混合策略纳什均衡
混合策略纳什均衡
02
混合策略纳什均衡的基本理论
纳什均衡的定义与性质
纳什均衡的定义
在博弈中,如果每个玩家都采取自己的最优策略,那么整个博弈会达到一种均 衡状态,即所有参与者的利益达到最大化。
纳什均衡的性质
纳什均衡是一种自我稳定的状态,即使受到外部干扰,也会迅速恢复到原始状 态。此外,纳什均衡也是最优的,因为它使得每个参与者的利益都达到最大化 。
其次,现有的研究往往只关注特定的博弈模型, 对于更一般化的博弈模型,尤其是对于连续型博 弈和多阶段博弈的研究还比较缺乏。
首先,混合策略纳什均衡的概念和性质仍需进一 步深化和研究。例如,对于非完全信息博弈,如 何准确地刻画混合策略纳什均衡点的数量和分布 等问题仍需探索。
最后,现有的研究主要集中在理论层面,对于如 何将混合策略纳什均衡应用到实际问题中,如何 设计和制定有效的混合策略等问题还需要进一步 探讨。
未来研究方向与挑战
未来研究可以进一步拓展混合策略纳什均衡的应用领域,例如在经济学、政治学、社会学等领域的应 用。
另外,针对现有的研究不足,未来研究可以深入探索混合策略纳什均衡的性质和计算方法,以及如何设 计和制定有效的混合策略等问题。
此外,未来的研究还可以进一步拓展混合策略纳什均衡的理论框架,例如在多阶段博弈、不完全信息博 弈、非线性博弈等领域的研究。
略纳什均衡来分析。
在生物学领域的应用
在生物学中,混合策略纳什均衡可以用来研究生物种 群的进化稳定性和生态平衡。
在生态系统中,生物种群可以通过选择不同的繁殖、 迁徙、捕食等策略来适应环境变化,这种博弈关系可 以通过混合策略纳什均衡来分析。
在其他领域的应用
在社会学中,混合策略纳什均衡可以用来研究社会群 体中的合作与竞争关系。
博弈论-混合策略纳什均衡
政治学的案例分析
总结词:国际关系
详细描述:在国际关系中,混合策略纳什均衡可以用来解释 国家之间的竞争和合作。例如,两个国家可能会以一定的概 率选择不同的外交政策,例如结盟、中立或对抗,以达到各 自的利益最大化。
生物学的案例分析
总结词
捕食者-猎物博弈
详细描述
在生物学中,混合策略纳什均衡可以用来解释捕食者与猎物之间的博弈。例如,捕食者 可能会采用追逐和放弃两种策略来捕猎猎物,而猎物也可能会采用逃跑和装死两种策略 来避免被捕食。最终,捕食者和猎物都以一定的概率随机选择不同的策略,以达到均衡
非合作博弈论
研究个体如何在不知道其 他个体如何行动的情况下 做出最优决策。
博弈论的基本概念
参与者
参与博弈的决策主体, 可以是个人、组织或国
家。
行动
参与者根据给定的信息 所做出的决策。
信息
参与者在进行决策时所 拥有的数据、情报或知
识。
策略
参与者为达到最优结果 而采取的一系列行动的
方案。
博弈论的应用场景
状态。
生物学的案例分析
总结词:繁殖竞争
VS
详细描述:在生物种群中,不同个体 之间会存在繁殖竞争。为了最大化自 己的遗传贡献,个体可能会采用不同 的交配策略,例如追求高繁殖成功率 的策略或避免过度竞争的策略。混合 策略纳什均衡可以用来描述这种竞争 状态下的交配行为。
THANKS FOR WATCHING
繁殖博弈
在繁殖博弈中,生物个体通过选择不同的繁殖和竞争策略来繁衍后代。混合策略纳什均衡可以用来分 析繁殖过程的均衡结果,解释生物多样性的形成机制。
05 混合策略纳什均衡的案例 分析
经济学的案例分析
博弈论混合策略纳什均衡名词解释
博弈论混合策略纳什均衡名词解释博弈论混合策略纳什均衡是指在博弈论中,当参与者不能确定选
择某一个策略时,采取混合策略的情况下达到的均衡状态。
具体来说,混合策略是指在一个博弈中,参与者以一定的概率选
择不同的纯策略。
而纳什均衡是指在一个博弈中,参与者无法通过单
独改变自己的选择来获得更好的结果,即不存在任何参与者可以通过
改变自己的策略来让其他参与者不再选择当前策略。
混合策略纳什均衡是指游戏中所有参与者以一定的概率选择不同
的纯策略,并且这种概率分配对于所有参与者都是最优的。
也就是说,在混合策略纳什均衡下,参与者没有更好的选择可供其采取,而其他
参与者也没有更好的概率分配可供其选择。
拓展:
