2019人教版 高中数学选修2-3 《1.2.1排列的概念》导学案

合集下载

人教高中数学 选修2-3 第一章 1.2.1排列(优质公开课教案)

人教高中数学 选修2-3 第一章 1.2.1排列(优质公开课教案)

人教高中数学选修2-3 第一章1.2.1排列(优质公开课教案)1.2.1排列上课班别:高二授课教师:教材:人教版选修2—3教学目标:1、知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。

2、过程与方法:能运用所学的排列知识,正确地解决的实际问题3、情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列数公式的理解与运用;排列应用题常用的方法有直接法,间接法教学难点:排列数公式的推导授课类型:新授课课时安排:1课时教具:多媒体内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.教学过程: 一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有nm 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法二、讲解新课:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

中任取 2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是ab,ac,ba,bc,ca, cb,共有 3×2=6 种.问题2.从1,2,3,4这 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?第 1 步,确定百位上的数字,在 1 , 2 , 3 , 4 这 4 个数字中任取 1 个,有 4 种方法;第 2 步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的 3 个数字中去取,有 3 种方法;第 3 步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的 2 个数字中去取,有 2 种方法.根据分步乘法计数原理,从 1 , 2 , 3 , 4 这4 个不同的数字中,每次取出 3 个数字,按“百”“十”“个”位的顺序排成一列,共有4×3×2=24种不同的排法,因而共可得到24个不同的三位数,如图1. 2一2 所示.由此可写出所有的三位数:123,124, 132, 134, 142, 143,213,214, 231, 234, 241, 243,312,314, 321, 324, 341, 342,412,413, 421, 423, 431, 432 。

高中数学人教A版选修(2-3)1.2.1《排列》教案

高中数学人教A版选修(2-3)1.2.1《排列》教案

§1.2.1排列教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。

过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列、排列数的概念 教学难点:排列数公式的推导 授课类型:新授课 课时安排:2课时 内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题. 只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n Nm m m =+++ 种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1、问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图1.2一1 所示.图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

