Control Motor

合集下载

BLDC motor control questions 直流无刷控制常见问题

BLDC motor control questions 直流无刷控制常见问题

Q&A: BLDC Motor Control Class QuestionsQ) Which method is more power efficient? Six step or sinusoidal?A) Sinusoidal control will be more power efficient as it will directly control the current flowing through the motor.Q) Does sinusoidal control necessitate FOC (field-oriented control)?A) There are methods of using sinusoidal control combined with six-step, but FOC has many advantages.Q) When the rotor has multiple poles, how do you define the direction of the rotor magnetic field? Doesn't it have multiple magnetic field directions?A) In the examples we were only talking about a single pole-pair motor. In motors with multiple pairs, there will be additional instances of the 3 motor phases as well.Q) Why are Delta and Wye topologies used, as opposed to using 3 separate coils?A) Those two topologies are used since the three motor phases need to be connected at the neutral point so that the current will return to ground.Q) If you have very accurate angular information of rotor position, and you have fine-grained control of current in each coil, is FOC necessary/does it provide any advantage?A) FOC is simply a way of achieving those objectives.Q) Is FOC a form of sensorless control? Or are they two different things?A) FOC could be sensored or sensorless. FOC is the algorithm used to control the motor; it could use external sensors or not.Q) During start of motor, if the rotor is in between two phases, then how do you excite the stator?A) For trapezoidal (six-step), it is unlikely that this would happen. The worst case would be if when the system starts, it might off by one Hall state for a very brief amount of time. It probably wouldn't cause any startup issues.Q) Normally lots of noise is introduced on Hall sensor signals in motor. How do you tackle this issue? A) Digital filtering is a good way. Many microcontrollers have inputs with built-in debounce or input qualification.Q) How do you judge which type of control (six-step or field-oriented) to implement for BLDC motors? A) It really depends on your application requirements. FOC is more complex but has many advantages for dynamic performance, while Trap is simpler and works well for basic applications.Q) What is the optimum time delay between each step in the six-steps techniques?A) The optimum time-delay will depend on how fast your motor should be spinning. In most applications, there is a speed controller that will dictate how fast each step is advanced.Q) What is the relationship for torque (similar to point ignition on car) between the advance and retard of commutation?A) Advancing and retarding the commutation can help with torque ripple it can also help make your controller more efficient as it will push your system so that it is changing commutation at the ideal time.Q) How does delta or Wye wound stator affect things?A) Delta vs Wye has no impact on the control of the system. The biggest impact is if you manually measure the motor electrical parameters.Q) Does sinusoidal control assumes sinusoidal back-EMF?A) It does, but the vast majority of BLDC motors have sinusoidal back emf.Q) What makes the Back EMF Trapezoidal or Sinusoidal?A) The shape of the magnets and the shape of the stator windings. Their interaction will dictate the shape of the back emf.Q) What about Trapezoidal control?A) We covered Trapezoidal control in more detail in the second class.Q) How is Bsta and Brot angle be measured?A) Bsta & Brot don't need to be measured directly. We use them to describe the behavior of the motor but all of the measurements happen on the motor phases.Q) Resolver?A) Resolvers are able to provide excellent source of rotor angle feedback for FOC control.Q) Do you need FOC to implement six-step control?A) Nope, they are separate control techniques each with their own advantages and disadvantages.Q) Is zero crossing possible using Delta wound motor?A) Yes, the diagram shown is great for teaching but isn't the most accurate with respect to the actual construction of motors. Both delta & wye work great for zero cross detection.Q) Is there a type of motor that would be more efficient with a six-step control than a sinusoidal control?A) A motor with extremely trapezoidal back-EMF could be more efficient with six-step, but that is a rare case. Most motors will be more efficient with sinusoidal control.Q) Is there more switching loss using Sinusoidal control than Trapezoidal control. If so, would that make Trapezoidal control more power efficient than Sinusoidal control.A) There can be more switching losses, but often thses losses will be less than the efficiency gains from using sinusoidal control.Q) Can you guarantee start rotation with FOC sinusoidal?A) When using a sensor you can guarantee startup. When using sensorless you can't guarantee startupbut there are many ways to help ensure the motor starts. One of the ways is to use additional current or a more advanced algorithm such as HFI.Q) Is it correct to state that adding ID changes the magnetic field of the stator, which changes the voltage-constant of the motor?A) It changes the magnetic field of the rotor. Which does change the voltage-constant of the motor. This is how field weakening works.Q) How do you know the initial position of the rotor before the motor starts in order to know which phase to energize for proper rotation direction?A) Hello Kevin, you don't know it unless you have some sensors. That's why we always "align" our rotor before starting the motor. Align means that we apply a known vector that will move the rotor and align it to the vector we are generating. Then, we can start our algorithm.Q) Can you use six step AND FOC to control the same motor?A) You can use either FOC or six-step to control the same motor.Q) Is PWM implementation of a sinusoidal can fed directly to the motor windings in order to achieve precise control or do we need in some way to convert the PWM into clean sinusoidal before being fed to motor windings.A) The PWM frequency is much greater than the frequency of the sinusoid that you are trying to produce. Since the motor is simply an RL filter modulating the PWM in a sinusoidal pattern will create a clean sinusoidal signal in the windings.Q) How is sinusoidal control manifest compared to 6 step? Does it appear that the same motor has a higher motor constant?A) Sinusoidal control is simply an alternative control technique; it doesn't impact the properties of the motor.Q) Is sinusoidal control possible for trapezoidal BLDC motor?A) Yes, sinusoidal control can be used on those motors.Q) How is speed/torque control implemented with six-step control?A) Speed control requires a separate controller that will adjust the amount of voltage applied to the motor. The amount of voltage will be proportional to the desired amount of torque.Q) Does the commutation happen in between the sector or at the start/end of the sector?A) The commutation happens when the Hall sensors indicate that the motor phases need to be switched. This happens at the boundary between two sectors.Q) How is the initial position of the rotor found?A) For sensorless, the initial position is assumed and the technique will be to use additional current to force the motor to work. There are advanced techniques that will detect the initial position of the rotor by injecting high frequencies.Q) How is id and iq reference values chosen?A) The reference value for iq is the amount of torque that is requested from the speed controller. The reference value for id is typically 0, but for field weakening that value will often be negative to change the voltage constant of the motor.Q) How can the PI controllers be tuned?A) The PI controllers are tuned using a process called pole-zero cancellation where the PI gains are determined by the motor electrical parameters.Q) Why do so many semiconductor vendors claim to have proprietary algorithms for BLDC motor control?A) This is an area where they can provide value to customers, so naturally there is research done in this space.Q) https:///wiki/Y-%CE%94_transformA) Thanks for providing this link. It gives great examples showing these circuits are equivalent.Q) If these sinusoidal waves are generated with a PWM signal, what would be the suggested frequency, or is it dependent on the BLDC motor itself?A) The PWM frequency depends on your application. Usually for electric motors we can use a PWM frequency between 5kHz - 20kHz. Remember that sometimes you don't want to hear the noise of your motor (so you use a high PWM frequency) but this will affect power losses of your electronic componentsQ) If you are losing too much torque using sinusoidal control, is it because it may be out of phase, or the speed too low? In this case is it then better to use Field Oriented Control?A) In sensored BLDC control, no matter FOC or 6-step are selected, the speed loop and torque-loop can be closed since 0 RPM. In this way, no additional torque required. Regarding sensorless BLDC, there is open-loop period from 0 RPM to certain speed, At open-loop, additional torque is usually needed by additional PWM duty cycle. When the control loop is closed, the current consumption is reduced.Q) What is the difference between a BLDC motor and PMSM?A) The biggest difference between a BLDC and a PMSM is that BLDC motors have concentrated windings that tend to produce more trapezoidal back-EMF but they both can be controlled via the same methods.Q) How much does the number of rotor poles impact the torque ripple on six-step control?A) Increasing the number of rotor poles will decrease the amount of torque ripple as the electrical speed of the motor increases for the same mechanical speed and torque ripple is less pronounced at high electrical speeds.Q) How do you find the location of the rotor using sensorless algorithm?A) The back-EMF of the motor is estimated and can provide the rotor angle information. This is covered in more detail in the third class.Q) If you apply three 120 degree out of phase sinusoidal current to each phase, will it start the motor? Or do we need a current boost?A) Assuming the motor has no inerta, it should start the motor. However if the effective stator magentic field is in a position where it is very out of alignment it could cause issues with starting.Q) What it is HFI method?A) High frequency injection (HFI) is a method where high frequencies are injected onto the motor phases so that the subtle magnetic differences in the rotor can be determined which will help with getting a good initial guess as to the motor position.Q) How can we determine rotor position in sensorless configuration?A) The back-EMF of the motor is estimated and can provide the rotor angle information. This is covered in more detail in the third class.Q) For which applications can we use sensorless control and for which can we not use it.A) Any application that requires a large (>50%) of torque during startup or requires the motor to operate at less than approximately 10% of rated speed will be difficult to use sensorless.Q) i need boardA): Further email communication will cover the board order information.Q) In sinusoidal excitation, the three windings are excited simultaneously, how can then the back-EMF be measured?A) The back-EMF can be measured based on the amount of voltage used to excite the motor windings and the current flowing through the motor. This is covered in greater detail in the third class.Q) In six-step control, how do you know how to start commutation since when the motor is stopped, there is no back-EMF?A) When doing sensorless six-step, you guess as to the first commutation step and start stepping through the commutation table at a slow rate to encourage the rotor to rotate with the stator.Q) How do you start the motor using sinusoidal control, if the rotor is in between two phases and there is no Hall effect sensors?A) In order to start, you assume a rotor angle and begin rotating in the intended direction of travel. You end up using more current than what is required but the goal is to drag the rotor around until it is spinning at a high enough speed such that you can use the back-EMF in order to estimate the rotor angle.Q) For the motor construction, can you highlight the differences between I-PMSM and S-PMSM motor?A) S-PMSM is the more common and feature magnets on the surface of the rotor. I-PMSM feature magnets that are interior to the rotor and require some special considerations in order to run at maximum efficiency.Q) Do you have any efficiency differential comments of six-step vs. sinusoidal?A) Sinusoidal control will be more efficient than six-step control.Q) How do you ascertain the alignment of the Hall sensor placement relative to the stator pole locations?A) The motor datasheet provides information about how the Hall sensors are aligned with the stator phases.Q) For six-step sensorless, using zero crossing gives only four points per pole pair or two points per pole pair?A) Six-step sensorless gives you six points per pole pair.Q) Can you give example of update rates for FOC stages?A) Typically, FOC algorithms should run at the PWM frequency approximately 10kHz.Q) Is it possible to brake (slow down / stop) the motor with the control techniques discussed?A) Yes, slowing down or braking is simply applying less torque or possibly torque in the opposite direction.Q) Adding more poles in six-step control, will that reduce torque ripple?A) Yes, adding motor poles will reduce torque ripple as this will increase the electrical speed of the motor for a given mechanical speed and torque ripple is reduced at faster electrical speeds.Q) What kind of sample time is used for the feedback cycle?A) For FOC, a sample time of 0.1ms is typical. For six-step sample times between 0.1ms and 1ms are common.Q) Which control technique best controls motor drift when stopping the motor?A) FOC will do a better job of stopping the motor more accurately and tracking the rotor angle if it does move while not under power.Q) You mentioned startup when using Hall effect sensors. How do you start-up a sensorless design? How do you determine alignment if you don't have Hall position sensors?A) The six-step startup is performed using an "align and go" technique where the stator is held at a fixed position in order to align the rotor to it. Then the commutation table is manually stepped through in order to accelerate the motor until the zero-cross detection can begin working.Q) What type of motor has trapezoidal back-EMF?A) Not very many motors have a true trapezoidal back-EMF, Those motors will have very concentrated windings.Q) Are there microcontrollers with a built-in FOC block, or are there separate ICs to handle the FOC for us?A) I'm not aware of microcontrollers that have a built-in FOC block, most microcontroller manufacturers provide an FOC algorithm that is optimized for their specific microcontroller.Q) Does back-EMF vary with motor load or speed? How would you account for this in algorithm-based sinusoidal control?A) Back-EMF varies with motor speed. The faster the motor spins, the more back-EMF there is. You don't need to account for this fact in sinusoidal control; it merely means you have more signal to work with.Q) How does this translate to motors with multiple rotor pole pairs?A) Multiple pole pairs means that the motor magnetic field will be spinning faster than the mechanical rotor, this helps improve torque ripple.Q) With sensorless six-step control, it is difficult to sense rotor position at low RPM. Does field control also suffer from this?A) Yes, all sensorless techniques have difficulty at low speeds. Typically anything less than about 10% of rated speed is difficult for sensorless.Q) Are there not two different brushless motors -- AC and trapezoidal? Can you use sinusoidal with a trapezoidal motor?A) All brushless motors are AC motors. The difference between a BLDC motor and a PMSM motor is the shape of the stator windings. You can use either control with either motor.Q) How is field weakening done with field-oriented control?A) Field weakening is done by making the Id reference a negative value. This will suppress the back-EMF of the motor and allow it to spin faster.Q) For Hall-less sensoring using the stator windings, is there a lot of noise (ringing) you need to deal with?A) There isn't too much noise when running at a speed above about 10% since that is where the back-EMF will become larger and less subject to noise.Q) Would Id be non zero on an induction motor?A) Yes, this is how FOC creates the rotor magnetic field in an induction motor.Q) When you refer Space Vector is that "Space Vector PWM control"? ThanksA) Yes. applied voltage space vector is generated by U, V, W PWM control.Q) How do you place the Hall effect sensors accurately outside of a BLDC motor?A) Hall sensors are inside BLDC motor. In other way, the Hall sensors was put inside BLDC motor by motor vendor.Q) Some papers show trapezoidal commutation is good for BLDCs (no torque ripple) and sinusoidal control is good for PMSMs (again no torque ripple). So does the commutation method really depend on the type of motor (either BLDC or PMSM)?A) BLDC and PMSM are not apple-to-apple classification. For example, many motors are BLDC PMSM. Usually, sinusoidal control has less torque ripple and trapezoidal has worse torque ripple. Smooth current means less torque ripple.Q) The Speed Vs Current plot of sinusoidal and block commutation looks more or lessly same for somecontrollers. How do you say which controller is better in such a situation?A) Sinusoidal usually reach better performance (less torque ripple and less noise).Q) Does a sinusoidal driven BLDC motor have a higher efficiency than a commentated BDC motor.A) Sinusoidal control will be more power efficient as it will directly control the current flowing through the motor.Q) What is the difference between sinusoidal PWM and space vector modulation?A) Space vector modulation is a method to produce sinusoidal currents in a motor. So it is an implementation of sinusoidal PWM.Q) How critical is the angle theta measurement?A) For FOC control it is quite critical. If the value is off by more than about 5-10% it can cause a lot of efficiency loss and could lead to motor stall.Q) Can you implement 12-step control by adding steps such as U-in, with W&V out, etc. -- as a compromise between 6-step vs. continuous control?A) Six-steps are driven by back-EMF or Hall sensor feedback. Both feedback are at 60-degree resolution. So, only 6-step makes sense.Q) Can induction motors be controlled in a similar manner?A) Yes.Q) Any comments on regenerative braking?A). Energy storage device has to be well designed. When too much energy is stored, the storage device (e.g. DC bus capacitor or battery) may be blown up.Q) Are there any considerations when changing direction (ie, how to offset motor momentum in the opposite direction)? Other question: what are new/key features used by MC ASIC companies to differentiate themselves?A). It is safer to slow down to zero speed and then accelerate to the target speed at difference direction.Q) What is vector driving of the motor?A) Vector control is a different term for field-oriented control.Q) How can you make a motor stall at precise external resistance/torque?A) If your motor is running in torque control, it will stall at a precise load torque applied.Q) Which complementary technique/measurement would you recommend to use when controlling the speed at low RPMs?A) Sensored control, either six-step or FOC, will work well at low speeds. Between six-step and FOC, FOC will probably be better and smoother.Q) ....and starting in the sensorless design?A) Open-loop starting up is often used in start-up of sensorless design. (Reliable but not the most power-efficent.)Q) Do you want the 90 degree lead angle to be smaller when under no or low-load conditions?A) No, you want to maintain the 90 degree lead angle in FOC so that you are being as efficient as possible. To deal with no or low load situations you mealy reduce the amount of current you are providing.Q) What's the difference between BLDC sinusoidal controlled and induction motor with sinusoidal vector control?A) AC induction motors for a particular power are much larger than their BLDC/PMSM equivalent They are also less efficient and the FOC is more complex, which requires additional CPU resources. They work well for some applications, but in many ways BLDC/PMSM are superior.Q) Can you use the Vector Control scheme (sinusoidal) to commutate the motor at low speeds?A) Yes, vector (FOC) control works very well at low speeds assuming that you have the motor angle information.。

电机类型和控制总结 Motor Types and Their Control

电机类型和控制总结 Motor Types and Their Control

This requires additional connections to the motor, which may not be acceptable in some applications. Also, the additional cost of the position sensors and the wiring may be unacceptable. The physical connection problem could be solved by incorporating the driver in the motor body, however, a significant number of applications do require a sensorless solution due to their low-cost nature. Most BLDC sensorless techniques are based upon extracting position information from the back EMF voltage of the stator windings while the motor is spinning. Those techniques could be used from 5 percent of nominal speed, when back EMF is measurable. BLDC back EMF sensorless techniques can be used without complex control algorithms, due to back EMF voltage sensing in unexcited motor phase. Advantages • Heat generated in stator is easy to remove