在博弈论中,还有许多其他类型的均衡概念,例如纯策略纳什均衡、帕累托均衡、部分均衡等等。
纯策略纳什均衡是指游戏中参与者
以确定性的纯策略进行选择,使得没有参与者可以通过改变其策略来
获得更好的结果。
帕累托均衡是指在一个博弈中,不存在可以改善任
何一个参与者的情况。
部分均衡是指只有某些参与者达到均衡状态,而其他参与者未达到均衡状态。
博弈论是研究决策制定者在相互影响下进行决策的数学工具。
通过分析不同的博弈策略和可能的结果,博弈论可以帮助我们理解冲突和合作的情况,并提供一些决策建议。
第三讲_混合策略纳什均衡
混合策略
◆混合策略定义:在n人博弈的策略式表述 G S1, , Sn ; u1, , un Si Si1, , SiK ,那么,概率 中,假定参与人 i 有K个纯策略: 分布 pi pi1 , , piK 称为 i 的一个混合策略,这里
pik p(sik ) 是 i 选择 sik 的概率,对于所有
这个故事曾经被很多人当作博弈论的例 子来演绎,但实际上这个故事与博弈论无关。 博弈论会假定所有局中人都是理性的,不能假 定一些局中人聪明而另一些局中人却是傻子。 当田忌出下马时,齐威王最好的选择是出下马 而不是上马。孙膑的计谋中假定齐威王是傻子 ,当田忌出下、上、中马时,他仍然按上、中 、下马出,当然要输了。事实上,当田忌出下 马时,齐威王应出下马,但齐威王出下马时, 田忌不应出下马而是出中马,但此时齐威王又 应出中马而不是下马了,……。这样,博弈不 会有纯战略的均衡。
-2,3
2,2
假定老板选择混合战略(0.2,0.8) 工人选择“偷懒”期望支付为(-1)×0.2+3×0.8=2.2 工人选择“不偷懒”(期望)支付为2×0.2+2×0.8=2 工人应选择“偷懒” 老板选择“监督” “不偷懒’……
假定老板选择混合战略(0.5, 0.5) 工人选择“偷懒”期望支付 0.5 为 (-1)×0.5+3×0.5=1 工人选择“不偷懒”期望支 0.5 付为2×0.5+2×0.5=2 工人应选择“不偷懒” 老板选择“不监督” 工人选择“偷懒’……
由 VA =VB 可得 :q=0.8 博弈方2:
VB =3q (1 q)
博 弈 方 1
A B
VC =3 p (1 p)
VD =2 p 5(1 p)
混合策略纳什均衡
博弈论 第三章 混合策略纳什均衡
r*=R(q)
反应对应曲线
第二节 混合策略纳什均衡的求解方法
二、反应对应法
例:扑克牌对色游戏(p77)
再看乙的最优反应,记为q*=R(r): 观察π乙(p甲, p乙)= 2q(2r-1)-(2r-1)
若r 1 / 2 2r 1 0, q越大越好 1, q* R( r ) [0,1], 若r 1 / 2 2r 1 0,无论q选什么都无影响 0, 若r 1 / 2 2r 1 0, q越小越好
博弈论 第三章 混合策略纳什均衡
第二节 混合策略纳什均衡的求解方法
二、反应对应法
例:扑克牌对色游戏(p77)
先看甲的最优反应,记为r*=R(q): 观察π甲(p甲, p乙)= 2r(1-2q)+(2q-1)
若q 1 / 2 1 2q 0, r越小越好 0, r* R( q) [0,1], 若q 1 / 2 1 2q 0,无论r选什么都无影响 1, 若q 1 / 2 1 2q 0, r越大越好
解:Max π甲(p甲, p乙) r Max π乙(p甲, p乙) q
f.o.c. 2r-1=0
r*=1/2
混合策略纳什均衡是甲在策略空间{红,黑}上以概率分布 p甲*= (1/2,1/2)进行选择,乙也在策略空间{红,黑}上以概率p乙*= (1/2,1/2)进行选择
博弈论 第三章 混合策略纳什均衡
第二节 混合策略纳什均衡的求解方法
二、支付最大化法
例:扑克牌对色游戏(p77)
无纯策略NE 给定混合策略p甲=(r,1-r); p乙=(q,1-q) π甲(p甲, p乙)=r[q(-1)+(1-q) 1]+ (1-r)[q1+(1-q)(-1)] = 2r(1-2q)+(2q-1) π乙(p甲, p乙)=q [r1+(1-r)(-1)]+ (1-q)[r(-1)+(1-r)1] =2q(2r-1)-(2r-1) f.o.c. 1-2q=0 q*=1/2