高中数学高二理科选修2-3排列组合导学案

高中数学高二理科选修2-3排列组合导学案

《排列(1)》导学案【学习目标】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【重点难点】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【学法指导】(预习教材P14~ P18,找出疑惑的地方)温习1:交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必需有2个不重复的英文字母和4个不重复的阿拉伯数字,而且2个字母必需合成一组出现,4个数字也必需合成一组出现.那么这种办法共能给多少辆汽车上牌照?温习2:从甲,乙,丙3名同窗当选出2名参加一项活动,其中1名同窗参加上午的活动,另一名参加下午的活动,有多少种不同的选法?【教学进程】(一)导入探讨任务一:排列问题1:上面温习1,温习2中的问题,用分步计数原理解决显得繁琐,可否对这一类计数问题给出一种简捷的方式呢?新知1:排列的概念一般地,从n个元素中掏出m()个元素,依照必然的排成一排,叫做从个不同元素中掏出个元素的一个排列.试试:写出从4个不同元素中任取2个元素的所有排列.反思:排列问题有何特点?什么条件下是排列问题?探讨任务二:排列数及其排列数公式新知2 排列数的概念从个元素中掏出(nm≤)个元素的的个数,叫做从n个不同元素掏出m元素的排列数,用符合表示.试试:从4个不同元素a,b, c,d中任取2个,然后依照必然的顺序排成一列,共有多少种不同的排列方式?问题:⑴从n个不同元素中掏出2个元素的排列数是多少?⑵从n个不同元素中掏出3个元素的排列数是少?⑶从n个不同元素中掏出m(nm≤)个元素的排列数是多少?新知3 排列数公式从n个不同元素中掏出m(nm≤)个元素的排列数=mnA新知4 全排列从n个不同元素中掏出的一个排列,叫做n个元素的一个全排列,用公式表示为=nnA(二)深切学习例1计算:⑴410A ; ⑵ 218A ; ⑶ 441010A A ÷.变式:计算下列各式:⑴215A ; ⑵ 66A⑶ 28382AA -;⑷ 6688A A .例2若17161554mn A =⨯⨯⨯⨯⨯,则n = ,m = .变式:乘积(55)(56)(68)(69)n n n n ----用排列数符号表示 .(,n N ∈)例3 求证: 11--=m n m n nA A变式 求证: 7766778878A A A A =+-小结:排列数mn A 可以用阶乘表示为mn A =※ 动手试试练1. 填写下表:不同值的分数共有多少个?.【当堂检测 】1. 计算:=+243545A A ;2.. 计算:=+++44342414A A A A ;3. 某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场别离比赛1次,共进行 场比赛;4. 5人站成一排照相,共有 种不同的站法;5. 从1,2,3,4这4个数字中,每次掏出3个排成一个3位数,共可取得 个不同的三位数.1. 求证:11211--++=-n n n n n n A n A A2. 一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方式(假设每股道只能停放1列火车)?3.一部记录片在4个单位轮映,每一单位放映1场,有多少种轮映顺序? 【反思 】 1. 排列数的概念2. 排列数公式及其全排列公式《排列(2)》导学案【学习目标 】 1熟练掌握排列数公式;2. 能运用排列数公式解决一些简单的应用问题. 【重点难点 】1熟练掌握排列数公式;2. 能运用排列数公式解决一些简单的应用问题. 【学法指导 】(预习教材P 5~ P 10,找出疑惑的地方)温习1:.什么叫排列?排列的概念包括两个方面别离是 和 ;两个排列相同的条件是 相同, 也温习2:排列数公式:mn A = (,,m n N m n *∈≤)全排列数:nn A = = .温习3 从5个不同元素中任取2个元素的排列数是 ,全数掏出的排列数是【教学进程 】 (一)导入探讨任务一:排列数公式应用的条件 问题1:⑴ 从5本不同的书当选3本送给3名同窗,每人各1本,共有多少种不同的送法?⑵ 从5种不同的书中买3本送给3名同窗,每人各1本,共有多少种不同的送法?新知:排列数公式只能用在从n 个不同元素中掏出m 个元素的的排列数,对元素可能相同的情况不能利用.探讨任务二:解决排列问题的大体方式问题2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?新知:解排列问题时,当问题分成互斥各类时,按照加法原理,可用分类法;当问题考虑前后顺序时,按照乘法原理,可用位置法;这两种方式又称作直接法.当问题的反面简单明了时,可通过求差采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.(二)深切学习例1 (1)6男2女排成一排,2女相邻,有多少种不同的站法? (2)6男2女排成一排,2女不能相邻,有多少种不同的站法? (3)4男4女排成一排,同性者相邻,有多少种不同的站法? (4)4男4女排成一排,同性者不能相邻,有多少种不同的站法? 变式::某小组6个人排队照相留念.(1) 若排成一排照相,甲、乙两人必需在一路,有多少种不同的排法? (2) 若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(3) 若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法? (4) 若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?(5) 若分成两排照相,前排2人,后排4人,有多少种不同的排法?小结:对比较复杂的排列问题,应该仔细分析,选择正确的方式.例2 用0,1,2,3,4,5六个数字,能排成多少个知足条件的四位数.(1)没有重复数字的四位偶数?(2)比1325大的没有重复数字四位数?变式:用0,1,2,3,4,5,6七个数字,⑴能组成多少个没有重复数字的四位奇数?⑵能被5整除的没有重复数字四位数共有多少个?※动手试试练1.从4种蔬菜品种当选出3种,别离种植在不同土质的3块土地上进行实验,有多少种不同的种植方式?练2.在3000至8000之间有多少个无重复数字的奇数?【当堂检测】1. 某农场为了考察3个水稻品种和5个小麦品种的质量,要在土质相同的土地上进行实验,应该安排的实验区共有块.2. 某人要将4封不同的信投入3个信箱中,不同的投寄方式有种.3. 用1,2,3,4,5,6可组成比500000大、且没有重复数字的自然数的个数是.4. 现有4个男生和2个女生排成一排,两头不能排女生,共有种不同的方式.5. 在5天内安排3次不同的考试,若天天最多安排一次考试,则不同的排法有种.1..一个学生有20本不同的书.所有这些书能够以多少种不同的方式排在一个单层的书架上?2.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已肯定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?【反思】1. 正确选择是分类仍是分步的方式,分类要做到“不重不漏”,分步要做到“步骤完整.2..正确分清是不是为排列问题知足两个条件:从不同元素中掏出元素,然后排顺序.《组合(1)》导学案【学习目标】1.正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算;.【重点难点】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算; 【学法指导】(预习教材P 21~ P 23,找出疑惑的地方)温习1:什么叫排列?排列的概念包括两个方面,别离是 和 .温习2:排列数的概念:从 个不同元素中,任取 个元素的 排列的个数叫做从n 个元素中掏出m 元素的排列数,用符号 表示温习3:排列数公式:mn A = (,,m n N m n *∈≤)【教学进程 】 (一)导入探讨任务一:组合的概念问题:从甲,乙,丙3名同窗当选出2名去参加一项活动,有多少种不同的选法?新知:一般地,从 个 元素中掏出 ()m n ≤个元素 一组,叫做从n 个不同元素中掏出m 个元素的一个组合.试试:试写出集合{}a,b,c,d,e 的所有含有2个元素的子集.反思:组合与元素的顺序 关,两个相同的组合需要 个条件,是 ;排列与组合有何关系? 探讨任务二.组合数的概念:从n 个 元素中掏出m ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中掏出m 个元素的组合数....用符号 表示. 探讨任务三 组合数公式m n C = =咱们规定:=0nC (二)深切学习例1 甲、乙、丙、丁4个人,(1)从当选3个人组成一组,有多少种不同的方式?列出所有可能情况;(2)从中选3个人排成一排,有多少种不同的方式? 变式: 甲、乙、丙、丁4个足球队举行单循环赛: (1)列出所有各场比赛的两边; (2)列出所有冠亚军的可能情况.小结:排列不仅与元素有关,而且与元素的排列顺序有关,组合只与元素有关,与顺序无关,要正确区分排列与组合.例2 计算:(1)47C ; (2)710C变式:求证:11+⋅-+=m n m nC mn m C※ 动手试试练1.计算:⑴ 26C ; ⑵ 38C; ⑶ 2637C C -; ⑷ 253823C C -.练2. 已知平面内A ,B ,C ,D 这4个点中任何3个点都不在一条直线上,写出由其中每3点为极点的所有三角形.练3. 学校开设了6门任意选修课,要求每一个学生从当选学3门,共有多少种选法?【当堂检测 】1. 若8名学生每2人互通一次,共通 次.2. 设集合{}A a,b,c,d,e ,B A =⊂,已知a B ∈,且B 中含有3个元素,则集合B 有 个.3. 计算:310C = .4. 从2,3,5,7四个数字中任取两个不同的数相乘,有m 个不同的积;任取两个不同的数相除,有n 个不同的商,则m :n = .5.写出从a,b,c,d,e 中每次取3个元素且包括字母a ,不包括字母b 的所有组合 1.计算:⑴ 215C ; ⑵ 2836C C ÷;2. 圆上有10个点:⑴ 过每2个点画一条弦,一共可以画多少条弦?⑵ 过每3点画一个圆内接三角形,一共有多少个圆内接三角形? 、 【反思 】1. 正确理解组合和组合数的概念2.组合数公式: 或者:)!(!!m n m n C mn -=),,(n m N m n ≤∈*且《 组合(2)》导学案【学习目标 】1.2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【重点难点 】1.2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题;【学法指导 】 (预习教材P 24~ P 25,找出疑惑的地方)温习1:从 个 元素中掏出 ()m n ≤个元素 一组,叫做从n 个不同元素中掏出m 个元素的一个组合;从 个 元素中掏出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中掏出m 个元素的组合数....用符号 表示. 温习2: 组合数公式:mn C = =【教学进程 】 (一)导入探讨任务一:组合数的性质 问题1:高二(6)班有42个同窗⑴ 从中选出1名同窗参加学校篮球队有多少种选法? ⑵ 从当选出41名同窗不参加学校篮球队有多少种选法?⑶ 上面两个问题有何关系?新知1:组合数的性质1:mn n m n C C -=.一般地,从n 个不同元素中掏出m 个元素后,剩下n m -个元素.因为从n 个不同元素中掏出m 个元素的每一个组合,与剩下的nm 个元素的每一个组合一.一对应...,所以从n 个不同元素中掏出m 个元素的组合数,等于从这n 个元素中掏出n m 个元素的组合数,即:mn n m n C C -=试试:计算:1820C反思:⑴若y x =,必然有yn x n C C =?⑵若yn x n C C =,必然有y x =吗?问题2 从121,,,+n a a a 这n +1个不同元素中掏出m 个元素的组合数是 ,这些组合可以分为两类:一类含有元素1a ,一类是不含有1a .含有1a 的组合是从132,,,+n a a a 这 个元素中掏出 个元素与1a 组成的,共有 个;不含有1a 的组合是从132,,,+n a a a 这 个元素中掏出 个元素组成的,共有 个.从中你能取得什么结论?新知2 组合数性质2 m n C 1+=m n C +1-m n C(二)深切学习例1(1)计算:69584737C C C C +++; 变式1:计算2222345100C C C C ++++例2 求证:nm C 2+=nm C +12-n m C +2-n m C变式2:证明:111m m m n n n C C C ++++=小结:组合数的两个性质对化简和计算组合数顶用用途普遍,但在使历时要看清公式的形式.例3解不等式()321010n n-C n -<∈+C N .练3 :解不等式:46n nC C <※ 动手试试练1.若542216444x x C -C C C -=+,求x 的值练2. 解方程:(1)3213113-+=x x C C(2)333222101+-+-+=+x x x x x A C C 【当堂检测 】1. 908910099C -C =2. 若231212n n-C C =,则n =3.有3张参观券,要在5人中肯定3人去参观,不同方式的种数是 ;4. 若7781n n nCC C +=+,则n = ;5. 化简:9981m m m C -C C ++= .1. 计算:⑴ 197200C ; ⑵ 21-+•n n n n C C2. 壹圆,贰圆,伍圆,拾圆的人民币各1张,一共可以组成多少种币值?3. 若128n n C C =,求21n C 的值【反思 】1. 组合数的性质1:mn n m n C C -=2. 组合数性质2:mn C 1+=mn C +1-m nC《组合(3)》导学案【学习目标 】1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【重点难点 】1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题. 【学法指导 】(预习教材P 27~ P 28,找出疑惑的地方)温习1:⑴ 从 个 元素中掏出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中掏出m 个元素的组合数...,用符号 表示;从 个 元素中掏出 (n m ≤)个元素的 的个数,叫做从n 个不同元素掏出m 元素的排列数,用符合 表示.⑵ mn A =m n C = = m n A 与m n C 关系公式是温习2:组合数的性质1: . 组合数的性质2: . 【教学进程 】 (一)导入探讨任务一:排列组合的应用问题:一名教练的足球队共有17名低级学员,他们中以前没有一人参加过比赛.依照足球比赛规则,比赛时一个足球队的上场队员是11人.问:⑴这位教练从17位学员中可以形成多少种学员上场方案?⑵若是在选出11名上场队员时,还要肯定其中的守门员,那么教练员有多少种方式做这件事?新知:排列组合在实际运用中,可以同时利用,但要分清他们的利用条件:排列与元素的顺序有关,而组合只要选出元素即可,不要考虑元素的顺序.试试:⑴平面内有10个点,以其中每2个点为端点的线段共有多少条?⑵平面内有10个点,以其中每2个点为端点的有向线段多少条?反思:排列组合在一个问题中能同时利用吗?(二)深切学习例1 在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件.⑴有多少种不同的抽法?⑵抽出的3件中恰好有1件是次品的抽法有多少种?⑶抽出的3件中至少有1件是次品的抽法有多少种?变式:在200件产品中有2件次品,从中任取5件:⑴其中恰有2件次品的抽法有多少种?⑵其中恰有1件次品的抽法有多少种?⑶其中没有次品的抽法有多少种?⑷其中至少有1件次品的抽法有多少种?小结:对综合应用两个计数原理和组合知识问题,思路是:先分类,后分步 .例2 现有6本不同书,别离求下列分法种数:⑴分成三堆,一堆3本,一堆2本,一堆1本;⑵分给3个人,一人3本,一人2本,一人1本;⑶平均分成三堆.变式:6本不同的书全数送给5人,每人至少1本,有多少种不同的送书方式?例3 现有五种不同颜色要对如图中的四个部份进行着色,要求有公共边的两块不能用一种颜色,问共有几种不同的着色方式?变式:某同窗邀请10位同窗中的6位参加一项活动,其中两位同窗要么都请,要么都不请,共有多少种邀请方式?※动手试试练1. 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?练2. 高二(1)班共有35名同窗,其中男生20名,女生15名,今从中掏出3名同窗参加活动,(1)其中某一女生必需在内,不同的取法有多少种?(2)其中某一女生不能在内, 不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)最多有2名女生在内,不同的取法有多少种?【当堂检测】1. 凸五边形对角线有条;2. 以正方体的极点为极点作三棱锥,可得不同的三棱锥有个;3.要从5件不同的礼物当选出3件送给3个同窗,不同方式的种数是;4.有5名工人要在3天中各自选择1天休息,不同方式的种数是;5. 从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成没有重复数字的五位数?1. 在一次考试的选做题部份,要求在第1题的4个小题当选做3个小题,在第2题的3个小题当选做2个小题,在第3题的2个小题当选做1个小题.有多少种不同的选法?2. 从5名男生和4名女生当选出4人去参加辩论比赛.⑴若是4人中男生和女生各选2名,有多少种选法?⑵若是男生中的甲和女生中的乙必需在内,有多少种选法?⑶若是男生中的甲和女生中的乙至少有1人在内,有多少种选法?⑷若是4人中必需既有男生又有女生,有多少种选法?【反思】1. 正确区分排列组合问题2. 对综合问题,要“先分类,后分步”,对特别元素,应优先考虑.。

