土木工程专业英语单词+句子

合集下载

土木工程专业英语(带翻译)

土木工程专业英语(带翻译)

State-of-the-art report of bridge health monitoring AbstractThe damage diagnosis and healthmonitoring of bridge structures are active areas of research in recent years. Comparing with the aerospace engineering and mechanical engineering, civil engineering has the specialities of its own in practice. For example, because bridges, as well as most civil engineering structures, are large in size, and have quite lownatural frequencies and vibration levels, at low amplitudes, the dynamic responses of bridge structure are substantially affected by the nonstructural components, unforeseen environmental conditions, and changes in these components can easily to be confused with structural damage.All these give the damage assessment of complex structures such as bridges a still challenging task for bridge engineers. This paper firstly presents the definition of structural healthmonitoring system and its components. Then, the focus of the discussion is placed on the following sections:①the laboratory and field testing research on the damage assessment;②analytical developments of damage detectionmethods, including (a) signature analysis and pattern recognition approaches, (b) model updating and system identification approaches, (c) neural networks approaches; and③sensors and their optimum placements. The predominance and shortcomings of each method are compared and analyzed. Recent examples of implementation of structural health monitoring and damage identification are summarized in this paper. The key problem of bridge healthmonitoring is damage automatic detection and diagnosis, and it is the most difficult problem. Lastly, research and development needs are addressed.1 IntroductionDue to a wide variety of unforeseen conditions and circumstance, it will never be possible or practical to design and build a structure that has a zero percent probability of failure. Structural aging, environmental conditions, and reuse are examples of circumstances that could affect the reliability and thelife of a structure. There are needs of periodic inspections to detect deterioration resulting from normal operation and environmental attack or inspections following extreme events, such as strong-motion earthquakes or hurricanes. To quantify these system performance measures requires some means to monitor and evaluate the integrity of civil structureswhile in service. Since the Aloha Boeing 737 accident that occurred on April 28, 1988, such interest has fostered research in the areas of structural health monitoring and non-destructive damage detection in recent years.According to Housner, et al. (1997), structural healthmonitoring is defined as“the use ofin-situ,non-destructive sensing and analysis of structural characteristics, including the structural response, for detecting changes that may indicate damage or degradation”[1]. This definition also identifies the weakness. While researchers have attempted the integration of NDEwith healthmonitoring, the focus has been on data collection, not evaluation. What is needed is an efficient method to collect data from a structure in-service and process the data to evaluate key performance measures, such as serviceability, reliability, and durability. So, the definition byHousner, et al.(1997)should be modified and the structural health monitoring may be defined as“the use ofin-situ,nondestructive sensing and analysis of structural characteristics, including the structural response, for the purpose of identifying if damage has occurred, determining the location of damage, estimatingthe severityof damage and evaluatingthe consequences of damage on the structures”(Fig.1). In general, a structural health monitoring system has the potential to provide both damage detection and condition assessment of a structure.Assessing the structural conditionwithout removingthe individual structural components is known as nondestructive evaluation (NDE) or nondestructive inspection. NDE techniques include those involving acoustics, dye penetrating,eddy current, emission spectroscopy, fiber-optic sensors, fiber-scope, hardness testing, isotope, leak testing, optics, magnetic particles, magnetic perturbation, X-ray, noise measurements, pattern recognition, pulse-echo, ra-diography, and visual inspection, etc. Mostof thesetechniques have been used successfullyto detect location of certain elements, cracks orweld defects, corrosion/erosion, and so on. The FederalHighwayAdministration(FHWA, USA)was sponsoring a large program of research and development in new technologies for the nondestructive evaluation of highway bridges. One of the two main objectives of the program is to develop newtools and techniques to solve specific problems. The other is to develop technologies for the quantitative assessment of the condition of bridges in support of bridge management and to investigate howbest to incorporate quantitative condition information into bridge management systems. They hoped to develop technologies to quickly, efficiently, and quantitatively measure global bridge parameters, such as flexibility and load-carrying capacity. Obviously, a combination of several NDE techniques may be used to help assess the condition of the system. They are very important to obtain the data-base for the bridge evaluation.But it is beyond the scope of this review report to get into details of local NDE.Health monitoring techniques may be classified as global and local. Global attempts to simultaneously assess the condition of the whole structure whereas local methods focus NDE tools on specific structural components. Clearly, two approaches are complementaryto eachother. All such available informationmaybe combined and analyzed by experts to assess the damage or safety state of the structure.Structural health monitoring research can be categorized into the following four levels: (I) detecting the existence of damage, (II) findingthe location of damage, (III) estimatingthe extentof damage, and (IV) predictingthe remaining fatigue life. The performance of tasks of Level (III) requires refined structural models and analyses, local physical examination, and/or traditional NDE techniques. To performtasks ofLevel (IV) requires material constitutive information on a local level, materials aging studies, damage mechanics, and high-performance computing. With improved instrumentation and understanding of dynamics of complex structures, health monitoring and damage assessment of civil engineering structures has become more practical in systematic inspection andevaluation of these structures during the past two decades.Most structural health monitoringmethods under current investigation focus on using dynamic responses to detect and locate damage because they are global methods that can provide rapid inspection of large structural systems.These dynamics-based methods can be divided into fourgroups:①spatial-domain methods,②modal-domain methods,③time-domain methods, and④frequency- domain methods. Spatial-domain methods use changes of mass, damping, and stiffness matrices to detect and locate damage. Modal-domain methods use changes of natural frequencies, modal damping ratios, andmode shapesto detect damage. In the frequency domain method, modal quantities such as natural frequencies, damping ratio, and model shapes are identified.The reverse dynamic systemof spectral analysis and the generalized frequency response function estimated fromthe nonlinear auto-regressive moving average (NARMA) model were applied in nonlinear system identification. In time domainmethod, systemparameterswere determined fromthe observational data sampled in time. It is necessaryto identifythe time variation of systemdynamic characteristics fromtime domain approach if the properties of structural system changewith time under the external loading condition. Moreover, one can use model-independent methods or model-referenced methods to perform damage detection using dynamic responses presented in any of the four domains. Literature shows that model independent methods can detect the existence of damage without much computational efforts, butthey are not accurate in locating damage. On the otherhand, model-referencedmethods are generally more accurate in locating damage and require fewer sensors than model-independent techniques, but they require appropriate structural models and significant computational efforts. Although time-domain methods use original time-domain datameasured using conventional vibrationmeasurement equipment, theyrequire certain structural information and massive computation and are case sensitive. Furthermore, frequency- and modal-domain methods use transformed data,which contain errors and noise due totransformation.Moreover, themodeling and updatingofmass and stiffnessmatrices in spatial-domain methods are problematic and difficult to be accurate. There are strong developmenttrends that two or three methods are combined together to detect and assess structural damages.For example, several researchers combined data of static and modal tests to assess damages. The combination could remove the weakness of each method and check each other. It suits the complexity of damage detection.Structural health monitoring is also an active area of research in aerospace engineering, but there are significant differences among the aerospace engineering, mechanical engineering, and civil engineering in practice. For example,because bridges, as well as most civil engineering structures, are large in size, and have quite lownatural frequencies and vibration levels, at lowamplitudes, the dynamic responses of bridge structure are substantially affected by the non-structural components, and changes in these components can easily to be confused with structural damage. Moreover,the level of modeling uncertainties in reinforced concrete bridges can be much greater than the single beam or a space truss. All these give the damage assessment of complex structures such as bridges a still challenging task for bridge engineers. Recent examples of research and implementation of structural health monitoring and damage assessment are summarized in the following sections.2 Laboratory and field testing researchIn general, there are two kinds of bridge testing methods, static testing and dynamic testing. The dynamic testing includes ambient vibration testing and forced vibration testing. In ambient vibration testing, the input excitation is not under the control. The loading could be either micro-tremors, wind, waves, vehicle or pedestrian traffic or any other service loading. The increasing popularity of this method is probably due to the convenience of measuring the vibrationresponse while the bridge is under in-service and also due to the increasing availability of robust data acquisition and storage systems. Since the input is unknown, certain assumptions have to be made. Forced vibration testing involves application of input excitation of known force level at known frequencies. The excitation manners include electro-hydraulic vibrators, forcehammers, vehicle impact, etc. The static testing in the laboratory may be conducted by actuators, and by standard vehicles in the field-testing.we can distinguish that①the models in the laboratory are mainly beams, columns, truss and/or frame structures, and the location and severity of damage in the models are determined in advance;②the testing has demonstrated lots of performances of damage structures;③the field-testing and damage assessmentof real bridges are more complicated than the models in the laboratory;④the correlation between the damage indicator and damage type,location, and extentwill still be improved.3 Analytical developmentThe bridge damage diagnosis and health monitoring are both concerned with two fundamental criteria of the bridges, namely, the physical condition and the structural function. In terms of mechanics or dynamics, these fundamental criteria can be treated as mathematical models, such as response models, modal models and physical models.Instead of taking measurements directly to assess bridge condition, the bridge damage diagnosis and monitoring systemevaluate these conditions indirectly by using mathematical models. The damage diagnosis and health monitoring are active areas of research in recentyears. For example, numerous papers on these topics appear in the proceedings of Inter-national Modal Analysis Conferences (IMAC) each year, in the proceedings of International Workshop on Structural HealthMonitoring (once of two year, at Standford University), in the proceedings of European Conference on Smart materials and Structures and European Conference on Structural Damage AssessmentUsing Advanced Signal Processing Procedures, in the proceedings ofWorld Conferences of Earthquake Engineering, and in the proceedings of International Workshop on Structural Control, etc.. There are several review papers to be referenced, for examples,Housner, et al. (1997)provided an extensive summary of the state of the art in control and health monitoring of civil engineering structures[1].Salawu (1997)discussed and reviewed the use of natural frequency as a diagnostic parameter in structural assessment procedures using vibrationmonitoring.Doebling, Farrar, et al. (1998)presented a through review of the damage detection methods by examining changes in dynamic properties.Zou, TongandSteven (2000)summarized the methods of vibration-based damage and health monitoring for composite structures, especially in delamination modeling techniques and delamination detection.4 Sensors and optimum placementOne of the problems facing structural health monitoring is that very little is known about the actual stress and strains in a structure under external excitations. For example, the standard earthquake recordings are made ofmotions of the floors of the structure and no recordings are made of the actual stresses and strains in structural members. There is a need for special sensors to determine the actual performance of structural members. Structural health monitoring requires integrated sensor functionality to measure changes in external environmental conditions, signal processing functionality to acquire, process, and combine multi-sensor and multi-measured information. Individual sensors and instrumented sensor systems are then required to provide such multiplexed information.FuandMoosa (2000)proposed probabilistic advancing cross-diagnosis method to diagnosis-decision making for structural health monitoring. It was experimented in the laboratory respectively using a coherent laser radar system and a CCD high-resolution camera. Results showed that this method was promising for field application. Another new idea is thatneural networktechniques are used to place sensors. For example,WordenandBurrows (2001)used the neural network and methods of combinatorial optimization to locate and classify faults.The static and dynamic data are collected from all kinds of sensorswhich are installed on the measured structures.And these datawill be processed and usable informationwill be extracted. So the sensitivity, accuracy, and locations,etc. of sensors are very important for the damage detections. The more information are obtained, the damage identification will be conducted more easily, but the price should be considered. That’s why the sensors are determinedin an optimal ornearoptimal distribution. In aword, the theory and validation ofoptimumsensor locationswill still being developed.5 Examples of health monitoring implementationIn order for the technology to advance sufficiently to become an operational system for the maintenance and safety of civil structures, it is of paramount importance that new analytical developments are ultimately verified with appropriate data obtained frommonitoring systems, which have been implemented on civil structures, such as bridges.Mufti (2001)summarized the applications of SHM of Canadian bridge engineering, including fibre-reinforced polymers sensors, remote monitoring, intelligent processing, practical applications in bridge engineering, and technology utilization. Further study and applications are still being conducted now.FujinoandAbe(2001)introduced the research and development of SHMsystems at the Bridge and Structural Lab of the University of Tokyo. They also presented the ambient vibration based approaches forLaser DopplerVibrometer (LDV) and the applications in the long-span suspension bridges.The extraction of the measured data is very hard work because it is hard to separate changes in vibration signature duo to damage form changes, normal usage, changes in boundary conditions, or the release of the connection joints.Newbridges offer opportunities for developing complete structural health monitoring systems for bridge inspection and condition evaluation from“cradle to grave”of the bridges. Existing bridges provide challenges for applying state-of-the-art in structural health monitoring technologies to determine the current conditions of the structural element,connections and systems, to formulate model for estimating the rate of degradation, and to predict the existing and the future capacities of the structural components and systems. Advanced health monitoring systems may lead to better understanding of structural behavior and significant improvements of design, as well as the reduction of the structural inspection requirements. Great benefits due to the introduction of SHM are being accepted by owners, managers, bridge engineers,etc..6 Research and development needsMost damage detection theories and practices are formulated based on the following assumption: that failure or deterioration would primarily affect the stiffness and therefore affect the modal characteristics of the dynamic response of the structure. This is seldom true in practice, because①Traditional modal parameters (natural frequency, damping ratio and mode shapes, etc.) are not sensitive enough to identify and locate damage. The estimation methods usually assume that structures are linear and proportional damping systems.②Most currently used damage indices depend on the severity of the damage, which is impractical in the field. Most civil engineering structures, such as highway bridges, have redundancy in design and large in size with low natural frequencies. Any damage index should consider these factors.③Scaledmodelingtechniques are used in currentbridge damage detection. Asingle beam/girder models cannot simulate the true behavior of a real bridge. Similitude laws for dynamic simulation and testing should be considered.④Manymethods usually use the undamaged structural modal parameters as the baseline comparedwith the damaged information. This will result in the need of a large data storage capacity for complex structures. But in practice,there are majority of existing structures for which baseline modal responses are not available. Only one developed method(StubbsandKim (1996)), which tried to quantify damagewithout using a baseline, may be a solution to this difficulty. There is a lot of researchwork to do in this direction.⑤Seldommethods have the ability to distinguish the type of damages on bridge structures. To establish the direct relationship between the various damage patterns and the changes of vibrational signatures is not a simple work.Health monitoring requires clearly defined performance criteria, a set of corresponding condition indicators and global and local damage and deterioration indices, which should help diagnose reasons for changes in condition indicators. It is implausible to expect that damage can be reliably detected or tracked byusing a single damage index. We note that many additional localized damage indiceswhich relate to highly localized properties ofmaterials or the circumstances may indicate a susceptibility of deterioration such as the presence of corrosive environments around reinforcing steel in concrete, should be also integrated into the health monitoring systems.There is now a considerable research and development effort in academia, industry, and management department regarding global healthmonitoring for civil engineering structures. Several commercial structural monitoring systems currently exist, but further development is needed in commercialization of the technology. We must realize that damage detection and health monitoring for bridge structures by means of vibration signature analysis is a very difficult task. Itcontains several necessary steps, including defining indicators on variations of structural physical condition, dynamic testing to extract such indication parameters, defining the type of damages and remaining capacity or life of the structure, relating the parameters to the defined damage/aging. Unfortunately, to date, no one has accomplished the above steps. There is a lot of work to do in future.桥梁健康监测应用与研究现状摘要桥梁损伤诊断与健康监测是近年来国际上的研究热点,在实践方面,土木工程和航空航天工程、机械工程有明显的差别,比如桥梁结构以及其他大多数土木结构,尺寸大、质量重,具有较低的自然频率和振动水平,桥梁结构的动力响应极容易受到不可预见的环境状态、非结构构件等的影响,这些变化往往被误解为结构的损伤,这使得桥梁这类复杂结构的损伤评估具有极大的挑战性.本文首先给出了结构健康监测系统的定义和基本构成,然后集中回顾和分析了如下几个方面的问题:①损伤评估的室内实验和现场测试;②损伤检测方法的发展,包括:(a)动力指纹分析和模式识别方法, (b)模型修正和系统识别方法, (c)神经网络方法;③传感器及其优化布置等,并比较和分析了各自方法的优点和不足.文中还总结了健康监测和损伤识别在桥梁工程中的应用,指出桥梁健康监测的关键问题在于损伤的自动检测和诊断,这也是困难的问题;最后展望了桥梁健康监测系统的研究和发展方向.关键词:健康监测系统;损伤检测;状态评估;模型修正;系统识别;传感器优化布置;神经网络方法;桥梁结构1概述由于不可预见的各种条件和情况下,设计和建造一个结构将永远不可能或无实践操作性,它有一个失败的概率百分之零。