博弈论---混合战略纳什均衡
义为:
n
vi ( i , i ) ( j (s j ))ui (s) sS j1
n个参与人的混合战略纳什均衡
让我们以两人博弈为例说明这一点。假定S1 (s11, , s1K ) ,
即参S2与人(s12有1 ,K 个, s2纯J )战略,参与人2有J个纯战略。若参与人1相
1k
2 j u1 ( s1k , s2 j )
1k 2 j u1 ( s1k , s2 j )
K 1
j 1
K 1 j1
这里,1k 2 j 是参与人1选择 s1k 且参与人2选择 s2 j 的概率,即纯 战略组合 (s1k , s2 j )发生的概率。
n个参与人的混合战略纳什均衡
混合战略纳什均衡
用上述方法:求该猜谜游 戏的混合战略纳什均衡
正面 反面
正面
1 -1,
-1 1,
反面
-1 1,
1 -1,
如何理解混合战略 ——虚张声势
一个参与人选择混合战略的目的是给其 他参与人造成不确定性,这样尽管其他 参与人知道他选择某个特定纯战略的概 率是多少,但不知道实际上对手会采用 哪个战略。正是因为它在几个战略之间 的无差异性,他的行为才难以预测,混 合战略均衡才会出现。
小猪
大猪
按 等待
按 5,1 9,-1
等待 4,4 0,0
正面
1
正面 -1,
反面
-1 1,
-1
反面 1,
1 -1,
混合战略纳什均衡
在n个参与人博弈的战略式表述 G S1,, Sn;u1,,un
中,假定参与人 i 有K个纯战略:Si Si1, , Sik ,那么,
与人关心的是其期望效用。 最优混合战略:是指使期望效用函数最大的混合
混合策略纳什均衡
03 混合策略纳什均衡的证明 方法
反证法
总结词
通过假设不成立来证明均衡的存在。
详细描述
反证法是一种常用的证明方法,它首先假设与结论相反的命题成立,然后通过逻辑推理和数学推导,得出矛盾的 结论,从而证明原命题的正确性。在证明混合策略纳什均衡的存在时,反证法可以用来证明当其他玩家采取了最 优策略时,某个玩家采取混合策略能够达到最优结果。
唯一性意味着在给定对手策略的情况下,每个参与者都只有一个最优反应,从而 避免了复杂的策略互动和不确定性。
存在性
混合策略纳什均衡的存在性是指在某 些博弈中,至少存在一个策略组合, 使得每个参与者在给定其他参与者策 略的情况下,采用混合策略是最优的 。
存在性通常通过数学证明和计算机搜 索等方法来证明,但并不是所有博弈 都有混合策略纳什均衡。
混合策略纳什均衡
目录
CONTENTS
• 混合策略纳什均衡的定义 • 混合策略纳什均衡的特性 • 混合策略纳什均衡的证明方法 • 混合策略纳什均衡的应用场景 • 混合策略纳什均衡的局限性 • 混合策略纳什均衡的发展前景
01 混合策略纳什均衡的定义
定义
混合策略纳什均衡是一种博弈论中的均衡概念,它描述了在 给定对手策略的情况下,参与者如何选择最优策略以最大化 自己的期望收益。
代数法是一种通过数学符号和公式进行推 理和证明的方法。在证明混合策略纳什均 衡的存在时,代数法可以用来推导和证明 纳什均衡的条件和性质,利用代数性质和 技巧来证明均衡的存在。
04 混合策略纳什均衡的应用 场景
经济学
竞争策略分析
混合策略纳什均衡在经济学中被用于分析竞 争策略,特别是在不完全竞争市场和寡头垄 断市场中。通过混合策略纳什均衡,可以研 究企业在不确定环境下的最优反应,以及企 业如何通过调整其策略来应对竞争对手的行 为。
混合的策略纳什均衡
流浪汉 寻找工作 流浪
救济 政府
不救济
2 3,
1 -1,
3 -1,
0 0,
虽这模型没有PNE,却有下述的MNE:参与人以一定的概率选择某种 策略,然后计算相应于不同概率的期望效用。
2020/6/17
9
设:政府救济的概率θ=1/2 ; 不救济的概率1-θ=1/2。 流浪汉寻找工作的期望效用: 1/2×2+1/2 ×1=1.5 流浪的期望效用: 1/2×3+1/2 ×0=1.5
✓ 每个参与人都想猜透对方的策略,而每个 参与人又不愿意让对方猜透自己的策略。
这种博弈的类型是什么?如何找到均衡?