高二数学选修2-3导学案--排列

高二数学选修2-3导学案--排列

一、三维目标:知识与技能:了解排列和排列数的概念并应用其解决简单的排列问题;过程与方法:通过实例让学生理解排列的概念,能用列举法、树形图列出排列,并从列举过程中体会排列数与计数原理的关系,体会将实际问题归为计数问题的方法。

通过排列数公式的推导,体会从特殊到一般的思考问题的方法情感态度与价值观:通过学习,让学生知道能用计数原理推导排列数公式,并能解决实际问题,体会数学的力量,积发学习热情;同时培养有序、全面地思考问题的习惯。

二、学习重、难点:重点:理解排列的概念,能用列举法、树形图列出排列,从简单排列问题的计数过程中体会排列数公式。

难点:对排列要完成的“一件事”的理解,对“一定顺序”的理解。

三、学法指导:本节的学习主要应用两个计数原理,解题是要注意:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制。

四、知识链接:1.分类加法计数原理定义:2.分步乘法计数原理定义:五、学习过程:A问题1:从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?A问题2:从3个不同的元素 a , b ,c中任取 2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是什么?A问题3:从1,2,3,4这 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?用树型图排出,并写出所有的排列?A问题4:试归纳排列的概念?说明:排列的定义包括两个方面:①取出元素,②按一定的顺序排列;B 问题5:两个排列相同的条件? ① ②A 问题6:排列数的定义:注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m (m n ≤)个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数。

高中数学人教A版选修(2-3)1.2.1《排列》教案

高中数学人教A版选修(2-3)1.2.1《排列》教案

§1.2.1排列教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。

过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列、排列数的概念教学难点:排列数公式的推导授课类型:新授课课时安排:2课时内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题. 只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制二、讲解新课:1、问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图 1.2一1 所示.图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