土木工程专业英语

土木工程专业英语
4、Such an imposed longitudinal force is called a prestressing force, i.e. , a compressive force that prestresses the sections along the span of the structural element prior to the application of the transverse gravity dead and live loads or transient horizontal live loads.这样一个强加的纵向力就称为预应力,即在施加横向的重力横载或活载或瞬间水平活载之前沿着结构构件的跨距预先施加在截面上的压力。
3、This force prevents the cracks from developing by eliminating or considerably reducing the tensile stress at the critical midspan and support sections at service load, thereby raising the bending, shear, and torsional capacities of the sections.这个力能消除或大大减少使用荷载在跨中及支座等临界面处产生的拉应力,阻止裂缝出现,从而提高截面的抗弯、抗剪和抗扭的能力。
11、the allowable stress intensities are chosen in accordance with the concept that the stress or strain corresponding to the yield point of the material should not be exceeded at the most highly stressed points of the structure.允许应力强度是按照如下原则选择的,在构件的最大受力点处的应力和应变不能超过相应的材料的屈服点。

土木工程专业英语Lesson 2 Building and Architecture

土木工程专业英语Lesson  2 Building and Architecture
从更一般的意义上说,建筑的艺术包含了人类为了他自 己的需要而控制环境和引导自然力的所有努力。
in……sense 在……意义上说 in all senses 在任何意义上说 in the proper (strict, literal) sense 在本来(严格、字面) 的意义上说
This art includes,in addition to buildings,all the civil engineering structures such as dams,canals,tunnels, aqueducts,and bridges.
An apartment building,an office building,and a school differ in form because of the difference in the functions they fulfill.
一幢公寓,一座办公楼和一所学校在结构形式上各有不 同,因为它们要实现的功能是不一样的。
office building
school
In an apartment building every habitable space,such as living rooms and bedroo while bathrooms and kitchens can have artificial light and therefore can be in the interior of the building. 在公寓里面,每一处居住的空间,比如起居室和卧室必须有 从窗户进来的自然光,而浴室和厨房则可以用人工光线,因 此可以布置在建筑的内部。
Low-cost housing project
A prestige office building will be more generously budgeted form than other office buildings.

土木工程专业英语-ReinforcedConcreteStructures

土木工程专业英语-ReinforcedConcreteStructures
ng the ability to resist gravity, wind, or seismic
loads. ➢Finally, the choice of size or shape is governed(决定)by the designer and
serve as load-bearing elements while providing the finished floor and ceiling surface(楼面和顶棚面). ➢Similarly, reinforced concrete walls can provide architecturally attractive
➢钢筋混凝土构件的施工包括以在建构件的形状搭建模板或模具。 ➢模板必须足够强劲以支承湿混凝土的重量和静水压力,以及任何由工人、 混凝土料车、风等施加给它的力。
➢钢筋置于模板中,并在混凝土浇筑过程中固定就位。当混凝土硬化后便拆 除模板。
➢Factors Affecting Choice of Concrete For a Structure ➢The choice of whether a structure should be built of concrete, steel, masonry, or timber(木材)depends on the availability(可得性)of materials and on a number of(许多)value decisions(价值判断).
➢The construction ( 施 工 ) of a reinforced concrete member involves building a form or mold(模具)in the shape of the member being built. ➢The form must be strong enough to support the weight and hydrostatic pressure(静水压力)of the wet concrete, and any forces applied to it by workers, concrete buggies(料车), wind, and so on. ➢The reinforcement(钢筋)is placed in this form and held in place(固定就 位)during the concreting(用混凝土浇筑)operation. ➢After the concrete has hardened, the forms are removed(拆除).

