【优选整合】人教A版高二数学选修2-1 1.1.2四种命题1.1.3四种命题的相互关系 教案
人教A版高二数学选修2-1 1.1.2四种命题1.1.3四种命题的相互关系 课件
下 列 四 个 命 题 中 , 命 题 (1) 与 命 题 (2)(3)(4) 的 条 件 和 结 论 之 间 分 别 有 什 么 关 系?
(1)若f(x)是正弦函数,则f(x)是周期函数; (2)若f(x)是周期函数,则f(x)是正弦函数; (3)若f(x)不是正弦函数,则f(x)不是周期 函数; (4)若f(x)不是周期函数,则f(x)不是正弦 函数.
真
• 逆否命题:当c>0时,若ac≤bc ,则a≤b. 真
命题之间的真假性
原命题 逆命题 否命题 逆否命题
真真真 真 真假假 真 假真真 假 假假假 假
原命题为真,其 逆命题不一定为 真.
原命题为真,其 否命题不一定为 真.
原命题为真,其 逆否命题一定为 真.
互为逆否命题的 两个命题同真同 假.
• 例2 已知命题“若x2+y2=0,则x=y=0”. 写出它的逆命题、否命题、逆否命题, 并判断它们的真假. 解:原命题及其逆命题、否命题、 逆否命题均为真命题.
逆否命题:
若一个数的平方不是正数,则它不是负数.
(2)正方形的四条边相等.
• 原命题可以写成:若一个四边形是正方形, 则它的四条边相等.
逆命题:
若一个四边形的四条边相等,则它是正方形;
否命题:
若一个四边形不是正方形,则它的四条边不相等;
逆否命题:
若一个四边形的四条边不相等,则它不是正方形.
• 例2 写出命题“若xy=0,则x=0或y =0” 的逆命题、否命题、逆否命题.
它的逆否命题: 两直线不平行,同位角不相等.
1.请举出一些逆否命题的例子,并判断 原命题与逆否命题的真假.
2.如果原命题是真命题,那么它的逆否 命题一定是真命题吗?
人教版高中数学选修2-1(A版)课件:第一章 1.1 1.1.2四种命题 (共31张PPT)
高中数学人教A版选修2-1课件:1.1.21.1.3《四种命题间的相互关系》
即 原命题: 若p, 则q 逆否命题: 若┐q, 则┐p
例如,命题“同位角相等,两直线平行”的逆否命题是 “两直线不平行,同位角不相等”.
第九页,编辑于星期日:二十三点 二十九分。
三个概念
1.互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一
个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命 题叫做原命题,另一个叫做原命题的逆命题. 2.互否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命 题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题.如果 把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题.
讨四种命题的真假关系。
本节课内容较为简单,在教学中可以贯穿教学的连贯 性,同时多借助实例等激发学生学习的积极性。
第二页,编辑于星期日:二十三点 二十九分。
下面是一个关于毛驴的故事:
甲丢失一头跛腿毛驴,四处寻找,恰好看见乙牵着一头跛腿 毛驴经过,甲上前对乙说:“这是我的毛驴,请还给我.”乙说:
“这明明是我的毛驴,怎请么同会学是们你想的想呢这?三”个甲说命:“我的毛驴 是 跛“跛 了从腿 腿上的 ,述, 当两你然人牵是的我的毛的对驴.话”若中题呢没,之?有你间跛能有腿判什,断么就出样不毛的是驴关我的的系.主但人你是牵谁的吗毛?驴”
先从甲、乙的对话中提炼出如下三个命题: (1)甲的毛驴是跛腿的; (2)没有跛腿的毛驴不是甲的; (3)跛腿的毛驴是甲的.
第三页,编辑于星期日:二十三点 二十九分。
1 四种命题
目 标
2 四种命题的关系
3 四种命题的真假判断
第四页,编辑于星期日:二十三点 二十九分。
请将命题“正弦函数是周期函数”
改写成“若p,则q”的形式.
高中数学人教A版选修2-1【配套课件】第一章 1.1.2 &1.1.3 四种命题 四种命题间的相互关系
即已知 a,b,c∈R,若 a+b+c<1, 1 则 a,b,c 中至少有一个小于3.
1.写四种命题时,可以按下列步骤进行: (1)找出命题的条件 p 和结论 q; (2)写出条件 p 的否定綈 p 和结论 q 的否定綈 q; (3)按照四种命题的结构写出所有命题.
返回
2.四种命题的真假性
一般地,四种命题之间的真假性,有且仅有下面四种 情况: 原命题 真 真 假 逆命题 真 假 真 否命题 真 假 真 逆否命题 真 真 假
(1)逆命题:如果两条直线平行,那么这
两条直线垂直于同一个平面;假命题. 否命题:如果两条直线不垂直于同一平面,那么这两 条直线不平行;假命题. 逆否命题:如果两条直线不平行,那么这两条直线不 垂直于同一平面;真命题. (2)逆命题:若方程mx2-x+n=0有实数根,
则m· n<0;假命题.
否命题:若m· n≥0, 则方程mx2-x+n=0没有实数根;假命题. 逆否命题:若方程mx2-x+n=0没有实数根, 则m· n≥0;真命题.
