2015河南年政法干警行测备考:数学运算之抽屉原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014河南年政法干警行测备考:数学运算之抽屉原理
郑州政法干警交流群号:90711758
题干中含有诸如“至少……才能保证……”、“要保证……至少……”这类叙述的题目,一般可以用抽屉原理来解决,称为抽屉问题。

对于这类问题,常应用到以下两个抽屉原理,华图政法干警考试专家通过以下两个例子为您详细解析。

抽屉原理1
将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2件。

抽屉原理2
将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于(m+1)件。

除此之外,抽屉问题也可以用最差原则来考虑。

所谓最差原则,就是考虑问题发生的最差情况,然后就最差情况进行分析。

最差原则是极端法的一种应用,一般情况下,我们优先考虑用最差原则来解决抽屉问题。

【例题1】抽屉里有黑白袜子各10只,如果你在黑暗中伸手到抽屉里,最少要取出几只,才一定会有一双颜色相同?
A.2
B.3
C.4
D.5
解析:此题答案为B。

应用最差原则,最差的情况是先取出两只不同的袜子,此时再取一只必然出现一双颜色相同的,故最少取出3只可保证题干条件。

【例题2】把154本书分给某班的同学,如果不管怎样分,都至少有一位同学会分得4本或4本以上的书,那么这个班最多有多少名学生?
A.77
B.54
C.51
D.50
解析:此题答案为C。

此题首先考虑使用最差原则,发现不容易得出答案。

看到“至少有一位同学会分得4本或4本以上”这种抽屉问题的标准表述,因此可以考虑使用抽屉原理。

每位同学看成一个抽屉,每个抽屉内的物品不少于4件,逆用抽屉原理2,则有m+1=4,m=3。

154=3×n+1,n=51,所以这个班最多有51名学生。

相关文档
最新文档