(完整版)土木工程专业英语翻译

(完整版)土木工程专业英语翻译

(1)Concrete and reinforced concrete are used as building materials in every country. In many, including Canada and the United States, reinforced concrete is a dominant structural material in engineered construction.(1)混凝土和钢筋混凝土在每个国家都被用作建筑材料。

在许多国家,包括加拿大和美国,钢筋混凝土是一种主要的工程结构材料。

(2)The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction.(2) 钢筋混凝土建筑的广泛存在是由于钢筋和制造混凝土的材料,包括石子,沙,水泥等,可以通过多种途径方便的得到,同时兴建混凝土建筑时所需要的技术也相对简单。

(3)Concrete and reinforced concrete are used in bridges, building of all sorts, underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships.(3)混凝土和钢筋混凝土被应用于桥梁,各种形式的建筑,地下结构,蓄水池,电视塔,海上石油平台,以及工业建筑,大坝,甚至船舶等。

土木工程专业英语

土木工程专业英语

土木工程专业英语1Building material is any material which is used for a construction purpose. Many naturally occurring substances, such as clay, sand, wood and rocks, even twigs and leaves have been used to construct buildings. 建筑材料是用于建造目的的任何材料,许多自然形成的物质,如粘土、砂子、木材、岩石,甚至树枝和树叶都已用来建造房屋。

Apartfrom naturally occurring materials, many man-made products are in use, some more and some less synthetic[1]. 除天然材料之外,人们还采用许多人造材料,它们或多或少地都是人工合成的。

The manufacture of building materials is anestablished industry in many countries and the use of these materials is typically segmented into specific speciality trades, such as carpentry, plumbing, roofing and insulation work. This reference deals withhabitats and structures including homes.建材生产已经是许多国家的固有产业,这些人工材料通常都按特定工种分类,如木工、管道工、屋面和隔热保温工程。

此处涉及到的是用于居住和结构(包括住家)的建筑材料。

A brick is a block made of kiln-fired material, usually clay or shale, but also may be of lower quality mud, etc. 砖是一种窖中烧制的块材,通常由粘土或页岩,甚至低级泥土等制成。