是另一个命题的结论的否定和条件的否定.
返回
1.四种命题
栏目
内容 名称 对于两个命题,如果一个命题的条 原命题为 定义 表示形式
结论 和 ,那么这样的两个命题叫做 条件 互逆命题 .其中,一个命题叫做原 互逆命题 命题,另一个叫做原命题 逆命题 的 .
件和结论分别是另一个命题的
“若p,则 q”; 逆命
根”的逆否命题的真假. [思路点拨] 解答本题可以直接进行逻辑推理判断;可
以从逆否命题直接判断;也可以先判断原命题的真假,然后
利用等价命题的同真同假判断.
[精解详析] 法一:∵m>0,பைடு நூலகம்12m>0,∴12m+4>0.
高二数学人教A版选修2-1课件:1.1.2-1.1.3 四种命题、四种命题间的相互关系
12
写出命题“奇函数的图象关于原点对称”的逆命题、否命题和逆否命题. 提示:由于原命题不是以“若p,则q”的形式出现,因此首先应将命题“奇函数的图象关于原点对称”改写成“若 函数f(x)是奇函数,那么f(x)的图象关于原点对称”. 逆命题:若函数f(x)的图象关于原点对称,那么 f(x) 是奇函数; 否命题:若函数f(x)不是奇函数,那么f(x)的图象不关于原点对称; 逆否命题:若函数f(x)的图象不关于原点对称,那么f(x)不是奇函数.
其中真命题的个数是( )
A.0
B.1
C.2
D.3
答案:B 解析:①否命题是“若x+y≠0,则x,y不互为相反数”,是真命题. ②原命题为假命题,从而逆否命题为假命题. ③否命题为“若x>3,则x2-x-6≤0”,是假命题.
一二
知识精要典题例解源自迁移应用2.把命题“当x=2时,x2-3x+2=0”写成“若p,则 q” 的形式,写出它们的逆命题、否命题与逆否命题,并判断真假. 解:原命题:若x=2,则x2-3x+2=0. 逆命题:若x2-3x+2=0,则x=2,假命题. 否命题:若x≠2,则x2-3x+2≠0,假命题. 逆否命题:若x2-3x+2≠0,则x≠2,真命题.
∵p2+q2=12[(p-q)2+(p+q)2]≥12(p+q)2>12×22=2,∴p2+q2≠2. ∴原命题的逆否命题为真命题,从而原命题也为真命题.
一 二三四
知识精要
典题例解
迁移应用
一二
知识精要
典题例解
迁移应用
1.有下列三个命题: ①“若x+y=0,则x,y互为相反数”的否命题; ②“若a≥b,则a2≥b2”的逆否命题; ③“若x≤3,则x2-x-6>0”的否命题.
2017高中数学(人教A版选修2-1)课件1.1.2四种命题1.1.3四种命题间的相互关系
例3 证明:已知函数f(x)是R上的增函数,a,b∈R.若 f(a)+f(b)≥f(-a)+f(-b),则a+b≥0. 分析 该题直接证明比较困难,可考虑证明它的逆否命 题.
证明 原命题的逆否命题是:“若a+b<0,则f(a)+ f(b)<f(-a)+f(-b).”若a+b<0,则a<-b,b<-a,又∵f(x) 在R是增函数,∴f(a)<f(-b),f(b)<f(-a). ∴f(a)+f(b)<f(-a)+f(-b). 即逆否命题为真命题,故原命题为真命题.
解 (1)逆命题:若方程x2+2x+q=0有实根,则q<1, 假命题. 否命题:若q≥1,则方程x2+2x+q=0无实根,假命 题. 逆否命题:若方程x2+2x+q=0无实根,则q≥1,真命 题. (2)逆命题:若a=0或b=0,则ab=0,真命题. 否命题:若ab≠0,则a≠0,且b≠0,真命题. 逆否命题:若a≠0,且b≠0,则ab≠0,真命题.
第一章 常用逻辑用语
§1 .1
命题及其关系
1.1.2 四种命题 1.1.3 四种命题间的相互关系
自学导引
(学生用书P5)
1.了解命题的逆命题、否命题、逆否命题,能写出原命 题的其他三种命题. 2.能利用四种命题间的关系判断命题的真假.
课前热身
(学生用书P5)
1.一般地,对于两个命题,如果一个命题的条件和结论 分别是另一个命题的结论和条件,那么我们把这样的两个命 题叫做________,其中一个叫________,另一个叫原命题的 ________.
解 “x2≠y2⇔x≠y,或x≠-y”的逆否命题是:“x= y,且x=-y⇔x2=y2”. 当x=y,且x=-y⇒x2=y2但当x2=y2⇒/ x=y,且x=-y. 所以逆否命题是不正确的.故原命题不正确.