纸机设备中英文对照

纸机设备中英文对照

纸机设备单词中英文对照机外白水盘Wire Water Flume真空辊电机Vacroll motor干燥毯辊Dryer fabric rolls液压系统Hydraulic system络布混合器Lobmixer多盘用喷淋白水泵Clear filtrate pump for disc filter干网张紧器Dryer fabric stretchers主泵电机Main pump motor一段除砂器浆泵1st stage cleaner feed pump断纸高压白水泵Knock—offshower pump (HP)干网校正器Posi—Edge 3rd drye r fabric guides过滤泵电机Filtering pump motor二段除砂器2nd. Stage cleaners for浓白水池Cloudy filtrate tank干网清洁装置3rd dr.fabric conditioner湿部油润滑中心Wet end oil lubrication system澄清水槽Filtrate Water Tank浓白水泵Cloudy filtrate pump气罩门升降电机Hood lift door motor主油泵Main oilpumps附:尾渣除砂器Fibermizer机外白水盘用热交换器Heat exchangerfor flume第四组烘缸4th dryer group循环油泵Oil Circulation pump除气器Deaerator压力筛稀释水管道加压泵Booster pump for pressure scr een纸尾切割装置Water jet tail cutter control油加热器Heating resistors喷射冷凝器Spary condenser浆泵Thick stock pump气罩尾部面板升降电机Hood end lift panel motor集油槽Sump tank一段真空泵Vacuum pump 1#损纸系统BROKE SYSTEM硬压光前挡板电机Foilforce before OptiHard motor油泵Oil pumps1#汽水分离器1# water separator伏辊损纸池Couch PIT第六组烘缸(涂布后)6th dryer group(after coating)干部油润滑中心Dry end lubricationcenter附:消音器Silencer附:1#搅拌器Couch pit agitator1前干部引纸系统Tail threading syste m in predryer过滤及循环油泵Filtering and Circulation pu mp冲浆泵Headbox feed pump附:2#搅拌器Couch pit agitator 2纸尾切割装置Water jet tail cutter control卷纸部油润滑中心OptiReel lubrication center纸机筛Machine screen伏损池浆泵Couch pit broke Pump气罩尾部面板升降电机Hood end lift panel motor湿部脂润滑中心Wet end grease lubrication center主油泵Main punp压榨损纸池Optipress Pulper干部引纸绳装置Carrier rope system i nafterdryer泵电机Pump motor尾浆筛Reject screen附:喷淋水管Shower Pipes干网调节装置Dryer fabric conditioning system干部脂润滑中心Dry end grease lubrication c enter湿部液压中心Wet end hydraulic center附:搅拌器Optipress pulperagita tor断纸检测器Break dectors泵电机Pump motor流浆箱稀释水泵Dilution water pump浆泵OptipressPulperbroke P ump附:高压水泵High pressure water pump悬臂驱动泵Cantileveringpunp稀释白水筛Dilution screen涂布前损纸池OptiSizer Pulper水泵冷却风机Coolingfan of water pump过滤及冷却油泵Filtering and cooling punp浆渣槽Reject tank多辊压光机前损纸池OptiLoad Pulper硬压光Optihard干部液压中心Dry end hydraulic center浆渣泵Reject tankpump浆泵OptiLoad Pulper broke pump压光下辊SymCDS/HP roll聚合辊冷却单元Polymer rolls cooling unit除气密封水槽Sealing water tank for deaeration卷纸机损纸池OptiReel Pulper压光上辊Thermal roll1#提升装置油润滑单元Booster station for OptiLoad lube oil成形部用压缩空气罐Air tank forformer guide干部纸尾切断装置Dryer tail cutter水加热系统Water heating system循环油泵Circulation lubricationi ntermediate pump真空系统V ACUUM SYSTEM浆泵OptiReel Pulper trim Pump循环泵Roll circulation pump1#提升装置循环润滑单元Booster station for circulation lubrication 1#气水分离器Water separator复卷机损纸碎浆机Winder Pulper加填/排水泵Filling/draining pump1#损纸输送带Broke conveyer of Optil oad油嘴冷却单元Coolingunitfor Opt iLoad oil joints涂布引纸绳装置Carrier rope system inOptiSizer液压装置Hydralics for SymCDS/HP roll蒸汽冷凝水系统STEAM AND CONDENSATE SYSTEM冷却泵Cooling pump浆泵Winder Pulper recirculatio n pump压辊Nip roll1#汽水分离器1#condensate tank浆泵OptiReel Pulper broke Pump未涂布损纸浆塔Uncoated Broke tower张力测量辊Tension measuring roll1#冷凝水泵1#Pump ofcondesatetank 4附:真空白水自吸泵Vacuum water pump未涂布损纸浆泵Uncoated broke tower pump引纸辊Paper leading roll膜涂布系统Film coating system2#损纸输送带Brokeconveyer涂布损纸浆塔Coated Broke tower舒展辊Spreader roll涂布辊Coating head section热辊刮刀Doctor for thermal roll涂布损纸浆泵Coated broke pump循环泵Circulation pump冷凝水收集槽Main condensate tank真空风机Vacuum Fan冷凝器Vacuum condenser辊冷却循环水加热装置Roll cooling circulation water heat9#冷凝水泵9# Pump of main condesate过滤冷却泵Filteringandcoolingpunp真空汽水分离器Vacuum Separator液压装置Hydraulic unit for loading and mov分汽缸Steamdistributor温度控制单元Water heating element附:唇板梁热补偿系统Slice beam heat compensation syst控制油泵Pressure—controlled pump涂布上料站Optisizer supply system辊冷却循环水泵Roll cooling circulation water pump水加热箱WaterHoting Box多辊软压光机OptiLoad1#静态混合器Static Mixer唇板梁加热单元Slice beam heating unit倾斜位移调节电机Headbox tilting motor包胶辊Intermediate pol ymer rolls1#供料槽1# Machine tank唇板开度调节电机Slice opening adjustment motor网部Wire section热辊Thermal rolls1#偏心螺杆泵1# Eccentric screw pump消音池Silencer pit多叶片靴型成型器Multifoil shoe导辊Guide rolls电机Gearmotor消音囱Silencer pipe吸水箱Suction box固定弧面舒展辊Fixed bow sperader roll at stack1#涂料筛1# Optiscreen循环白水泵Water pit pump支撑式脱水板Support foil导纸辊Guide rolls at stack2#涂料筛2# Optiscreen真空白水曲面筛Vaccum bow screen高真空吸水箱High vacuum suction box包胶辊刮刀Doctors for polymer covered rolls废水收集槽Effluent PIT真空密封水槽Vaccumpump seal water ta nk内成型器Inner former升降台Lifting platform供料泵Eccentric Screw Pump除气真空泵密封水泵Vacuum sealing water pump for de胸辊Breast roll内侧电机Inside Motor纸卷打包输送系统、起重设备REEL TRANSPORT SYSTEM压榨白水收集槽Press water tank伏辊Couch roll引纸系统Tail threading1#纸卷自动输送线REEL TRANSPORT压榨白水泵Press water pump张紧辊Stretcher roll纸边风机Shreder fan附: 电机WITH MOTOR压榨白水筛Press water screen附: 内网张紧器电机Inner fabric streching motor切边装置Trim slitting纸卷打包系统PACK SYSTEM清水、密封水、冷却水及喷淋水Fresh water, sealing water,cooling wat er andshower water system回头辊Turning roll换辊装置Roll change2#纸卷自动输送线REEL TRANSPORT密封水槽Sealing water tank导向辊Guide roll加载液压单元Loading hydraulics纸卷升降机REEL LIFTER冷却水收集槽1# cooling water Tank外成型器辊Outer former油加热单元Oil heating system劈纸机ROLL SPLITTER1#冷却水泵1# coolingwater pump成型辊Former roll中高控制液压单元Top and bot。

真空设备常见英文单词

真空设备常见英文单词

真空设备常见英文单词transducer 传感器air cylinder气缸breaker,circuit,contactor 断路器abb contactor, power module 断路器, 电源模块ace absorber,shock 防震, 缓冲器acme transformer; contactor 变压器acopian power supply 电源供应器, 变压器aeg level transmitter, encoder 液位控制, 译码器aerquip hose, fitting 压力喉, 喉头, 喉咀agastat thermostate, thermocouple 恒温装置, 温度计airguard filter 过滤网airpel cylinder cylinder, valve 气缸、阀门airpot cylinder air cylinder 气缸、. 气阀anly counter, timer,socket 计数器, 时间制, 插座anver vacuum pad, air pump 真空吸索、真空泵appllo valve,bronze ball 球阀门asco valve valve 阀门ash worth sprocket 齿轮, 齿条atosvalve valve , pressure guage 油压阀auto guard controler,temperture 温度控制仪autotech controller, pls, encoder 角度控制器, 译码器bacber-colman temperature controller 温度装置baldor motor motor 马达电机baluff sensor sensor, switch 传感器banner sensor photo sensor; fiber, light curtain 传感器, 光织, 光帘barksdale switch,pressure 压力开关baumer sensor proximity sensor, fiber 接近开关、光织belvac machine parts 包装业零件bimba cylinder cylinder 气缸bodine motor pinch roll motor, controller, gear box 马达borns mexico sensor, micro switch 传感器brap haprison cable,joy hand held switch, 电路开关bray series valva,butterfly 蝴蝶阀brook crompton linear motor, gear box,pump motor 防爆马达browning belt,poly-v 工业皮带bussmann fuse fuse 保险丝carlo gavazzi sensor 传感器cb boiler parts, filter 锅炉配件, 过泸器chicago switch,airflow 气流开关cincinnati coupling,quick disconnet 连接器, 快速接头clarostat resistor, vr 卷烟机器用电阻crouzet counter, timer, relay 计数器, 时间制, 继电器crydom push buttom, switch 按手掣, 开关c-tek counter, timer,socket 计数器, 时间制, 插座cutler-hammer sensor, micro switch 微动开关cyklop machine parts 包装业零件datalogic sensor photo sensor, fiber sensor 红外线电眼, 光导纤维dayton motor 马达电机delta design ic manufacturing spare parts 半导体机械配件diamond chain, roller. bush 钻石牌产品dodge bearing 啤令, 轴承dolan jenner optical fiber; light sources; ringlights 光导纤维dominic anrep photo switch, fiber controller 光电开关dongag transformer 变压器durant run time meter, counter 时间制、计数器dynapar ph transmitter, gauging sys 酸碱度计, 测厚仪eagle-signal potentiometer; positioning 比例电平器eao switch push buttom, switch, lamp 按钮开关, 指示灯eaton dyna motor; speed control motor 马达控制器electromatic flow switch, level controller 流量计、液位控制emerson motor motor, speed control 调速器, 马达enots sleeve,tubing 轴承, 衬套entrelec terminal 端子器, 接头esta sequencer, tachometer 程控器, 译码器euchner sensor, positioning control 传感器, 定位装置fafnir bearing,pillow block 啤令, 轴承, 衬套fasco motor gear box, motor 马达fenner temperature controller 温控器fincor membrane keypad 膜片开关formatec machine parts 包装业零件fuji electric motor, contactor, relay 马达, 断路器, 继电器g.p.reeves machine parts 机械配件g0ldco machine parts 机械配件gast gauge,vacuum 表头, 主控制器ge fanuc motor , controller 马达, 控制器gordos pump, motor 泵, 马达gould machine parts 包装业零件guardian switch, relay 继电器hekeda ultrasonic cleaning machine 超声波清洗机heviduty transformer 变压器honeywell temp controller, sensor, sw 温控器, 开关hubble connector, socket 美国插头、连接头hyde park ultronsonic sensor 超声波传感器hydra pump, valve 泵, 阀门idec relay, lamp, push button 继电器, 指示灯, 按手旋钮ifm photo sensor, proximity sensor, encoder 近接开关, 译码器international. cam actuator, switch 凸轮驱动器, 开关intralox sprocket, belt 齿轮, 齿条, 皮带jefferson elect valve, fitting , hydraulic 液压控制系统, 阀门, 接咀jordan valae,pressure reducing 减压阀joslyn clark dc contactor, auxiliary contact 连接器kessler ellis hydraulic tube, vacuum pump 油管, 真空泵keyence sensor 传感器keystone sprockets 齿轮, 齿条, 皮带kfps proximity sensor 近接开关kitalcoppie thermocouple , temp control 热电隅, 温控器koganei penumatic valve, cylinder, fitting 气缸, 阀门, 接咀koyo cylinder 气缸, 阀门, 接咀leeson motor motor, reducer, spped control 马达, 减速箱, 控制器leuze sensor 传感器little giant vacuum pump 小巨人磁力泵litton motor motor 马达lundahl inst'mt sensor, ultrasonic, level cont 电眼、液位检测器mac solenoid valve, air fitting 电磁阀、气缸、过滤器magnetek variable speed motor; motor controller 调速马达malema flow sensor, flow switch 流量计、流量开关master pneumatic pneumatic product 气动组件maxon ignitor,spark, rod flame 火焰检测器mcgill bearing , bush 啤令, 杯士, 衬套meanwell p.sup power,supply 电源供应器, 变压器meto-fer proximity sw, sensing element 近接开关micro switch micro switch; guard switch 微动开关migatron ultronsonic sensor 超声波传感器milltronics fluidic motion control 液压控制系统minster machine parts 机械配件mitsubishi plc, contractor 编程器, 接触器moeller contactor relay, contactor 继电器, 接触器naeherung proximity switch, micro switch 微动开关namco sensor, switch 传感器national sensor, switch, relay 传感器, 微动开关new york blowe bearing, shaft 啤令, 硬轴newark potentiometer; actuator 电位器newport cylinder, valve , fitting 气缸, 阀门, 接咀norgen penumatic air cylinder, fitting, frl 气动组件ntn bearing bearing , bush 啤令, 衬套numatics calve, cylinder 阀门, 气缸ohmite resistor vr 卷烟机用可调电阻omega equipment control equipment 控制仪器omron sensor, plc 传感器opcon sensor 传感器oriental motors motor, gerabox, ac/dc control 马达, 减速箱, 控制器orion lab test equipment 实验室仪器paco detector,flame 火焰检测器palmer gauge,pressure 压力表panduit conductor, resistor 导线, 电阻parker fitting, o-ring , valve 密封圈, 接咀, 阀门partlow control meter 温控表peco sensor 传感器pepperl & fuchs sensor 传感器phoenix contact relay contactor 继电器, 接触器piab penumatic vacuum pump, suction pad 真空泵, 吸盘pittman motor mini motor 小型马达potter & brumfd time delay relay, relay 继电器, 时间延迟器prime double sheet detector 双金属片检定器protection system protection device 系统保护装置ragsdale machine parts 机械配件randolph alcoa machine parts 机械配件rechner sensor ,proximity 接近开关red lion actual stroke counter, counter timer 时间制, 温控器redicon bearing, filter, valve ,sensor 机械配件renco encoder 译码器rexnord chain & belt,sprocket 链条, 皮带, 齿轮reynolds machine parts 机械配件riese nozzle jet 喷咀rittal motor, control device 马达控制器rk electronics rocker sw, rotary 摇臂开关rkc temperature controller 温控表robroy industries bearing, bush 啤令, 杯士, 衬套rosemount valve valve 阀门ross valve valve 阀门rutherford machine parts 机械配件ryall machine parts 机械配件saftronics motor starter, motor 马达samson valve 阀门sanken frequency inverter 变频器scanner scanning device, photo sensor 光电开关schonbuch photo sensor, proximity sensor, plc 光电开关、编程器sealmaster bearings,pillow block 啤令seco motor , transformer 马达, 变压器sencon proximity sensor, managetic sensor 传感器sensortronics cable 电缆sentec sensor 传感器sick sensor sensor 传感器siemens relay, contactor 继电器, 接触器skan-o-matic pneumatic parts 气动组件smc cylinder, valve 气缸、阀门sola transformer, power supply 变压器sponsler chain ,roller, gear 链条, 滚轴, 齿轮spraying syste nozzle,floodjet 喷咀sprcher + schuit overload relay; time relay; contactor 负载电器square d contactor, sensor 接触器, 传感器ssac machine parts 机械配件stahlin switch, controller 开关, 控制器sti vision system 视像系统sumtak sensor, detector, counter, encoder 电眼、检测器、计数器sun hydraulics cartridge,relief valve 阀门sunx sensor, safety curtain 传感器super-e motor, gear box 马达、齿轮箱syrelec contractor, counter 接触器, 计数器systems control board, i/o module 控制电路板taiyo cylinder, valve 气缸, 阀门takenaka photo sensor, magnetic sw 传感器tapeswitch sensing element 传感器telemecanique sensor, relay, contactor 传感器tescor tech. i bearing,follower cam 啤令, 凸轮timken bearing, bush 啤令, 杯士, 衬套torrington bearing, bush 啤令, 杯士, 衬套toshiba inverter, motor 变频器total control inspection and measuring sys 检查及量度系统trane filter 过泸器triad auto feeding system 自动进给系统turck proximity sensor, plc, relay 接近开关、电容式开关u.s. motor motor 马达under writers power actuator 电动促动器vacuum vacuum suction pad 真空吸盘veeder-root microcontroller 微型控制器vickers valve,directional 阀门visolux sensor 传感器vorn industries thumwheel switch 姆指旋转开关warner electric dc motor speed controller, motor driver 直流马达、驱动器weed inst. thermocouple 温控器weksler thermometer 温度仪westinghouse sensor, contactor 传感器, 接触器xycom system controller device 监察系统yamatake sensor, switch 传感器, 开关yaskawa sensor, motion control 传感器, 行动控制装置。