人教版高中数学 选修2-3 1.2.1排列教案

人教版高中数学 选修2-3 1.2.1排列教案
课堂小结:排列与排列数
本课作业:课本P20 A组1,3
第二课时
情境设计:从1~9这九个数字中选出三个组成一个三位数,则这样的三位数的个数是多少?
新知教学:
排列数公式的应用:
例1、(1)某足球联赛共有12支队伍参加,每队都要与其他队在主、客场分别比赛一场,共要进行多少场比赛?
解:见书本18页例2
变式:(1)放假了,某宿舍的四名同学相约互发一封电子邮件,则他们共发了多少封电子邮件?
引出排列的定义
(1)在学中教,在学中悟
(2)通过例1的分析让学生明确什么是排列为后面的学习做好准备。
(3)例1的分析中可以让学生作一部分树形图
利用上例中的树形图或结合引入的实例分析排列的个数引出排列数定义。
1、重视排列数公式的等式证明
2、重视排列数公式的应用
复习排列数公式
(1)在学中教,在学中悟
(2)通过例1的分析让学生进一步理解排列数公式的应用。
(2)放假了,某宿舍的四名同学相约互通一次电话,共打了多少次电话?
例2、(1)从5本不同的书中选3本送给3名同学,每人1本,共有多少种不同的送法?
(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?
解:见书本18页例3
例3、用0到9这10个数字,可以组成多少个没有重复数字的三位数?
同理,数字1,2,3,4在十位及个位上时,都有18个数;
于是,所有这些数的和为:
24×(1+2+3+4)×1000+18×(1+2+3+4)×100+18×(1+2+3+4)×10+18×(1+2+3+4)=259980。

高二数学(人教A版)选修2-3导学案:1.2.1排列和排列数公式(无答案)

高二数学(人教A版)选修2-3导学案:1.2.1排列和排列数公式(无答案)

编号:gswhsxxx2--3--1-03文华高中高二数学选修2--3§1.2.1《排列与排列数公式》导学案学习目标1.记住排列及排列数公式2.区别“一个排列”与“排列数”3.能用“树形图”写出一个数列中所有的排列,并从例举过程中体会排列数与计数原理的关系。

学习重点排列的定义,排列数公式及其应用学习难点排列数公式的推导学习过程知识链接自主学习 阅读教材P14-P171.一般的,叫做从n 个不同元素中取出m 个元素的一个排列。

2.叫做从n 个不同元素中取出m 个元素的排列数,用符号 表示。

3.排列数公式A =mn ;4.全排列: 。

A =n n 。

【合作探究一】1.从甲、乙、丙3名同学中选出2名参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的方法?2.从a 、b 、c 、d 这四个字母中,取出3个按照顺序排成一列,共有多少种不同的挑法?【合作探究二】 排列数的定义及公式3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号 表示排列的定义中包含两个基本内容:一是“ ”;二是“ ”. “一定顺序”就是与 有关,这也是判断一个问题是不是 问题的重要标志.根据排列的定义,两个排列相同,当且仅当这两个排列的 完全相同,而且元素的 也完全相同.也就是说,如果两个排列所含的元素不完全一样,那么就可以肯定是不同的排列;如果两个排列所含的元素完全一样,但摆的顺序不同,那么也是不同的排列.4、排列数公式推导探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?mA n 呢? 2n A =3n A =······m A n =综上: )1()2)(1(+-⋯--=m n n n n A m n (,,m n N m n *∈≤)注:1.当m <n 时的排列叫做 ;当m=n 时的排列叫做 。

人教高中数学选修2-3第一章121排列(优质公开课教案)

人教高中数学选修2-3第一章121排列(优质公开课教案)

1.2.1排列上课班别:高二授课教师:教材:人教版选修2—3教学目标:1、知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。

2、过程与方法:能运用所学的排列知识,正确地解决的实际问题3、情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列数公式的理解与运用;排列应用题常用的方法有直接法,间接法教学难点:排列数公式的推导授课类型:新授课课时安排:1课时教具:多媒体内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题.只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n类办法中有种不同的方法那么完成这件事共有种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有种不同的方法二、讲解新课:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

【优选整合】高中数学人教A版 选修2-3 1.2.1 排列 学案

【优选整合】高中数学人教A版 选修2-3 1.2.1 排列 学案

1.2.1 排列------学案一、学习目标1.理解排列的相关概念(重点).2.会用排列的相关概念对生活中的问题做出分析和判断(难点).二、自主学习1.排列的相关概念(1)排列:一般地,从n 个不同元素中取出m (m ≤n )个元素,按照___________排成一列,叫作从n 个不同元素中取出m 个元素的一个排列.(2)排列数:从n 个不同元素中取出m (m ≤n )个元素的_______________________叫作从n 个不同元素中取出m 个元素的排列数,用符号______表示.2.排列数公式=___________________________(n ,m ∈N *,m ≤n )=________________________ 自主小测:1.思考判断(正确的打“√”,错误的打“×”). (1)a ,b ,c ,d 与a ,d ,b ,c 是不同的两个排列.( )(2)同一个排列中,同一个元素不能重复出现.( )(3)在一个排列中,若交换两个元素的位置,则该排列不发生变化.( )2.A ,B ,C 三名同学照相留念,成“一”字形排队,所有排列的方法种数为( )A .3种B .4种C .6种D .12种3.从n 个人中选出2个,分别从事两项不同的工作,若选派的种数为72,则n 的值为A .6B .8C .9D .12 ( )4.如果 =17×16×…×5×4,则n =______,m =________.三、合作交流,揭示规律[典例1] 判断下列问题是否是排列问题:(1)从2,3,5,7,11中任取两数相乘可得多少个不同的积?(2)从上面各数中任取两数相除,可得多少个不同的商?(3)某班共有50名同学,现要投票选举正副班长各一人,共有多少种可能的选举结果?(4)某商场有四个大门,若从一个门进去,购买商品后再从另一个门出 ,不同的出入方式共有多少种?[变式训练1] 判断下列问题是否是排列问题.(1)从2,3,5,7,9中任取两数作为对数的底数与真数,可得多少个不同的对数值?(2)空间有10个点,任何三点不共线,任何四点不共面,则这10个点共可组成多少个不同的四面体?(3)某班有10名三好学生,5名后进生,班委会决定选5名三好学生对5名后进生实行一帮一活动,共有多少种安排方式?(4)若从10名三好学生中选出5名和5名后进生组成一个学习小组,共有多少种安排方式?m nAmn A[典例2] 计算:变式训练2 计算:四、当堂检测1、8个人排成一排,共有多少种不同的排法?2、8个人排成两排 ,前后两排各4人共有多少种不同的排法?3、8个人排成两排,前排3人,后排5人,共有多少种不同的排法?4.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言(用数字作答).参考答案一、预习要点1、 (1)一定的顺序(2)所有不同排列的个数、2、n (n -1)(n -2)…(n -m +1)、n !(n -m )! 1、(1)√ (2)√ (3)×2、C 解析:所有的排法有:A -B -C ,A -C -B ,B -A -C ,B -C -A ,C -A -B ,C -B -A ,共6种.3、C 解析:由 =72,得 =72,解得n =9(舍去n =-8).4、17 14解析:易知n =17.又4=n -m +1=17-m +1=18-m , 所以m =14.二、探究案典例1解: (1)乘法符合交换律与顺序无关,不是排列问题.(2)上、下互换结果不一样,与顺序有关,是排列问题.(3)请同学们记住“正”的就是“正”的,正副不同,是排列问题.(4)“门”不同,先后也不一样,是排列问题.变式练习1解:(1)对数的底数与真数不同,所得的结果不同,是排列问题._________59694858=-+A A A A 316(1)A 66(2)A !57!7!8)3(⨯-22!(1)!(4)m m m m A ----m n A 2n A 2)1(-n n(2)四面体与四个顶点的顺序无关,不是排列问题.(3)选出的5名三好学生与5名后进生进行一帮一活动与顺序有关, 是排列问题.(4)选出的5名三好学生与5名后进生组成一个学习小组与顺序无关,不是排列问题.典例2 解: (2)72012345666=⨯⨯⨯⨯⨯=A=42 =122+-m m变式练习2解:原式=三、随堂检测1、解:由排列定义可知有 种排法。