高中数学人教A版选修2-1课件:1-1-2-3 四种命题 四种命题间的相互关系
首页
课前预习案
课堂探究案
做一做3 命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆 否命题中,真命题的个数为( ) A.1 B.2 C.3 D.4 解析:由a>-3可得a>-6,但由a>-6得不出a>-3,故原命题及原命 题的逆否命题为真命题. 答案:B
首页
课前预习案
课堂探究案
思考辨析 判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打 “×”. (1)在四种命题中,只有原命题与否命题具有互否关系. ( × ) (2)互逆命题的真假性一定相反. ( × ) (3)在原命题及其逆命题、否命题、逆否命题中,假命题的个数一 定是偶数. ( √ ) (4)命题“若a>b,则a3>b3”的否命题是“若a<b,则a3<b3”. ( × )
首页
命题p:若x=y,则cos x=cos y,则命题p的逆命题 为 ;命题p的否命题 为 ;命题p的逆否命题 为 . 答案:若cos x=cos y,则x=y 若x≠y,则cos x≠cos y 若cos x≠cos y, 则x≠y
首页
课前预习案
课堂探究案
2.四种命题间的关系
首页 探究一 探究二 思想方法
课前预习案
课堂探究案
解: (1)逆命题 :若 tan α=√3,则 sin α= . 否命题:若 sin α≠ ,则 tan α≠√3. 逆否命题:若 tan α≠√3,则 sin
1 α≠ . 2 1 2
1 2
(2)逆命题:若两个三角形全等,则这两个三角形等底等高. 否命题:若两个三角形不等底或不等高,则这两个三角形不全等. 逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高. (3)逆命题:若x2-3x+2<0,则1<x<2. 否命题:若x≤1或x≥2,则x2-3x+2≥0. 逆否命题:若x2-3x+2≥0,则x≤1或x≥2. (4)逆命题:若a=0或b=0,则ab=0. 否命题:若ab≠0,则a≠0,且b≠0. 逆否命题:若a≠0,且b≠0,则ab≠0.
【人教A版】高中选修2-1数学:1.1.2-四种命题-教学课件
思考2
除了命题与逆命题之外,是否还有其它形式的命题? 答案 有.
梳理
名称
阐释
对于两个命题,如果一个命题的条件和结论分别是另一个命题 互逆 的 结论和条件,那么我们把这样的两个命题叫做互逆命题.其中
4.反证法与逆否证法的区别 (1)目的不同:反证法否定结论的目的是推出矛盾,而逆否证法否定结论 的目的是推出“綈p”(即否定条件); (2)本质不同:逆否证法实质是证明一个新命题(逆否命题)成立,而反证 法是把否定的结论作为新的条件连同原有的条件进行逻辑推理,直至推 出矛盾,பைடு நூலகம்而肯定原命题的结论.
反思与感悟
若原命题为真命题,则它的逆命题、否命题可能为真命题,也可能为假 命题. 原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.互为逆 否命题的两个命题的真假性相同. 在原命题及其逆命题、否命题、逆否命题中,真命题的个数要么是0, 要么是2,要么是4.
跟踪训练2 下列命题中为真命题的是 答案 解析
反思与感悟
由原命题写出其他三种命题的关键是找到原命题的条件和结论,根据其 他三种命题的定义,确定所写命题的条件和结论.
跟踪训练1 写出下列命题的逆命题、否命题、逆否命题. (1)实数的平方是非负数; 解答
逆命题:若一个数的平方是非负数,则这个数是实数. 否命题:若一个数不是实数,则它的平方不是非负数. 逆否命题:若一个数的平方不是非负数,则这个数不是实数.
类型三 反证法的应用
证明
反思与感悟
(1)求解此类含有“至少”“至多”等命题,常利用反证法来证明.用反 证法证明命题的一般步骤:①假设命题的结论不成立,即假设结论的反 面成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出 假设不正确,从而肯定命题的结论正确. (2)常见的一些词语和它们的否定词语对照如下:
高二数学 (新课标人教A版)选修2-1《1.1.2 四种命题》教案
1.1.2四种命题 1.1.3四种命题的相互关系学生探究过程:1.复习引入初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?2.思考、分析问题1:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?(1)若f(x)是正弦函数,则f(x)是周期函数.(2)若f(x)是周期函数,则f(x)是正弦函数.(3)若f(x)不是正弦函数,则f(x)不是周期函数.(4)若f(x)不是周期函数,则f(x)不是正弦函数.3.归纳总结问题一通过学生分析、讨论可以得到正确结论.紧接结合此例给出四个命题的概念,(1)和(2)这样的两个命题叫做互逆命题,(1)和(3)这样的两个命题叫做互否命题,(1)和(4)这样的两个命题叫做互为逆否命题。
4.抽象概括定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.让学生举一些互逆命题的例子。
定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题.让学生举一些互否命题的例子。
定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.让学生举一些互为逆否命题的例子。
小结:(1)交换原命题的条件和结论,所得的命题就是它的逆命题:(2)同时否定原命题的条件和结论,所得的命题就是它的否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题.强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。
5.四种命题的形式让学生结合所举例子,思考:若原命题为“若P,则q”的形式,则它的逆命题、否命题、逆否命题应分别写成什么形式?学生通过思考、分析、比较,总结如下:原命题:若P,则q.则:逆命题:若q,则P.否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示p的否定;即不是p;非p)逆否命题:若¬q,则¬P.6.巩固练习写出下列命题的逆命题、否命题、逆否命题并判断它们的真假:(1)若一个三角形的两条边相等,则这个三角形的两个角相等;(2)若一个整数的末位数字是0,则这个整数能被5整除;(3)若x2=1,则x=1;(4)若整数a是素数,则是a奇数。
2019-2020人教A版数学选修2-1 第1章 1.1.2 四种命题 1.1.3 四种命题间的相互关系