Motorcontroller Dokumentation说明书

Motorcontroller Dokumentation说明书

Motorcontroller de ................................................Beachten Sie folgende Hinweise und die englischsprachi-gen Informationen auf der Rückseite.Hinweis ..................................................Technische Daten zum Produkt können in anderen Do-kumenten abweichende Werte aufweisen.Für die UL-zertifizierten Produkte gelten stets vorrangig die abwei-chenden Technischen Daten des vorliegenden Doku-ments.Eine allgemeine Anwenderdokumentation ist für diese Produkte verfügbar.Die UL-Zertifizierung bezieht sich üblicherweise auf das Produkt als Komponente und nicht auf dessen Installation oder die Benutzung des Produktes in einer Maschine/An-lage.•Berücksichtigen Sie bei Installation und Betrieb dieses Produktes alle dafür geltenden Sicherheitsanforderun-gen,Gesetze,Regelungen,Codes,Normen und Stan-dards,beispielsweise National Electrical Code (USA),Canadian Electrical Code (Kanada),Vorschriften der US-amerikanischen Bundesbehörde OSHA.Motor controlleren ...............................................Note the following instructions and the English informa-tion on the reverse side of this document.Note ......................................................Technical specifications on the product may show dif-ferent values in other documents.In the case of UL-certified products,the differing technical specifications in this documentation always apply first.A general user documentation is available for these pro-ducts.The UL-certification usually refers to the product as a component and not to its installation or to the use of the product in a machine/system.•When installing and operating this product,take into account all applicable safety requirements,legislation,regulations and standards,for example the National Electrical Code (USA),Canadian Electrical Code (Ca-nada),the regulations of the US American Federal Au-thority OSHA.Controlador del motores ........................................Observe las siguientes instrucciones y la información en Inglés en la parte posterior.Importante ..............................................Las especificaciones técnicas del producto pueden mostrar valores diferentes en otros documentos.Para los productos con certificación UL siempre son válidas prioritariamente las especificaciones técnicas diferen-tes indicadas en el presente documento.Para estos productos existe documentación general para el usuario.La certificación UL se aplica usualmente al producto como componente y no a su instalación o a la utilización del producto en una máquina o sistema.•Cuando se instala y se hace funcionar el producto,tener en cuenta los requerimientos de seguridad aplicables,legislación,normas y estándares,por ejemplo la Nat-ional Electrical Code (USA),Canadian Electrical Code (Canadá),las normas de la US American Federal Autho-rity OSHA.Contrôleur de moteur fr ..........................................Tenir compte des remarques suivantes et des informa-tions en anglais figurant au dos.Nota......................................................Les caractéristiques du produit peuvent varier d’un document àl’autre.Les caractéristiques techniques divergentes du présent document s’appliquent tou-jours en prioritépour les produits certifiés UL.Une notice d'utilisation générale est disponible pour ces produits.La certification UL concerne habituellement le produit en tant que composant et non son installation ou l’utilisation du produit dans une machine /installation.•Lors de l’installation et du fonctionnement de ce pro-duit,respecter toutes les consignes de sécurité,lois,réglementations,codes,normes et références,comme par exemple National Electrical Code (USA),Canadian Electrical Code (Canada ),directives de l’autoritéfédé-rale des Etats-Unis OSHA.Controllore motore it .............................................Osservare le note seguenti e le informazioni in inglese riportate a tergo.Nota......................................................In altri documenti,le specifiche tecniche relative al prodotto possono presentare valori diversi rispetto al presente documento.Per i prodotti certificati UL sono validi soprattutto i dati tecnici differenti riportati nel presente documento.Per questi prodotti èdisponibile una documentazione utente generale.In genere la certificazione UL si riferisce al prodotto come componente e non all’installazione o all’impiego in una macchina/impianto.•Per l’installazione e l’esercizio di questo prodotto te-nere presente i requisiti di sicurezza,leggi,regolamenti,codici,norme e standard,ad esempio il National Electri-cal Code (USA),il Canadian Electrical Code (Canada),le prescrizioni dell’AutoritàFederale Statunitense OSHA.马达控制器zh.....................................................请注意下列提示和背面的英文信息。

步进电机控制器 MOTOR CONTROL 说明书

步进电机控制器 MOTOR CONTROL 说明书
指外部连接所用接插口的芯数和形状。 根据接插口的芯数和形状,可以连接的线缆及 附件会有不同。
CONTEC为了方便客户,提供大部分的线缆和附 件。
两端安装接插件的线缆 附件 (端子板及其他)
O-16
单端安装接插件的线缆 接插件套件
O-16
通道数
Motor Controller
XXch
Counter
XXch
可控制的最大通道数(轴数)。 可输入脉冲信号的最大通道数。
要点
Frame Data Store
指最多可储存1000个帧,每个帧都携 带有单定位序列的必备信息,例如: 速率、加/减速度、目标位置。
Limit Switch
Input
指具有检出步进电机(运载工具)的停止 点/减速点/原点等的功能。可进行高级 的定位控制。
GPIB通讯
远程输入输出 扩展单元 / 总线适配器 软件
附件/线缆 分散型监控 网络F&eIT 多功能可编程 显示器
型号
SMC-2P(PCI)
SMC-4P(PCI)
通道数 脉冲输出
编码器输入 限位信号 通用输入 通用输出
数据格式 输出类型 脉冲速率 额定输出 输入信号类型 信号类型 响应频率 输入阻抗 信号通道 信号类型 输入阻抗 信号通道 信号类型 输入阻抗 信号通道 信号类型
3kΩ
7信号/ch
光隔离输入(12~24VDC)
IN1, IN3~IN7: 3kΩ; IN2: 1.8kΩ
3信号/ch
集电极开路输出
额定输出 35VDC 100mA
控制元件
PCL5014 [NPM]
中断
-
I/O 地址
占用16端口
最大功耗

电机术语(Motorterm)

电机术语(Motorterm)

电机术语(Motor term)High voltage synchronous motor high voltage synchronous motorHoisting motor lift motorHome motor home motorHomopolar motor single-pole motorHorizontal induction motor horizontal induction motorHorizontal motor horizontal motorHorizontal - type motor horizontal generatorHorse motor horse driveHorse - drawn motorized duster marla motor duster; Horse-drawn mechanical dusting machineHot mill motor hot rolling motorHot motor part detection engine heating part detectionHot motoring methodHydraulic control motor for hydraulic controlHydraulic motor drive motor driveThe sae brake pressure of hydraulic motor of hydraulic motorsae stall pressureHydraulic motor hydraulic engine; Hydraulic engine; Hydraulic motor; Hydraulic motorHydraulic motor hydraulic motorHydraulic stepping motor hydraulic stepping motorHydraulic power direction of hydraulic traversing electric motorHydraulic-powered wiper motor hydraulic windshield wiper driveHydro-electric motor hydraulic engineHydro-motor jig fluid transmission jigging machineHydro-motor hydraulic engine; Hydraulic engine; Hydraulic motor; Water jet engineHysteresis motor hysteresis motor; Hysteresis motorHysteresis synchronous motor hysteresis synchronous motor; Hysteresis synchronous motorIgniter motor ignition engineTorque motor wet torque motor; Wet torque motorImmersible motor immersion motor; Submersible motorImpulse motor; Pulse motorImpulse step motor pulse stepping motorIncreased - safety motor - safety motorIndependent motor drive motor drive aloneIndividual drive motor is individual drive motorIndividual drive motor individual drive motorInduction motor controller induction motor controller Induction motor induction motor; Asynchronous motorInch-motor meter induction meterInductor motor induction motor; Induction motor as a generator Inductor type synchronous motor induction motorThe in-line (plunger) motor straight-line plunger motorIn-line motor straight-line motor; Direct column plunger motor In-line plunger motor straight-line plunger motorMotorcycle inner tube of pneumatic tyre for motor cycle with inflatable inner tubeInside - out motor rotating armature synchronous motor;Anti-structural synchronous motorInstrument motor meter motorIntegral horsepower motor integer horsepower motorIntegrated motor internal motor; Integral motor; Integral dc motor; Integral motorIntegrating motor integral motor; Integral motor; Integral dc motorWithin internally geared motor reducer motorInternally ventilated ventilated motor inside motorInverse speed motorInversed repulsion motor against rejection motor; Reverse repulsion motorInverse-speed motor series characteristic motorIt is the anti-structural motorInverted repulsion motor abnormal repulsion motor; Reverse repulsion motorIron (-) clad motor iron clad motorIronless A.C.S. ervo motor without iron ac servo motorJanney motor shaft rotary plunger hydraulic motor; Axial rotary plunger hydraulic motorJazz the motor strengthens the engineJet motor jet engineKick motor accelerates the engineLacour motor raqur motorLarge ac three-phase synchronous three-phase synchronous motor Large and medium dc motorLarge induction motor large induction motorLarge power motor high power motorLatour motor radars motorLeaf driving motor filter vane drive motorLeak-proof motor pump leak-proof electric pumpLengthened motor lorry lengthen heavy-duty truckLevel-compound excited motor flat compound motorLift motor lift motor lift motorThirty - five motor hoist motorLight power motor small motorLight rail motor tractor light locomotiveLighting motor - generator set is used for electric generating setLinear electric motor linear motorLinear induction motor linear induction motorLinear motor principle linear driving principleLinear motor linear motor; Linear motorLinear pulse motor linear stepping motor; Linear pulse motorLinear in motor linear reluctance motorLinear step motor linear step motorLinear stepping motor linear stepping motorLinear synchronous motor linear synchronous motorLine - fed motor direct feed motorLine - start motor line starting motor; Direct starting motor; Directly start the motorLiquid fuel motor liquid fuel engineLiquid motor fuel liquid fuelLiquid motor liquid rocket engineLiquid-filled motor filled motorLoad limit motor load limiting motorLoading motor loads motorLobed motor rotz motor; Roots of the motorLong hour motor runs the motor continuouslyLoom motor loom motorLoop motor ring motorLow power motor small power motorLow speed motor low speed motorLow speed synchronous motorLow tension motor starterLow tension motor low voltage motorLow-compression motor low compression engineLower motor neuron diseaseLower motor neuron lesion was damaged by motor neuronsLower motor neuron motor neuronLow-tension motor low voltage motorLuffing motor crane luffing motorLundell motor claw type motor; Rendell motorMachine oil pump for motor motorcycle oil pumpMagnetic clutch motor magnetic clutch motorMagnetic stepping motor stepper motorMagnetical stepping motor magnetic stepping motorMagnet - lagging synchronized motor hysteresis synchronous motorMail motor truckMain drive motor main drive motor; The main motorMain mill drive motor drive motorMain motor contactor main electric contactorMain motor main motorMarine flame-proof three phase asynchronous motor Marine explosion-proof three-phase asynchronous motorMarine service motor ship motorMarine - land purpose motor ship - continental motorMaster motor drive motorMedium - sized motor medium electric motorMercury motor type mercury motor typeMetal-clad motor metal reinforcement motor; Armored motorMicro - stepping motor micro-stepping motorMidget motor micro motor; Pony motorMilitary motor lorry military truck; Military trucksMill motor mills electric motorThe minertial motor small inertia motorMiniature motor micro motorMini motor home mini - motor homeMining motor for miningMist fan motor spray motor; Spray blower motorMobile motor driven centrifugal pump mobile motor centrifugal pumpModel motor model motor; The motor as a test sampleModern motor spirit modern car gasolineModutrol motor modutrall motorMonocyclic - start induction motor single-phase induction motorMonocylicstart induction motor single-cycle start induction motorMonophase asynchronous motor single phase asynchronous motorMonorail motor crab monorail electric craneMonorail motor hoist single-track electric winchMotor alternator electric alternatorMotor amplifier electrical amplifierMotor analyser engine test machine; Engine test stand Motor atomizer power mist machineMotor auger screw drillMotor automatic relay motor automatic relayMotor bark remover powered strip bark machineMotor base (frame) electric seatMotor base (MB) motor baseMotor base pin electric stand pin shaftMotor base motor baseMotor battery motor batteryMotor bearing motor bearingMotor bearings motor bearingMotor bed - plate motor standMotor board motor switchboardMotor boat motor boatMotor body engine housingMotor bogie automatic bogieMotor brake magnet motor brake magnetMotor branch circuit motor branch circuit; The motor feeder branchMotor brass alloy brass alloyMotor brass motor brassMotor brush motor brush; Motor brushMotor cabinet motor seatMotor cable motor cableMotor capacity motor capacityMotor car fitterMotor car insuranceMotor carbon brush; The motor carbon brushMotor carrier transporterMotor case electric chassis; Engine housingMotor casing (frame) electric chassisMotor casing; Motorcycle tyreMotor seat motorDiameter of combustion chamber of motor chamber diameterMotor characteristic of motor characteristic; Motor characteristic curveMotor circuit power circuitMotor coach coachThe combination of motor combination motorMotor commutator motor commutatorMotor compressor electric compressorMotor console engine test consoleMotor constant motor constantMotor control relay motor control relayMotor control motor; Electromotor electronic control; Motor controlMotor controller motor controllerMotor cooling jacket engine cooling jacketMotor cooling motor coolingMotor coordinates center movement coordination center Motor coupling motor couplingMotor current - transformer electric converterMotor cut-out switch motor stop switchMotor cuts out of the engineMotor cycle insurance motorcycle insuranceMotor decussation exerciseMotor disturbance movement disordersMotor drill with electric drillMotor drive the electric asphalt pumpMotor drive oil lifter electric hydraulic liftMotor drive shaft motor drive shaft; The motor shaftMotor drive type motor drive typeMotor drive motor drive; Electric drive; Motor driveMotor driven blower electric blowerMotor driven distributor electric distributorMotor driven hoist electric hoistMotor driven layer radiographic X-ray apparatus electric fault X-ray machineMotor driven miniature pump set electric micro-pump unitMotor driven psychrometer electric draught psychrometerMotor driven pump electric pumpMotor driven saw sawMotor driven sludge excavator electric dredgeMotor driven slush pump electric mud pumpMotor driven starterMotor driven switch motor driven switchMotor driven turbine pumpMotor driven welding machine electric welding machine; Motor driven welderMotor driving time relay motor type time relayMotor dynamo unit electric dc generator setMotor dynamo electric generator; Electric dynamoMotor dynamometer motor power meterMotor eccentricity motor eccentricityMotor effect motor effectMotor efficiencyMotor element motor element; Motion componentsMotor enclosureMotor end closure engine nozzle coverMotor end plate sports end plateMotor excitation motor excitationMotor exciting current motor excitation currentMotor fan fanMotor fault motor faultMotor fiber motor fiberMotor fire brigade vehicle rescue train; Fire engineMotor for boat engineMotor for kicker and doffer jitter and drum motorMotor for wood-working motorMotor foundation of motor foundationMotor frame through boltMotor frame electric frameMotor fuel additive engine fuel additiveMotor fuel consists of engine fuelMotor function motor function; Motor functionMotor fuse motor fuseMotor gain motor gainMotor gasolineMotor generator arc welder electric generator dc arc weldingmachineThe motor glider electric gliderMotor grab electric grabMotor group electric unitMotor head engine front endMotor hoist electric hoist; Electric hoist; Electric hoistThe motor hotelMotor hull insurance car body insuranceMotor inclosure electric enclosureMotor industry research association (mira) automotive industry research associationMotor meter induction meterMotor interrupter electric interrupterMotor launch boatMotor line motor seriesMotor load control (MLC) motor load controlMotor load motor loadThe motor lorryMotor machine electric machineryMotor magnet electric magnetMotor manufacturer motor manufacturerMotor meter motor meter; Motor meter; Induction meterMotor method engine method; Engine drivingMotor mount ring engine mounting ringMotor mower with binder attachment powered grass cutting machine; A power mower with a baling deviceMotor mower with center drive, central drive power mowerMotor mower with side drive side drive mowerMotor mower power mower; Power mowerMotor nozzle engine nozzleMotor nucleiMotor octane number (mon) motor octane numberMotor off switch motor cut off switchMotor oil motor oil; Motor oil; Motor oilMotor on - off switch motor start off switchMotor panel motor switchboardMotor performance of motor performanceMotor petrolMotor pinion motor pinionMotor pitch of motor pitchMotor plough has been ploughedMotor plow powered plowMotor point movement pointMotor power (output) motor powerMotor power engine thrustMotor press power pressMotor protection against overheat protection of overheat motor; Motor overheat protectionMotor protection relay motor protection relayMotor pulley motor pulleyMotor pump (MMP) motor pumpMotor pump works electric pump plantMotor pump electric pump; Motor pumpMotor rear end plate motor rear end coverMotor reducer motor reducer; Motor reducer; Motor speed reducer Motor reducing gear motor reducer; Motor reducerMotor reduction unit speed motorMotor reel motor shaftMotor repair shopMotor repair vehicles repairedMotor roadMotor room motor roomMotor rotor tester motor rotor test deviceMotor rotor rotorMotor saw power sawMotor scooter has a low scooterMotor scraper automatic scraper; Self-propelled scraper Motor shaft motor shaftMotor shell electric casingMotor ship steamer; Engine propulsion vehicle; Motor vessel Motor side motor sideMotor siren; Electric siren; The motor alarmMotor sleigh sledMotor slide rails motor guideMotor slip induction motor slip rateMotor specification motor specificationMotor speech area motor speech centerMotor speed control motor speed controlMotor speed controller engine speed regulatorMotor speed motor speedMotor spirit motor gasolineMotor spring car springsMotor sprocket motor sprocketThe motorcade of motor squadronMotor starter motor starter; Electric starter; Electric starter; Motor starterMotor starting and control equipment motor starting control equipmentMotor starting characteristic of engine starting characteristicMotor starting rheostat motor starting rheostatMotor stator motor statorMotor steering the carMotor step motor distanceMotor stirrer electric stirrerParking motor stoppageMotor sports original; Motor; The motorType synchronous motor induction motor type synchronous motor Type synchronous motor induction motor type synchronous motor。

