘柄,用金属杆去碰栅极,以防止人体感应电荷直接加到栅极上,将管子损坏.MOS管每次测量完毕,G—S结电容上会充有少量电荷,建立起电压UGS,再接着测时表针可能不动,此时将G-S极间短路一下即可。
用万用表判断场效应管方法
用万用表判断场效应管方法用万用表判断场效应管场效应管具有很多突出的确优点,在家用电器中得到广泛的应用。
首先,它具有极高的输入阻抗;其次,场效应管具有很多的类型,电源可正可负,增加了电路应用的灵活性;场效应管还有很强的抗辐射能力。
在日常的教学中,掌握场效应管的测量却是学生的难点,以下就来谈谈如何用万用表来检测场效应管。
场效应管主要有结型管和MOS管(金属一氧化物一半导体管)、VMOS管(V型槽MOS管)等。
一、结型场效应管的测量1、判定场效应管的电极先确定管子的栅极。
将万用表置于R×100档,黑表笔接管子的一个电极,红表笔依次碰触另外两个电极。
若两次测出的电阻值均很大,说明是P沟道管。
且黑表笔接的就是栅极。
若两次测出的阻值均很小,说明是N沟道管,且黑表笔接的就是栅极。
若不出现上述情况,可调换另一电极,按上述方法进行测量,直到判断出栅极为止。
一般结型场效应管的源极和漏极在制造工艺上是对称的,因此可互换使用,所以可以不再定栅极和漏极,源极和漏极间的电阻值正常时约为几千欧姆。
2、估测场效应管的放大能力,将表置于R×100档,黑笔接漏极D,红笔接源极S,这时指针指出的是漏极和源极间的电阻值。
用手捏住栅极G,表针应有较大幅度的摆动,摆幅越大,则管子的放大能力越强。
若表针摆动很小,则管自放大能力很弱。
若表针不动,说明管子已失去放大能力。
二、MOS场效应管的测量MOS场效应管,目前常用的多为双删型的结构,两个删极都能控制沟道电流的大小,靠近源极S的栅极G1是信号栅,靠近漏极D的栅极G2是控制栅,通常加AGC电压。
1、判定场效应管的电极将表置于R×100档,用红、黑表笔依次轮换测量各管脚间的电阻值,只有D和两极间的电阻值为几十至几千欧姆,其余各管脚间的阻值为无穷大。
当找到D和S极以后,再交换表笔测量这两个电极间的阻值,其被测阻值较大的一次测量中,黑表笔接的为D 极。
红表笔接的为S极。
场效应管检测方法与经验.
场效应管检测方法与经验、用指针式万用表对场效应管进行判别(1用测电阻法判别结型场效应管的电极根据场效应管的PN 结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。
具体方法:将万用表拨在R X lk档上,任选两个电极,分别测出其正、反向电阻值。
当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。
因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。
也可以将万用表的黑表笔(红表笔也行任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。
当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。
若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P 沟道场效应管,黑表笔接的也是栅极。
若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。
(2用测电阻法判别场效应管的好坏测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1 与栅极G2 之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。
具体方法:首先将万用表置于R X10或R X100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的,如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大可能是内部断极。
然后把万用表置于RXl0k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。
要注意,若两个栅极在管内断极,可用元件代换法进行检测。
(3用感应信号输人法估测场效应管的放大能力具体方法:用万用表电阻的R X100档,红表笔接源极S,黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时表针指示出的漏源极间的电阻值。
场效应管检测方法
场效应管检测方法一、用指针式万用表对场效应管进行判别(1)用测电阻法判别结型场效应管的电极根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。
具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。
当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。
因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。