土木工程 专业外语词汇大全中英翻译

土木工程 专业外语词汇大全中英翻译

土木工程专业外语词汇大全中英翻译1. 综合类大地工程geotechnical engineering1. 综合类反分析法back analysis method1. 综合类基础工程foundation engineering1. 综合类临界状态土力学critical state soil mechanics1. 综合类数值岩土力学numerical geomechanics1. 综合类土soil, earth1. 综合类土动力学soil dynamics1. 综合类土力学soil mechanics1. 综合类岩土工程geotechnical engineering1. 综合类应力路径stress path1. 综合类应力路径法stress path method2. 工程地质及勘察变质岩metamorphic rock2. 工程地质及勘察标准冻深standard frost penetration2. 工程地质及勘察冰川沉积glacial deposit2. 工程地质及勘察冰积层(台)glacial deposit2. 工程地质及勘察残积土eluvial soil, residual soil2. 工程地质及勘察层理beding2. 工程地质及勘察长石feldspar2. 工程地质及勘察沉积岩sedimentary rock2. 工程地质及勘察承压水confined water2. 工程地质及勘察次生矿物secondary mineral2. 工程地质及勘察地质年代geological age2. 工程地质及勘察地质图geological map2. 工程地质及勘察地下水groundwater2. 工程地质及勘察断层fault2. 工程地质及勘察断裂构造fracture structure2. 工程地质及勘察工程地质勘察engineering geological exploration 2. 工程地质及勘察海积层(台)marine deposit2. 工程地质及勘察海相沉积marine deposit2. 工程地质及勘察花岗岩granite2. 工程地质及勘察滑坡landslide2. 工程地质及勘察化石fossil2. 工程地质及勘察化学沉积岩chemical sedimentary rock2. 工程地质及勘察阶地terrace2. 工程地质及勘察节理joint2. 工程地质及勘察解理cleavage2. 工程地质及勘察喀斯特karst2. 工程地质及勘察矿物硬度hardness of minerals2. 工程地质及勘察砾岩conglomerate2. 工程地质及勘察流滑flow slide2. 工程地质及勘察陆相沉积continental sedimentation2. 工程地质及勘察泥石流mud flow, debris flow2. 工程地质及勘察年粘土矿物clay minerals2. 工程地质及勘察凝灰岩tuff2. 工程地质及勘察牛轭湖ox-bow lake2. 工程地质及勘察浅成岩hypabyssal rock2. 工程地质及勘察潜水ground water2. 工程地质及勘察侵入岩intrusive rock2. 工程地质及勘察取土器geotome2. 工程地质及勘察砂岩sandstone2. 工程地质及勘察砂嘴spit, sand spit2. 工程地质及勘察山岩压力rock pressure2. 工程地质及勘察深成岩plutionic rock2. 工程地质及勘察石灰岩limestone2. 工程地质及勘察石英quartz2. 工程地质及勘察松散堆积物rickle2. 工程地质及勘察围限地下水(台)confined ground water 2. 工程地质及勘察泻湖lagoon2. 工程地质及勘察岩爆rock burst2. 工程地质及勘察岩层产状attitude of rock2. 工程地质及勘察岩浆岩magmatic rock, igneous rock2. 工程地质及勘察岩脉dike, dgke2. 工程地质及勘察岩石风化程度degree of rock weathering 2. 工程地质及勘察岩石构造structure of rock2. 工程地质及勘察岩石结构texture of rock2. 工程地质及勘察岩体rock mass2. 工程地质及勘察页岩shale2. 工程地质及勘察原生矿物primary mineral2. 工程地质及勘察云母mica2. 工程地质及勘察造岩矿物rock-forming mineral2. 工程地质及勘察褶皱fold, folding2. 工程地质及勘察钻孔柱状图bore hole columnar section3. 土的分类饱和土saturated soil3. 土的分类超固结土overconsolidated soil3. 土的分类冲填土dredger fill3. 土的分类充重塑土3. 土的分类冻土frozen soil, tjaele3. 土的分类非饱和土unsaturated soil3. 土的分类分散性土dispersive soil3. 土的分类粉土silt, mo3. 土的分类粉质粘土silty clay3. 土的分类高岭石kaolinite3. 土的分类过压密土(台)overconsolidated soil3. 土的分类红粘土red clay, adamic earth3. 土的分类黄土loess, huangtu(China)3. 土的分类蒙脱石montmorillonite3. 土的分类泥炭peat, bog muck3. 土的分类年粘土clay3. 土的分类年粘性土cohesive soil, clayey soil3. 土的分类膨胀土expansive soil, swelling soil3. 土的分类欠固结粘土underconsolidated soil3. 土的分类区域性土zonal soil3. 土的分类人工填土fill, artificial soil3. 土的分类软粘土soft clay, mildclay, mickle3. 土的分类砂土sand3. 土的分类湿陷性黄土collapsible loess, slumping loess3. 土的分类素填土plain fill3. 土的分类塑性图plasticity chart3. 土的分类碎石土stone, break stone, broken stone, channery, chat, crushed stone, deritus 3. 土的分类未压密土(台)underconsolidated clay3. 土的分类无粘性土cohesionless soil, frictional soil, non-cohesive soil3. 土的分类岩石rock3. 土的分类伊利土illite3. 土的分类有机质土organic soil3. 土的分类淤泥muck, gyttja, mire, slush3. 土的分类淤泥质土mucky soil3. 土的分类原状土undisturbed soil3. 土的分类杂填土miscellaneous fill3. 土的分类正常固结土normally consolidated soil3. 土的分类正常压密土(台)normally consolidated soil3. 土的分类自重湿陷性黄土self weight collapse loess4. 土的物理性质阿太堡界限Atterberg limits4. 土的物理性质饱和度degree of saturation4. 土的物理性质饱和密度saturated density4. 土的物理性质饱和重度saturated unit weight4. 土的物理性质比重specific gravity4. 土的物理性质稠度consistency4. 土的物理性质不均匀系数coefficient of uniformity, uniformity coefficient4. 土的物理性质触变thixotropy4. 土的物理性质单粒结构single-grained structure4. 土的物理性质蜂窝结构honeycomb structure4. 土的物理性质干重度dry unit weight4. 土的物理性质干密度dry density4. 土的物理性质塑性指数plasticity index4. 土的物理性质含水量water content, moisture content4. 土的物理性质活性指数4. 土的物理性质级配gradation, grading4. 土的物理性质结合水bound water, combined water, held water4. 土的物理性质界限含水量Atterberg limits4. 土的物理性质颗粒级配particle size distribution of soils, mechanical composition of soil 4. 土的物理性质可塑性plasticity4. 土的物理性质孔隙比void ratio4. 土的物理性质孔隙率porosity4. 土的物理性质粒度granularity, grainness, grainage4. 土的物理性质粒组fraction, size fraction4. 土的物理性质毛细管水capillary water4. 土的物理性质密度density4. 土的物理性质密实度compactionness4. 土的物理性质年粘性土的灵敏度sensitivity of cohesive soil4. 土的物理性质平均粒径mean diameter, average grain diameter4. 土的物理性质曲率系数coefficient of curvature4. 土的物理性质三相图block diagram, skeletal diagram, three phase diagram4. 土的物理性质三相土tri-phase soil4. 土的物理性质湿陷起始应力initial collapse pressure4. 土的物理性质湿陷系数coefficient of collapsibility4. 土的物理性质缩限shrinkage limit4. 土的物理性质土的构造soil texture4. 土的物理性质土的结构soil structure4. 土的物理性质土粒相对密度specific density of solid particles4. 土的物理性质土中气air in soil4. 土的物理性质土中水water in soil4. 土的物理性质团粒aggregate, cumularpharolith4. 土的物理性质限定粒径constrained diameter4. 土的物理性质相对密度relative density, density index4. 土的物理性质相对压密度relative compaction, compacting factor, percent compaction, coefficient of compaction4. 土的物理性质絮状结构flocculent structure4. 土的物理性质压密系数coefficient of consolidation4. 土的物理性质压缩性compressibility4. 土的物理性质液限liquid limit4. 土的物理性质液性指数liquidity index4. 土的物理性质游离水(台)free water4. 土的物理性质有效粒径effective diameter, effective grain size, effective size4. 土的物理性质有效密度effective density4. 土的物理性质有效重度effective unit weight4. 土的物理性质重力密度unit weight4. 土的物理性质自由水free water, gravitational water, groundwater, phreatic water4. 土的物理性质组构fabric4. 土的物理性质最大干密度maximum dry density4. 土的物理性质最优含水量optimum water content5. 渗透性和渗流达西定律Darcy s law5. 渗透性和渗流管涌piping5. 渗透性和渗流浸润线phreatic line5. 渗透性和渗流临界水力梯度critical hydraulic gradient5. 渗透性和渗流流函数flow function5. 渗透性和渗流流土flowing soil5. 渗透性和渗流流网flow net5. 渗透性和渗流砂沸sand boiling5. 渗透性和渗流渗流seepage5. 渗透性和渗流渗流量seepage discharge5. 渗透性和渗流渗流速度seepage velocity5. 渗透性和渗流渗透力seepage force5. 渗透性和渗流渗透破坏seepage failure5. 渗透性和渗流渗透系数coefficient of permeability5. 渗透性和渗流渗透性permeability5. 渗透性和渗流势函数potential function5. 渗透性和渗流水力梯度hydraulic gradient6. 地基应力和变形变形deformation6. 地基应力和变形变形模量modulus of deformation6. 地基应力和变形泊松比Poisson s ratio6. 地基应力和变形布西涅斯克解Boussinnesq s solution6. 地基应力和变形残余变形residual deformation6. 地基应力和变形残余孔隙水压力residual pore water pressure6. 地基应力和变形超静孔隙水压力excess pore water pressure6. 地基应力和变形沉降settlement6. 地基应力和变形沉降比settlement ratio6. 地基应力和变形次固结沉降secondary consolidation settlement6. 地基应力和变形次固结系数coefficient of secondary consolidation6. 地基应力和变形地基沉降的弹性力学公式elastic formula for settlement calculation 6. 地基应力和变形分层总和法layerwise summation method6. 地基应力和变形负孔隙水压力negative pore water pressure6. 地基应力和变形附加应力superimposed stress6. 地基应力和变形割线模量secant modulus6. 地基应力和变形固结沉降consolidation settlement6. 地基应力和变形规范沉降计算法settlement calculation by specification6. 地基应力和变形回弹变形rebound deformation6. 地基应力和变形回弹模量modulus of resilience6. 地基应力和变形回弹系数coefficient of resilience6. 地基应力和变形回弹指数swelling index6. 地基应力和变形建筑物的地基变形允许值allowable settlement of building6. 地基应力和变形剪胀dilatation6. 地基应力和变形角点法corner-points method6. 地基应力和变形孔隙气压力pore air pressure6. 地基应力和变形孔隙水压力pore water pressure6. 地基应力和变形孔隙压力系数Apore pressure parameter A6. 地基应力和变形孔隙压力系数Bpore pressure parameter B6. 地基应力和变形明德林解Mindlin s solution6. 地基应力和变形纽马克感应图Newmark chart6. 地基应力和变形切线模量tangent modulus6. 地基应力和变形蠕变creep6. 地基应力和变形三向变形条件下的固结沉降three-dimensional consolidation settlement 6. 地基应力和变形瞬时沉降immediate settlement6. 地基应力和变形塑性变形plastic deformation6. 地基应力和变形谈弹性变形elastic deformation6. 地基应力和变形谈弹性模量elastic modulus6. 地基应力和变形谈弹性平衡状态state of elastic equilibrium6. 地基应力和变形体积变形模量volumetric deformation modulus6. 地基应力和变形先期固结压力preconsolidation pressure6. 地基应力和变形压缩层6. 地基应力和变形压缩模量modulus of compressibility6. 地基应力和变形压缩系数coefficient of compressibility6. 地基应力和变形压缩性compressibility6. 地基应力和变形压缩指数compression index6. 地基应力和变形有效应力effective stress6. 地基应力和变形自重应力self-weight stress6. 地基应力和变形总应力total stress approach of shear strength6. 地基应力和变形最终沉降final settlement7. 固结巴隆固结理论Barron s consolidation theory7. 固结比奥固结理论Biot s consolidation theory7. 固结超固结比over-consolidation ratio7. 固结超静孔隙水压力excess pore water pressure7. 固结次固结secondary consolidation7. 固结次压缩(台)secondary consolidatin7. 固结单向度压密(台)one-dimensional consolidation7. 固结多维固结multi-dimensional consolidation7. 固结固结consolidation7. 固结固结度degree of consolidation7. 固结固结理论theory of consolidation7. 固结固结曲线consolidation curve7. 固结固结速率rate of consolidation7. 固结固结系数coefficient of consolidation7. 固结固结压力consolidation pressure7. 固结回弹曲线rebound curve7. 固结井径比drain spacing ratio7. 固结井阻well resistance7. 固结曼代尔-克雷尔效应Mandel-Cryer effect7. 固结潜变(台)creep7. 固结砂井sand drain7. 固结砂井地基平均固结度average degree of consolidation of sand-drained ground7. 固结时间对数拟合法logrithm of time fitting method7. 固结时间因子time factor7. 固结太沙基固结理论Terzaghi s consolidation theory7. 固结太沙基-伦杜列克扩散方程Terzaghi-Rendulic diffusion equation7. 固结先期固结压力preconsolidation pressure7. 固结压密(台)consolidation7. 固结压密度(台)degree of consolidation7. 固结压缩曲线cpmpression curve7. 固结一维固结one dimensional consolidation7. 固结有效应力原理principle of effective stress7. 固结预压密压力(台)preconsolidation pressure7. 固结原始压缩曲线virgin compression curve7. 固结再压缩曲线recompression curve7. 固结主固结primary consolidation7. 固结主压密(台)primary consolidation7. 固结准固结压力pseudo-consolidation pressure7. 固结K0固结consolidation under K0 condition8. 抗剪强度安息角(台)angle of repose8. 抗剪强度不排水抗剪强度undrained shear strength8. 抗剪强度残余内摩擦角residual angle of internal friction8. 抗剪强度残余强度residual strength8. 抗剪强度长期强度long-term strength8. 抗剪强度单轴抗拉强度uniaxial tension test8. 抗剪强度动强度dynamic strength of soils8. 抗剪强度峰值强度peak strength8. 抗剪强度伏斯列夫参数Hvorslev parameter8. 抗剪强度剪切应变速率shear strain rate8. 抗剪强度抗剪强度shear strength8. 抗剪强度抗剪强度参数shear strength parameter8. 抗剪强度抗剪强度有效应力法effective stress approach of shear strength 8. 抗剪强度抗剪强度总应力法total stress approach of shear strength8. 抗剪强度库仑方程Coulomb s equation8. 抗剪强度摩尔包线Mohr s envelope8. 抗剪强度摩尔-库仑理论Mohr-Coulomb theory8. 抗剪强度内摩擦角angle of internal friction8. 抗剪强度年粘聚力cohesion8. 抗剪强度破裂角angle of rupture8. 抗剪强度破坏准则failure criterion8. 抗剪强度十字板抗剪强度vane strength8. 抗剪强度无侧限抗压强度unconfined compression strength8. 抗剪强度有效内摩擦角effective angle of internal friction8. 抗剪强度有效粘聚力effective cohesion intercept8. 抗剪强度有效应力破坏包线effective stress failure envelope8. 抗剪强度有效应力强度参数effective stress strength parameter8. 抗剪强度有效应力原理principle of effective stress8. 抗剪强度真内摩擦角true angle internal friction8. 抗剪强度真粘聚力true cohesion8. 抗剪强度总应力破坏包线total stress failure envelope8. 抗剪强度总应力强度参数total stress strength parameter9. 本构模型本构模型constitutive model9. 本构模型边界面模型boundary surface model9. 本构模型层向各向同性体模型cross anisotropic model9. 本构模型超弹性模型hyperelastic model9. 本构模型德鲁克-普拉格准则Drucker-Prager criterion9. 本构模型邓肯-张模型Duncan-Chang model9. 本构模型动剪切强度9. 本构模型非线性弹性模量nonlinear elastic model9. 本构模型盖帽模型cap model9. 本构模型刚塑性模型rigid plastic model9. 本构模型割线模量secant modulus9. 本构模型广义冯·米赛斯屈服准则extended von Mises yield criterion 9. 本构模型广义特雷斯卡屈服准则extended tresca yield criterion9. 本构模型加工软化work softening9. 本构模型加工硬化work hardening9. 本构模型加工硬化定律strain harding law9. 本构模型剑桥模型Cambridge model9. 本构模型柯西弹性模型Cauchy elastic model9. 本构模型拉特-邓肯模型Lade-Duncan model9. 本构模型拉特屈服准则Lade yield criterion9. 本构模型理想弹塑性模型ideal elastoplastic model9. 本构模型临界状态弹塑性模型critical state elastoplastic model9. 本构模型流变学模型rheological model9. 本构模型流动规则flow rule9. 本构模型摩尔-库仑屈服准则Mohr-Coulomb yield criterion9. 本构模型内蕴时间塑性模型endochronic plastic model9. 本构模型内蕴时间塑性理论endochronic theory9. 本构模型年粘弹性模型viscoelastic model9. 本构模型切线模量tangent modulus9. 本构模型清华弹塑性模型Tsinghua elastoplastic model9. 本构模型屈服面yield surface9. 本构模型沈珠江三重屈服面模型Shen Zhujiang three yield surface method 9. 本构模型双参数地基模型9. 本构模型双剪应力屈服模型twin shear stress yield criterion9. 本构模型双曲线模型hyperbolic model9. 本构模型松岗元-中井屈服准则Matsuoka-Nakai yield criterion9. 本构模型塑性形变理论9. 本构模型谈弹塑性模量矩阵elastoplastic modulus matrix9. 本构模型谈弹塑性模型elastoplastic modulus9. 本构模型谈弹塑性增量理论incremental elastoplastic theory9. 本构模型谈弹性半空间地基模型elastic half-space foundation model9. 本构模型谈弹性变形elastic deformation9. 本构模型谈弹性模量elastic modulus9. 本构模型谈弹性模型elastic model9. 本构模型魏汝龙-Khosla-Wu模型Wei Rulong-Khosla-Wu model9. 本构模型文克尔地基模型Winkler foundation model9. 本构模型修正剑桥模型modified cambridge model9. 本构模型准弹性模型hypoelastic model10. 地基承载力冲剪破坏punching shear failure10. 地基承载力次层(台)substratum10. 地基承载力地基subgrade, ground, foundation soil10. 地基承载力地基承载力bearing capacity of foundation soil10. 地基承载力地基极限承载力ultimate bearing capacity of foundation soil10. 地基承载力地基允许承载力allowable bearing capacity of foundation soil10. 地基承载力地基稳定性stability of foundation soil10. 