高中数学 1.2.1 排列学案 新人教A版选修2-3(教师版)

高中数学 1.2.1  排列学案 新人教A版选修2-3(教师版)

1.2.1 排列学习目标:1、通过实例理解排列的概念,能用计数原理推导数列数公式;2、会用排列数公式解决简单的实际问题。

一、主要知识:1、排列的定义: 。

2、排列数: ; 排列数公式: 。

3、全排列: ;n 的阶乘: 。

二、典例分析:〖例1〗:计算:(1)325454A A +;(2)12344444A A A A +++;(3)66248108!A A A +-;(4)11(1)!()!n m m A m n ----。

〖变式训练1〗:(1)若17161554m n A =⨯⨯⨯⨯⨯,则n = ,m = 。

(2)若n N ∈,则(55)(56)(68)(69)n n n n ----用排列数符号表示 。

〖例2〗:(1)解方程:3322126x x x A A A +=+;(2)解不等式:2996x x A A ->。

(3)化简:①12312!3!4!!n n -++++;②11!22!33!!n n ⨯+⨯+⨯++⨯。

〖例3〗:(1)从2,3,5,7,11这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?〖例4〗:(1)7位同学站成一排,共有多少种不同的排法?(2)7位同学站成两排(前3后4),共有多少种不同的排法?(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?(6)7位同学站成一排,四名男生站在一起,三名女生站在一起,共有多少种不同的排法?(7)7位同学站成一排,甲、乙、丙不相邻的排法共有多少种?三、课后作业:1、18171698⨯⨯⨯⨯⨯=( )A 、818AB 、918AC 、1018AD 、1118A2、已知从n 个不同的元素中取出4个元素的排列数恰好等于232n n -⋅,则n 的可能值为( )A 、2B 、3C 、5D 、63、若12320091232009M A A A A =++++,则M 的个位数字是( ) A 、33 B 、0 C 、8 D 、54、用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )A 、8B 、24C 、48D 、1205、要排一个有5个独唱节目和3个舞蹈节目的节目单,要求舞蹈节目不在排头,并且任何两个舞蹈节目不连排,则不同的排法数为( )A 、3588A AB 、5353A AC 、5355A AD 、5358A A6、从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选择出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( )A 、24种B 、18种C 、12种D 、6种7、(1)方程3121263x x x A A A +-=的解是 ;(2)不等式2886x x A A -<的解集为 。

人教A版 高中数学 选修2-3 第一章 1.2.1 排列学案设计(无答案)

人教A版 高中数学 选修2-3 第一章 1.2.1 排列学案设计(无答案)

1.2.1排列(导学案)编写人: 校对:高二数学组 班级 姓名【学习目标】1. 通过实例,理解排列的概念,能利用计数原理推导排列数公式2. 解决简单的排列应用问题。

【知识清单】1.排列的定义:从n 个不同的元素中取出()m m n ≤个元素,按照一定 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。

注意:(1)相同排列两个排列相同,当且仅当两个排列的元素 ,且元素的 也相同。

(2)如何判断一个具体问题是否为排列问题① 首先保证元素的无重复性,既是从n 个不同的元素中取出()m m n ≤个不同的元素,否则不是排列问题;② 其次保证元素的有序性,即安排这m 个元素是有顺序的,有序的就是排列,无序的不是排列。

而检验它是否有顺序的依据是变换元素的位置,看结果是否发生变化,有变化则有序,否则无序。

2.排列数定义:从n 个不同的元素中取出()m m n ≤个元素的 的个数,叫做从n 个不同元素中取出m 个元素的排列数,用mn A 表示。

3. 排列数公式:m n A = = (,,n m N m n *∈≤)4. 全排列:n 个不同元素全部取出的 ,叫做n 个不同元素的一个全排列,即 (1)(2)321nn A n n n =--g g g L g g g = 。