也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。
当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。
若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。
若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。
(2)用测电阻法判别场效应管的好坏测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。
具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。
然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。
要注意,若两个栅极在管内断极,可用元件代换法进行检测。
(3)用感应信号输人法估测场效应管的放大能力具体方法:用万用表电阻的R×100档,红表笔接源极S,黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时表针指示出的漏源极间的电阻值。
场效应管实用知识及检测
3、直流输入电阻
直流输入电阻RGS是指在栅源间所加的电压UGS与栅极电流的比值。结型场效应管RGS 可达到几千兆欧姆的阻值,而绝缘场效应管的直流输入电阻 RGS可超过几千万兆欧姆的 阻值。
4、饱和漏电流
饱和漏电流是指在耗尽型场效应管中,当栅源间电压 UGS为0,漏源电压UDS足够大, 漏极电流的饱和值称为饱和漏电流。
场效应管的代换方法
场效应管凭借其功耗低、性能稳定、抗辐射能力强和制造工艺相对简单等优势, 在大规模和超大规模集成电路中被广泛应用。 选用场效应管之前要先了解场效应管和电路设计的相关参数,才能进行匹配。电 路中选用的场效应管不能超过场效应管的最大耗散功率、漏源击穿电压、栅源击穿电 压和最大漏源电流等参数的极限值。其他相关参数也应该符合相关要求,才可以选用。 代换场效应管时,要求选用相同类别,参数相同或相近的场效应管进行代换。 N沟 道场效应管要选用N沟道场效应管进行代换,P 沟道场效应管要选用P沟道场效应管进 行代换,两者不可以混淆,而且不仅要类型相同,在相关参数、引脚极性和外形等方 面也要做到相同或者相近,才可以进行代换。
8、最大漏源电流
最大漏源电流是指场效应管正常工作时,漏源间所允许通过的最大电流,因此这也是一个 极限参数,如果漏源间电流过大,场效应管会烧毁。
9、最大耗散功率
也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率。使用时,场 效应管实际功耗应小于PDSM并留有一定余量。 最大耗散功率是指场效应管在性能不衰减时所允许的最大漏源耗散功率,它是一个极限参数。其 UDS为600V,IG为6A,PDS为100W。
场效应管的主要性能参数
5、漏源击穿电压
漏源击穿电压是指栅源电压一定时,场效应管正常工作所能承受的最大漏源电压,这个电 压就称为漏源击穿电压。这是一项极限参数。
VMOS场效应管的参数型号检测及制作小功放电路
VMOS场效应管的参数型号检测及制作小功放电路VMOS场效应管的参数型号检测及制作小功放VMOS场效应管既有电子管的优点又有晶体管的优点,用它制作的功率放大器声音醇厚、甜美,动态范围大、频率响应好,因此近年来在音响设备中得到了广泛应用。
大功率的场效应管功率放大器,电.路比较复杂,制作和调试难度也较大,并且.成本也很高,所以不太适合初学者制作。
下面介绍的这款VMOS场效应管小功放,电路非常简单,制作调试也很容易,十分适合初学的爱好者。
只要所用元器件良好,电路·焊接正确,就可一举成功,并且音质也相当不错。
本机的缺点是输出功率略显小了一点(约3W~4W),但用作MP4/ target=_blank class=infotextkey>MP3、手机等数码音乐的播放还是非常适用的。
电路圈只画出一个声道,另一声道完全相同,电源部分共用。
一.电路简介电路见附图,输出级采用典型的单端甲类放大电路,由于在输人信号的全部范围内,甲类放大器都处于线性区,同时单端放大器不存在对称问题,所以非线性失真极小。
因为场效应管是电压控制器件,输出级所需要的推动功率较小,所以推动级也很简单,由一只结型场效应管担任。
功率输出端通过输出变压器耦台输出,音乐韵味和电子管功放相似。
二、场效应管的检测在业余条件下,爱好者可以用指针式万能表的电阻挡对管子作简单的测试,粗略判断管子的好坏。
BG1结型场效应管采用3DJ6、3DJ7等,测试时用RxlK或R×100Ω挡测量栅极与源极、栅极与漏极的正反向电阻,正向阻值都应在SkΩ—lOkΩ左右,反向阻值应无穷大。
测量源极与漏极电阻,正反向阻值应对称,当人手靠近栅极时,有感应现象,表针摆动;感应越大,说明跨导越大。
源极和漏极可以互换使用。
BG2VMOS场效应管采用V40AT、VN66AF、IRF132、2SK134等,当测量栅极与源极或者栅极与漏极之间的正反向电阻时,阻值均应无穷大,依此可先找到栅极。
场效应管(MOS管)的分类介绍与测量方法:
场效应管(MOS管)的分类介绍与测量方法:场效应管(MOS管)的分类介绍与测量方法:一、符号:“Q、VT” ,场效应管简称FET,是另一种半导体器件,是通过电压来控制输出电流的,是电压控制器件场效应管分三个极:D极为漏极(供电极)S极为源极(输出极)G极为栅极(控制极)D极和S极可互换使用二、场效应管的分类:场效应管按沟道分可分为N沟道和P沟道管(在符号图中可看到中间的箭头方向不一样)。
按材料分可分为结型管和绝缘栅型管,绝缘栅型又分为耗尽型和增强型,一般主板上大多是绝缘栅型管简称MOS管,并且大多采用增强型的N沟道,其次是增强型的P沟道,结型管和耗尽型管几乎不用。
三、效应管的特性:1、工作条件:D极要有供电,G极要有控制电压2、主板上的场管N沟道多,G极电压越高,S极输出电压越高3、主板上的场管G极电压达到12V时,DS完全导通,个别主板上5V导通4、场管的DS功能可互换N沟道场管的导通截止电压:导通条件:VG>VS,VGS=0.45--3V时,处于导通状态,且VGS越大,ID越大截止条件:VG<VS,ID没有电流或有很小的电流四、场效应管的作用:放大、调制、谐振、开关五、场效应管的测量及好坏判断1、测量极性及管型判断红笔接S、黑笔接D值为(300-800)为N沟道红笔接D、黑笔接S值为(300-800)为p沟道如果先没G、D再没S、D会长响,表笔放在G和最短脚相连放电,如果再长响为击穿贴片场管与三极管难以区分,先按三极管没,如果不是按场管测场管测量时,最好取下来测,在主板上测量会不准2、好坏判断测D、S两脚值为(300-800)为正常,如果显示“0”且长响,场管击穿;如果显示“1”,场管为开路软击穿(测量是好的,换到主板上是坏的),场管输出不受G极控制。
六、场效应管的代换原则(只适合主板)场管代换只需大小相同,分清N沟道P沟道即可功率大的可以代换功率小的板子上的场管最好原值代换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VMOS场效应管(VMOSFET)简称VMOS管或功率场效应管,其全称为V型槽MOS场效应管。
它是继MOSFET之后新发展起来的高效、功率开关器件。
它不仅继承了MOS场效应管输入阻抗高(≥108W)、驱动电流小(左右0.1μA左右),还具有耐压高(最高可耐压1200V)、工作电流大(1.5A~100A)、输出功率高(1~250W)、跨导的线性好、开关速度快等优良特性。
正是由于它将电子管与功率晶体管之优点集于一身,因此在电压放大器(电压放大倍数可达数千倍)、功率放大器、开关电源和逆变器中正获得广泛应用。
众所周知,传统的MOS场效应管的栅极、源极和漏极大大致处于同一水平面的芯片上,其工作电流基本上是沿水平方向流动。
VMOS管则不同,其两大结构特点:
第一,金属栅极采用V型槽结构;
第二,具有垂直导电性。
由于漏极是从芯片的背面引出,所以ID不是沿芯片水平流动,而是自重掺杂N+ 区(源极S)出发,经过P沟道流入轻掺杂N-漂移区,最后垂直向下到达漏极D。
下面介绍检测VMOS管的方法。
1.判定栅极G
将万用表拨至R×1k档分别测量三个管脚之间的电阻。
若发现某脚与其字两脚的电阻均呈无穷大,并且交换表笔后仍为无穷大,则证明此脚为G极,因为它和另外两个管脚是绝缘的。
2.判定源极S、漏极D
由图1可见,在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D 极。
用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是S极,红表笔接D极。
3.测量漏-源通态电阻RD S(on)
将G-S极短路,选择万用表的R×1档,黑表笔接S极,红表笔接D极,阻值应为几欧至十几欧。
由于测试条件不同,测出的RD S(on)值比手册中给出的典型值要高一些。
例如用500型万用表R×1档实测一只IRFPC50型VMOS管,RDS(on)=3.2W,大于0.58W(典型值)。
4.检查跨导
将万用表置于R×1k(或R×100)档,红表笔接S极,黑表笔接D极,手持螺丝刀去碰触栅极,表针应有明显偏转,偏转愈大,管子的跨导愈高。
注意事项:
(1)VMOS管亦分N沟道管与P沟道管,但绝大多数产品属于N沟道管。
对于P沟道管,测量时应交换表笔的位置。
(2)有少数VMOS管在G-S之间并有保护二极管,本检测方法中的1、2项不再适用。
(3)目前市场上还有一种VMOS管功率模块,专供交流电机调速器、逆变器使用。
例如美国IR公
司生产的IRFT001型模块,内部有N沟道、P沟道管各三只,构成三相桥式结构。
(4)现在市售VNF系列(N沟道)产品,是美国Supertex公司生产的超高频功率场效应管,其最高工作频率fp=120MHz,IDSM=1A,PDM=30W,共源小信号低频跨导gm=2000μS。
适用于高速开关电路和广播、通信设备中。
(5)使用VMOS管时必须加合适的散热器后。
以VNF306为例,该管子加装140×140×4(mm)的散热器后,最大功率才能达到30W。
(6)多管并联后,由于极间电容和分布电容相应增加,使放大器的高频特性变坏,通过反馈容易引起放大器的高频寄生振荡。
为此,并联复合管管子一般不超过4个,而且在每管基极或栅极上串接防寄生振荡电阻。