1.1.2四种命题1.1.3四种命题间的相互关系1.四种命题的概念及表示形式(1)四种命题之间的关系(2)四种命题间的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.1.命题“若一个数是负数,则它的相反数是正数”的逆命题是()A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]2.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是()A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.]3.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数B[原命题的条件是f(x)是奇函数,结论是f(-x)是奇函数,同时否定条件和结论即得否命题,即:若f(x)不是奇函数,则f(-x)不是奇函数.] 4.命题“若ab=0,则a=0”与命题“若a=0,则ab=0”是________命题.(填“互逆”“互否”“互为逆否”)互逆[两个命题的条件和结论交换了,满足互逆命题的概念.]否命题和逆否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解](1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.1.写出一个命题的逆命题,否命题,逆否命题的方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.2.写否命题时应注意一些否定词语,列表如下:1.(1)命题“若y=kx,则x与y成正比例关系”的否命题是()A.若y≠kx,则x与y成正比例关系B.若y≠kx,则x与y成反比例关系C.若x与y不成正比例关系,则y≠kxD.若y≠kx,则x与y不成正比例关系D[条件的否定为y≠kx,结论的否定为x与y不成正比例关系,故选D.](2)命题“若ab≠0,则a,b都不为零”的逆否命题是________.若a,b至少有一个为零,则ab=0[“ab≠0”的否定是“ab=0”,“a,b 都不为零”的否定是“a,b中至少有一个为零”,因此逆否命题为“若a,b至少有一个为零,则ab=0”.]它的逆命题、否命题、逆否命题,在这4个命题中,真命题的个数为() A.0个B.1个C.2个D.4个(2)判断命题“若a≥0,则x2+x-a=0有实根”的逆否命题的真假.思路探究:(1)只需判断原命题和逆命题的真假即可.(1)C[当c=0时,ac2>bc2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac2>bc2,则a>b”是真命题,从而其否命题也是真命题,故选C.](2)解:法一:原命题的逆否命题:若x2+x-a=0无实根,则a<0.∵x2+x-a=0无实根,∴Δ=1+4a<0,解得a<-14<0,∴原命题的逆否命题为真命题.法二:∵a≥0,∴4a≥0,∴对于方程x2+x-a=0,根的判别式Δ=1+4a>0,∴方程x2+x-a=0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.判断命题真假的方法(1)解决此类问题的关键是牢记四种命题的概念,正确地写出所涉及的命题,判定为真的命题需要简单的证明,判定为假的命题要举出反例加以验证.(2)原命题与它的逆否命题同真同假,原命题的否命题与它的逆命题同真同假,故二者只判断一个即可.2.判断下列四个命题的真假,并说明理由.(1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.[解](1)命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x+y=0,则x,y互为相反数”的否命题是真命题.(2)令x=1,y=-2,满足x>y,但x2<y2,所以“若x>y,则x2>y2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x>y,则x2>y2”的逆否命题也是假命题.(3)该命题的否命题为“若x>3,则x2-x-6≤0”,令x=4,满足x>3,但x2-x-6=6>0,不满足x2-x-6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?[提示]一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m2+n2=2,则m+n≤2”时,我们也可以证明哪个命题成立.[提示]根据一个命题与其逆否命题等价,我们也可以证明“若m+n>2,则m2+n2≠2”成立.【例3】(1)命题“对任意x∈R,ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.(2)证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.思路探究:(1)根据其逆否命题求解.(2)证明其逆否命题成立.(1)[-3,0][∵命题“对任意x∈R,ax2-2ax-3>0不成立”等价于“对任意x ∈R ,ax 2-2ax -3≤0恒成立”,若a =0,则-3≤0恒成立,∴a =0符合题意. 若a ≠0,由题意知⎩⎨⎧a <0,Δ=4a 2+12a ≤0,即⎩⎨⎧a <0,-3≤a ≤0, ∴-3≤a <0,综上知,a 的取值范围是[-3,0].](2)证明:原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b )”.若a +b <0,则a <-b ,b <-a .又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ), ∴f (a )+f (b )<f (-a )+f (-b ). 即原命题的逆否命题为真命题. ∴原命题为真命题.1.若一个命题的条件或结论含有否定词时,直接判断命题的真假较为困难,这时可以转化为判断它的逆否命题.2.当证明一个命题有困难时,可尝试证明其逆否命题成立.3.证明:若a 2-4b 2-2a +1≠0,则a ≠2b +1.[证明] “若a 2-4b 2-2a +1≠0,则a ≠2b +1”的逆否命题为“若a =2b +1,则a 2-4b 2-2a +1=0”.∵a =2b +1,∴a 2-4b 2-2a +1 =(2b +1)2-4b 2-2(2b +1)+1 =4b 2+1+4b -4b 2-4b -2+1=0.∴命题“若a =2b +1,则a 2-4b 2-2a +1=0”为真命题. 由原命题与逆否命题具有相同的真假性可知,原命题得证.1.“命题”的三个关注点(1)我们研究四种命题,一般只研究“若p,则q”形式的命题;有些命题虽然不是这种形式,但可以化为“若p,则q”的形式.(2)对“命题的逆命题、否命题与逆否命题”只要求作一般性的了解,定位在具体、简单的数学命题,重点是四种命题的构成形式及其真假判断.(3)四种命题是相对的,一个命题是什么命题不是固定不变的,但只要我们事先规定好哪个命题是原命题,那么它的其他形式的命题就确定了.2.“互逆命题”“互否命题”“互为逆否命题”与“逆命题”“否命题”“逆否命题”的区别两者具有不同的含义,具体区分如下:前者说的是两个命题的关系,同时涉及两个命题;后者是指与确定的原命题为“互逆”“互否”“互为逆否”关系的那一个命题.1.命题“若a A,则b∈B”的逆命题是()A.若a A,则b B B.若a∈A,则b BC.若b∈B,则a A D.若b B,则a AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.] 3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.1B.2C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.] 4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]。
人教A版高中数学选修2-1课件1.1.2、3四种命题及其相互关系
◎用“若p,则q”的形式写出(1)的原命题,(2)的否命题. (1)负数的平方是正数. (2)正方形的四条边相等. 【错解】 (1)原命题:若一个数是负数的平方,则这个数 是正数. (2)否命题:若一个四边形不是正方形,则它的四条边都不 相等.