2020/6/17
3
2. 混合策略、混合策略博弈和混合策略纳什均衡
• 策略:
– 参与人在给定信息集的情况下选择行动的规则,它规定参与人在 什么情况下选择什么行动,是参与人的“相机行动方案”。
E1(正面)=(-1)×r+1×(1-r)=1-2r 参与人1选取反面的期望效用为
E1(反面)=1×r+(-1)×(1-r)=2r-1
2020/6/17
15
参与人1的期望效用为 E1= E1(正面)×q + E1(反面)×(1- q ) =(1-2r)(2q-1)
类似地,得到参与人2的期望效用为
E2= E2(正面)×r + E2(反面)×(1- r ) =(1-2q)(2r-1)
参与人2
正面
反面
参与人1
正面 反面
-1, 1 1,-1
1,-1 -1, 1
由划线法可知,该博弈不存在纳什均衡。 所以采取纯策略不存在稳定的纳什均衡解。
2020/6/17
2
混合策略纳什均衡
第二节 混合策略纳什均衡的求解方法
二、反应对应法
例:扑克牌对色游戏(p77)
先看甲的最优反应,记为r*=R(q): 观察π甲(p甲, p乙)= 2r(1-2q)+(2q-1)
若q 1 / 2 1 2q 0, r越小越好 0, r* R( q) [0,1], 若q 1 / 2 1 2q 0,无论r选什么都无影响 1, 若q 1 / 2 1 2q 0, r越大越好
纯策略(确定性)
q*=R(r)
(陈明德语) r 1 3/4
r*=R(q)
0 1/4 1 q (钟信德语)
博弈论 第三章 混合策略纳什均衡
第三节 寻找多重纳什均衡
二、反应对应法:情侣博弈
支付的帕累托优势:初步印象 π陈明=r(4q-1)+2(1-q),π钟信=q(4r-3)+(3-2r) r*=0, q*=0 纯策略(确定性)
第三节 寻找多重纳什均衡
例:情侣博弈
两个(多个)纯策略纳什均衡 问题:纳什均衡找完了吗?有无混合策略纳什均衡?
一、支付最大化法
给定混合策略p陈明=(r,1-r); p钟信=(q,1-q) Max π陈明(p陈明, p钟信)=r[3q+(1-q) ]+ (1-r)[0+2(1-q)] =r(4q-1)+2(1-q) r Max π钟信(p陈明, p钟信)=q (2r+0)+ (1-q)[r+3(1-r)] =q(4r-3)+(3-2二节 混合策略纳什均衡的求解方法
二、反应对应法
例:扑克牌对色游戏(p77) 无纯策略NE 给定混合策略p甲=(r,1-r); p乙=(q,1-q)
混合策略纳什均衡
田忌的谋士孙膑了解了田忌的困境
后,就打听到这样一个消息:尽管齐威
王的上、中、下三匹马都要比田忌的对
应上、中、下三匹马好,但碰巧的是田
忌的上马可胜齐威王的中马,田忌的中
马可胜齐威王的下马。于是,孙膑为田
忌献计:下一次比赛中第一局时田忌出
下马对齐威王的上马输一局,第二局田
忌出上马对齐威王的中马,第三局田忌
9
对于大企业,因一旦偷税就数目巨大,所 以,税务部门在随机检查时放在大企业上的可 能性就大一些;而给定税务部门检查大企业的 可能性较大,大企业偷漏税的行为就较少,否 则就容易被逮个正着。所以,偷漏税较多的就 是一些中小企业,大企业纳税的积极性较高。 同样的道理,在犯罪或对错误的监督惩罚博弈 中,也是混合博弈,人们可能总是大错不犯小 错不断。
15
混合策略均衡
◆混合策略定义:在n人博弈的策略式表述G S1,, Sn;u1,,un 中,假定参与人 i 有K个纯策略:Si Si1,, SiK ,那么,概率
分布 pi pi1,, piK 称为参与人 i 的一个混合策略,这里
pik p(sik ) 是参与人 i 选择sik 的概率,对于所有
14
混合策略均衡
◆纯策略与纯策略纳什均衡 ➢ 纯策略:肯定会被选择——以100%的概率——被
选择的策略。
➢ 纯策略纳什均衡:各个参与人都选择纯策略的纳 什均衡。
◆混合策略与混合策略纳什均衡
➢ 混合策略:以一定的概率分布选择某几个行动的 策略。
➢ 混合策略纳什均衡:由参与人的混合策略构成的 纳什均衡。
当田忌出下、上、中马时,他仍然按上、中、
下马出,当然要输了。事实上,当田忌出下马
时,齐威王应出下马,但齐威王出下马时,田
混合策略纳什均衡
混合策略纳什均衡混合策略纳什均衡是博弈论中一个重要的概念。
纳什均衡是指在一个博弈中,每个参与者都选择了最优的策略,而且即使其他参与者知道其他参与者的策略,他们也无法从自己的策略中获得更大的利益。
而混合策略则是指参与者通过随机化选择不同策略的概率来达到最优策略。
本文将深入探讨混合策略纳什均衡的概念、特点以及计算方法。
首先,混合策略纳什均衡是指参与者通过一定概率选择不同策略的方式达到最优策略。
在混合策略中,每个参与者都拥有一个策略概率分布,表示他们在不同策略下的选择概率。