运动控制2011a

运动控制2011a
任务对动作的限制 环境对动作的限制
Motor control - 运动控制的理论框架- 个体与动作




个体内素度对动作的限制 个体内限制动作的因素:行为、知觉、认知 动作和行为 动作和知觉 动作和认知
Motor control - 运动控制的理论框架- 个体与动作

一、动作和行为(个体因素) 动作通常被描述为完成一个特定的行为,结果运动控制的研究通常与特定 的行为或者活动相关。 例如,运动控制生理学家可能会问:人们怎样走路,跑步,谈话,微笑, 伸手够物以及平静站立? 运动控制研究通常将运动放在在一个特定的行为中进行研究,例如步行。 “行为是动作的载体或动作常常是加载在具体行为之中的。”

影响运动的环境特点被分为规则性和非规则性。

规则性特点明确了形成动作本身的环境方面。任务特定性运
动必须与这些环境的规则特征相一致以达到完成任务的目 的。环境规则特征的例子如茶杯的大小,形状,拿起的重量 以及步行的平面种类。

环境的非规则性特征可能影响任务的执行,但动作并非一定
要遵照这些特征。非规则性环境特征的例子包括背景噪声以
因此,研究运动控制必须包括对认知过程的研究,因为他们与知觉和动作 是相关的。
Motor control - 运动控制的理论框架- 任务与动作

任务对动作的限制


限制除了与个体相关,任务也对动作的神经组织加上了限制。
在日常生活中,我们执行大量各种各样需要运动的功能活动。所执 行任务的本质在部分程度上决定了所需要的动作类型。
及存在的注意力分散的情况。
环 境
Motor control - 运动控制的理论框架

我们探究三个相互作用的因素:个体、任务和环境是怎样决定动作

步进电机驱动器说明书

步进电机驱动器说明书

1. How the motor controller control the motor speedIn the motor controller, there is a hardware timer T1 that is used to generate stepping pulse for stepper motor or reference position for servomotor. The input clock’s frequency of the timer, plus the preset value of this timer, determine the slewing speed of the motors.When T1 generates an interrupt, it mighto Drive the motor to move 1 step (1 micro-step or 1 encoder tick) for low speed slewing.o Drive the motor to move up to 32 steps for high speed slewing. This method applies to motor controller firmware version 2.xx. For motor controller with firmware 3.xx or above,the motor controller always drive the motor controller 1 steps/interrupt.2. Two motion modeGOTO mode: The master device tells the motor controller the desired destination, and then send a "Start" command. The motor controller will control the motor to move to that destination. The master device can check the motor status, real-time position, cancel the slewing during the GOTO. Speed(Tracking) mode: The master device calculate a proper preset value for T1 and send it to the motor controller, and then send a "Start" command. The motor controller will control the motor to slew at the desired speed. The master device can check the motor status, real-time position, cancel the slewing during the GOTO.There is a command which is used to select between the two motion mode for the next "Start"command. Generally, the motor should be at full stop status before setting the motion mode.Generally, the motor controller returns to "Speed Mode" when the motor stops automatically.A typical slewing session include:o Check whether the motor is in full stop status. If not, stop it.o Set the motion mode.o Set the parameters, for example, destination or preset value of T1.o Set the "Start" command.o For a GOTO slewing, check the motor status to confirm that the motor stops (Generally means arriving the destination. ). For a Speed mode slewing, send "Stop" command to endthe session.3. Calculation on Master DeviceA Skywatcher motor controller does not do complex calculation. The master device do it instead.Calculate the angleA Skywatcher motor controller only counts the step or the ticks of an incremental encoder on themotor shaft. But a master device can inquire the motor controller the resolution of the telescope axis (how many steps the telescope axis have for one revolution). We called it CPR (Counts per revolution). With CPR, the master device can convert an angle to steps or vise versa.Please note that CPR might be different for the two axes of a mount.Calculate the T1 preset value.A Skywatcher MC can report the T1’s input clock frequency TMR_Freq (Mention at the beginningof this article). A master device can use TMR_Freq and CPR to calculate the T1 preset value for desired motor speed.Speed_CountsPerSec = Speed_DegPerSec * CPR / 360T1_Preset = TMR_Freq / Speed_CountsPerSec= TMR_Freq * 360 / Speed_DegPerSec / CPRCalculate the T1 preset value for high speed slewingT1 preset value can be too small for high speed slewing, if T1’s input clock frequency is low. To solve this problem, the motor use a slightly different way to control motor speed when highspeed slewing is required (For example, move an axis with higher then 128x sidereal rate). When T1 generates an interrupt, the motor controller moves N micro-steps for a stepper motor, orchange the reference position for N steps for a DC servo motor. That means, for the same T1preset value, the motor will run N times faster than changing only 1 steps for each T1 interrupt event.Currently, N is a fixed number, and a master device can inquire the motor controller for it. Itmight be 16, 32 or 64.The formula for calculating T1 preset value for high speed slewing is:T1_Preset = N * TMR_Freq * 360 / Speed_DegPerSec / CPRWhen a master wants an axis to slew at high speed, it should let the motor controller know when it configures the motor to the Speed (Tracking) Mode. For GOTO mode, the motor controller will take care of it automatically.4. Command Format:The command always starts with a ":" character and ends with a carriage return character 0x0D.If a second ":" character is received by the motor controller before the carriage return character, then the motor controller will abandon the characters received and starts receiving a newcommand.Motor controller will process the command and send response after it receives the carriage return character.A response from the motor controller always starts with a "=" character and ends with a carriagereturn character, if the response is normal.If there is something wrong, the motor will response a message starts with a "!" character, followed by error code and a carriage return character.All the character in the command and the response are ASCII characters.A command from the master device has the following parts:o1 byte Leading character: ":"o1 byte command word, check command set table for detailso1 byte channel word: "1" for RA/Az axis; "2" for Dec/Alt axis.o1 to 6 bytes of data, depending on command word: character "0" to "9", "A" to "F"o1 byte Ending character: carriage return character.A normal response from the motor controller has the following parts:o1 byte Leading character: "="o1 to 6 bytes of data, depending on which command is processed: "0" to "9", "A" to "F"o1 byte Ending character: carriage return character.An abnormal response from the motor controller has the following parts:o1 byte Leading character: "!"o2 bytes of error code: "0" to "9", "A" to "F"o1 byte Ending character: carriage return character.Data format:o24 bits Data Sample: for HEX number 0x123456, in the data segment of a command orresponse, it is sent/received in this order: "5" "6" "3" "4" "1" "2".o16 bits Data Sample: For HEX number 0x1234, in the data segment of a command or response, it is sent/received in this order: "3" "4" "1" "2".o8 bits Data Sample: For HEX number 0x12, in the data segment of a command or response, it is sent/received in this order: "1" "2".5. Command Set6. HardwareUART: 9600bps, 1 start bit, 1 stop bit, no parity check.Signal level: 5V or 3.3V.On most of the EQ mount, the TX and RX lines are separated. The motor controller will send its response immediately after it received and process the command.On most the Alt/Az mount, TX and RX lines are connected together, and there is another line(Drop) to indicate that the TX/RX bus is busy. The Drop line is controlled by the master only, which means the master device should pull the Drop line to low level when it starts to send acommand and keep pulling it low until it receives the full response from the motor controller, or,a time-out occurs. The motor controller will send its response immediately after it received andprocess the command, thus the master device should release the TX/RX bus as soon as possible after the last bit of the command is shift out of the hardware register.The motor controller pull its TX line to high level with a 5.1K to 10K resistor, other than that, it does not strongly pull the TX line to high level and other devices can pull the TX line to low level without problem.6. Wi-Fi ConnectionThe same protocol runs on the SynScan Wi-Fi dongle or mount with built-in Wi-Fi module.The Wi-Fi dongle/module runs a UDP server and listen to UDP port 11880 to accept commands from host.The command must be sent in a single UDP package; the response is also included in a single package.When the Wi-Fi dongle/module works in access point mount, its IP address is 192.168.4.1. If it runs in station mode, the router that it links to allocates its IP address.6. Useful ResourcesSample Code: https:///archive/p/skywatcher/Documents: /download/manual/application-development/。