地基承载力汉森地基承载力公式Hansen s ultimate bearing capacity formula10. 地基承载力极限平衡状态state of limit equilibrium10. 地基承载力加州承载比(美国)California Bearing Ratio10. 地基承载力局部剪切破坏local shear failure10. 地基承载力临塑荷载critical edge pressure10. 地基承载力梅耶霍夫极限承载力公式Meyerhof s ultimate bearing capacity formula 10. 地基承载力普朗特承载力理论Prandel bearing capacity theory10. 地基承载力斯肯普顿极限承载力公式Skempton s ultimate bearing capacity formula 10. 地基承载力太沙基承载力理论Terzaghi bearing capacity theory10. 地基承载力魏锡克极限承载力公式V esic s ultimate bearing capacity formula10. 地基承载力整体剪切破坏general shear failure11. 土压力被动土压力passive earth pressure11. 土压力被动土压力系数coefficient of passive earth pressure11. 土压力极限平衡状态state of limit equilibrium11. 土压力静止土压力earth pressue at rest11. 土压力静止土压力系数coefficient of earth pressur at rest11. 土压力库仑土压力理论Coulomb s earth pressure theory11. 土压力库尔曼图解法Culmannn construction11. 土压力朗肯土压力理论Rankine s earth pressure theory11. 土压力朗肯状态Rankine state11. 土压力谈弹性平衡状态state of elastic equilibrium11. 土压力土压力earth pressure11. 土压力主动土压力active earth pressure11. 土压力主动土压力系数coefficient of active earth pressure12. 土坡稳定分析安息角(台)angle of repose12. 土坡稳定分析毕肖普法Bishop method12. 土坡稳定分析边坡稳定安全系数safety factor of slope12. 土坡稳定分析不平衡推理传递法unbalanced thrust transmission method12. 土坡稳定分析费伦纽斯条分法Fellenius method of slices12. 土坡稳定分析库尔曼法Culmann method12. 土坡稳定分析摩擦圆法friction circle method12. 土坡稳定分析摩根斯坦-普拉斯法Morgenstern-Price method12. 土坡稳定分析铅直边坡的临界高度critical height of vertical slope12. 土坡稳定分析瑞典圆弧滑动法Swedish circle method12. 土坡稳定分析斯宾赛法Spencer method12. 土坡稳定分析泰勒法Taylor method12. 土坡稳定分析条分法slice method12. 土坡稳定分析土坡slope12. 土坡稳定分析土坡稳定分析slope stability analysis12. 土坡稳定分析土坡稳定极限分析法limit analysis method of slope stability 12. 土坡稳定分析土坡稳定极限平衡法limit equilibrium method of slope stability 12. 土坡稳定分析休止角angle of repose12. 土坡稳定分析扬布普遍条分法Janbu general slice method12. 土坡稳定分析圆弧分析法circular arc analysis13. 土的动力性质比阻尼容量specific gravity capacity13. 土的动力性质波的弥散特性dispersion of waves13. 土的动力性质波速法wave velocity method13. 土的动力性质材料阻尼material damping13. 土的动力性质初始液化initial liquefaction13. 土的动力性质地基固有周期natural period of soil site13. 土的动力性质动剪切模量dynamic shear modulus of soils13. 土的动力性质动力布西涅斯克解dynamic solution of Boussinesq13. 土的动力性质动力放大因素dynamic magnification factor13. 土的动力性质动力性质dynamic properties of soils13. 土的动力性质动强度dynamic strength of soils13. 土的动力性质骨架波akeleton waves in soils13. 土的动力性质几何阻尼geometric damping13. 土的动力性质抗液化强度liquefaction stress13. 土的动力性质孔隙流体波fluid wave in soil13. 土的动力性质损耗角loss angle13. 土的动力性质往返活动性reciprocating activity13. 土的动力性质无量纲频率dimensionless frequency13. 土的动力性质液化liquefaction13. 土的动力性质液化势评价evaluation of liquefaction potential13. 土的动力性质液化应力比stress ratio of liquefaction13. 土的动力性质应力波stress waves in soils13. 土的动力性质振陷dynamic settlement13. 土的动力性质阻尼damping of soil13. 土的动力性质阻尼比damping ratio14. 挡土墙挡土墙retaining wall14. 挡土墙挡土墙排水设施14. 挡土墙挡土墙稳定性stability of retaining wall14. 挡土墙垛式挡土墙14. 挡土墙扶垛式挡土墙counterfort retaining wall14. 挡土墙后垛墙(台)counterfort retaining wall14. 挡土墙基础墙foundation wall14. 挡土墙加筋土挡墙reinforced earth bulkhead14. 挡土墙锚定板挡土墙anchored plate retaining wall14. 挡土墙锚定式板桩墙anchored sheet pile wall14. 挡土墙锚杆式挡土墙anchor rod retaining wall14. 挡土墙悬壁式板桩墙cantilever sheet pile wall14. 挡土墙悬壁式挡土墙cantilever sheet pile wall14. 挡土墙重力式挡土墙gravity retaining wall15. 板桩结构物板桩sheet pile15. 板桩结构物板桩结构sheet pile structure15. 板桩结构物钢板桩steel sheet pile15. 板桩结构物钢筋混凝土板桩reinforced concrete sheet pile15. 板桩结构物钢桩steel pile15. 板桩结构物灌注桩cast-in-place pile15. 板桩结构物拉杆tie rod15. 板桩结构物锚定式板桩墙anchored sheet pile wall15. 板桩结构物锚固技术anchoring15. 板桩结构物锚座Anchorage15. 板桩结构物木板桩wooden sheet pile15. 板桩结构物木桩timber piles15. 板桩结构物悬壁式板桩墙cantilever sheet pile wall16. 基坑开挖与降水板桩围护sheet pile-braced cuts16. 基坑开挖与降水电渗法electro-osmotic drainage16. 基坑开挖与降水管涌piping16. 基坑开挖与降水基底隆起heave of base16. 基坑开挖与降水基坑降水dewatering16. 基坑开挖与降水基坑失稳instability (failure) of foundation pit16. 基坑开挖与降水基坑围护bracing of foundation pit16. 基坑开挖与降水减压井relief well16. 基坑开挖与降水降低地下水位法dewatering method16. 基坑开挖与降水井点系统well point system16. 基坑开挖与降水喷射井点eductor well point16. 基坑开挖与降水铅直边坡的临界高度critical height of vertical slope 16. 基坑开挖与降水砂沸sand boiling16. 基坑开挖与降水深井点deep well point16. 基坑开挖与降水真空井点vacuum well point16. 基坑开挖与降水支撑围护braced cuts17. 浅基础杯形基础17. 浅基础补偿性基础compensated foundation17. 浅基础持力层bearing stratum17. 浅基础次层(台)substratum17. 浅基础单独基础individual footing17. 浅基础倒梁法inverted beam method17. 浅基础刚性角pressure distribution angle of masonary foundation 17. 浅基础刚性基础rigid foundation17. 浅基础高杯口基础17. 浅基础基础埋置深度embeded depth of foundation17. 浅基础基床系数coefficient of subgrade reaction17. 浅基础基底附加应力net foundation pressure17. 浅基础交叉条形基础cross strip footing17. 浅基础接触压力contact pressure17. 浅基础静定分析法(浅基础)static analysis (shallow foundation)17. 浅基础壳体基础shell foundation17. 浅基础扩展基础spread footing17. 浅基础片筏基础mat foundation17. 浅基础浅基础shallow foundation17. 浅基础墙下条形基础17. 浅基础热摩奇金法Zemochkin s method17. 浅基础柔性基础flexible foundation17. 浅基础上部结构-基础-土共同作用分析structure- foundation-soil interactionanalysis 17. 浅基础谈弹性地基梁(板)分析analysis of beams and slabs on elastic foundation 17. 浅基础条形基础strip footing17. 浅基础下卧层substratum17. 浅基础箱形基础box foundation17. 浅基础柱下条形基础18. 深基础贝诺托灌注桩Benoto cast-in-place pile18. 深基础波动方程分析Wave equation analysis18. 深基础场铸桩(台)cast-in-place pile18. 深基础沉管灌注桩diving casting cast-in-place pile18. 深基础沉井基础open-end caisson foundation18. 深基础沉箱基础box caisson foundation18. 深基础成孔灌注同步桩synchronous pile18. 深基础承台pile caps18. 深基础充盈系数fullness coefficient18. 深基础单桩承载力bearing capacity of single pile18. 深基础单桩横向极限承载力ultimate lateral resistance of single pile18. 深基础单桩竖向抗拔极限承载力vertical ultimate uplift resistance of single pile18. 深基础单桩竖向抗压容许承载力vertical ultimate carrying capacity of single pile18. 深基础单桩竖向抗压极限承载力vertical allowable load capacity of single pile18. 深基础低桩承台low pile cap18. 深基础地下连续墙diaphgram wall18. 深基础点承桩(台)end-bearing pile18. 深基础动力打桩公式dynamic pile driving formula18. 深基础端承桩end-bearing pile18. 深基础法兰基灌注桩Franki pile18. 深基础负摩擦力negative skin friction of pile18. 深基础钢筋混凝土预制桩precast reinforced concrete piles18. 深基础钢桩steel pile18. 深基础高桩承台high-rise pile cap18. 深基础灌注桩cast-in-place pile18. 深基础横向载荷桩laterally loaded vertical piles18. 深基础护壁泥浆slurry coat method18. 深基础回转钻孔灌注桩rotatory boring cast-in-place pile18. 深基础机挖异形灌注桩18. 深基础静力压桩silent piling18. 深基础抗拔桩uplift pile18. 深基础抗滑桩anti-slide pile18. 深基础摩擦桩friction pile18. 深基础木桩timber piles18. 深基础嵌岩灌注桩piles set into rock18. 深基础群桩pile groups18. 深基础群桩效率系数efficiency factor of pile groups18. 深基础群桩效应efficiency of pile groups18. 深基础群桩竖向极限承载力vertical ultimate load capacity of pile groups 18. 深基础深基础deep foundation18. 深基础竖直群桩横向极限承载力18. 深基础无桩靴夯扩灌注桩rammed bulb ile18. 深基础旋转挤压灌注桩18. 深基础桩piles18. 深基础桩基动测技术dynamic pile test18. 深基础钻孔墩基础drilled-pier foundation18. 深基础钻孔扩底灌注桩under-reamed bored pile18. 深基础钻孔压注桩starsol enbesol pile18. 深基础最后贯入度final set19. 地基处理表层压密法surface compaction19. 地基处理超载预压surcharge preloading19. 地基处理袋装砂井sand wick19. 地基处理地工织物geofabric, geotextile19. 地基处理地基处理ground treatment, foundation treatment19. 地基处理电动化学灌浆electrochemical grouting19. 地基处理电渗法electro-osmotic drainage19. 地基处理顶升纠偏法19. 地基处理定喷directional jet grouting19. 地基处理冻土地基处理frozen foundation improvement19. 地基处理短桩处理treatment with short pile19. 地基处理堆载预压法preloading19. 地基处理粉体喷射深层搅拌法powder deep mixing method19. 地基处理复合地基composite foundation19. 地基处理干振成孔灌注桩vibratory bored pile19. 地基处理高压喷射注浆法jet grounting19. 地基处理灌浆材料injection material19. 地基处理灌浆法grouting19. 地基处理硅化法silicification19. 地基处理夯实桩compacting pile19. 地基处理化学灌浆chemical grouting19. 地基处理换填法cushion19. 地基处理灰土桩lime soil pile19. 地基处理基础加压纠偏法19. 地基处理挤密灌浆compaction grouting19. 地基处理挤密桩compaction pile, compacted column19. 地基处理挤淤法displacement method19. 地基处理加筋法reinforcement method19. 地基处理加筋土reinforced earth19. 地基处理碱液法soda solution grouting19. 地基处理浆液深层搅拌法grout deep mixing method19. 地基处理降低地下水位法dewatering method19. 地基处理纠偏技术19. 地基处理坑式托换pit underpinning19. 地基处理冷热处理法freezing and heating19. 地基处理锚固技术anchoring19. 地基处理锚杆静压桩托换anchor pile underpinning19. 地基处理排水固结法consolidation19. 地基处理膨胀土地基处理expansive foundation treatment19. 地基处理劈裂灌浆fracture grouting19. 地基处理浅层处理shallow treatment19. 地基处理强夯法dynamic compaction19. 地基处理人工地基artificial foundation19. 地基处理容许灌浆压力allowable grouting pressure19. 地基处理褥垫pillow19. 地基处理软土地基soft clay ground19. 地基处理砂井sand drain19. 地基处理砂井地基平均固结度average degree of consolidation of sand-drained ground 19. 地基处理砂桩sand column19. 地基处理山区地基处理foundation treatment in mountain area19. 地基处理深层搅拌法deep mixing method19. 地基处理渗入性灌浆seep-in grouting19. 地基处理湿陷性黄土地基处理collapsible loess treatment19. 地基处理石灰系深层搅拌法lime deep mixing method19. 地基处理石灰桩lime column, limepile19. 地基处理树根桩root pile19. 地基处理水泥土水泥掺合比cement mixing ratio19. 地基处理水泥系深层搅拌法cement deep mixing method19. 地基处理水平旋喷horizontal jet grouting19. 地基处理塑料排水带plastic drain19. 地基处理碎石桩gravel pile, stone pillar19. 地基处理掏土纠偏法19. 地基处理天然地基natural foundation19. 地基处理土工聚合物Geopolymer19. 地基处理土工织物geofabric, geotextile19. 地基处理土桩earth pile19. 地基处理托换技术underpinning technique19. 地基处理外掺剂additive19. 地基处理旋喷jet grouting19. 地基处理药液灌浆chemical grouting19. 地基处理预浸水法presoaking19. 地基处理预压法preloading19. 地基处理真空预压vacuum preloading19. 地基处理振冲法vibroflotation method19. 地基处理振冲密实法vibro-compaction19. 地基处理振冲碎石桩vibro replacement stone column19. 地基处理振冲置换法vibro-replacement19. 地基处理振密、挤密法vibro-densification, compacting19. 地基处理置换率(复合地基)replacement ratio19. 地基处理重锤夯实法tamping19. 地基处理桩式托换pile underpinning19. 地基处理桩土应力比stress ratio20. 动力机器基础比阻尼容量specific gravity capacity20. 动力机器基础等效集总参数法constant strain rate consolidation test20. 动力机器基础地基固有周期natural period of soil site20. 动力机器基础动基床反力法dynamic subgrade reaction method20. 动力机器基础动力放大因素dynamic magnification factor20. 动力机器基础隔振isolation20. 动力机器基础基础振动foundation vibration20. 动力机器基础基础振动半空间理论elastic half-space theory of foundation vibr ation20. 动力机器基础基础振动容许振幅allowable amplitude of foundation vibration 20. 动力机器基础基础自振频率natural frequency of foundation20. 动力机器基础集总参数法lumped parameter method20. 动力机器基础吸收系数absorption coefficient20. 动力机器基础质量-弹簧-阻尼器系统mass-spring-dushpot system21. 地基基础抗震地基固有周期natural period of soil site21. 地基基础抗震地震earthquake, seism, temblor21. 地基基础抗震地震持续时间duration of earthquake21. 地基基础抗震地震等效均匀剪应力equivalent even shear stress of earthquake 21. 地基基础抗震地震反应谱earthquake response spectrum21. 地基基础抗震地震烈度earthquake intensity21. 地基基础抗震地震震级earthquake magnitude21. 地基基础抗震地震卓越周期seismic predominant period21. 地基基础抗震地震最大加速度maximum acceleration of earthquake21. 地基基础抗震动力放大因数dynamic magnification factor21. 地基基础抗震对数递减率logrithmic decrement21. 地基基础抗震刚性系数coefficient of rigidity21. 地基基础抗震吸收系数absorption coefficient22. 室内土工试验比重试验specific gravity test22. 室内土工试验变水头渗透试验falling head permeability test22. 室内土工试验不固结不排水试验unconsolidated-undrained triaxial test22. 室内土工试验常规固结试验routine consolidation test22. 室内土工试验常水头渗透试验constant head permeability test22. 室内土工试验单剪仪simple shear apparatus22. 室内土工试验单轴拉伸试验uniaxial tensile test22. 室内土工试验等速加荷固结试验constant loading rate consolidatin test22. 室内土工试验等梯度固结试验constant gradient consolidation test22. 室内土工试验等应变速率固结试验equivalent lumped parameter method22. 室内土工试验反复直剪强度试验repeated direct shear test22. 室内土工试验反压饱和法back pressure saturation method22. 室内土工试验高压固结试验high pressure consolidation test22. 室内土工试验各向不等压固结不排水试验consoidated anisotropically undrained test 22. 室内土工试验各向不等压固结排水试验consolidated anisotropically drained test 22. 室内土工试验共振柱试验resonant column test22. 室内土工试验固结不排水试验consolidated undrained triaxial test22. 室内土工试验固结快剪试验consolidated quick direct shear test22. 室内土工试验固结排水试验consolidated drained triaxial test22. 室内土工试验固结试验consolidation test22. 室内土工试验含水量试验water content test22. 室内土工试验环剪试验ring shear test22. 室内土工试验黄土湿陷试验loess collapsibility test22. 室内土工试验击实试验22. 室内土工试验界限含水量试验Atterberg limits test22. 室内土工试验卡萨格兰德法Casagrande s method22. 室内土工试验颗粒分析试验grain size analysis test22. 室内土工试验孔隙水压力消散试验pore pressure dissipation test22. 室内土工试验快剪试验quick direct shear test22. 室内土工试验快速固结试验fast consolidation test22. 室内土工试验离心模型试验centrifugal model test22. 室内土工试验连续加荷固结试验continual loading test22. 室内土工试验慢剪试验consolidated drained direct shear test22. 室内土工试验毛细管上升高度试验capillary rise test22. 室内土工试验密度试验density test22. 室内土工试验扭剪仪torsion shear apparatus22. 室内土工试验膨胀率试验swelling rate test22. 室内土工试验平面应变仪plane strain apparatus22. 室内土工试验三轴伸长试验triaxial extension test22. 室内土工试验三轴压缩试验triaxial compression test22. 室内土工试验砂的相对密实度试验sand relative density test22. 室内土工试验筛分析sieve analysis。