规定0!= 。

5.解决排列问题常见的方法: 。

(1)直接法:以 为考察对象,先满足 的要求,再考虑 (又称元素分析法);或以 为考察对象,先满足 的要求,再考虑 (又称位置分析法)。

(2)间接法:先不考虑附加条件,计算出 ,再减去附加条件所包含的情况。

【典例精析】(品出知识,品出题型,品出方法)题型一:排列的概念例1:判断下列问题是否是排列问题:(1)从1、2、3、4、5中任取两个不同的数相减,可得多少不同结果?(2)从学号为1到10的十名学生中任取两名去学校开座谈会,有多少种选法?(3)平面上有5个点,其中任意三个点不共线,这5个点最多可确定多少条直线?多少条线段?多少条射线?(4)由数字1、2、3、4、5可组成多少个不同4位数字密码?(5)某班有50名同学,现要投票选出正、副班长各一人,共有多少不同的选举结果?题型二:排列数公式的应用 例2:解方程:(1)3221226x x x A A A +=+ (2)4321140x x A A += 例3:求证:11m m m n n n A A mA -+-= 题型三:无限制条件的排列问题 例4:某年全国足球中超联赛共有12个队参加,每对都要与其它各队在主客场分别比赛一次,共进行多少场比赛? 题型四:(排数问题)元素“在”与“不在”型排列问题 例5:用0、1、2、3、4、5这六个数 ①能组成多少个无重复数字的四位偶数? ②能组成多少个无重复数字且为5的倍数的五位数? ③能组成多少个个位数字不是5的六位数? ④能组成多少个比1325大的四位数? 方法总结: 题型五:(排队问题)元素“邻”与“不邻”型排列问题 例6:有5名男生,4名女生排成一排 ①从中选出3人排成一排,有多少种排法? ②若甲男生不在在排头,乙女生不站排尾,则有多少种不同的排法? ③要求女生必须站在一起,有多少不同的排法? ④若4名女生不相邻,有多少种不同的排法?方法总结: 【知能达标】(一天不练手脚慢,两天不练丢一半,三天不练门外汉,四天不练瞪眼看,等啥?快练!)1.2132n A =,则n= ( )A .11 B.12 C.13 D.以上都不对2. A 、B 、C 、D 四名同学站成一排照相,A 必站在两端的站法共有 种A .44AB .34AC .342AD .332A3. 5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( )A .33AB .334AC .523533A A A -D .2311323233A A A A A +4. 6人站成一排,甲、乙、丙三人必须站在一起的所有排列种数为 ( )A .66AB .333AC .3333A A g D .4!3!g5.有两排座位,前排11个座位,后排12个座位,现安排2人就坐,规定前排中间的3个座位不能坐,并且这两人不左右相邻,那么不同的排法种数是( )A. 234B. 346C. 350D. 3636.计算:5499651010A A A A +-= ; 3124n n n A A +++=7.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四数,这样的四位数有________个8.将红、黄、蓝、黑、白5种颜色的小球,放入红、黄、蓝、黑、白5种颜色的口袋中,若不允许有空口袋且红口袋中不能装入红球,则有 种不同的放法。

高中数学选修2-3导学案

高中数学选修2-3导学案

( 1)
例 4、用 4 种不同颜色给下图示的地图上色, 同的颜色, 共有多少种不同的涂法? 解:
要求相邻两块涂不
( 2)
( 3)
( 4)
三、学生反思总结 1. 分类计数与分步计数原理是两个最基本,也是最重要的原理,是解答排列、组合 问题,尤其是较复杂的排列、组合问题的基础 . 2.辨别运用分类计数原理还是分步计数原理的关键是 “ 分类 ” 还是 “ 分步 ” , 也就是说 “ 分类 ” 时,各类办法中的每一种方法都是独立的,都能直接完成这件事,而 “ 分步 ” 时,各步中 的方法是相关的,缺一不可,当且仅当做完个步骤时,才能完成这件事 . 四、当堂检测 课本 P10:练习 1—5 五、作业 课本 p12 习题 1.1 A 组 1 、 2、 3 题
六、教学反思
2
课后练习与提高
一、选择题 1.将 5 封信投入 3 个邮筒,不同的投பைடு நூலகம்共有( A. 种 B. 种 C. 种 ). D. 种 ).
2.将 4 个不同的小球放入 3 个不同的盒子,其中每个盒子都不空的放法共有( A. 种 B. 种 C . 18 种 D. 36 种
3.已知集合 , ,从两个集合中各取一个元素作为点的坐 标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是( ). A. 18 B. 10 C . 16 D . 14
n! ( n m 1)!
( B) n(n - 1)(n - 2) ,,
(n - m) ( C) (34 - n) 等于( ( D) A34
8 n
nAn n
m 1 m 1 ( D) A1 nA n 1
m 1
3.若 n ∈ N 且 n<20 ,则 (27 - n)(28 - n) ,, ( A) A27

高二数学选修2-3§1.2.1排列(一)导学案

高二数学选修2-3§1.2.1排列(一)导学案

§1.2.1排列(一)学习目标1、理解并掌握排列的概念;2、理解并掌握排列数公式,能应用排列知识解决简单的实际问题。

学习过程一、新课1、排列的定义一般地,从n 个不同元素中取出m (m ≤n )个元素,按照______________排成一排,叫做从n 个不同元素中取出m 个元素的一个排列。

思考:(1)排列的特征是什么? (2)相同的两个排列有什么特点?2、排列数的定义从_______个不同元素中取出______(m ≤n )个元素的______,叫做从n 个不同元素中取出m 个元素的排列数,用符号______表示。

思考:(1)排列与排列数的区别是什么? (2)m 和n 有什么限制条件?(3)能否由排列数定义得出2n A 的意义及值?3、排列数公式m n A =___________________________=______________4、全排列的概念:n 个不同元素_________取出的一个排列,叫做n 个元素的一个全排列,用公式表示为n n A =______________________,规定0=!____________ 练习1:计算(1)316A (2)66A (3)18131813A A ÷练习2:若17161554m n A =⨯⨯⨯⋅⋅⋅⨯⨯,则m =________,n =_____________题型一 排列的概念例1.判断下列问题是否为排列问题(1)从5名同学中选两人分别担任正、副组长;(2)从1,2,3三个数字中取出两个数相乘,求积的个数;(3)从1,2,3三个数字中取出两个数作商,求商的个数;(4)某商场有四个大门,若从一个门进去,购买物品后再从另一个门出来,不同的出入方式的 种数。

题型二 列举法解决排列问题例2.将A,B,C,D 四名同学按一定顺序排成一行,要求自左向右,且A 不排在第一,B 不排在第二,C 不排在第三,D 不排在第四,试写出所有不同的排法。