这样,在博弈中,每个参与者将根据其策略概率分布中的概率随机选择其中一种策略。
对于每个参与者而言,他们的目标是通过选择最优的策略概率分布来最大化自己的期望收益或最小化自己的期望损失。
其次,混合策略纳什均衡与纳什均衡相比具有以下特点。
首先,混合策略纳什均衡可以推翻完全信息博弈中的固定策略均衡结果。
在完全信息博弈中,参与者可以根据对其他参与者策略的了解来做出精确决策,因此均衡状态是唯一确定的。
而在混合策略博弈中,由于参与者通过概率选择不同策略,他们无法准确地预测其他参与者的策略,因此均衡状态不再是唯一确定的。
其次,混合策略纳什均衡可以引入不确定性,增加博弈的复杂性。
参与者无法准确地预测其他参与者的策略,因此他们需要通过一定的概率选择策略来平衡风险与收益。
最后,混合策略纳什均衡可以通过均衡态的共同选择来实现长期的稳定状态。
在混合策略纳什均衡中,参与者通过随机化选择策略,从而消除了其他参与者可以预测自己策略的可能性,增加了稳定性。
最后,计算混合策略纳什均衡的方法主要有以下两种。
一种是通过计算参与者的最优策略概率分布来确定混合策略纳什均衡。
这种方法主要基于线性规划技术,通过最大化或最小化参与者的期望收益或损失来确定最优的策略概率分布。
另一种方法是通过迭代算法来求解混合策略纳什均衡。
这种方法主要是通过反复更新参与者的策略概率分布,直到达到均衡状态。
混合策略纳什均衡
6.反应函数法 进行博弈分析的目的是为了最终找到博弈的均衡解,下面先
说一种反应函数法: 武大郎走后,猪八戒强烈要求孙悟空去化斋。孙悟空却
要求猪八戒去,最后,两人决定由猜枚的方法来决定由谁去: 两人各准备一个黑箱,黑箱中由两人放入不同数目的黑白棋 子,然后两人从对方的箱子中摸出一枚棋子,如果两枚棋子 的颜色一样,则孙悟空去化斋;不一样,则由猪八戒去。 那么,两人会将自己黑箱中的黑白子的比例设定为多少?
但孙悟空的付钱方法也非同常人,孙悟空也变出一个黑箱, 放了3张10元人民币和7张2元人民币进去,让武大郎从中摸
4.混合策略
一张钞票作为交易的报酬,武大郎会答应这样的付钱方法吗?
武大郎的期望支付:10×0.3+2×0.7=4.2(元) 很明显,作为一个精明的生意人,武大郎是不会同意的。 下面从支付矩阵的角度来讨论为什么武大郎不会同意:
用Si表示,Si={si1, si2, …,sin},其中sik(k=1,2
…n)表示一个策略。
纳什均衡是满足一定条件的,n个局中人的策略组合。
3.支
付:局中人参与博弈能得到的利益,用u表示,符号 ui(s1j,…,sik,…,snm),表示n个局中人分别
采用策略s1j,…,sik,…,snm时第i个局中人的支付。
4.混合策略
孙悟空
10(0.3) 饼8(0.5) 2(0.7)
8
8
武 大 郎
水4(0.5)
10
4
2
4
10
2
武大郎的期望支付:10×0.5×0.3+ 2×0.5×0.7 + 10×0.5×0.3 + 2×0.5×0.7=4.2(元) 孙悟空的期望支付:8×0.5×0.3+ 8×0.5×0.7 + 4×0.5×0.3 + 4×0.5×0.7=6(元)
混合策略纳什均衡
0
小偷
1 偷的概率
-D
- D’
加重对守卫的处罚:短期中的效果是使守卫尽职 在长期中并不能使守卫更尽职,但会降低盗窃发生的概率
.
(*,r*)( S , P )
DSVP
小偷 偷不偷
守卫 睡 不睡 V,-D -P,0 0,S 0,0
小偷 得益(偷)
0
-P
V
守卫
1 睡的概率
- P’
加重对小偷的处罚:短期内能抑制盗窃发生率 长期并不能降低盗窃发生率,但会使得守卫更多的偷懒睡觉
p
1
1, 当p 1/ 2
q [0,1],当p 1/ 2
1/2
0, 当p 1/ 2
0
1q
p 1
(P*,q*)(1/2,1/2)
1/2
纳什均衡是:A和B出红牌还
是出黑牌的概率都是1/2.
0
反应函数法
1/2
1 q.
练习1:利用反应函数法找出政府与流浪汉博弈
政府 救济 不救济
丽娟 足球
芭蕾
妻子的混合策略
大海 足球 2 , 1 0 , 0 芭蕾 0 , 0 1 , 2
p w (F ) 2 p w (B ) 0 p w (F ) 0 p w (B ) 1
丈夫的混合策略
p h ( F ) 1 p h ( B ) 0 p h ( F ) 0 p h ( B ) 2
i(P i*,P * i)i(P i,P * i)对于每一个 Pi i 都成立,则称
混合策略组合 P *(P 1 *,,P i*,,P n *) 是这个博弈的一个纳什 均衡。
注意:在纳什均衡下,没有参与人有积极性单独偏离或改 变该策略或策略组合。
.
混合策略纳什均衡
友军博弈
英 国 支持巴顿 支持蒙帅 支持巴顿 4,3 2,2 美国 1,1 3,4 支持蒙帅
友军博弈特征
两个(多个)纳什均衡 问题:博弈的最终结果?