仪器仪表常用词汇英语翻译

仪器仪表常用词汇英语翻译

仪器仪表常用词汇英语翻译pH计pH meterX射线衍射仪X-ray diffractometerX射线荧光光谱仪X-ray fluorescence spectrometer力测量外表force measuring instrument孔板orifice plate文丘里管venturi tube水表water meter加速度仪accelerometer可编程序操纵器programmable controller平稳机balancing machine皮托管Pitot tube皮带秤belt weigher光线示波器light beam oscillograph光学高温计optical pyrometer光学显微镜optical microscope光谱仪器optical spectrum instrument吊车秤crane weigher地中衡platform weigher字符图形显示器character and graphic display位移测量外表displacement measuring instrument巡迴检测装置data logger波浪管bellows长度测量工具dimensional measuring instrument长度传感器linear transducer厚度计thickness gauge差热分析仪differential thermal analyzer扇形磁场质谱计sector magnetic field mass spectrometer料斗秤hopper weigher核磁共振波谱仪nuclear magnetic resonance spectrometer气相色谱仪gas chromatograph浮球调剂阀float adjusting valve真空计vacuum gauge动圈外表moving-coil instrument基地式调剂外表local-mounted controller密度计densitometer液位计liquid level meter组装式外表package system减压阀pressure reducing valve测功器dynamometer紫外和可见光分光光度计ultraviolet-visible spectrometer顺序操纵器sequence controller微处理器microprocessor温度调剂外表temperature controller煤气表gas meter节流阀throttle valve电子自动平稳外表electronic self-balance instrument电子秤electronic weigher电子微探针electron microprobe电子显微镜electron microscope弹簧管bourdon tube数字式显示外表digital display instrument热流计heat-flow meter热量计heat flux meter热电阻resistance temperature热电偶thermocouple膜片和膜盒diaphragm and diaphragm capsule调剂阀regulating valve噪声计noise meter应变仪strain measuring instrument湿度计hygrometer声级计sound lever meter黏度计viscosimeter转矩测量外表torque measuring instrument转速测量外表tachometer露点仪dew-point meter变送器transmitter仪器外表常用词汇英语翻译电机行业专业术语电机electric engine; electric machine; electric (al) motor 电机参数parameter of electric machine电机槽宽tooth ratio电机槽内导体electric machine slot-conductor电机常数constant of the machine电机厂motormaker电机车haulage motor电机车架空线爱护trolley wire guard电机车运输electric(al) haulage电机传动辊motorised roll电机传动轴motor transmission shaft电机磁场motor-field电机的电气线端electric terminals of a machine电机的规格rating of machine电机的输入功率power input to a machine电机的铁间间隙entrefer电机底座motor base电机电刷motor brush电机调整器regulator generator电机定子铁芯自动焊接机dynamo stator core automatic welder电机端部磁场end-region magnetic field of electrical machine电机短路测试仪electric motor short circuit test instrument电机放大器amplidyne generator; motor amplifier; rotating amplifier 电机放大器操纵部件amplidyne control unit电机放大器伺服系统amplidyne servomechanism电机放大伺服机构amplidyne servomechanism电机钢dynamo steel电机钢板dynamo steel sheet电机工程electric engineering电机工程师electrical engineer电机功率power of motor电机规格rating of machine电机硅钢片dynamo sheet电机黄铜合金motor brass alloy电机减速机motor reducer; motor reducing gear电机壳motor casing; motor enclosure电机操纵electric machine control电机操纵器machine controller电机偏心率motor eccentricity电机起动器motor starter电机青铜dynamo bronze电机驱动motor drive电机驱动的motor-driven电机驱动开关motor driven switch电机驱动种子清选机motor-driven seed cleaner电机绕组machine winding电机设计electric machine design电机室motor room电机输送motor transport电机数量number of motors电机损耗loss of machine电机碳刷carbon brush for electric machine; motor carbon电机效率electric efficiency; electrical efficiency电机械加工electromechanical working电机械模拟electromechanical analogy电机学electromechanics电机用薄钢片dynamo sheet steel电机用硅钢片dynamo steel sheet电机用油motor oil电机油dynamo oil; electric engine oil电机运行特性electric machine operating characteristic电机制造业electric manufacturing电机轴motor shaft电机轴承motor bearings电机转子试验装置motor rotor tester电机转子压铸机die-casting machine for motor rotor电机自动继电器motor automatic relay电机座motor cabinet电机座位motor cavity3-phase slip-ring induction motor 三相滑环式感应电动机3-phase squirrel cage induction motor 三相鼠笼式感应电动机battery-operated motor cycle (玩具) 电动摩托车bearing of motor 电动机轴承bin drive motor 分页格驱动电机biphase motor 两相电动机bisynchronous motor 双倍同步速度电动机blower motor 鼓风电动机; 鼓风机用马达boost motor 助推器; 加速器Boucherot (squirrel-cage) motor 双鼠笼式电动机box-frame motor 箱形机座电动机; 框形电动机brake motor 制动电动机brush and slotless motor 无电刷槽电动机brush motor 换向器电动机; 整流式电动机brush-shifting motor 移刷型电动机built-in motor drive 单独电机传动; 单独内装电机传动built-in motor 机内电动机cage motor 鼠笼式电动机cam-type axial piston motor 斜盘式轴向柱塞电动机canned motor pump 密封电动泵; 密封式电动泵; 屏蔽泵canned motor 封闭电动机; 密封式发动机capacitive motor 电容电动机capacitor induction motor 电容电动机capacitor motor 电容起动电动机; 电容器起动电动机; 电容式单相电动机; 电容式电动机capacitor split-phase motor 电容分相式电动机capacitor start and run motor 电容起动行驶式电动机capacitor start motor 电容起动电动机capacitor start-run motor 固定分相电容器式电动机capacitor-start motor 电容器起动电动机; 电容式启动电动机capacitor-start-and-run motor 电容式启动和运转的电动机capstan motor 主导电动机; 主动轮电动机cascade motor 级联电动机cascade motors 级联电动机组ceiling-fan motor 吊扇电机cell motor 电池电动机centre drvie motor mower 中央驱动动力割草机ceramic permanent-magnet motor 陶瓷永磁电动机; 铁淦氧永磁电动机chain-drive motorcycle 链动机器脚踏车chain-type side-rake for motormower 动力割草机的链指式侧向搂草器change speed motor 分级调速式电动机change-speed motor 变速电动机charge motor 充电马达; 充电用电动机chopper motor 斩波器供电电动机; 断路电动机Class I Motor Carrier 一级汽车运输公司clock motor 计时电动机; 电钟用电动机close-ratio two-speed motor 近比率双速电动机closing motor 密闭电动机clutch motor 带离合器电动机coastal motor boat 海岸汽船coller for motor 电动机冷却器combustion motor 内燃机commercial motor 商用电动机common pumpl motor base 泵与电动机的共用底座commutating pole motor 换向极电动机commutator induction motor 换向器感应电动机commutator motor 换向器式电动机; 整流式电动机; 整流子式电动机commutator variable speed motor 换向器变速电动机compass torque motor 罗盘矫正电动机compensated commutator motor 补偿整流电动机compensated induction motor 补偿感应电动机; 补偿式感应电动机compensated motor 补偿电动机compensated repulsion motor 补偿感应推斥电动机; 补偿式推斥电动机; 补偿推斥电动机; 补偿推斥式电动机compensated series motor 补偿串激式电动机; 补偿串励电动机complete motor type 配带电机型号compound motor 复励电动机compound-wound motor 复激电动机; 复励电动机compressed air motor 气动电动机concatenated motor 级联电动机; 链系电动机; 串级电动机concatenation motor 链系电动机; 串级电动机condenser motor 电容式电动机condenser run motor 电容起动电动机condenser shunt type induction motor 电容分相式感应电动机condenser start motor 电容起动电动机condenser-start induction motor 电容起动感应电动机connector motor magnet 回转电磁铁consequent-poles motor 变极式双速电动机; 交替磁极式电动机constant current motor 定流电动机constant displacement motor 定量马达constant field commutator motor 定鼓舞整流式电动机constant power motor 恒定功率电动机constant pressure motor 等压内燃机constant speed motor 等速电动机; 恒速电动机; 定速电动机constant torque asynchronous motor 恒力矩异步电动机constant voltage motor generator 恒压电动机发电机constant voltage motor 恒压电动机; 定电压电动机constant-current motor 恒流电动机constant-speed motor 等速马达constant-voltage motor 恒定电压电动机continuously rated motor 连续额定运行电动机continuous-time-rated motor 连续运行电动机converter-fed motor 换流器供电电动机coolant pump motor 冷却液泵电动机cooled motor 冷却式发动机crane motor 吊车电动机crawler-type motor grader 履带式自动平地机crescent gear motor 内啮合齿轮马达cross feed motor 交叉馈电式电动机cumulative compound motor 积复激电动机cup motor 杯形电机current-displacement motor 深槽电动机; 深槽感应电动机cutter motor 截煤机电动机cycloid gear hydraulic motor 摆线齿轮油液压马达cycloidal gear reducing motor 摆线齿轮减速电动机cycloidal needle wheel type motor 摆线针轮电动机DC electronic motor 离子式直流电动机DC series motor 串激直流电动机dead motor 关闭的电动机decompounded motor 差复励电动机decussation motoria 运动交叉deep-bar motor 深槽鼠笼式电动机deep-slot induction motor 深槽感应电动机deep-slot motor 深槽感应电动机deep-slot squirrel cage motor 深槽鼠笼式电动机definite-purpose motor 专用电动机deluge proof motor 防水电动机Denison motor 丹尼森液压电动机; 轴向回转柱塞式液压电动机Deri motor 德里电动机Deri repulsion motor 德里推斥电动机despun motor 反旋转电动机; 反自转电动机diaphragm motor 膜片阀操纵电动机; 光阑驱动电动机die-casting machine for motor rotor 电机转子压铸机diesel motor roller 柴油碾压机; 柴油压路机diesel motor 狄塞尔发动机differential compound motor 差复激电动机; 差复励电动机; 差复励电视机; 差复绕电动机; 差绕复激电动机differential motor 差绕电动机differential selsyn motor 差动自动同步电机differential shunt motor 差并励电动机differential wound motor 差励电动机differential-field motor 他激差绕直流电动机differential-field series motor 串激差绕直流电动机differentially-compound wound motor 差复激电动机differentially-wound motor 差绕电动机direct motor drive 电动机直截了当传动direct motor driven 单电动机传动的direct-connected motor 直连电动机direct-coupling motor converter 连轴电动换流机direct-current motor control 电动机电子操纵direct-motor-driven 单电动机传动disabled motor switch 电动机故障断路器dither motor 高频振动电动机; 高频振动电机; 高频振动用电动机double armature motor 双电枢电动机double commutator motor 双整流子电动机; 双换向器电动机double motor 双电动机double squirrelcage motor 双鼠笼电动机double-casing motor 双层机壳式电机double-fed repulsion motor 双馈推斥电动机double-reduction motor 两级减速电动机double-unit motor 双电动机机组drag-cup induction motor 空心转子感应电动机drag-cup motor 拖杯式电动机; 托杯形电动机drag-cup type rotor motor 空心转子电动机drill-motor rotor vane 钻孔转子叶片drip-proof motor 防滴式电动机drip-proof type induction motor 防滴式感应电动机drive motor 传动马达driver motor 主驱动电动机driving shaft motor 传动轴电机drop-proof type motor 防滴水式电动机drum motor 鼓形电动机dual-capacitor motor 双电容器式电动机dual-frequency motor 双频率电动机dual-thrust motor 双推力发动机duocentric motor 同心双转子电动机duplex power feed type A.C. commutator motor 并联馈电整流式交流电动机dust-tight type motor 防尘式电动机dynamoelectric motor 旋转换流机eddy currents in attraction type motor 吸引型电动机中的涡流eddy-current motor 涡流电动机either-rotation motor 双向电机electric (al) motor 电机electric hoist with creep lifting motor 变速电葫芦electric motor car 电动车; 电动机车electric motor coach 电动客车electric motor drive 电动机传动electric motor driven butter churn 电动乳脂制作器electric motor for rolling way 辊道电动机electric motor generator 电动发电机electric motor movie camera 电动式活动摄影机electric motor oil 电动机油electric motor saw 电锯; 电力锯electric motor short circuit test instrument 电机短路测试仪electric motor signal mechanism 电动臂板信号机构electric motor truck 电气载重车electric motor 电动机electric motor-drawn channel scraper 电动粪槽刮铲electric motordriven point mechanism 电动转辙机构electric motor-operated fixed crane 固定式电动起重机electric pulse motor 电脉冲电动机electric starter motor 电力起动机electric vehicle motor 牵引电动机electric wiper motor 刮水器电动机electrical motor 电动机electrically operated motor car 电动车electro-hydraulic servo motor 电动液压伺服电动机electrohydraulic stepping motor 电液步进马达electromagnetic speed-adjustable motor 电磁调速电动机electromagnetic variable-speed motor 电磁调速电动机electro-motor 电动马达electronic motor control 电动机电子操纵electronic motor controller 电子电动机操纵器electropneumatic point motor 电动气动转辙机electropneumatic signal motor 电动气动信号机electrostatic motor 静电电动机; 静电电动机elevating motor 升降电动机elevation drive motor 仰角传动电动机; 仰角驱动电动机enclosed motor 密封式电动机; 封闭电动机; 封闭式电动机; 封闭型电动机enclosed type induction motor 封闭式感应电动机enclosed type motor 封闭式电动机enclosed ventilated motor 封闭通风式电动机engine cranking motor 发动机起动马达Enor motor 埃诺罗式叶片液压马达E-P signal motor 电动气动信号机epicycle motor 行星减速电动机erection torque motor 竖起力矩电动机; 架设转矩电动机exciter motor-generator 励磁电动发电机expiratory motor neuron 呼气运动神经元explosion motor 爆燃式发动机explosion-proof motor 防爆马达; 防爆型电机explosion-proof type induction motor 防爆式感应电动机explosion-proof ventilated synchronous motor 防爆通风型同步电动机explosive motor 内燃发动机external concrete vibrators with motor 带电动机的混凝土振动器externally reversible motor 双向启动可逆电动机external-rotor motor 外转子式电动机face-type motor 凸缘型电动机fan motor 风扇电动机; 风扇马达fan-cooled motor 全封密风冷式电动机farm motor 农用电动机feed motor 进给电动机Ferrari s motor 费拉里电动机field-control motor 磁场可控式电动机; 可调磁场型电动机fixed brush type polyphase series motor 固定电刷式多相串激电动机fixed displacement motor 定量马达fixed-displacement motor 定容量马达flame-proof 3-phase induction motor 防爆型三相感应电动机flame-proof electric motor 防爆电动机flame-proof motor 防爆式电动机flange motor 凸缘底座电动机; 凸缘型电动机flanged motor 凸缘电动机flange-mounted motor 凸缘型电动机flange-type motor 凸缘型电动机; 法兰式电动机flea-size motor 超小型电动机fluid motor 液力发动机; 液压马达fluid power motor 液压发动机fluid pressure motor 液压电动机fluid servo-motor 液压伺服马达fluidic stepping motor 射流式步进电动机fluid-power motor 液力电动机; 液力马达follower motor 随动电动机foot engine with electric motor 牙科脚踏电动二用钻机foot-mounted motor 底座安装型电动机; 落地安装型电动机force motor 执行电动机forced-ventilated motor 强制通风式电动机form-wound motorette 模绕线圈试验装置foundation bolt for motor 电动机地脚螺栓four-phase stepper motor 四相步进电动机four-pole motor 四极电动机four-stroke motor 四冲程发动机four-wheel motor vehicle 四轮机动车辆fractional electric motor 小功率电动机; 分马力电动机fractional horse power motor 分数马力电动机fractional horsepower motor 分马力电动机fractional horse-power motor 分数功率电动机fractional HP light metal induction motors 铝合金壳分马力感应电动机fractional-horsepower asynchronous motor 分马力异步电动机fractional-horsepower motor 低功率电动机fractional-horse-power motor 小马力电动机frame suspended motor 底架悬挂电动机; 底座悬挂型电动机frost-proof motor 耐寒式电动机full voltage starting motor 全电压起动电动机fully-flameproof motor 全防爆型电动机gas for motor fuel 气态发动机燃料; 动力煤气gas motor 煤气发动机; 煤气机gasoline motor car 汽油车gasoline motor 汽油发动机gas-pressurized rocket motor 气压式液体火箭发动机gate motor 栏木电动机gear head motor 齿轮减速电动机gear motor for screw conveyer 螺旋输送器减速电动机gear motor 齿轮电动机; 齿轮马达gear(ed) motor 减速电动机geared motor 齿轮传动电动机; 齿轮传动马达; 齿轮电动机; 带变速齿轮箱的电动机; 带减速齿轮的电动机geared-down motor 齿轮减速发动机gear-type hydraulic motor 齿轮式液压马达gear-type motor 齿轮液压电动机gear-within-gear motor 内啮合齿轮马达general-purpose motor 通用电动机generator-motor set 发电机电动机组gimbal servo motor 万向伺服电动机gimbaled motor 悬挂式电动机gimbaling rocket motor 万向架支座火箭发动机glass reinforced plastic motor lifeboat 玻璃钢机动救生艇governor motor 调剂马达; 调速电动机; 调速器电动机; 调速器用电动机; 调整机用电动机graduation of the motor currents 电动机电流级加法gramophone motor 唱机电动机grinding head motor for woodworking 木工专用磨头电动机grinding head motor 磨头电动机grinding wheel drive motor 砂轮电机gunmetals motor carriage 机械化炮车gyro motor 陀螺马达hand motor 手电动机harmonic motor 谐波电动机haulage motor 电机车head motor 头部发动机heat-pipe motor 热管冷却电动机heat-resistant motor 耐热电动机; 高温电动机heavy motor truck 重型载货汽车Hele-Shaw motor 径向活塞式液压电动机; 径向活塞式液压电动机hermetic motor 密封式电动机; 密封式电动机; 密封型电动机hermetically sealed motor 密封式电动机hermetically-sealed motor 密封型电动机heteropolar D.C. linear motor 多极直流直线电动机high capacity motor 高功率电动机high frequency motor generator 高频电动发电机high power motor 大功率电动机high slip motor 高转差率电机high speed low-noise synchronous motor 高速低噪音异步电动机high torque AC motor 大转矩交流电动机high torque and low speed motor 大转矩低速电动机high torque motor 高启动转矩电机high voltage motor 高压交流电动机high voltage wound asynchronous motor 高压卷线异步电动机high-capacity motor 大型电动机; 高功率电动机high-compression motor 高压缩发动机high-output three-phase induction motor 高功率三相感应电动机high-slip induction motor 高滑差感应电动机high-slip motor 高滑率电机high-speed motor 高速电动机high-speed servo motor 高速伺服电动机high-tension motor 高压电动机high-voltage motor 高压电动机high-voltage synchronous motor 高压同步电动机hoisting motor 升降电动机home motor 家用电动机homopolar motor 单极电动机horizontal induction motor 卧式感应电动机horizontal motor 卧式电动机horizontal-type motor 卧式发电机horse motor 马拉传动装置horse-drawn motorized duster 马拉机动喷粉机; 马拉式机动喷粉机hot mill motor 热轧电动机hot motor part detection 发动机发热部分探测hot motoring method 热机马达法hydraulic control motor 液压操纵马达hydraulic motor drive 液力马达传动hydraulic motor SAE stall pressure 液压马达的SAE制动压力hydraulic motor 水力发动机; 液压发动机; 液压马达; 油压马达hydraulic slave motor 液压马达hydraulic stepping motor 液压步进马达hydraulic traversing electric motor 液压方向机电动机hydraulic-powered wiper motor 液压式风窗刮水器的液力驱动器hydro-electric motor 水力发动机hydro-motor jig 流体传动跳汰机hydro-motor 水压发动机; 液压发动机; 液压马达; 射水发动机hysteresis motor 磁滞电动机; 磁滞式电动机hysteresis synchronous motor 磁滞式同步电动机; 磁滞同步电动机igniter motor 点火发动机immersed torque motor 湿式力矩电动机; 湿式力矩马达immersible motor 浸入型电动机; 潜水电动机impulse motor 脉冲电动机; 脉冲马达impulse stepping motor 脉冲步进电动机increased-safety motor 增安型电动机independent motor drive 单独电动机传动individual drive motor 单独传动电动机individual-drive motor 单独传动电动机induction motor controller 感应电动机操纵器induction motor 感应电动机; 异步电动机induction-motor meter 感应式电度表inductor motor 感应子电动机; 作为发电机的感应电动机inductor type synchronous motor 感应子同步电动机in-line (plunger) motor 直列式柱塞电动机in-line motor 直列式马达; 直列式柱塞马达in-line plunger motor 直列式柱塞马达inner tube of pneumatic tyre for motor cycle 摩托车用充气轮胎内胎inside-out motor 旋转电枢式同步电动机; 反结构同步电动机instrument motor 外表电动机integral horsepower motor 整数马力电动机integrated motor 机内电动机; 积分马达; 积分直流电动机; 整体式电动机integrating motor 积分电动机; 积分马达; 积分直流电动机internally geared motor 内装减速器的电动机internally ventilated motor 内通风式电动机inverse speed motor 反速电动机inversed repulsion motor 反排斥电动机; 反推斥电动机inverse-speed motor 串激特性电动机inverted motor 反结构电动机inverted repulsion motor 反常推斥式电动机; 反用推斥电动机iron(-)clad motor 铁壳电动机ironless A.C.servo motor 无铁交流伺服电动机Janney motor 轴向回转柱塞式液压电动机; 轴向回转柱塞液压马达jazz the motor 强化发动机jet motor 喷气发动机kick motor 加速发动机Lacour motor 拉库尔电动机large AC three-phase synchronous motor 大型交流三相同步电动机large and medium DC motor 大中型直流电动机large induction motor 大型感应电机large power motor 大功率电动机Latour motor 拉吐尔电动机leaf driving motor 过滤叶片驱动电机leak-proof motor pump 防漏式电动泵lengthened motor lorry 加长载重汽车level-compound excited motor 平复激电动机lift motor 电梯用电动机lifting motor 起重电动机light power motor 小型电动机light rail motor tractor 轻型机车lighting motor-generator set 照明用电动发电机组linear electric motor 直线电动机linear induction motor 线性感应电动机linear motor principle 直线驱动原理linear motor 直线电动机; 线性电动机linear pulse motor 直线步进电动机; 直线脉冲电动机linear reluctance motor 直线式磁阻电动机linear step motor 直线步进电动机linear stepping motor 直线步进电动机linear synchronous motor 线性同步电机line-fed motor 直截了当馈电电动机line-start motor 线路起动电动机; 直截了当起动电动机; 直截了当启动电动机liquid fuel motor 液体燃料发动机liquid motor fuel 液体动力燃料liquid motor 液体火箭发动机liquid-filled motor 充液式电动机load limit motor 负荷限制马达loading motor 加载电机lobed rotor motor 罗茨电动机; 罗茨马达long hour motor 连续运行电动机loom motor 织布机电动机loop motor 环流电动机low power motor 小功率电动机low speed motor 低速电动机low speed synchronous motor 低速同步电机low tension motor starter 低压电动起动机low tension motor 低压电动机low-compression motor 低压缩发动机lower motor neuron disease 下位运动神经元病lower motor neuron lesion 下运动神经元损害lower motor neuron 下运动神经元low-tension motor 低压电动机luffing motor 吊杆俯仰电动机Lundell motor 爪极式电动机; 伦德尔式电动机machine oil pump for motor 摩托车机油泵magnetic clutch motor 磁力离合器电动机magnetic stepping motor 步进电机magnetical stepping motor 磁性步进电机magnet-lagging synchronized motor 磁滞同步电动机mail motor truck 邮政汽车main drive motor 主传动电动机; 主电动机main mill drive motor 轧机主传动电机main motor contactor 主电动接触器main motor 主电动机marine flame-proof three phase asynchronous motor 船用防爆三相异步电动机marine service motor 船用电动机marine-land purpose motor 船-陆两用电机master motor 主驱动电动机medium-sized motor 中型电动机mercury motor type 水银电动机式metal-clad motor 金属加固电动机; 铠装电动机micro-stepping motor 微型步进电动机midget motor 微型电动机; 小型电动机military motor lorry 军用卡车; 军用卡车mill motor 磨坊用电动机minertial motor 小惯量电动机miniature motor 微型电动机mini-motor-home 小型旅宿车mining motor 矿用电动机mist fan motor 喷雾吹风电动机; 喷雾吹风马达mobile motor driven centrifugal pump 移动式机动离心泵model motor 模型电动机; 作为试验样品的电动机modern motor spirit 现代车用汽油Modutrol motor 莫杜特罗尔电动机monocyclic-start induction motor 单相感应电动机monocylicstart induction motor 单周期起动感应电动机monophase asynchronous motor 单相异步电动机monorail motor crab 单轨电动起重机monorail motor hoist 单轨电动绞车motor alternator 电动交流发电机motor amplifier 电机放大器motor analyser 发动机试验机; 发动机试验台motor atomizer 动力弥雾机motor auger 机力螺旋钻motor automatic relay 电机自动继电器motor bark remover 机动剥树皮机motor base (frame) 电动机座motor base (MB) 电动机基础motor base pin 电动机座销轴motor base 电机底座motor battery 电动机电池motor bearing 电动机轴承motor bearings 电机轴承motor bed-plate 电动机机座motor board 电动机配电盘motor boat 摩托艇motor body 发动机壳体motor bogie 自动转向架motor brake magnet 电动机闸磁铁motor branch circuit 电动机分支电路; 电动机馈电支路motor brass alloy 电机黄铜合金motor brass 电动机黄铜motor brush 电动机刷; 电机电刷motor cabinet 电机座motor cable 电动机电缆motor capacity 电动机容量motor car fitter 汽车修配工motor car insurance 汽车保险motor carbon 电动机碳刷; 电机碳刷motor carrier 传送机motor case 电动机壳; 发动机壳体motor casing (frame) 电动机壳motor casing 电机壳; 摩托车外胎motor cavity 电机座位motor chamber diameter 发动机燃烧室直径motor characteristic 电动机特性; 电动机特性曲线motor circuit 动力电路motor coach 长途公共客车motor combination 电动机的组合motor commutator 电动机整流子motor compressor 电动压缩机motor console 发动机试验操纵台motor constant 电动机常数motor control relay 电动机操纵继电器motor control 电动机操纵; 电动机电子操纵; 电动机操纵motor controller 电动机操纵器motor cooling jacket 发动机冷却套motor cooling 电动机冷却motor coordinating center 运动和谐中枢motor coupling 电动机联轴节motor current-transformer 电动变流器motor cut-out switch 电动机停机开关motor cuts out 发动机停车motor cycle insurance 摩托车保险motor decussation 运动交叉motor disturbance 运动障碍motor drill 手电钻motor drive asphalt pump 电动沥青泵motor drive oil lifter 电动油压升降机motor drive shaft 电动机驱动轴; 马达轴motor drive type 电动机传动型motor drive 电动机拖动; 电动驱动; 电机驱动motor driven blower 电动鼓风机motor driven distributor 电动分配器motor driven hoist 电动绞车motor driven layer radiographic X-ray apparatus 电动断层X射线机motor driven miniature pump set 电动微型水泵机组motor driven psychrometer 电动型通风干湿计motor driven pump 电动泵motor driven saw 电锯motor driven sludge excavator 电动挖泥机motor driven slush pump 电动泥浆泵motor driven starter 电动起动机motor driven switch 电机驱动开关motor driven turbine pump 电动涡轮泵motor driven welding machine 电动焊机; 电动机拖动式焊机motor driving time relay 电动机式时刻继电器motor dynamo unit 电动直流发电机组motor dynamo 电动发电机; 电动直流发电机motor dynamometer 电动机功率计motor eccentricity 电机偏心率motor effect 电动机效应motor efficiency 电动机效率motor element 电动机元件; 运动元件motor enclosure 电机壳motor end closure 发动机喷口盖motor end plate 运动终板motor excitation 电动机励磁motor exciting current 电动机励磁电流motor fan 电扇motor fault 电动机缺陷motor fiber 运动纤维motor fire brigade vehicle 救火车; 救火车motor for boat 船用发动机motor for kicker and doffer 抖动器和滚筒用电动机motor for wood-working 木工电动机motor foundation 电动机基础motor frame through bolt 电动机长螺栓motor frame 电动机架motor fuel additive 发动机燃料添加剂motor fuel constituent 发动机燃料组成motor function 运动功能; 运动机能motor fuse 电动机熔断器motor gain 电动机增益motor gasoline 动力汽油motor generator arc welder 电动发电机式直流弧焊机motor glider 电动滑翔机motor grab 电动抓斗motor group 电动机组motor head 发动机前端motor hoist 电动葫芦; 电动提升机; 电葫芦motor hotel 汽车饭店motor hull insurance 汽车车身保险motor inclosure 电动机壳Motor Industry Research Association (MIRA) 汽车工业研究协会motor integrating meter 感应式电度表motor interrupter 电动断续器motor launch 汽艇motor line 电动机系列motor load control (MLC) 电动机负载操纵motor load 电动机负载motor lorry (truck) 载重汽车motor machine 电动机械motor magnet 电动电磁铁motor manufacturer 电动机制造者motor meter 电动机式电度表; 电动机型外表; 感应式电表motor method 发动机法; 发动机开车法motor mount ring 发动机安装环motor mower with binder attachment 机动青草割捆机; 带打捆装置的动力割草机motor mower with center drive 中央驱动式动力割草机motor mower with side drive 侧驱式动力割草机motor mower 动力刈草机; 机动割草机motor nozzle 发动机喷管motor nuclei 运动核motor octane number(MON) 马达法辛烷值motor off switch 电动机切断开关motor oil 电机用油; 车用机油; 马达油motor on-off switch 马达启停开关motor panel 电动机配电盘motor performance 电动机性能motor petrol 车用汽油motor pinion 电动机小齿轮motor pitch 电动机节距motor plough 自走犁motor plow 机动犁motor point 运动点motor power (output) 电动机功率motor power 发动机推力motor press 机动压力机motor protection against overheat 电动机过热爱护; 马达过热爱护motor protection relay 电动机爱护继电器motor pulley 电动机皮带轮motor pump (MMP) 马达泵motor pump works 电泵厂motor pump 电动泵; 机动泵motor rear end plate 电动机后端盖motor reducer 电动机减速器; 电机减速机; 马达降速器motor reducing gear 电动机减速器; 电机减速机motor reduction unit 降速电动机motor reel 电动机轴motor repair shop 汽车修配厂motor repair 汽车修理motor road 汽车路motor room 电机室motor rotor tester 电机转子试验装置motor rotor 电动机转子motor saw 动力锯motor scooter 低座小摩托车motor scraper 自动铲运机; 自行式铲运机motor shaft 电机轴motor shell 电动机壳motor ship 汽船; 发动机推进飞行器; 内燃机船motor side 电动机侧motor siren 电笛; 电动警笛; 马达报警器motor sleigh 雪橇motor slide rails 电动机导轨motor slip 感应电动机转差率motor specification 电动机规格motor speech area 运动言语中枢motor speed control 电动机转速操纵motor speed controller 发动机转速调剂器motor speed 电动机转速motor spirit 车用汽油motor spring 汽车弹簧motor sprocket 电动机链轮motor squadron 汽车队motor starter 电动机起动器; 电动起动机; 电动启动器; 电机起动器motor starting and control equipment 电动机起动操纵设备motor starting characteristic 发动机起动特性motor starting rheostat 电动机起动变阻器motor stator 电动机定子motor steering 汽车转向motor step 电动机距motor stirrer 电动搅拌器motor stoppage 停车motor 运动原; 电动机; 马达type synchronous motor 感应电动机式同步电动机type synchronous motor 感应电动机式同步电动机电气安全名词术语说明1差不多概念1.1保安性fail-safe 为防止产品本身的危险故障而设计的性能。