土木工程专业英语全部

土木工程专业英语全部

Lesson 1Compression MembersNew Words1. achieve achievement2. eccentricity center, 中心; ec centric 偏心的;ec centricity 偏心,偏心距3. inevitable evitable 可避免的avoidable; in evitable 不可避免的unavoidable4. truss 桁架triangular truss, roof truss, truss bridge5. bracing brace 支柱,支撑;bracing, 支撑,撑杆6. slender 细长,苗条;stout; slenderness7. buckle 压曲,屈曲;buckling load8. stocky stout9. convincingly convince, convincing, convincingly10. stub 树桩,短而粗的东西;stub column 短柱11. curvature 曲率;curve, curvature12. detractor detract draw or take away; divert; belittle,贬低,诽谤;13. convince14. argument dispute, debate, quarrel, reason, 论据(理由)15. crookedness crook 钩状物,v弯曲,crooked 弯曲的16. provision 规定,条款Phrases and Expressions1. compression member2. bending moment shear force, axial force3. call upon (on) 要求,请求,需要4. critical buckling load 临界屈曲荷载critical 关键的,临界的5. cross-sectional area6. radius of gyration 回转半径gyration7. slenderness ratio 长细比8. tangent modulus 切线模量9. stub column 短柱10. trial-and-error approach 试算法11. empirical formula 经验公式empirical 经验的12. residual stress 残余应力residual13. hot-rolled shape 热轧型钢hot-rolled bar14. lower bound 下限upper bound 上限16. effective length 计算长度Definition (定义)Compression members are those structural elements that are subjected only to axial compressive forces: that is, the loads are applied along a longitudinal axis through the centroid of the member cross section, and the stress can be taken as f a=P/A, where f a is considered to be uniform over the entire cross section. 受压构件是仅受轴向压力作用的构件,即:荷载是沿纵轴加在其截面形心上的,其应力可表示为…,式中,假定f a在整个截面上均匀分布。