人教版选修2-3 1.2.1(1)排列导学案

人教版选修2-3  1.2.1(1)排列导学案

1.2.1《排列》(第1课时)导学案制作朱春梅审核高二数学组 2016-05-09【学习目标】理解并掌握排列的概念,能正确写出一些简单排列问题的所有排列.会推导排列数公式.能利用排列数公式进行求值和证明.【重点难点】排列的简单应用,能应用排列数公式求值和证明.排列概念的理解,排列数公式的推导.【预习导航】预习课本P14-P18.1.排列的概念是什么?2.排列数的概念,公式是什么?怎么得来的?3.排列与排列数有何区别?问题生成:一:排列问题探究一问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?问题3:上面两个问题有什么共同特征?可以用怎样的数学模型来刻画?排列的概念:概念辨析例1 下列问题中哪些是排列问题?(1)10名学生中抽2名学生开会(2)10名学生中选2名做正、副组长(3)从2,3,5,7,11中任取两个数相乘(4)从2,3,5,7,11中任取两个数相除(5)以圆上的10个点为端点作弦(6)以圆上的10个点中的某一点为起点,作过另一个点的射线(7)有10个车站,共需要多少种车票(8)有10个车站,共需要多少种不同的票价?例2从参加乒乓球团体比赛的5名运动员中选出3名进行某场比赛,并排定他们的出场顺序,有多少种不同的方法?二 排列数 排列数的概念:问题探究二:问题1:“排列”和“排列数”有什么区别和联系?问题2:探究一中你是怎样求出的排列数3423,A A ?若从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?mnA 呢?1. 排列数公式(1)m n A ==nnA例1 计算 38A 88A 410A例2解方程232100x x AA =2. 排列数公式(2)()!!m n n A mn-=规定:例3证明11-++=m nm n m n mA A A【课堂巩固练习】 1计算243545A A +44342414AA A A +++2.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地 上进行试验,有______种不同的种植方法?3.信号兵用3种不同颜色的旗子各一面,每次打出3面,最多能打出不同的信号有( )4.若45151617⨯⨯⨯⨯⨯= mnA 则m=_____ n=_____.【总结概括】 本节课你学到了什么?【课后作业】课本P27习题1.2 A 组1 ,3D.27种 C.6种 种 B.3 种1 . A。

人教B版高二数学选修2-3教案:1.2.1排列

人教B版高二数学选修2-3教案:1.2.1排列

教学目标:理解排列、排列数的概念,了解排列数公式的推导教学重点:理解排列、排列数的概念,了解排列数公式的推导教学过程:一、复习引入:1.分类计数原理:2,乘法原理:二、新课学习:1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定..的顺序...排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号m n A 只表示排列数,而不表示具体的排列3.排列数公式及其推导:求m n A 以按依次填m 个空位来考虑(1)(2)(1)m n A n n n n m =---+,排列数公式:(1)(2)(1)m n A n n n n m =---+=!()!n n m -(,,m n N m n *∈≤) 说明:(1)公式特征:第一个因数是n ,后面每一个因数比它前面一个少1,最后一个因数是1n m -+,共有m 个因数;(2)全排列:当n m =时即n 个不同元素全部取出的一个排列全排列数:(1)(2)21!n n A n n n n =--⋅=(叫做n 的阶乘)4、典例分析例1.计算:(1)316A ; (2)66A ; (3)46A .例2.(1)若17161554m n A =⨯⨯⨯⨯⨯,则n = ,m = .(2)若,n N ∈则(55)(56)(68)(69)n n n n ----用排列数符号表示 .例3.(1)从2,3,5,7,11这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?课堂小节:本节课学习了排列、排列数的概念,排列数公式的推导。

高二数学选修2-3§1.2.1排列(三)导学案

高二数学选修2-3§1.2.1排列(三)导学案

§1.2.1 排列(三)班级 姓名 使用时间:2014.4.24【温故知新】1.解决排列应用题常用方法有:(1) 位置分析法:以位置为主,特殊位置优先考虑.(2) 元素分析法:以元素为主,先满足特殊元素的要求,再处理其他元素.(3) 定序问题倍除法 (4)插空法 (5)捆绑法 (6)间接法2.练一练(1)6名学生排成两排,每排3人,则不同的排法种数为 .(2)从集合{}1,2,...,9M =中,任取两个元素作为,a b ①可以得到多少个焦点在x 轴上的椭圆方程22221x y a b +=?②可以得到多少个焦点在x 轴上的双曲线方程22221x y a b-=?其中属于排列问题的是 ,其结果为 .(3)有5名男生和3名女生,从中选出5人分别担任5个不同学科的科代表,若女生必须担任语文科代表,则不同的选法共有 种(用数字作答)【典型例题】一.特殊优先法1.(1)从4名短跑运动员中选出4人参加4100m ⨯接力赛,甲不能跑第一棒和第四棒,问共有多少种参赛方案?(2) 从6名短跑运动员中选出4人参加4100m ⨯接力赛,甲不能跑第一棒和第四棒,问共有多少种参赛方案?(3) 从4名短跑运动员中选出4人参加4100m ⨯接力赛,甲不能跑第一棒,乙不能跑第四棒,问共有多少种参赛方案?(4) 从6名短跑运动员中选出4人参加4100m ⨯接力赛,甲不能跑第一棒,乙不能跑第四棒,问共有多少种参赛方案?二.相邻问题“捆绑法”2.用1到8这八个数字组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,这样的八位数共有多少个?其中偶数有多少个?练习1:一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为.练习2: 5个人照相,甲必须站在乙的右边,有多少种排列方式?三. 不相邻问题“插空法”3.在1,2,3,4,5,6,7的任一排列中,相邻两数都互质的排列方式共有多少种?练习:我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有多少种?四.定序问题“倍除法”定序问题可以用“倍除法”:先把所有元素进行全排列,再除以固定顺序的元素的全排列4. (1)七人排队,其中甲乙丙3人顺序一定的排队方式有多少种?(2)7个人排队,其中ABC三人顺序一定,EF两人顺序一定,则共有多少种不同排法?(3)某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行、工程丙必须在工程乙完成后才能进行、工程丁必须在工程丙完成后进行。