dc_motor_control

dc_motor_control

DC MOTOR CONTROLRoger Aarenstruproger.aarenstrup@C O N T E N T S Introduction (3)The dc motor model (4)Speed control with pid (6)Continuous control (6)Discrete Control (7)Choosing parameters (9)Hand Code testing (10)Using Simulink Control Design Products (10)Rapid Prototyping (10)Fixed Point (11)Production Code Generation (11)Position control using state feedback pole placement (12)Attempt 1 - state feedback and static gain (12)Attempt 2 – integral action (12)Attempt 3 – Observer (13)Attempt4 – The servo case (13)Considerations (14)Bandwidth (14)Sample rate (16)References (17)INT RO D UC TI ONThis example describes how to develop speed and position control systems for a DC motor with a load. Various methods are used and the focus is on how to model and implement the various parts and not of parameter tuning. An important thing to note is that a good controlleris not just a text book implementation but requires a number of additional parts to work properly. It is a good idea to go through this text together with the models and some control design literature that gives more details about the theory. Please see the references chapter for some suitable books.This text and models come with absolutely no guarantee if you find anything incorrect please let me know:Roger.aarenstrup@THE D C M OT O R M O DE LThe models used here can be downloaded from matlab central with the link; /matlabcentral/fileexchange/loadFile.do?objectId=11829&objectType=file The model is a quite simple linear DC motor model with a flexible load. In the library there are MATLAB files describing a state-space representation of the model. How to derive them is described in many control system books and also in the control system toolbox documentation:/access/helpdesk/help/toolbox/control/getstart/buildmo4.htmlThe model described there doesn’t include the flexible load how to add that is described here and in the models included.I have found that a linear model is good enough for many control systems with DC motors. Modeling is not about making the most detailed model but to make a model good enough for the task.There are a few things worth to notice. I have taken the dc motor parameters from the maxon motors product catalog. In the future I hope that it is possible to download models directly from their web page, just like it now is possible to download CAD models over the mechanics. In the catalog there is no specific value for the mechanical damping. Using the common expression for the mechanical time constant, Tm = bm/Jm, where bm is the mechanical damping and Jm is the rotor inertia doesn’t give the correct no-load-current. This might be due to non-linear parts here. I used simulations to estimate a mechanical damping that gives a close match for the mechanical rise time and no-load-current. If you know more about this, please let me know.The figure below presents the DC motor model and load. The load is represented by a double integrator with inertia. Since it is coupled with the motor rotor through a somewhat flexible link there will be a spring action if the positions of the rotor and the load differ. The difference in position (angle) is thus feed back as a counter torque multiplied by the spring constant. The same is true for the damping. The difference in velocities between the two bodies will damp the system. For details, please see the real model.weFigure, DC motor model with flexible load.SP E E D C O NT R OL WI TH P IDIn this chapter we will use model elaboration to go from a crude model to a discrete implementation of a PID based control system for a DC motor with load.CONTINUOUS CONTROLThis first attempt to control the dc motor and load uses a continuous time (LaPlace representation) PID with approximate derivative, see figure below. See model a_pid_cont.mdl for the complete model. When tuning the parameters it is important to consider the control signal (output from the controller) to make su re it won’t exceed the limits of the amplifier. To meet this for the entire step the controller gain (proportional) has to be quite low, we will see how to improve this further on.Figure, PID with approximate derivative (from a_pid_cont.mdl).In some cases it is not desirable to derive the commanded input signal because it might be a step or similar that will give bad results when derived. In the next model b_pid_cont.mdl a variant of the PID controller is used where only the output of the plant is derived.Figure, PID with approximate derivative of the plant output. Note that the derivative part uses only y, the output from the plant, and not the error. (from b_pid_cont.mdl) Now, lets add some more details to the model. This is model-based-design, MBD, where more and more details are added until the final implementation is reached. And during development the model can be verified continuously by Simulation and later code generation. Let’s add a simple model of an amplifier. The amplifier works as a low-pass filter and a saturation of the output signal. Sometimes it is useful to use an amplifier that can output a voltage larger than the nominal voltage for the dc motor, to improve control during short periods of time. Let’s also add the tachometer model. The resulting model is c_pid_cont.mdl.It is often a good idea not to have a pure step as input because the step can cause spikes and might excite modes in the system. To make the reference signal more smooth a simple low-pas filter is added. However, it is usually a good idea to calculate a function, as polynomials for example, for the input.The main result from a simulation with this more detailed model is that there are now ripple on the output caused by the tachometer.DISCRETE CONTROLTo be able to implement the controller on a micro processor we first need to convert it to discrete time in Simulink. There are a number of different way to do that, the one chosen here is taken from [1]. See d_pid.mdl for a model example. Here sample time colors are turned on showing that the controller part is discrete with a sample time of 100 us. More about choosing sample times later. The sample time is set in a model callback, called when the model is loaded.In the discrete version the derivative part depends only on the plant output, just like the second continuous version. It is also advantageous, in many cases, to let the proportional gainonly to depend on a part of the commanded signal. This factor is also introduced in the discrete controller and is called b.Figure, Discrete PID controller. (From d_pid_disc.mdl)Let’s continue with anti-windup for the integrator. There are several ways to add anti-windup for an integrator. The easiest way is to just limit the internal state of the integrator to a reasonable value, this can be done directly in the Discrete-Time Integrator Block. It is also possible to just stop updating the integrator state when the actuator is saturated. Since windup generally is a problem because there is an actuator (amplifier) that has a bounded (non-linear) output, another way is to take the difference between the input to the actuator and subtract that from the output of the actuator and feed that signal back to the integrator path in the controller. This means that if the actuator is saturated the feedback will decrease the integral action. An advantage with this method is that it can be applied to any kind of actuators, not just actuators with limited output.The last case above is implemented in the next model. The implementation is mainly to demonstrate how to implement anti-windup, since there is not any real windup problem in this model. You can experiment with the input to see if you get windup.The new controller, in the figure below and model file e_pid_cont.mdl, uses a model of the actuator, a saturation block, to get the saturated value. Another way would be to measure the actual value but that would add costs.Figure, Discrete PID with anti-windup. (See e_pid_disc.mdl)The model with this controller, e_pid.mdl, also samples the reference signal from an external source and isolates the sampled parts that will later be implemented on a micro controller.CHOOSING PARAMETERSThere are a number of parameters that have to be chosen for the discrete PID controller; K, Ti, Td, Tt, b, N, Umin, Umax and Ts. Parameter tuning and selection is not the purpose of this tutorial but I include some guidelines.For the controller parameters, K, Ti, Td and Ti, there are several methods to choose from, see [1].Tt, the integrator anti-windup feedback, is related to Ti and can sometimes be equal to it but typically it is 0.1-0.5 Ti [1].Parameter b, how much of the reference signal to be used for the proportional gain, should be in the interval 0.1 to 1.N is typically 3-20 but can be as high as 100.Umin and Umax, the saturation points for the actuator model in the controller, should be as close to the real actuator as possible.Ts, the sample time, is related to many things. For PID controllers it has to be lower than for PI for example. It is also related to disturbances. In the examples above I use 100 us which isprobably faster than necessary.HAND CODE TESTINGNow if you’re not using any advanced tools for code generation and you are using a floatingpoint processor, you can write an equivalent discrete controller in c-code and include it, with an s-function block, in the simulation to verify the implementation. In the model directory there is ac-file with the discrete controller implemented, without anti-windup. You can compile from matlab with:mex sfun_wrp_pid.c handcode_pid.cThe file sfun_wrp_pid.c is an s-function wrapper for the controller handling the interface between Simulink and the controller code.Now you can experiment and verify your final implementation so you are sure it works before messing with the real hardware, use model f_pid_disc.mdl. If you have a fixed-point processor you should first model the controller using Simulink Fixed Point then you can do the same thing with it, see later section about fixed-point.USING SIMULINK CONTROL DESIGN PRODUCTSThere are several tools from the MathWorks that can be used for control design. The most widely used is Control System Toolbox that includes many useful tools. For Simulink there are three products in particular that are the most useful; Simulink Control Design, Simulink Parameter Estimation and Simulink Response optimization. With the response optimization tool for example you can specify a desired time domain response and let Simulink optimize the controller parameters to fit the desired response.RAPID PROTOTYPINGModels don’t always describe the real system per fectly. Before putting effort in the final implementation it is generally a good idea to test it with the real plant. This is done by rapid prototyping where code is automatically generated from Simulink with Real-Time Workshop and downloaded to a target system like the xPC target box. Then you can try the implementation of the controller and tune parameters against the real plant.Figure, example model that can be compiled for the xPC target for rapid-prototyping, g_pid_disc.mdl.If you on the other hand have the controller implemented on the target processor and want totest it you can compile the plant instead of the controller and run the plant on the xPC target against your processor. In this way you can verify your implementation before you have the plantand without damaging it. This is called Hardware-In-The-Loop.FIXED POINTIf you are using a fixed-point processor it is now time to convert the floating point model to fixed point using Simulink Fixed-Point. It is out of the scope here to show that.PRODUCTION CODE GENERATIONThe next step would be to produce code that is suitable for production. It can of course be hand coded, like the one we used before in an s-function but there are a number of big advantages using production code generation with Real-Time Workshop Embedded Coder. It is not just a time saving thing; you also avoid hand coding error that is usually random to the nature. If you have to change your controller later it is a lot easier to just regenerate the code than starting a project to re-write some old hand code. It is also a lot harder to make sure that the final implementation actually matches the simulated version. I Simulink you do bit-accurate simulations.In the next section there is example code produced by Real-Time Workshop Embedded Coder in the Controller_ert_rtw folder.P OSI TI ON C ON TR OL USI NG STATE FE E DBA CK P OLE P LACE M E NT Now we are going to make a position controller instead of speed controller. In this version we will use a different amplifier that controls the current fed to the dc motor instead of the voltage. The current is measured in the amplifier and with a simple feedback the current is controlled. This provides a great advantage since the torque of the dc motor is directly proportional to the current through the torque constant Kt. The result is that we can neglect the electrical part of the dc motor and thus have one state less in our control design, saving computational time and development effort.In the file ss_dc_motor_load.m there is a reduced state space model for this new application. The file also includes the control design code for the models in this part.The idea is to feed all states back with a vector gain L, by doing so it is possible to use a method to place the closed loop poles on desired locations. Pole placement is very efficient in getting desired performance but might not give optimal solutions for power consumption for example. It is also not suitable for higher order systems. Higher order can be 5-7 and up. In these cases an LQG approach might be a better choice. But for the DC motor with load in this case a pole placement approach works fine.ATTEMPT 1 - STATE FEEDBACK AND STATIC GAINThe first approach can be seen in a_ss_controller.mdl, and in the file ss_dc_motor_load.m it is called attempt 1. Here the four closed loop poles are placed on the positive real axis (discrete systems are stable when poles are inside the unit circle) on 0.9875, 0.9863, 0.9850 and 0.9838. For the pole placement algorithm to work well the poles can’t be too close to each other. When simulating only this part, without the Kstat constant, gives a reasonable result. However the static gain is quite high, ca 478.4. Usually it is desirable to have a static gain of 1. By just adding the Kstat = 1/478.4 this is corrected. The Kstat can be obtained by simulation or by calculating the closed loop static gain, as in the ss_dc_motor_load.m file.This gives a quite reasonable result and the design is very easy, compared to PID tuning. However, the static gain will be sensitive to model errors and also there is nothing that compensates for disturbances in this first approach.ATTEMPT 2 – INTEGRAL ACTIONAs always to get a static gain to be 1 and to reduce sensitivity to disturbances we introduce integral action. This integral part should have an anti-windup mechanism similar to the PID version but that is not handled here, take it as an exercise to add it. By introducing an integrator we introduce one more state in our model, see attempt 2 in ss_dc_motor_load.m. The integrator should be connected to the error of the output we need to control, in this case the position of the load. It is, however, more common that an encoder is attached to the rotor of the DC motor than to the load. Also since the static position of the load and the rotor is equal, it is possible to use the rotor encoder instead of the position of the load for the integral action.Now we have one more pole to place because of the integrator. Where should we put it? It is tempting to make it faster (closer to 0) than the other poles not to interfere with the response time of the system. However, by doing so will increase the sensitivity to disturbances significantly.A better choice is to put it slightly slower than the rest. This will make the system responsesomewhat slower also but less sensitive to disturbances. This is acceptable for the control casebut not for the servo case. In the servo case we will not track the reference signal fast enough. So what should we do? If we keep the feed forward gain Kff we will introduce a zero in the closedloop system. By selecting that zero carefully we can use it to cancel the slower pole introduced by the integrator. By doing the symbolic math it turns out that cancellation happens when K ff = Lint / (p int–1). Where L int is the feeback for the integrator and pint is the pole placed for the integrator. See ss_dc_motor_load.m file for how this is done.I would also like to remind you that the Simulink Control Design tool that creates a linear model is a very efficient tool to examine any verify designs. Just select inputs and outputs and create the linear model. Then you can watch poles and zeroes, step response, bode plots etc, with the LTI Viewer.ATTEMPT 3 – OBSERVERIn attempt 2 we got a quite nice result, we have control over the movement and we are not very sensitive to disturbances and modeling errors. However, to control we use information about all four states plus the output we are trying to control. This information is easy to obtain in the model for simulation but in a real system that would requite us to measure all the states which generally is not possible or suitable. The solution is to use an observer. The observer takes the input to the amplifier and the output from the encoder and calculates an estimation of the states. Those states can then be used by our controller. Model c_ss_controller.mdl shows how this can be implemented.It turns out that obtaining an observer from the state-space model of the plant is very similar to designing the feedback gain. See attempt 3 in ss_dc_motor_load.m. An input is added for the measured position and then the same pole placement is applied and we get the observer. Please see reference literature for details. To make the observer work well together with the controller its poles should be placed quite a lot closer to 0 or even in the negative real axis. See c_ss_controller.mdl.Note 1! This case illustrates how efficient simulation tools are for designing control systems. We can design the initial controller and verify it by simulation then add details, model elaboration, such as the observer and simulate again to verify. Without simulation tools we need to implement the entire controller with observer without possibility to verify the implementation nor the parameters for it. If we add rapid prototyping to test the algorithm and tune parameters we have probably saved 90% development time.Note 2! The reason why an observer, with both input and output from the real plant, is used instead of just a model over the plant is that with the feedback K, we are more robust to modeling errors.ATTEMPT4 – THE SERVO CASEThis case is just to show an example of how the server control can be implemented. I refer to literature about how to design these controllers, for example [1]. The example model is named d_ss_controller.mdl.CO NSI DE RATI O NSBANDWIDTHHere we will make three different definitions of bandwidth, see [2] for more details.Definition 1: Bandwidth is the frequency area in which control is effective [ω1 ω2].Usually we want the lower frequency to be 0, since we don’t want any static error, we can then call ω2 = ωB the bandwidth.The word effective is not clear but here we assume that it means that we gain something by using the controller in this area.If T is the closed loop system, S is the sensitivity function (S=1-T), r is the reference input, y is the output and e is the error, e = y – r, we get the following:y = T re = y – r = (T – 1) r = -S rFrom this we see that T should be as close to 1 as possible. –S should be as low as possible, since it tells how much of the error that affects the output. This is very interesting because it gives us two more precise definitions of bandwidth.We start with the one based on y = T r. If we say that control is effective as long as |T(jω)|> - 3 dB, the bandwidth will be the frequency where |T(jω)| crosses – 3 dB from above. |T(jω)| is plotted in the figure below.Fig ure, |T(jω)| for the system in model c_ss_controller.mdl. It is position input to encoderoutput that is plotted.The S and T functions are defined in the ss_dc_motor_load.m file and can be examined with ltiview(S, T).From the figure we can see that the bandwidth, according to the definition above, is somewhere between 50 and 60 rad/s. The bandwidth is directly related to the poles we placed. If you increase the frequency of the poles you will get a higher bandwidth. So with this definitionwe can specify our bandwidth with the poles we select for the controller. This definition is also good since it is similar to how bandwidth is defined in other application areas such as signal processing.Definition 2: Bandwidth, ωBT, is the frequency where |T(jω)| crosses – 3 dB from above.Now let’s examine the sensitivity function instead. The error e = -S r. Since we want the error to be as small as possible we want |S(jω)| to be as small as possible. If we con sider it small when smaller than – 3 dB we get another definition of bandwidth. The figure below shows S and from it we can see that the bandwidth would be approximately 25 rad/s.Figure, |S(jω)| for the system in model c_ss_controller.mdl. It is position input to encoder output that is plotted.Definition 3: Bandwidth, ωBS, is the frequency where |S(jω)| crosses – 3 dB from below.The later definition seems to be the preferable one. Just considering the amplitude of T is not enough; the phase must also be under consideration. If you plot T with its phase diagram you can see that the phase is almost -180 in the area of the bandwidth. This suggests that control there might not improve the system performance. However, considering the sensitivity functioninstead, that we want to be small, and if it is small enough we don’t have to care about the phase.In the next figure the magnitude diagrams of S, T and the open loop system are plotted together. As you can see the open loop systems cross over frequency is just in between the bandwidth frequencies for S and T.Figure, Magnitude diagram of S, T and the open loop systemSAMPLE RATESo what sample rate should be used? It depends on the system dynamics, disturbances etc. In this case we have a bandwidth from the second definition, from T, of 60 rad/s (about 10 Hz). We also have a frequency of the flexible load of about 3000 rad/s. 3000 rad/s is about 477 Hz. According to some (there are many) rule of thumb you should sample 10-40 times faster than the dynamics and that would mean 4.8 – 48 kHz. In the models here I have chosen 100 us or 10 kHzas sample rate.RE FE RE N CE S[1] Åström, Karl, Wittenmark, Björn, Computer Controlled Systems, Prentice Hall, 1990.[2] Skogestad, Postlethwaite, Multivariable Feedback Control, Wiley, 1997.[3] Glad, Ljung, Reglerteori, Studentlitteratur, 1997.。