[中英]土木工程专业英语词汇

[中英]土木工程专业英语词汇

土木工程专业英语词汇第一节一般术语1. 工程结构building and civil engineering structures房屋建筑和土木工程的建筑物、构筑物及其相关组成部分的总称。

2. 工程结构设计design of building and civil engineering structures在工程结构的可靠与经济、适用与美观之间,选择一种最佳的合理的平衡,使所建造的结构能满足各种预定功能要求。

3. 房屋建筑工程building engineering一般称建筑工程,为新建、改建或扩建房屋建筑物和附属构筑物所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

4. 土木工程civil engineering除房屋建筑外,为新建、改建或扩建各类工程的建筑物、构筑物和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

5. 公路工程highway engineering为新建或改建各级公路和相关配套设施等而进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

6. 铁路工程railway engineering为新建或改建铁路和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

7. 港口与航道工程port ( harbour ) and waterway engineering为新建或改建港口与航道和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

8. 水利工程hydraulic engineering为修建治理水患、开发利用水资源的各项建筑物、构筑物和相关配设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。

9. 水利发电工程(水电工程)hydraulic and hydroelectric engineering以利用水能发电为主要任务的水利工程。

土木工程专业英语(苏小卒版)翻译

土木工程专业英语(苏小卒版)翻译
1
土木工程英语
Smeaton, the builder of famous Eddystone lighthouse near Plymouth, England, is said to have begun calling himself a “civil engineer” to distinguish himself from the military engineers of his time. However, the profession is as old as civilization.
土木工程英语
第一单元 Fundamentally, engineering is an end-product-oriented discipline that is innovative, cost-conscious and mindful of human factors. It is concerned with the creation of new entities, devices or methods of solution: a new process, a new material, an improved power source, a more efficient arrangement of tasks to accomplish a desired goal or a new structure. Engineering is also more often than not concerned with obtaining economical solutions. And, finally, human safety is always a key consideration. 从根本上,工程是一个以最终产品为导向的行业,它具有创新、成本意识, 同时也注意到人为因素。 它与创建新的实体、 设备或解决方案有关:新工艺、 新材料、一个改进的动力来源、任务的一项更有效地安排,用以完成所需的目 标或创建一个新的结构。 工程是也不仅仅关心获得经济的解决方案。最终,人 类安全才是一个最重要的考虑因素。 Engineering is concerned with the use of abstract scientific ways of thinking and of defining real world problems. The use of idealizations and development of procedures for establishing bounds within which behavior can be ascertained are part of the process. 工程关心的是,使用抽象的科学方法思考和定义现实世界的问题。理想化 的使用和发展建立可以确定行为的边界的程序,是过程的一部分。 Many problems, by their very nature, can’t be fully described—even after the fact, much less at the outset. Yet acceptable engineering solutions to these problems must be found which satisfy the defined needs. Engineering, then, frequently concerns the determination of possible solutions within a context of limited data. Intuition or judgment is a key factor in establishing possible alternative strategies, processes, or solutions. And this, too, is all a part of engineering. 很多的问题,就其本身的性质而言,不能完全被描述 — — 即使这一事实, 在其开始之前。然而还必须找到对于这些问题可接受的工程解决方案,来满足 预定的需求。直觉或判断是建立可能的替代策略、 流程或解决方案的关键因 素。。而这也是工程的一部分。 Civil engineering is one of the most diverse branches of engineering. The civil engineer plans, designs, constructs, and maintains a large variety of structures and facilities for public, commercial and industrial use. These structures include residential, office, and factory buildings; highways, railways, airports, tunnels, bridges, harbors, channels, and pipelines. They also include many other facilities that are a part of the transportation systems of most countries, as well as sewage and waste disposal systems that add to our convenience and safeguard our health. 土木工程是工程的最多样化的分支机构之一。土木工程师计划、设计、施 工,和维护大量的结构和公共、商业和工业使用的设施。这些结构包括住宅, 办公室和工厂大厦;公路、铁路、机场、隧道、桥梁、港口、渠道和管道。在 其他大多数的国家它们还包括运输系统许多其他设施,以及将为我们的生活带 来便利的和维护我们的健康污水及废物处理系统。 The term “civil engineer” did not come into use until about 1750, when John

土木工程专业英语造句

土木工程专业英语造句

1.focus on: This paper focuses on probabilistic design of slopes.2.proceed: This article proceeds from experimental result to analysis.3.as follows: Conclusions can be summarized as follows:....4.introduce: A new method is introduced in this paper.5. present: In this article, compressive capacity of six columns are presented6.propose: A new formulas is proposed by the author in this paper.7.suggest: It is suggested that the parameters should be corrected if used in other field.8.investigate: The application arrange of this method is investigated in this article.9.examine: The seismic performance of steel-coupling beam are examined in thispaper.10.however: SRM method is widely used in slop stability analysis, however, there aresome disadvantages.11.relevant: Relevant issues are considered in this experiment.12.in terms of: An conclusion is made in terms of the results of the experiments.13.regarding:The proposal regarding probability analysis is discussed in this paper.14.in addition to: In addition to doing serious of experiments, many surveys are alsobeing made.15.with respect to: There are more examinations have to been done with respect tointerstitial hydraulic pressure.16.develop: A new method is developed in this paper.17.aspect:Every aspects is considered by the author.18.in details: The slop stability analysis methods are discussed in details in this paper.19.demonstrate: In the end of this paper, it also demonstrated how to use this approach in actual engineering.20.exhibit:It is found that steel coupling beam exhibit a good performance inearthquake.21.influence on: Influence of moisture on the strength of rock is discussed in thispaper.22.based on: This paper put forward a new method based on ANN.23.agree with: The experiments results agree well with the FEM analysis results.24.involve: The consideration of ground water is involved in this paper.25.in accordance with: The experiments are carry out in strict accordance withnational standardized document.26.adequate: Adequate degree of security is must in designing of structure.27.improve: It is obvious that the structure performance is greatly improved.28.result in: The no consideration of ground water that result in the failure of thisexperiment.29.show: The experiment result shows that steel coupling beam exhibit a goodperformance.30.in that: Steel coupling beam exhibit a good performance in that steel has goodductility.31.account for: The corrosion of reinforcement accounts for the collapsing of thebeam.32.associate with: Other problems associated with slope stability are discussed in thispaper.33.a variety of: The failure of this experiment can happen for varieties of reasons.34.satisfy: This method satisfy vast engineer.35.indicate: The experiments result indicated that this method do work.36.ensure: Steel contend should be ensured in designing of structures.37.attributed to: Steel coupling beam exhibit a good performance attributed to steel'sgood ductility.38.conduct: The steel coupling beam conducts good performance in earthquake.40.desire: The seismic performance of the steel coupling beam is desired in thisexperiment.41.estabilsh: A new method accounting for slop stability analysis is proposed in thispaper.42.available: Anchor is available to many rock slop provided with complicatedgeological conditions.43.provided that: Reinforced concrete columns exhibit a good performance instructure provided that the steel contend is enough.。

土木工程 专业英语

土木工程 专业英语

1. Civil engineering is that branch of engineering which aims to provide a comfortable and safe living for the people. 土木工程是工程学的一个分支,它的目的是为人们提供一个舒适,安全的生活。

2. Tall building development involves various complex factors such as economics , aesthetics , technology , municipal regulations, and politics. 高层建筑的发展涉及到各种复杂因素,如经济学,美学,科技,市政规章和政治。

3. Various damping strategies are employed to reduce the effect of wind loads applied to tall buildings. 各阻尼策略来降低施加到高大建筑物风荷载的影响。

4. A bridge usually controls the capacity of a transportation system ,and is the highest cost per mile of the system. 网桥通常控制一个运输系统,是每英里成本最高的系统。

5. The arch form is intended to reduce bending moments ( and hence tensile stresses) in the superstructure and should be economical in material compared with an equivalent straight, simply supported girder or truss. 拱形式是为了减少弯曲力矩(和拉伸应力)在上层建筑及用等效直,简支梁或桁架相比应该是经济的材料。

土木工程专业英语翻译

土木工程专业英语翻译

1.1 许多天然物质,如粘土、砂子和岩石,甚至树枝和树叶都已经被用作建筑材料。

Many naturally occurring substances, such as clay, sand, wood and rocks, even twigs and leaves have been used to construct buildings.1.2 砖块是由窑中烧制材料作成的块体,通常由粘土或页岩制成,但也可由炉渣制成。

A brick is a block made of kiln-fired material, usually clay or shale, but also maybe of lower quality mud.1.3 与水混合后,水泥便发生水化反应,并最终形成像石头一样的材料。

After mixing, the cement hydrates and eventually hardens into a stone-like material.1.4 金属可用作大型结构的框架,也可用来装饰建筑物外表。

Metal is used as structural framework for larger buildings such as skyscrapers, or as an external surface covering.1.5 明亮的窗户不但能使光线进入建筑物,而且也能将恶劣气候隔绝于建筑物之外。

Clear windows provided humans with the ability to both let light into rooms while at the same time keeping inclement weather outside.2.1 材料的抗拉强度是一种广延性质,因此它并不因试件尺寸的不同而改变。

Tensile strength is an intensive property and, consequently, does not depend on the side of the test specimen.2.2 屈服强度是材料从弹性变形到塑性变形转化时的应力。