写出下列命题的逆命题、否命题和逆否命题,并判断命 题的真假.
(1)若方程x2+2x+a=0有实根,则a<1; (2)若ab=0,则a=0或b=0; (3)若x2+y2=0,则x,y全为零.
在判断命题的真假性时,要充分利用原命题与逆否命 题、逆命题与否命题同真同假进行判断.
[解题过程] (1)原命题:若方程x2+2x+a=0有实根,则 a<1,假命题.
逆否命题
原命题为“若p,
则q”;逆否命
题为
“ ”
若綈p,
则綈q
2.四种命题之间的相互关系
3.四种命题的真假性 (1)四种命题的真假性,有且仅有下面四种情况.
原命题 真 真 假 假
逆命题 真 假 真 假
否命题 真 假 真 假
逆否命题 真 真 假 假
(2)四种命题的真假性之间的关系 ①两个命题互为逆否命题,它们有的相真同假性. ②两个命题为互逆命题或互否命题,它们的真假性.没有 关系
为了便于书写各种命题,当原命题不是“若p,则q”的形 式时,应先将命题写成规范形式“若p,则q”,然后再进行书 写.例如:写出命题“偶函数的图象关于y轴对称”的逆命题、 否命题、逆否命题.由于原命题不是以“若p,则q”的形式给 出,因此先把命题“偶函数的图象关于y轴对称”改写成“若函 数f(x)为偶函数,则f(x)的图象关于y轴对称”,则:
1.命题“若 p,则綈 q”的逆否命题是( )
A.若 p,则 q
高中数学人教A版选修2-1课件:1.1.2-1.1.3 四种命题 四种命题间的相互关系
题型三
题型四
【变式训练1】 写出下列命题的逆命题、否命题、逆否命题,并 判断其真假: (1)若a>b,则ac2>bc2; (2)若四边形的对角互补,则该四边形是圆的内接四边形. 分析:本题中(1)(2)均已具备“若p,则q”的形式,因此可直接写出它 们的逆命题、否命题、逆否命题,然后根据命题间的相互关系判断 其真假.
1.1.2 四种命题 1.1.3 四种命题间的相互关系
-1-
1.了解命题的逆命题、否命题与逆否命题. 2.会分析四种命题间的相互关系.
1.互为逆否的命题的真假性一致 剖析:原命题与它的逆否命题同真假,原命题的逆命题和否命题 互为逆否命题,也具有相同的真假性.因此,对于一些命题的真假判 断(或证明),我们可以借助与它同真假的(具有逆否关系的)命题来 判断(或证明). 2.用反证法证明命题的真假 剖析:(1)反证法是常用的数学证明方法之一,适用于下列情况下 的证明题:①证明唯一性、无数个等问题;②命题以否定形式出现 (如不存在,不相交等),并伴有“至少……”“不都……”“都不……”“没 有……”等指示性词语;③正难则反,即从正面解决不好入手或比较 麻烦,可以从问题的反面入手解决. (2)用反证法证明命题的一般步骤: ①假设:假设命题的结论不成立,即假设结论的反面成立; ②归谬:从这个假设出发,经过推理论证,得出矛盾; ③结论:由矛盾判断假设不正确,从而肯定命题的结论正确.
题型一
题型二
题型三
题型四
反思在写四种命题时,要先找出原命题的条件和结论,把结论作为 条件,条件作为结论就得到逆命题;否定条件作为条件,否定结论作 为结论就得到否命题;否命题的逆命题就为原命题的逆否命题.判 断四种命题的真假时,要注意利用其他知识判断命题的真假,需要 对其他知识熟练掌握.
【精编】人教A版高中数学选修2-1课件1.1.3四种命题的关系课件-精心整理
练圆的两条不是直径的相交弦不能互相平分。
已知:如图,在⊙O中,弦AB、CD交于P,且AB、 CD不是直径.求证:弦AB、CD不被P平分.