第三章 混合策略纳什均衡
第三节 多重纳什均衡的选择 标准
第三节 多重纳什均衡的选择标准
一、帕累托优势标准:得益更大 (一)案例:战争与和平 C国 鹰战略 鸽战 略 -5,-5 8,-10 鹰战略 -10,8 10,10 A国 鸽战略
混合策略
小偷的混合策略 以p的概率偷,(p,1-p) 守卫的混合策略 以q的概率睡(q,1-q)
第一节 混合策略与期望支付
一、混合策略 (二)混合策略 2.相对概念:纯策略 每个参与人的非随机性选择 纯粹行动计划,p=100%,1-p=0
第一节 混合策略与期望支付
一、混合策略 (二)混合策略 3.数学刻画 给定博弈G={S1,…,Sn;u1,…,un}以及参 与人i的纯策略Si= {si1,…,sik} 概率分布pi=(pi1,…,pik)为混合策略 其中:0≤ pik ≤1,∑ pik=1, pik=p( sik ) 混合策略组合p=(p1,…,pi,…pn)
第三节 多重纳什均衡的选择标准
一、帕累托优势标准:得益更大 (二)纳什均衡的选择标准 帕累托优势标准 按照支付大小筛选纳什均衡
-5,-5 -10,8 8,-10 10,10
第三节多重纳什均衡的选择标准
二、风险优势标准:风险更小? (一)案例:串通作弊博弈 帕累托优 学生乙 势? 作弊 不作弊 作弊 9,9 0,8 学生甲 8,0 7,7 不作弊
第一节 混合策略与期望支付
二、期望支付 (二)数学刻画
1 ( p, q ) pi q j aij
混合策略纳什均衡
目录[隐藏]1 什么是混合策略纳什均衡2 解混合策略纳什均衡的方法3 混合策略纳什均衡的经典博弈——猜谜博弈[1]4 混合策略纳什均衡博弈与其他均衡的关系[1]5 参考文献[编辑][编辑][编辑]混合策略纳什均衡混合策略纳什均衡(Mixed Strategy Nash Equilibrium )什么是混合策略纳什均衡混合策略纳什均衡:在n 个参与人的博弈G={S 1 ,... S n ; u 1,...u n }中,混合策略组合构成一个纳什均衡,如果对于所有的i =1,2...,n 下式成立:也就是说,如果一个策略组合使任何一个参与人的策略都是相对于其他参与人的策略的最佳策略,这个策略就构成一个纳什均衡,不管这个策略是混合策略还是纯策略。
混合策略纳什均衡是面对其他博弈者选择的不确定性的一个理性对策,其主要特征是作为混合策略一部分的每一个纯策略有相同的期望值,否则,一个博弈者会选择那个期望值最高的策略而排除所有其他策略,这意味着原初的状态不是一个均衡。
解混合策略纳什均衡的方法1、最大化支付法:即最大化各个参与人的效用函数。
2、支付相等法:根据前面分析的猜硬币博弈中参与人的策略的思路,每个参与人的混合策略都使其余参与人的任何纯策略的期望支付相等,因此,解混合策略纳什均衡可以令参与人的各个纯策略支付相等,构成方程组求解。
混合策略纳什均衡的经典博弈——猜谜博弈[1]两个局中人A 、B 手里各拿一枚硬币,每人可以选择正面向上或反面向上,然后同时亮出,如果两枚硬币正反面相同,B 付给A1元钱,如果两枚硬币正反面不相同,A 付给B1元钱。
在这种情况下,局中人A 、B 如何选择呢?下图给出这个博弈的双变量收益矩阵。
这是一个两人零和博弈,在每一个结局中一方所得即为另一方所失,即两个局中人的收益之和恰好等于零。
在双变量收益矩阵中采用画线的方法,在这个博弈中找不到纯策略纳什均衡。
那么,猜谜博弈是否存在混合策略纳什均衡呢?1950年纳什证明了任何有限博弈都至少存在一个纳什均衡(包括纯策略纳什均衡和混合策略纳什均衡)。
混合策略纳什均衡
混合策略纳什均衡简介混合策略纳什均衡是博弈论中的一个重要概念,用于描述多方参与的博弈情境中,每个参与者按照一定的概率分布选择不同的策略,使得任何人无法通过改变自己的策略来获得更好的结果。
在这种均衡状态下,每个参与者的预期收益最大化。
混合策略在传统的博弈理论中,参与者通常会选择一个确定性的策略来对抗其他参与者。
然而,在现实生活中,我们经常遇到的情况是,每个参与者都存在一定的不确定性和随机性,犹豫在不同的策略之间选择。
这时,混合策略就应运而生了。
混合策略是指参与者以一定的概率分布选择不同的策略来进行博弈。
例如,在一个石头剪刀布的游戏中,参与者可以以1/3的概率选择石头,1/3的概率选择剪刀,1/3的概率选择布。
这样的不确定性选择使得博弈更具有变数和策略性。