电机(MOTOR)分类及带图详解-PPT课件

电机(MOTOR)分类及带图详解-PPT课件

*电机的温升
电机的温升和绝缘性能
—电机在运转时会产生热量。电动机运行时,电动机内部的损失(如:铜损、铁损等)转变成热,使电动机 温度上升。 —电机所产生的热一部分在电机内部传导,另一部分在电机外部辐射、对流。 —电机在运作中马达内部发生的热损失和外部发散的热差叫做温升。 —电机在运作中温度上升所产生的热,温度十分高的地方是线圈部。 因此,电机的使用界限受到温升的限制。 —电机在运作中的随着温度的上升温度升高,其次的表面容许温度不能超过设计的最高温度。
○ ○ ○
⊙ ○ ○ ⊙ ⊙ ○ ○ ⊙ ⊙ ⊙
通风作的好点, 营业 商讨 Service Center或者 营业 商讨 防止策 实施 防止策实施 防止策实施
环 境
温度偏高 灰尘,赃物 侵入 水,油 多量存在 外部 振动,冲击 大 单相 运转
⊙ ○ ○
⊙ ○
⊙ ○
⊙ ⊙
断路器,开关器,引出线的 接触调查 排线粗细,长度 调查 电源 漏透 确认 1次 电源确认或者 韩电 商量
负 荷
负荷惯性矩 大 堵转 负荷的不均衡 相对机械的振动
○ ○ ○ ⊙ ○ ○
* 轴承 以上 (周期 2) * 电机 COIL 烧损

周期 : 1. ⊙ 是现象和原因的关系密切, ○ 是有关系的。 2. 在这种情况下的这根本性的原因 调查后需要解决。 3. 交流接触器、断路器 、启动器过热。 4. 其它
超过荧光夜跑是一种新兴运动方式参赛者利用荧光装备随性装扮自己进行无排名之分无速度之争的跑步运动它是一项推崇健康分享快乐传递正能量的赛事异步电动机tefc型号机架功率频率转速电压电流前轴承后轴承112m37kw60hz1730rpm4406205zz6206zz效率830运转方式保护等级绝缘contip44过负荷率环境温度重量401039lg产前made1mm以上的固态物体不可侵入电机线圈可工作在155以下额定电压额定电流容量异步转速荧光夜跑是一种新兴运动方式参赛者利用荧光装备随性装扮自己进行无排名之分无速度之争的跑步运动它是一项推崇健康分享快乐传递正能量的赛事振动的诊断和早期措词方法轴承继电器动作断路器动作现象原因措施内容设置直列belt连接不足坚固的设置belt的张力滴定belt张力key松散滴定的修正接地不安全规定接地实施断路器开关器容量部适合规定的交替排线的单线电线的修理起动器开关器接触不良接触部调整灰尘上带的冷却低下清扫实施周围温度通风作的好点营业商讨温度偏高servicecenter或者营业商讨灰尘赃物侵入防止策实施多量存在防止策实施外部振动冲击单相运转断路器开关器引出线的接触调查电压加强排线粗细长度调查电源确认电压不平形绝缘电阻低下荧光夜跑是一种新兴运动方式参赛者利用荧光装备随性装扮自己进行无排名之分无速度之争的跑步运动它是一项推崇健康分享快乐传递正能量的赛事电动机的诊断和早期预防轴承继电器动作断路器动作绝缘电阻低下现象原因措施内容负荷减轻负荷检查轴承启动频度启动回数减少负荷惯性矩联系servicecenter或者营业部设置修正负荷的不均衡平衡性及时修正相对机械的振动相对机械调查轴承以上工厂修理电机coil工厂修理周期在这种情况下的这根本性的原因调查后需要解决

松下MADC1505说明书 英文版综合版本

松下MADC1505说明书 英文版综合版本
Installation................................................................................ 23
Driver ............................................................................................................................................................ 23 Motor ............................................................................................................................................................. 24
AC Servo Motor Driver
MINAS AIII-series
Operating Manual
DV0P3450
[Be sure to give this instruction manual to the user.] • Thank you very much for your buying Panasonic AC Servo Motor Driver, MINAS
Parts Description ..................................................................... 20
Driver ............................................................................................................................................................ 20 Motor ............................................................................................................................................................. 22

maxon motor control escon 50 5 使用说明书

maxon motor control escon 50 5 使用说明书

maxon motor ag Brünigstrasse 220 P.O.Box 263 CH-6072 Sachseln (瑞士) 电话:+41 41 666 15 00 传真:+41 41 666 16 50 出版日期 2018年11月ESCON 伺服控制器使用说明书maxon motor control ESCON 50/5伺服控制器订货号 409510使用说明书文件编号: rel8440maxon motor control A-2文件编号:rel8440ESCON 伺服控制器出版日期:2018年11月ESCON 50/5使用说明书© 2018 maxon motor. 如有修改恕不另行通知。

1概述31.1本手册的介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2设备介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3安全规程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52技术规格72.1技术数据 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2标准 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103设置113.1适用的一般规定 . . . . . . . . . . . . . . . . . . . . . . . . . . 113.2电源的设计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.3连接 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.4电位器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.5状态显示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274接线294.1有刷直流电机 . . . . . . . . . . . . . . . . . . . . . . . . . . . 304.2无刷电子换向电机 . . . . . . . . . . . . . . . . . . . . . . . . . 335备件35目录请首先认真阅读下文!本说明供合格的专业技术人员阅读参考。

双通道h桥电机驱动芯片代码

双通道h桥电机驱动芯片代码

双通道h桥电机驱动芯片代码全文共四篇示例,供您参考第一篇示例:双通道H桥电机驱动芯片是一种用于控制直流电机的重要元器件,它能够实现电机的正反转控制、速度调节以及保护功能。

本文将介绍关于双通道H桥电机驱动芯片的工作原理及其代码实现。

我们来了解一下双通道H桥电机驱动芯片的工作原理。

H桥电路是一种用于控制电机方向的电路,双通道H桥即为同时能够控制两个电机的H桥电路。

在工作时,通过对H桥上的四个开关进行合理的控制,可以实现对电机的正转、反转、制动等操作。

而双通道H桥电机驱动芯片则是集成了H桥电路和控制逻辑的一体化芯片,能够更方便地实现对电机的控制。

接着,我们将介绍如何通过代码实现对双通道H桥驱动芯片的控制。

在这里,我们以常用的Arduino平台为例进行说明。

通常,我们需要引入对应的库来实现对双通道H桥电机驱动芯片的控制,比如常用的Adafruit Motor Shield库或L298N库。

以下是一个简单的示例代码,用于控制双通道H桥电机驱动芯片:```arduino#include <Adafruit_MotorShield.h>// 创建一个Motor Shield对象Adafruit_MotorShield AFMS = Adafruit_MotorShield(); // 设置电机编号Adafruit_DCMotor *motor1 = AFMS.getMotor(1); Adafruit_DCMotor *motor2 = AFMS.getMotor(2); void setup() {// 初始化Motor Shield对象AFMS.begin();}void loop() {// 电机正转motor1->run(FORWARD);motor2->run(FORWARD);delay(1000);// 电机停止motor1->run(RELEASE);motor2->run(RELEASE);delay(1000);// 电机反转motor1->run(BACKWARD);motor2->run(BACKWARD);delay(1000);// 电机停止motor1->run(RELEASE);motor2->run(RELEASE);delay(1000);}```上述代码中,首先引入了Adafruit_MotorShield库,然后初始化了一个Motor Shield对象,并设置了两个电机的编号。