证明:假设弦AB、CD被P平分, ∵P点一定不是圆心O,连接OP, 根据垂径定理的推论,有 OP⊥AB,OP⊥CD 即过点P有两条直线与OP都垂直, 这与垂线性质矛盾, ∴弦AB、CD不被P平分。
(假)
否命题:若a≠0,则ab≠0。
(假)
逆否命题:若ab≠0,则a≠0。
(真)
3)原命题:若x∈A∪B,则x∈UA∪UB。 逆命题: x∈UA∪UB,x∈A∪B。 否命题: xA∪B,xUA∪UB。 逆否命题: xUA∪UB,xA∪B。
假
假
假 Help
假
2019/10/16
四种命题的真假,有且只有下面四种情况:
∴ p2 q2 2 .
得证
这表明原命题的逆否命题为真命题,从而原命 题也为真命题.
2019/10/16
变式练习
1、已知。p3求证q:3 2
p q 2.
解:假设p+q>2,那么q>2-p,
根据幂函数的y单 调x3性,得
q3 (2 p)3,
即 q3 8 12 p 6 p2 p3,
(1)若q<1,则方程有x实2 根 2。x q 0
(2)若ab=0,则a=0或b=0.
(3)若或m,则0 。 n 0 m n 0
(4)若,x 2则xy,y2全为0 零。
2019/10/16
总结
在直接证明某一个命题为真命题有困难 时,可以通过证明它的逆否命题为真命题,来 间接证明原命题为真命题.
即反证法就是通过否定命题的结论而导出 矛盾来达到肯定命题的结论,完成命题的 论证的一种数学证明方法。
人教A版高中数学选修2-1课后习题 1.1.2~1.1.3 四种命题 四种命题间的相互关系
第一章常用逻辑用语课后篇巩固提升基础巩固A.若a n ≠2n -1,则数列{a n }不是等差数列B.若数列{a n }不是等差数列,则a n ≠2n -1C.若a n =2n-1,则数列{a n }不是等差数列D.若数列{a n }是等差数列,则a n ≠2n -1A.若sin x<12,则x<π6B.若x≥π6,则sin x≥12C.若x<π6,则sin x<12D.若sin x≤12,则x≤π6A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.能被6整除的整数,一定不能被3整除A.0B.1C.2D.3{a n}中没有为零的项,则数列{a n}为等比数列.ABC中,若∠C≠90°,则∠A,∠B不都是锐角x≠0或y≠0,x,y∈R,则x2+y2≠010.已知p3+q3=2,求证:p+q≤2.p+q>2,则q>2-p,根据幂函数y=x3的单调性,得q3>(2-p)3,即q3>8-12p+6p2-p3,]≥2,p3+q3>8-12p+6p2=6[(p-1)2+13故p3+q3>2.因此p3+q3≠2.这与题设p3+q3=2矛盾,从而假设不成立.故p+q≤2成立.能力提升A.0B.1C.2D.38.求证:若a2+2ab+b2+2a+2b-3≠0,则a+b≠1.因为a+b=1,所以a2+2ab+b2+2a+2b-3=(a+b)2+2(a+b)-3=12+2-3=0.。
高二数学优质课件精选人教A版选修2-1课件1.1.3四种命题与四种命题间的相互关系
逆否命题:若一个数的平方不是非负数,则这个 数不是实数.真命题.
(2)逆命题:若两个三角形全等,则这两个三角形 等底等高.真命题.
否命题:若两个三角形不等底或不等高,则这两 个三角形不全等.真命题.
逆否命题:若两个三角形不全等,则这两个三角 形不等底或不等高.假命题.
答案:若sinα≠sinβ,则α≠β
5.把命题“当x=2时,x2-3x+2=0”写成“若p, 则q”的形式,并写出它的逆命题、否命题与逆否命题, 并判断它们的真假.
解:原命题:若x=2,则x2-3x+2=0,真命题. 逆命题:若x2-3x+2=0,则x=2,假命题. 否命题:若x≠2,则x2-3x+2≠0,假命题. 逆否命题:若x2-3x+2≠0,则x≠2,真命题.
方法 2:先判断原命题的真假. 因为 a,x 为实数,且关于 x 的不等式 x2+(2a+ 1)x+a2+2≤0 的解集非空. 所以 Δ=(2a+1)2-4(a2+2)≥0,即 4a-7≥0, 解得 a≥74.因为 a≥74,所以 a≥1, 所以原命题为真. 又因为原命题与其逆否命题等价, 所以逆否命题为真.
逆否命题 真 真 假 假
思考感悟 四种命题中真命题的个数可能为多少? 提示:由于互为逆否关系的命题同真同假,真 命题可能有 0 个,2 个或 4 个.
尝试应用
1.若x>y,则x2>y2的否命题是( ) A.若x≤y,则x2>y2 B.若x>y, 则x2<y2 C.若x≤y,则x2≤y2 D.若x<y, 则x2<y2 答案:C
方法 3:利用集合的包含关系求解. 命题 p:关于 x 的不等式 x2+(2a+1)x+a2+2≤0 有非空解集. 命题 q:a≥1. 所以 p:A={a|关于 x 的不等式 x2+(2a+1)x+ a2+2≤0 有实数解}={a|(2a+1)2-4(a2+2)≥0}= {a|a≥74}.