纳什均衡纳什均衡是由约翰·福布斯·纳什在20世纪50年代提出的一个概念,用于描述博弈理论中的均衡状态。
在纳什均衡中,每个参与者选择的策略都是最优的,即在其他参与者选择的策略下,自己无法通过改变策略来获得更好的收益。
通常情况下,纳什均衡是以确定性策略为基础进行定义的。
但是当参与者选择混合策略时,纳什均衡也可以被定义为每个参与者选择混合策略的概率分布,使得任何人都无法通过改变自己的概率分布来获得更高的收益。
混合策略纳什均衡的计算方法计算混合策略纳什均衡的方法主要是通过解析求解和数值求解两种方式。
解析求解解析求解是一种通过代数和数学推导的方式来找到混合策略纳什均衡的方法。
通过建立参与者的效用函数和概率分布函数等数学模型,应用最优化理论和微积分等数学工具,可以得到参与者的最优混合策略。
然而,解析求解的方法通常只适用于简单的博弈情境,并且求解过程繁琐复杂。
数值求解数值求解是一种通过计算机模拟和迭代计算的方式来找到混合策略纳什均衡的方法。
通过构建博弈模型,设定参与者的初始混合策略,然后通过迭代计算,逐渐优化参与者的混合策略,直到收敛到纳什均衡。
混合策略纳许均衡课件
策略纳什均衡的算法优化。
混合策略纳什均衡与人工智能
02
随着人工智能的发展,可以尝试将混合策略纳什均衡应用于机
器学习和人工智能领域,以实现更高效和智能的决策。
混合策略纳什均衡与演化博弈论的结合
03
研究混合策略纳什均衡与演化博弈论的结合,可以更好地解释
现实生活中的动态博弈现象。
06
参考文献
参考文献
定义
混合策略纳什均衡课件
CONTENTSБайду номын сангаас
• 混合策略纳什均衡简介 • 混合策略纳什均衡的数学模型 • 混合策略纳什均衡的求解方法 • 混合策略纳什均衡的应用实例 • 混合策略纳什均衡的挑战与展
望 • 参考文献
01
混合策略纳什均衡简介
定义与概念
混合策略纳什均衡是一种博弈论中的概念,它描述了在给定对手策略的情况下,参 与者如何选择最优的行动方案。
定义策略空间
为每个参与人定义一个策略选 择的空间,这些策略可以是离 散的、连续的或混合的。
定义支付函数
根据每个参与人的策略选择, 定义他们的支付函数,即每个 参与人在该策略下的期望收益。
构建博弈矩阵
根据参与人的策略空间和支付 函数,构建一个博弈矩阵,用 以表示每个参与人选择不同策
略时的收益。
模型参数解 释
纳什均衡点或满足一定的收敛条件。
优化算法
优化算法是一种基于数学优化的方法,用于求解混合策略纳什均衡。
优化算法的基本步骤包括:定义一个目标函数,然后使用优化算法(如 梯度下降法、牛顿法等)寻找目标函数的最大值或最小值,从而得到纳
什均衡点。
优化算法的优点是能够快速找到纳什均衡点,适用于大规模问题。但缺 点是需要对问题进行数学建模,且对初始点的选择敏感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讨论
• 上面的均衡要求每个参与人以特定的概率 选择纯策略。也就是说,一个参与人选择 不同策略的概率不是由他自己的支付决定 的,而是由他的对手的支付决定的。
• 正是由于这个原因,许多人认为混合策略 纳什均衡是一个难以令人满意的概念。
• 事实上,正是因为它在几个(或全部)策 略之间是无差异的,他的行为才难以预测, 混合策略纳什均衡才会存在。
5 1
对上述效用函数求微分,得到政府最优化的一阶条件 为:
vG
5 1 0 0.2
就是说,从政府的最优化条件找到流浪汉混合策略— —流浪汉以0.2的概率选择寻找工作,0 .8的概率选择 游闲。
• 解一:支付最大化
• 流浪汉的期望效用函数为:
L
2 1 0
0.5
解二:支付等值法
核心概念的根本原因之一。
§扑克牌对色游戏
• 甲乙玩扑克牌对色游戏,每人都有红黑两张 扑克牌,约定如果出牌颜色一样,甲输乙赢, 如果出牌颜色不一样,则甲赢乙输。
如果一个混合策略是政府的最优选择,那一定意 味着流浪汉在寻找工作与游闲之间是无差异的, 即:
vL 1, 1 3 vL 0,
0.5
政府和流浪汉的博弈
• 如果政府救济的概率小于0.5; • 则流浪汉的最优选择是寻找工作; • 如果政府救济的概率大于0.5; • 则流浪汉的最优选择是游闲等待救济。 • 如果政府救济的概率正好等于0.5; • 流浪汉的选择无差异。
政府
不救济 (-1,1) (0,0)
政府和流浪汉的博弈
• 思考:政府会采用纯策略吗?流浪汉呢?这 个博弈有没有纯策略的纳什均衡?