高中数学选修2-3精品教案2:1.2.1 排列(1)教学设计

高中数学选修2-3精品教案2:1.2.1 排列(1)教学设计

排列(第1课时)教学目标 :1.理解排列、排列数概念,能正确写出符合条件的排列。

2.了解排列数公式的推导过程。

3.能较熟练运用排列数公式进行计算与证明.教学重点:理解排列、排列数概念及它们的区别,计算排列数。

教学难点:排列数公式的推导。

学法指导:要求学生结合生活中的实例,弄清排列的特点,感受排列的应用.课前温故知新:一、复习:两个计数原理问题(1):两个计数原理分别是什么?问题(2):两个计数原理各有什么特点?区别在哪?课前预习导学:二、问题情境观察与思考1. 高二(1)班准备从甲、乙、丙三名学生中选出2人分别担任班长和副班长,有多少种不同结果?2. 甲、乙、丙三名学生站队照相,有多少种不同的站法?问题(3):上述两个问题有何共同特征?请一一列举(用树形图表示)课堂学习研讨:三、建构数学问题(4):排列定义是什么?排列:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一.定的顺序....排成一列,叫做从个不同元素中取出个元素的一个排列..... 问题(5):排列概念应注意些什么?按一定的顺序排列(与位置有关)问题(6):分别列出“观察与思考”中两个问题的所有排列.问题(7):排列数定义是什么?排列数公式是怎样得来的?“排列”与“排列数”有何区别?排列数:从个不同元素中,任取()个元素的所有排列的个数叫做从个n m m n ≤n m n m m n ≤n元素中取出元素的排列数,用符号表示 “一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,是一件事;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数.符号m n A 只表示排列数,而不表示具体的排列.问题(8):说说排列数公式的特征,并加强记忆.(1)(2)(1)m n A n n n n m =---+公式特征:第一个因数是n ,后面每一个因数比它前面一个少1,最后一个因数是1n m -+,共有m 个因数.四、数学应用例1:(1)写出从d c b a ,,,这四个字母中,每次取出2个字母的所有排列;(2)写出从d c b a ,,,这四个字母中,每次取出3个字母的所有排列;思考:(1)你能写出从d c b a ,,,这四个字母中,每次取出1个字母的所有排列吗?(2) 你能写出从d c b a ,,,这四个字母中,每次取出4个字母的所有排列吗?例2:计算:(1)35A ;(2)55A ;(3)410A ;(4)435A .答案(1)60 (2)1 (3)5040 (4)1256640课堂巩固训练:1.由1,2,3可以组成没有重复数字的三位数的个数为6个2.若33210n n A A =,则n 等于83.求证:11-++=m n m n m n mA A A证明∵1m m n n A A +-=()()(1)!!1!!n n n m n m +-+-- =()!!n n m -·()(1)11n n m +-+-=()!!n n m -·()1m n m +- =m ·()!1!n n m +-=m 1m n A -, m mn A∴:1m m n n A A +-=m 1m nA -. 4.解不等式:2996.x x A A -> 解:原不等式即9!69!(9)!(92)!x x ⨯>--+,其中2≤x ≤9,且x ∈N *. 即(11-x )(10-x )>6,2211040x x -+>.∴(x -8)(x -13)>0.∴x <8或x >13,但2≤x ≤9,x ∈N *.∴2≤x <8,x ∈N *.故x =2,3,4,5,6,7.5.求和:.111212322++++n A A A 答案:1nn +1n n + [课后拓展延伸]1. 求和:(1)!.!33!22!11n n ⨯++⨯+⨯+⨯(2).)!1(!43!32!21+++++n n 课堂小结:1.排列的定义:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....2.排列数公式:(1)(1)(2)(1)m n A n n n n m =---+ (2))!(!m n n A m n -= 板书设计:(略)教学反思:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019人教版精品教学资料·高中选修数学
1.2.1 排列的概念
课前预习学案
一、预习目标
预习排列的定义和排列数公式,了解排列数公式的推导过程,能应用排列数公式计算、化简、求值。

二、预习内容
1.一般的, 叫做从n 个不同元素中取出m 个元素的一个排列。

2. 叫做从n 个不同元素中取出m 个元素的排列数,用符号 表示。

3.排列数公式A =m
n ;
4.全排列: 。

A =n n 。

课内探究学案
一、学习目标
1.了解排列、排列数的定义;掌握排列数公式及推导方法;
2. 能用“树形图”写出一个排列问题的所有的排列,并能运用排列数公式进行计算。

3.通过实例分析过程体验数学知识的形成和发展,总结数学规律,培养学习兴趣。

学习重难点:
教学重点:排列的定义、排列数公式及其应用
教学难点:排列数公式的推导
二、学习过程
合作探究一: 排列的定义
问题
(1)从红球、黄球、白球三个小球中任取两个,分别放入甲、乙盒子里
(2)从10名学生中选2名学生做正副班长;
(3)从10名学生中选2名学生干部;
上述问题中哪个是排列问题?为什么?
概念形成
1、元素: 。

2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....。

说明:(1)排列的定义包括两个方面:① ②按一定的 排列(与位置有关)
(2)两个排列相同的条件:①元素 ,②元素的排列 也相同 合作探究二 排列数的定义及公式
3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号 表示议一议:“排列”和“排列数”有什么区别和联系?
4、排列数公式推导
探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m
A n 呢?
)1()2)(1(+-⋯--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数;
(2),,m n N m n *∈≤
即学即练:
1.计算 (1)410A ; (2)25A ;(3)3355A A ÷
2.已知101095m A =⨯⨯⨯,那么m =
3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( )
A .5079k k A --
B .2979k A -
C .3079k A -
D .3050k A -
例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。

解析:(1)利用好树状图,确保不重不漏;(2)注意最后列举。

解:
变式训练:由数字1,2,3,4可以组成多少个没有重复数字的三位数?并写出所有的
排列。

5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的 。

此时在排列数公式中, m = n
全排列数:(1)(2)21!n n A n n n n =--⋅=(叫做n 的阶乘).
想一想:由前面联系中( 2 ) ( 3 )的结果我们看到,25A 和3355A A ÷有怎样的关系?
那么,这个结果有没有一般性呢?
排列数公式的另一种形式:
)!
(!m n n A m n -= 另外,我们规定 0! =1 .
想一想:排列数公式的两种不同形式,在应用中应该怎样选择?
例2.求证:m n m n m n A mA A 11+-=+.
解析:计算时,既要考虑排列数公式,又要考虑各排列数之间的关系;先化简,以减少运算量。

解:
点评:(1)熟记两个公式;(2)掌握两个公式的用途;(3)注意公式的逆用。

思考:你能用计数原理直接解释例2中的等式吗?(提示:可就所取的m 个元素分类,分含某个元素a 和不含元素a 两类)
变式训练:已知89557=-n
n n A A A ,求n 的值。

三、反思总结
1、 是排列的特征;
2、两个排列数公式的用途:乘积形式多用于 ,阶乘形式多用于 或 。

四、当堂检测
1.若!3!
n x =,则x = ( ) ()A 3n A ()B 3n n A - ()C 3n A ()D 33n A -
2.若532m m A A =,则m 的值为 ( )
()A 5 ()B 3 ()C 6 ()D 7
3. 已知256n A =,那么n = ;
4.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?
课后练习与提高
1.下列各式中与排列数m
n A 相等的是( ) (A )!(1)!
-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A -- 2.若 n ∈N 且 n<20,则(27-n)(28-n)……(34-n)等于( )
(A )827n A - (B )2734n n A -- (C )734n A - (D )834n A -
3.若S=123100123100A A A A ++++,则S 的个位数字是( )
(A )0 (B )3 (C )5 (D )8
4.已知2
5-n 2n A 6A =,则n= 。

5.计算=-+59
884
8
58A A A 7A 2 。

6.解不等式:2<42A A 1n 1
n 1
n 1
n ≤--++。

相关文档
最新文档