STM32 motor control profiler user 说明书

STM32 motor control profiler user 说明书

UM3016User manualHow to use STM32 motor control SDSK v6.0 profilerIntroductionThe STM32 motor control software development kit (MC SDK) is part of the STMicroelectronics motor-control ecosystem. It is referenced as X-CUBE-MCSDK or X-CUBE-MCSDK-FUL according to the software license agreement applied. It includes:•ST MC FOC firmware library for permanent magnet synchronous motor (PMSM) field-oriented control (FOC)•ST MC 6-step firmware library•ST motor profiler•ST motor pilot•ST MC workbench software tool, a graphical user interface (GUI) for the configuration of MC SDK firmware library parametersThis user manual explains how to use the ST motor profiler software tool included within the MC SDK firmware version 6.0.General information 1General informationThe ST motor profiler software tool is part of the MC SDK that is used for the development of motor controlapplications running on STM32 32-bit microcontrollers, based on the Arm® Cortex®‑M processor.The ST motor profiler provides the user with an easy and friendly way to find profiled information for a usercustom motor and save it as user motor.It runs on a PC system using Windows® and requires a USB Type-A connector.Refer to the STM32 MC SDK release note to get all information about the ST motor profiler usage possibilities. Note:Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.Related documents 2Related documentsDocuments available from Arm® infocenter website•Cortex®-M0 Technical Reference Manual•Cortex®-M3 Technical Reference Manual•Cortex®-M4 Technical Reference ManualDocuments available from or your STMicroelectronics sales office•STM32F0xx datasheets•STM32F3xx datasheets•STM32F4xx datasheets•STM32G4xx datasheets•STM32G0xx datasheets•STM32F7xx datasheets•STM32H7xx datasheets•STM32L4xx datasheetsMotor control reference documentsTable 1 presents the documentation that helps to get a deeper understanding of the STMicroelectronics motorcontrol solution.Table 1. Reference documentation1.UM3026 and UM3027 are respectively the evolutions of UM2374 and UM2380 for MC SDK 6.0.3The ST motor profilerThe ST motor profiler software tool can be used to identify the main permanent magnet synchronous motor (PMSM) characteristics, which are further transferred to the ST MC workbench.3.1Launch the ST motor profilerLaunch the ST Motor Profiler software tool by clicking either its icon (Figure 1) or either running directly from the installation folder.Figure 1.ST Motor Profiler – IconThe user can also launch the ST Motor Profiler software tool from the dedicated link button from the ST motor control workbench GUI (Figure 2).Figure 2.ST Motor Profiler – GUI (Home page toolbar)Then, the ST motor profiler starts up a GUI window as shown in Figure 3.Figure 3.ST Motor Profiler – Start-up GUIThe ST motor profiler3.2Configure your hardware setupClick on the Select Boards button to display the list of supported boards (Figure 3), then choose your STapplication board setup. Note that the ST motor profiler software tool can be used only with the ST hardwaresetup listed there. Figure 4 presents an example from this list.Figure 4. ST Motor Profiler – Hardware setup list examplesJust click on the ST hardware setup to select it, thus configure the ST motor profiler software tool. As an example,Figure 4 shows the P-NUCLEO-IHM001 selection.Then, complete the parameter fields with your motor information:•The number of pole pairs inside your motor (mandatory field)•The Max Speed of your motor (optional field):–By default, the ST motor profiler software tool looks for the maximum allowed speed matching the motor and the hardware setup used.•The Max Current admissible by your motor (optional field)–By default, it is the maximum peak current deliverable by your hardware setup.•The nominal DC bus voltage used by your hardware setup (optional field):–By default, it is the power supply stage as either the bus voltage for low voltage applications (DC voltage) or the √2V ACrms for high voltage applications (AC voltage).•The magnetic build-in type (mandatory field):–By default, it is the SM-PMSM with is selected.•The Ld/Lq ratio (mandatory field) only in the case of I-PMSM build-in (Figure 6).Figure 5 provides example values for the BR2804-1700KV-1 motor provided with the P-NUCLEO-IHM001 hardware setup.Figure 5. ST Motor Profiler – SM-PMSM parameters exampleFigure 6. ST Motor Profiler – I-PMSM parameters example3.3Connect to your hardware setupWhen the ST motor profiler is configured, click on the Connect button (Fuchsia area in Figure 7).Figure 7. ST Motor Profiler – Configured GUIThen, depending on your hardware setup history, a status window appears as shown in Figure 7. ST MotorProfiler – Configured GUI. In case of a problem, a troubleshot message window will pop up (Table 2) to supportyour recovery actionFigure 8. ST Motor Profiler – Download status windowTable 2. ST Motor Profiler – Possible window messagesWhen successfully connected to your hardware setup, the Start Profile button must appear as surrounded in fuchsia in Figure 9.Figure 9. ST Motor Profiler – Connected GUI3.4Profile your motorClick on the Start Profile button as surrounded in Figure 9 to profile the motor.First, the electrical parameters are identified, then the mechanical ones. In the case of over ‑current fault detection, the profiling is restarted with a reduced current. When profiling is completed, all the motormeasurements are shown in green or orange colors (Figure 10) depending on the relative accuracy. When red color is used, please check your hardware setup and restart the motor profiling sequence.Figure 10.ST Motor Profiler – Profiled motor GUIProfile your motor3.5Save your profiled motorClick on the Save… button (Figure 10) to store the motor measurements for later usage with the ST motor control workbench software tool.Figure 11 shows the saving window in that case, then the user may provide the motor information:•Naming of your profiled motor•Provide details about your profiled motor •Click on SaveFigure 11.ST Motor Profiler – Save windowSave your profiled motor3.6Play with your motorClick on the Play button (Figure 10. ST Motor Profiler – Profiled motor GUI ) to spin your just profiled motor.Figure 12 shows the spin control window. Preset the maximum acceleration and click on the Start button to activate your motor control. Then, select your Speed [RPM] with the cursor.Figure 12.ST Motor Profiler – Spin control window (Start)Figure 13 presents how to stop properly playing with your motor.Figure 13.ST Motor Profiler – Spin control window (Stop)Play with your motor3.7End the ST motor profilerClick on the Disconnect button (Figure 10) to stop properly the ST motor profiler software tool, then close the window using the upper ‑right cross icon.If you forgot to save your motor parameters, then select the No button (Figure 14), click on the Connect button (Figure 7) and save your motor parameters (Refer to Section 3.5 ). However, clicking on the Yes button loses your unsaved motor parameters and closes the ST motor profiler software tool.Figure 14.ST Motor Profiler – Tool closure confirmation windowEnd the ST motor profilerRevision historyTable 3. Document revision historyContents1General information (2)2Related documents (3)3The ST motor profiler (4)3.1Launch the ST motor profiler (4)3.2Configure your hardware setup (5)3.3Connect to your hardware setup (7)3.4Profile your motor (10)3.5Save your profiled motor (11)3.6Play with your motor (12)3.7End the ST motor profiler (13)Revision history (14)List of tables (16)List of figures (17)List of tablesTable 1. Reference documentation (3)Table 2. ST Motor Profiler – Possible window messages (8)Table 3. Document revision history (14)List of figuresFigure 1. ST Motor Profiler – Icon (4)Figure 2. ST Motor Profiler – GUI (Home page toolbar) (4)Figure 3. ST Motor Profiler – Start-up GUI (4)Figure 4. ST Motor Profiler – Hardware setup list examples (5)Figure 5. ST Motor Profiler – SM-PMSM parameters example (6)Figure 6. ST Motor Profiler – I-PMSM parameters example (6)Figure 7. ST Motor Profiler – Configured GUI (7)Figure 8. ST Motor Profiler – Download status window (7)Figure 9. ST Motor Profiler – Connected GUI (9)Figure 10. ST Motor Profiler – Profiled motor GUI (10)Figure 11. ST Motor Profiler – Save window (11)Figure 12. ST Motor Profiler – Spin control window (Start) (12)Figure 13. ST Motor Profiler – Spin control window (Stop) (12)Figure 14. ST Motor Profiler – Tool closure confirmation window (13)IMPORTANT NOTICE – READ CAREFULLYSTMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers’ products.No license, express or implied, to any intellectual property right is granted by ST herein.Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to /trademarks. All other product or service names are the property of their respective owners.Information in this document supersedes and replaces information previously supplied in any prior versions of this document.© 2022 STMicroelectronics – All rights reserved。

电机智能保护器配置手册说明书

电机智能保护器配置手册说明书

How to configure, monitor, and control Motor Insight via Modbus, DeviceNet, and PROFIBUSApplicationMotor Insight T is an advanced motor protective relay with thermal motor overload, supply,and load protection; configurable ground fault detection; power monitoring; an intuitive user interface; and optional communications. The optional communications allow for remote control and reset of faults, and remote monitoring of numerous operating and configuration parameters. The communication modules also include inputs that can be usedto bring the status of sensors or switches backto the system controller, as well as outputs to control the contactor or turn on pilot lights.OverviewThe industrial networks supported by the Motor Insight relay are all open networks. This means that there are many software tools already available that can be used to configure the device over these networks. Each of the supported networks will be discussed in this document, including suggestions for various configuration tools, many of which are free downloads from the Internet. In many cases, the network tools supplied by the manufacturerof the network master can be used to configure any device on that network.Overview of Modbus T, DeviceNet E and PROFIBUS TFor most applications, the Motor Insight relay parameters can be easily configured using its intuitive user interface. Then, the communication network master can be used to control and monitor the device during operation. This network master reads status information from each slave device and writes control information. The communication interface modules forMotor Insight allow control for the following:1. Remote reset of a fault2. Remote trip3. Control of on-board field outputs Numerous parameters are available to be monitored from Motor Insight, including:1. Device status bits2. rms current IA3. rms current IB4. rms current IC5. rms current average6. rms voltage VAB7. rms voltage VBC8. rms voltage VCA9. rms voltage average10. Total kW11. Voltage unbalance percent12. Current percent13. Apparent power factor14. Residual ground current deciamps15. Frequency16. Overload thermal pile17. Trip reason18. Overload status19. Error code20. Field inputsThe following is a discussion concerning the third-party software tools available for the open networks supported by Motor Insight. ModbusMotor Insight supports both Modbus RTU and Modbus ASCII modes, as well as baud rates from 9600 to 115.2K baud. It will communicate with any Modbus master.The unique aspect of Modbus is that special configuration tools are typically not necessaryas they are with many other industrial networks. The reason is that Modbus requires Modbus Data Register addresses for all parameters in all Modbus devices. This allows a Modbus master to easily read and write data to a Modbus slave device for configuration, control, and monitoring purposes. Motor Insight is no different. It has assigned a Modbus Data Address to all available parameters. This information is publishedin the Motor Insight overload and monitoring relays user manual, publication MN04209001E.Eaton Corporation Electrical Sector1111 Superior Ave. Cleveland, OH 44114United States877-ETN-CARE (877-386-2273) © 2010 Eaton CorporationAll Rights ReservedPrinted in USAPublication No. AP04209004E / Z9775 August 2010PowerChain Management is a registered trademark of Eaton Corporation.All other trademarks are property of their respective owners.Application Paper AP04209004E Effective August 2010How to configure, monitor, and control Motor Insight via Modbus, DeviceNet,and PROFIBUSIf a third-party Modbus software package is desired to configureor verify the configuration or operation of Motor Insight, there are numerous software tools available. Many of these tools are free downloads, such as ModScan. Others can be found by simply searching the Web for Modbus Software Tools.Eaton has a line of electronic operator interface devices called HM i.A program for a 4-inch HM i is available as a free download from /motorinsight or via this direct link. This program communicates via Modbus to multiple Motor Insight devices. It contains screens for configuring, monitoring, and controlling upto 16 Motor Insights from a single HM i. To obtain the HM i software needed to download the program to an HM i, visit / electrical. Then, click the “Tools & Downloads” link. Next, select “Software Downloads.” On the next page, under the Products drop-down, select “Operator Interface...” and then select “HM i Operator Interface Configuration Software.” Also note that the HM i software allows for changing the HM i program so it can be downloaded to any size HM i: 4-, 6-, 8-, or 10-inch unit.Another source of available Modbus tools can be found on the official Modbus Web site: .DeviceNetUnlike Modbus, where all parameters in a device have a data address assigned to them, DeviceNet slave devices use input and output assemblies. Each input assembly will include the same status bits indicating operational status of the device. The various input assemblies differ by the additional data that can be monitored with each. The Motor Insight relay has five different input assemblies. Two of these input assemblies allow the user to select the parameters to monitor. The various output assemblies are for control. They provide the ability to reset faults, trip the overload, and turn the outputs on-board the DeviceNet module on and off. DeviceNet is an open network that requires a software tool to configure slave devices and to map their data into the scan list of the master. The manufacturer of the DeviceNet master will provide a software tool to map slave devices into the scan list of the master so the system controller can control and monitor each Motor Insight. Motor Insight contains an intuitive user interface for configuration, but when on a DeviceNet network, it can be configured by any third-party DeviceNet commissioning tool as well. The DeviceNet specification requires that all DeviceNet products have an eds file (electronic data sheet). This file is a text file that is used to uniquely define each parameter in the device. DeviceNet commissioning tools are designed with the ability to import eds files for any valid DeviceNet slave device. The software tool can then be used to configure the device. There are two eds files and an icon file available for Motor Insight. They may be downloaded from/motorinsight. These files can then be imported into any valid DeviceNet commissioning software, such as:1. Eaton’s CHStudio E2. Eaton’s ELCSoft (DNET CONFIG Tool)3. Rockwell’s RSNetWorx E for DeviceNetCHStudio is a free download from the Eaton Web site; searchfor CHStudio and download the software and activation code.It can be used to configure any DeviceNet slave device, but notthe network master.ELCSoft is the programming software for the Eaton PLC line called ELC. This PLC line includes a complete DeviceNet master, the ELC-CODNETM module. The commissioning software is included in the ELCSoft programming software. It can configure any DeviceNet slave device by importing the eds file for the device and can fully configure the ELC-CODNETM DeviceNet master module.The manufacturer of the network master typically supplies the software tools needed to configure the master. RSNetWorxfor DeviceNet can be purchased from Rockwell or a Rockwell distributor. Motor Insight eds files can be imported into RSNetWorx for DeviceNet, allowing the software to configurethe Motor Insight and a Rockwell DeviceNet master.Once all slave devices on a DeviceNet network have been configured and mapped into the DeviceNet master’s scan list, the master will continuously poll the slave devices, like the Motor Insight, writing control data to them and monitoring various parameters. Motor Insight has more data available to monitor than any other overload relay of its type. This information is published in the Motor Insight overload and monitoring relay user manual, MN04209001E.Another source of available DeviceNet tools can be found on the official DeviceNet Web site: .PROFIBUSPROFIBUS is very similar to DeviceNet in that the network configuration tools are typically supplied by the manufacturer of the PROFIBUS master. There is also a file for PROFIBUS similar to the eds file for DeviceNet, called a GSD file. All valid PROFIBUS slave devices must have a GSD file. This file is imported into the PROFIBUS commissioning tool or the programming software, allowing the software to configure the device and map its I/O data so the PROFIBUS master can poll the slave devices for control and monitoring purposes. These PROFIBUS tools are supplied bythe manufacturer of the PROFIBUS master. The GSD file may be downloaded from /motorinsight. This file can then be imported into any valid PROFIBUS software tool, such as Siemen’s SIMATIC Software. Other PROFIBUS network product vendors are Woodhead Connectivity, Bihl+Wiedemann GmbH and PROCENTEC. Another source of available PROFIBUS tools can be found on the official PROFIBUS Trade Organization Web site: /.Supporting documentationMotor Insight User Manual MN04209001E Motor Insight DeviceNet Instructional Leaflet IL04209005EMotor Insight Modbus Instructional Leaflet IL04209004EMotor Insight PROFIBUS Instructional Leaflet IL0420900XEELC System Manual MN05003003EELC-CODNETM Instructional Leaflet IL05001003EHM i User manual MN04802014EAdditional helpIn the event that additional help is needed, please contact the Technical Resource Center at 1-877-ETN-CARE (386-2273).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通电方式
控制绕组每改变一次通电方式,称为一拍,每一拍 转子所转过的角度称为一个步距角β。步进电动机 的通电方式有三种。对于三相反应式步进电动机来 说,每次只有一相绕组单独通电,如A→B→C→A, 控制绕组每换接三次构成一个循环,这种方式称为 三相单三拍;若每次有两相绕组同时通电,如 AB→BC→CA→AB,每次循环换接三次,这种方式 称为三相双三拍;若单相通电和两相通电轮流进行, 如A→AB→B→BC→C→CA→A,这种方式被称为 三相六拍。
杯型转子伺服电动机结构图 激磁绕组1;控制绕组2;内定子3; 外定子4;转子5
(2).基本工作原理
两相绕组WF和WC分别通 入频率相同的交流电,产生 旋转磁场,使伺服电动机起 动. 取消WC后,要防止自转. (3).消除自转现象的措施 加大转子电阻.如: 采用薄壁杯形转子. 鼠笼条用高阻材料黄铜 转子电阻不同时的机械特性
四、测速发电机
测速发电机将转速转变为电压信号,广泛用于速度和位置控制系统中.
1.异步(交流)测速发电机 1) 结构特点:定子上有两套 互差90度电角度的激磁绕 组WF和输出绕组WC;转子 为空心杯形. 2) 工作原理:杯形转子可以 看成一个导条非常多的鼠笼 转子.在激磁电压一定的情 况下,当输出绕组的负载很 小时,测速发电机的输出电 压U0与转速n成正比:
灵敏度:交流测速发电机的灵敏度比较 低.

:
输出特性的线性度
2.直流测速发电机
1)基本原理 电气原理如右图所示,它是一种测 量转速用小型他激直流发电机.空 载时,电枢两端电压为:
U a 0 E Ce n
U a Ce n /(1 U a / U L )
2)输出特性:负载越小,转速越高,输出特 性曲线弯曲越厉害. 3)性能: 没有剩余电压,特性钭率比异步机大; 有换向器和电刷,换向火花产生无线电干 扰,输出特性不稳定.
(3).交流伺服电动机的特性和应用
控制方法;有三种. 幅值控制,相位控制,幅-相控制 幅值控制原理图:控制电压Uc越 高,电动机转速越高.
不同控制电压下的机械特性
三、步进电动机
是将电脉冲信号转换成角位移或直线位移的一种执行元件 若转子上有N个齿,则 其齿间距θ=360°/N; 步进角度β=转子齿间 距/(2×相数)= θ/(2×P); 以常用的2相50齿步进 电机为例: θ=360°/50=7.2°; β=7.2/(2×2)=1.8°;

转子静止时
转子转动时
U0=Kn
交流测速发电机使用中的几个问题 :
(1)主要技术指标
剩余电压:测速发电机转速为零时 的输出电压.它会使控制系统误动 作. 线性误差
(2)使用中应注意的问题:
输出特性的线性度, 温度变化的影响,可加温度补偿装 置.
由非线性引起的误差.一般系统要求1% -2%;精密系统要求0.1%-0.25%. 相位误差:一般要求不超过1度-2度.
控制电机简介
控制电机的主要作用是用来完成信息的传递 与交换,而不是进行能量转换.
一、直流伺服电动机
1.基本结构:与普通他激 直流电动机相同.(有换 向器) 2.分类:电磁式(他激式); 永磁式, 3.电气原理图:如右图. 其中(a)为电磁式(b)为 永磁式. 4.参数:输出功率1600W.
小步距角步进电动机
步进电动机无论采用哪种通电方式,步距角都太大,无法满足生产中对 精度的要求,在实际应用中一般采用小步距角的步进电动机。设转子齿 数为z,定子相数为m,则齿距角τ和步距角β为:
Τ=360/ z
β=360/K m z
其中K为状态系数,对于单相轮流通电方式和双相轮流通电 方式来说,K=1,而对于单双相轮流通电方式来说,K=2。 从上式可知,步距角与相数及齿数有关,要想获得小的步距 角的话,必须增大相数或齿数。但是,相数越多的话,它的 驱动电源就越复杂,并且成本也越高,一般的步进电动机做 成二相、三相、四相、五相或六相。因此,减小步距角的 (1)定子: 定子由硅钢片叠成; 在定子铁心的内圆表面嵌 有两套相差90度电角度的 绕组:激磁绕组WF,控制绕 组WC; 这两套绕组分别由两个电源 供电.
接线图
(2)转子: 分为鼠笼型和杯型两种. (1)鼠笼型转子作得细而长, 转子导体采用高电阻率的材 料.用于小功率的自动控制 系统.产品型号SL系列. (2)空心杯型转子作成薄壁 圆筒形,放在内外定子之间. 用于要求运行平滑的系统. 产品型号SK系列.
相关文档
最新文档