高中数学人教A版选修2-11.1.2 四种命题.docx
1.1.2四种命题1.1.3四种命题间的相互关系双基达标(限时20分钟)1.命题“若a∉A,则b∈B”的否命题是().A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉A解析注意“∈”与“∉”互为否定形式.答案 B2.命题“若A∩B=A,则A∪B=B”的逆否命题是().A.若A∪B=B,则A∩B=AB.若A∩B≠A,则A∪B≠BC.若A∪B≠B,则A∩B≠AD.若A∪B≠B,则A∩B=A解析注意“A∩B=A”的否定是“A∩B≠A”.答案 C3.命题“对于正数a,若a>1,则lg a>0”及其逆命题、否命题、逆否命题四种命题中真命题的个数为().A.0 B.1 C.2 D.4解析原命题“对于正数a,若a>1,则lg a>0”是真命题;逆命题“对于正数a,若lg a>0,则a>1”是真命题;否命题“对于正数a,若a≤1,则lg a≤0”是真命题;逆否命题“对于正数a,若lg a≤0,则a≤1.”是真命题.答案 D4.“若x、y全为零,则xy=0”的否命题为__________.解析由于“全为零”的否定为“不全为零”,所以“若x、y全为零,则xy=0”的否命题为“若x、y不全为零,则xy≠0”.答案若x、y不全为零,则xy≠05.命题“当AB=AC时,△ABC是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有______个.解析原命题为真命题,逆命题“当△ABC是等腰三角形时,AB=AC”为假命题,否命题“当AB≠AC时,△ABC不是等腰三角形”为假命题,逆否命题“当△ABC不是等腰三角形时,AB≠AC”为真命题.答案 26.将命题“正数a的平方大于零”改写成“若p,则q”的形式,并写出它的逆命题、否命题与逆否命题.解原命题可以写成:若a是正数,则a的平方大于零;逆命题:若a的平方大于零,则a是正数;否命题:若a不是正数,则a的平方不大于零;逆否命题:若a的平方不大于零,则a不是正数.综合提高(限时25分钟)7.命题“若a>b,则ac2>bc2(a,b,c∈R)”与它的逆命题、否命题、逆否命题中,真命题的个数为().A.0 B.2 C.3 D.4解析原命题“若a>b,则ac2>bc2(a,b,c∈R)”为假命题,逆命题“若ac2>bc2,则a>b(a,b,c∈R)”为真命题,否命题“若a≤b,则ac2≤bc2,(a,b,c∈R)”为真命题,逆否命题“若ac2≤bc2,则a≤b(a,b,c∈R)”为假命题.答案 B8.若命题p的否命题是q,命题q的逆命题是r,则r是p的逆命题的().A.原命题B.逆命题C.否命题D.逆否命题解析设命题p为“若k,则s”;则其否命题q是“若綈k,则綈s”;则命题q的逆命题r是“若綈s,则綈k”,而p的逆命题为“若s,则k”,故r是p的逆命题的否命题.答案 C9.命题“正数的绝对值等于它本身”的逆命题是________.解析 将命题“正数的绝对值等于它本身”改写为“若一个数是正数,则其绝对值等于 它本身”,所以逆命题是“若一个数的绝对值等于它本身,则这个数是正数”,即“绝 对值等于它本身的数是正数”.答案 绝对值等于它本身的数是正数10.已知原命题“两个无理数的积仍是无理数”,则:(1)逆命题是“乘积为无理数的两数都是无理数”;(2)否命题是“两个不都是无理数的积也不是无理数”;(3)逆否命题是“乘积不是无理数的两个数都不是无理数”;其中所有正确叙述的序号是________.解析 原命题的逆命题、否命题叙述正确.逆否命题应为“乘积不是无理数的两个数不 都是无理数”.答案 (1)(2)11.给出两个命题:命题甲:关于x 的不等式x 2+(a -1)x +a 2≤0的解集为∅;命题乙:函数y =(2a 2-a )x 为增函数.(1)甲、乙至少有一个是真命题;(2)甲、乙有且只有一个是真命题;分别求出符合(1)(2)的实数a 的取值范围.解 甲为真时,Δ=(a -1)2-4a 2<0,即A =⎩⎨⎧a ⎪⎪⎭⎬⎫a >13或a <-1; 乙为真时,2a 2-a >1即B =⎩⎨⎧a ⎪⎪⎭⎬⎫a >1或a <-12; (1)甲、乙至少有一个真命题时,应取A ,B 两集合的并集,这时的a 的取值范围是⎩⎨⎧a ⎪⎪⎭⎬⎫a >13或a <-12. (2)甲、乙有且只有一个真命题时,有两种情况:当甲真乙假时,13<a ≤1;当甲假乙真时, -1≤a <-12,所以甲、乙中有且只有一个真命题时,a 的取值范围为 ⎩⎨⎧a ⎪⎪⎭⎬⎫13<a ≤1或-1≤a <-12. 12.(创新拓展)求证:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.证明 法一 原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b )”.若a +b <0,则a <-b ,b <-a ,又∵f(x)是(-∞,+∞)上的增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题,∴原命题为真命题.法二假设a+b<0,则a<-b,b<-a,又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b),这与已知f(a)+f(b)≥f(-a)+f(-b)相矛盾,因此假设不成立,故a+b≥0.。
人教A版高中数学选修2-1课件1.1.2-1.1.3四种命题及相互关系
灿若寒星整理制作
一、复习引入
问题:请将命题“正弦函数是周期
函数”改写成“若”p,的则形q式。
若f (x)是正弦函数,则f (x)是周期函数.