• ——跟你玩剪子石头布游戏一样,你会一直 采用纯策略吗?
• 那么政府和流浪汉最有可能采用什么策略? • ——使自己的预期支付最大化。 • ——若能够猜的对方的策略,就可以采用针
• 政府选择救济策略
• 政府选择不救济策略
1
期望效用
0 期望效用
vG 1, 3 11 vG 0, 1 01
4 1
如果一个混合策略是流浪汉的最优选择,那一定意味 着政府在救济与不救济之间是无差异的,即:
vG 1, 4 1 vG 0,
0.2
• 解二:支付等值法
§ 第三章 混合策略纳什均衡
• 混合策略与期望支付 • 计算混合策略纳什均衡的三种方法 • 支付最大值法 • 支付等值法 • 反应函数法 • 多重纳什均衡及其甄别 • 混合博弈在现实经济中的运用案例
§剪刀、石头、布的游戏
• 每个同学跟后面一排对应的同学玩剪刀、石 头、布的游戏.
• 玩二十次,将结果记下来 • 赢了十次以上同学举起手来 • 告诉我你有什么秘决 • 怎么样才能赢得多?
纳什均衡的存在性
纳什定理:在一个由n个博弈方的博弈G {S1,Sn;u1,中un,}
如果n是有限的,且 都S是i 有限集(对 i 1,),n则该博弈
至少存在一个纳什均衡,但可能包含混合策略。 • 证明过程省略,主要根据是布鲁威尔和角谷的不动点定理。 • 纳什均衡的普遍存在性正是纳什均衡成为非合作博弈分析
讨论
• 尽管混合策略不像纯策略那样直观,但它确实是 一些博弈中参与人的合理行为方式。扑克比赛、 垒球比赛、划拳就是这样的例子,在这一类博弈 中,参与比赛的总是随机行动以使自己的行为不 被对方所预测。
• 经济学上的监督博弈也是这样一个例子。如税收 检查、质量检查、惩治犯罪、雇主监督雇员等都 可以看成猜谜博弈。
• 答案是否定的。
• 事实上,局中人的选择仍然是很有讲究的, 策略选择的好坏对局中人的利益仍然有很大 的影响。
• 在这个零和博弈里,无论双方采用哪种策略 组合,结果都是一方输一方赢,而输的一方 又总是可以通过单独改变策略而反输为赢。 如果哪个局中人能找到对手方的规律或者偏 好,他就能猜测到对手的策略而采用针对性 策略从而保证赢。
§剪刀、石头、布的游戏
• 因此,秘决在于—— • 自己的策略选择不能预先被对手方知道或猜
测到,在该博弈的多次重复中,博弈方一定 要避免自己的选择具有规律性; • 观察对手方策略选择是否具有规律或者偏好, 预先猜测对手策略,从而采用针对性策略赢 得这个博弈。
§ 第三章 混合策略纳什均衡
• 纯策略(pure strategies):如果一个策略规 定参与人在一个给定的信息情况下只选择一 种特定的行动。
对性的策略,使自己的支付增加。
求解混合策略纳什均衡
1、假定政府采用混合策略:
G ,1 即政府以的概率选择救济,汉以的概率选择寻找工作,1 的概率选择游闲。
解一:支付最大化
那么,政府的期望效用函数为:
vG G , L 3 11 1 01
EUA p1X 1 p2 X 2 ... pnXn
政府和流浪汉的博弈
• 政府想帮助流浪汉,但前提是后者必须试图寻 找工作,否则,不予帮助;而流浪汉若知道政 府采用救济策略的话,他就不会寻找工作。他 们只有在得不到政府救济时才会寻找工作。他 们获得的支付如图所示:
流浪汉
寻找工作
游闲
救济 (3,2) (-1,3)
• 混合策略(mixed strategies):如果一个策 略规定参与人在给定的信息情况下,以某种 概率分布随机地选择不同的行动。
• 在静态博弈里,纯策略等价于特定的行动, 混合策略是不同行动之间的随机选择。
§ 期望支付
• 与混合策略(mixed strategies)相伴随的一个问 题,是局中人支付的不确定性(uncertainty).可用 期望支付(expected payoff)来描述——有个n可 能的取值X1,X2…,Xn ,并且这些取值发生的概率 分别为p1,p2,…,pn,那么我们可以将这个数量指 标的期望值定义为发生概率作为权重的所有可能 取值的加权平均,也就是
§剪刀、石头、布的游戏
• 我们知道—— • 如果博弈只进行一次,我们无法明确预测博
弈的结果,不管是哪个博弈方,也不管他们 的选择是哪个策略,都不能保证得到较好的 结果。根据我们上一章所学的方法,这个博 弈没有纳什均衡。
• 那么是不是意味着这样的博弈中,你可以随 意选择,结果都一样呢?
§剪刀、石头、布的游戏