条件
结论
命题:
(1)若f (x)是正弦函数,则f (x)是周期函数. (2)若f (x)是周期函数,则f (x)是正弦函数. (3)若f (x)不是正弦函数,则f (x)不是周期函数. (4)若f (x)不是周期函数,则f (x)不是正弦函数.
原命题:若p, 则q
逆命题:若q, 则p
例如:命题“平面内同位角相等,两 直线平行”的逆命题是 平面内两直线平行,同位角相等。
原命题与其逆命 题的真假是否存
在相关性呢?
探究1:如果原命题是真命题,那么它的逆命题 一定是真命题吗? 例1.平面内同位角相等,两直线平行。(真命题) 逆命题:平面内两直线平行,同位角相等。(真命题)
逆否命题:若m n 0,则m 0且n 0.假
(2)命题“若则a至bc少有0,一个a为,b0, c”的否
命题是:
若abc 0, 则a,b, c全不为0.
例1写出命题“若a=0,则ab=0”的逆命题、否命题 与逆否命题,并判断它们的真假.
原命题真
逆命题:若ab=0,则a=0.
假
否命题:若a≠0,则ab≠0.
思考:上面四个命题中,命题(1)
与命题(2)(3)(4)的条件和 结论之间分别有什么关系?
二、新课讲解
((1)一若)f (逆x)命是题正弦函数,则f (x)是周期函数. 一般地,对于两个命题,如果一个命题 的条件和结论分别是另一个命题的结论 和条件,那么我们把这样的两个命题叫 (2做)若互f逆(x命)是题周。期其函中数一,个则命f (题x)是叫正做弦原函命数题., 另一个叫做原命题的逆命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.2四种命题 1.1.3四种命题的相互关系
(一)教学目标
知识与技能:了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假.
过程与方法:多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.
情感、态度与价值观:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.
(二)教学重点与难点
重点:(1)会写四种命题并会判断命题的真假;
(2)四种命题之间的相互关系.
难点:(1)命题的否定与否命题的区别;
(2)写出原命题的逆命题、否命题和逆否命题;
(3)分析四种命题之间相互的关系并判断命题的真假.
(三)教学过程
1.复习引入
初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?
2.思考、分析
问题1:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?
(1)若f(x)是正弦函数,则f(x)是周期函数.
(2)若f(x)是周期函数,则f(x)是正弦函数.
(3)若f(x)不是正弦函数,则f(x)不是周期函数.
(4)若f(x)不是周期函数,则f(x)不是正弦函数.
3.归纳总结
问题一通过学生分析、讨论可以得到正确结论.紧接结合此例给出四个命题的概念,(1)和(2)这样的两个命题叫做互逆命题,(1)和(3)这样的两个命题叫做互否命题,(1)和(4)这样的两个命题叫做互为逆否命题。
4.抽象概括
定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.
让学生举一些互逆命题的例子。
定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题.
让学生举一些互否命题的例子。
定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.
让学生举一些互为逆否命题的例子。
小结:
(1)交换原命题的条件和结论,所得的命题就是它的逆命题:
(2)同时否定原命题的条件和结论,所得的命题就是它的否命题;
(3)交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题.
强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。
4.四种命题的形式
让学生结合所举例子,思考:
若原命题为“若P,则q”的形式,则它的逆命题、否命题、逆否命题应分别写成什么形式?学生通过思考、分析、比较,总结如下:
原命题:若P,则q.则:
逆命题:若q,则P.
否命题:若¬P,则¬q.
(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示p的否定;即不是p;非
p)
逆否命题:若¬q,则¬P.
5.练习巩固
写出下列命题的逆命题、否命题、逆否命题并判断它们的真假:
(1)若一个三角形的两条边相等,则这个三角形的两个角相等;
(2)若一个整数的末位数字是0,则这个整数能被5整除;
(3)若x2=1,则x=1;
(4)若整数a是素数,则是a奇数。
6.思考、分析
结合以上练习思考:原命题的真假与其它三种命题的真假有什么关系?
通过此问,学生将发现:
①原命题为真,它的逆命题不一定为真。
②原命题为真,它的否命题不一定为真。
③原命题为真,它的逆否命题一定为真。
原命题为假时类似。
结合以上练习完成下列表格:
由表格学生可以发现:原命题与逆否命题总是具有相同的真假性,逆命题与否命题也总是具有相同的真假性.
由此会引起我们的思考:
一个命题的逆命题、否命题与逆否命题之间是否还存在着一定的关系呢?
让学生结合所做练习分析原命题与它的逆命题、否命题与逆否命题四种命题间的关系.
学生通过分析,将发现四种命题间的关系如下图所示:
7.总结归纳
若P,则q.若q,则P.。