土木工程类英文专业词汇

土木工程类英文专业词汇

土木工程类英文专业词汇土木工程是一个涉及土地开发、设计、建造和维护的复杂领域。

在这个领域中,有许多具有专业性、特定含义和用途的英文术语。

掌握这些专业词汇对于在这个领域工作或学习的人来说非常必要。

本文将介绍土木工程常用的英语专业词汇。

1.Civil engineering –土木工程学Civil engineering is a discipline that deals with the design, construction, and maintenance of the built environment, including buildings, roads, bridges, and other infrastructure.2.Architecture –建筑学Architecture is the art and science of designing and building structures, such as buildings and bridges.3.Planning –规划Planning is the process of making a detailed plan or layout for a project, including determining what resources will be needed to complete the project.4.Surveying –测量Surveying is the process of measuring and mapping the surface of the Earth, including land, water bodies, and buildings.5.Structural engineering –结构工程Structural engineering is a sub-discipline of civil engineering that deals with the design and analysis of structures, such as buildings, bridges, and other infrastructure.6.Geotechnical engineering –岩土工程Geotechnical engineering is a sub-discipline of civil engineering that deals with the study of soil and rock mechanics, and the design and construction of structures that are built on or in the ground.7.Transportation engineering –交通运输工程Transportation engineering is a sub-discipline of civil engineering that dealswith the design and construction of transportation infrastructure, such as roads, highways, and airports.8.Hydrology –水文学Hydrology is the study of water and its movement on the surface of the Earth, including precipitation, streams, rivers, and groundwater.9.Water resources engineering –水资源工程Water resources engineering is a sub-discipline of civil engineering that deals with the study of water resources and the design and construction of structures that manage and distribute water, including dams, reservoirs, and water treatment plants.10.Environmental engineering –环境工程Environmental engineering is a sub-discipline of civil engineering that deals with the study of environmental engineering principles and the design and construction of structures that protect the environment, such as water treatment plants and wastewater treatment plants.11.Construction –建造Construction refers to the process of building structures from design plans and specifications.12.Industrial engineering –工业工程Industrial engineering is a discipline that deals with the optimization of complex processes, systems, and organizations, with the goal of improving efficiency, productivity, and safety.13.Quantity surveying –工程测量Quantity surveying is the process of determining the quantity, cost, and value of materials needed to complete a construction project.14.Building –建筑物Building refers to a structure that is built for a specific purpose, such as a house, office building, or factory.15.Foundation –基础Foundation refers to the part of a structure that is in direct contact with the ground and supports the weight of the structure.16.Reinforcement –钢筋加固Reinforcement refers to the process of adding materials, such as steel bars, to strengthen a structure.17.Retaining wall –挡土墙A retaining wall is a structure that is built to support soil and prevent it from sliding down a slope.18.Roadway –道路A roadway is a paved surface that is designed for vehicles and pedestrians to travel on.19.Bridge –桥梁A bridge is a structure that is built to span a physical obstacle, such as a river or gorge, and provide a safe means of transportation.20.Culvert –排水管A culvert is a structure that is built to allow water to pass under a roadway or other structure.21.Dam –水坝A dam is a structure that is built to control the flow of water and to provide water for human consumption, irrigation, and hydroelectric power.22.Pile –桩A pile is a foundation support structure that is driven into the ground to supporta structure.23.Slab –地板A slab is a flat, horizontal surface that is used as a flooring material or to supporta structure.24.Tunnel –隧道A tunnel is an underground structure that is built for transportation, utilities, or other purposes.25.Asphalt –沥青Asphalt is a sticky, black, and highly viscous liquid that is used as a binder for paving materials.以上就是土木工程类英文专业词汇的介绍,这些专业词汇对于在土木工程领域中工作或学习的人来说都是非常重要的。

土木工程专业英语

土木工程专业英语

Contents
Civil engineers in pipeline engineering build pipelines and related facilities which transport liquids, gases, or solids ranging from coal slurries and semi-liquid wastes to water, oil, and various types of highly combustible and noncombustible gases. 从事管道工程的土木工程师建造管道和相关设施来运输液体、气体和固体,运输的物质范围从煤浆(煤与水混合)和半液态废弃物到水、油和各种高度易燃和不易燃的气体。
Contents
Civil engineers who specialize in geotechnical engineering deal with the following aspects: the properties of soils and rocks as materials that support the structure; the various types of foundation for a structure; settlements of buildings;stabilities of slopes and fills ;effects of groundwater. 从事岩土工程专业的土木工程师研究的是以下几个方面:作为支撑结构材料的土壤和岩石的性能;结构不同的基础类型;建筑物的沉降;边坡和路堤的稳定;地下水的影响。 Because foundation is the most important part of a building, it is very complicated underground and it is difficult to remedy if something is wrong. 由于基础是建筑物最重要的部分,地下非常复杂,如果出现任何错误都很难补救。

土木工程专业英语词汇

土木工程专业英语词汇

1. 4 parts of gravel四份砾石2. a 28-day curing period28天养护期3. a batch of concrete 一个批量混凝土4. a high-cost material成本要高很多5. a minimum amount of reinforcement最少数量的钢筋6. a moderate amount of concrete cover厚度适当的混凝土保护层7. a moderate amount of cracking 适度开裂8. a plastic mass 可塑性物质9. a sack of cement一袋水泥10.abutment桥台11.acceptable value要求的范围内12.accidental action 偶然作用13.act jointly 共同工作14.action作用15.Additional features 其它特性16.additional stresses 附加应力17.after it has been placed使混凝土灌注之后18.air jack compressor气压千斤顶压缩机19.allowable value of crack width裂缝宽度容许值20.an excessive amount of water 过量的水21.an excessive number of voids过多的孔隙22.anisotropic 各向异性的23.appearance外观24.appraisal预测25.approach引道26.apron裙板27.Arch Bridge 拱桥28.Arch bridge拱桥29.are counteracted to a desired degree抵消到所要求的水平30.are located close to the tension face配置在靠近受拉面处31.As a general rule按常规32.as the concrete sets随着混凝土的硬化33.at high temperatures在高温时34.At one time the instructions for preparinga batch of concrete 有一个时期备混凝土配料的规定35.Axial force轴力36.axisymmetric 轴对称的37.bare steel bars 裸露的钢筋38.Base plate底盘39.bearing支座40.bend steels弯起筋41.Bending moment弯矩42.bending rigidity弯曲刚度43.Between and 两者之间44.bolt 闩住45.Bow string girder弓弦梁46.brake force汽车制动力47.bridge abutment桥台48.buoyancy of water水浮力49.by volume 按体积50.Cable-stayed Bridge 斜拉桥51.can be minimized or even avoidedentirely减至最小甚至完全消除52.Cantilever beam悬臂梁53.cantilever悬臂54.Cast-in-place现浇55.catenary length悬链线长56.catenary悬链线57.centrifugal force 离心力58.characteristic value of an action 作用标准值59.clearance净空60.cm centimeter 厘米61.coarse aggregate粗骨料pression members受压构件pression压力pressive strength抗压强度pressive strength抗压强度66.confidence level /reliability 可靠度67.consequent weight savings重量减轻68.consolidometer 固结仪69.constitutive model本构模型70.construction documents design施工图设计71.Continuous beam 连续梁72.corresponding maintenance costsminimizing腐蚀问题及相关的维护费用降至最低73.corrosion resistance 抗腐蚀性74.crack 开裂75.cracking and deflection 开裂和挠度76.cracking and other undesirable effects 开裂和其它不利影响77.crack裂缝78.creep徐变79.cross-sectional dimensions 截面尺寸80.crystallizes结晶81.cumulative 累积的82.curvature曲率83.curvature曲率84.cushion cap 承台85.cycle track自行车道86.Data logger数据记录器87.dead load 恒荷载88.dead load/ dead weight自重89.deck桥面90.decreases sizably 大幅度下降91.Deflection and crack control对裂缝和挠度的控制92.deflection挠度93.Degree of reliability 可靠度94.design limit load设计极限荷载95.design reference period 设计基准期96.design value of a load荷载设计值97.design value of an action作用设计值98.design value 设计值99.design value设计值100.deterioration劣化101.deviator 偏差,偏量102.diagonal tension斜向受拉103.diameter 直径104.disposed配有105.dissipation 消散106.disturbed 被扰动的107.dm decimeter 分米108.Drainage boundary透水边界109.ductility延性110.durability耐久性111.during freezing weather 在冰冻天气里112.dynamic 动力的113.efficient use of high strength steel 有效地利用高强钢筋114.elastic modulus弹性模量115.elasticity弹性116.elevation 高程117.empirical 经验的118.equivalent load等效荷载119.equivalent 等价的120.Erect架设121.evaporate from the concrete 从混凝土中挥发出去122.even fail 甚至破坏123.Even if no such necessity exists即使不存在这种必要性124.exceed超过125.excellent corrosion protection优良的防腐蚀保护层126.extends扩展127.external 外部的128.extremely important 极为重要的129.Fabricated simply-supported beam bridge装配式简支梁桥130.far beyond 远远超过131.filled with moisture充满水分132.final design strength 最终强度133.fine aggregate细骨料134.finite element analysis有限元分析135.finite element method有限元法136.fire resistance 抗火性能137.fit 安装138.flange 凸缘139.Flexible cables柔性主缆140.flexural rigidity of section截面弯曲刚度141.Flexural rigidity抗弯刚度142.flexural stiffness of members构件的弯曲刚度143.for a quarter of a century and longer二十几年甚至更长的时间里144.For most effective reinforcing action使配筋最有效地发挥作用145.forestall different thermal deformations 避免热变形差值146.foundation 基础147.Frequent value of an action作用频遇值148.friction coefficient 摩擦系数149.frost damage冰冻破坏150.functionally or visually unacceptable不符合功能要求和视觉要求151.further aggravated 进一步增大152.generation and dissipation 生成与消散153.girder section主梁截面154.girder主梁155.Gorge峡谷156.gradually通过逐渐157.gravity standard value重力标准值158.handrail护栏159.hardened concrete硬化混凝土160.harden硬化161.heating, electrical ducts, plumbing risers 供热、供电和排水立管162.High Reliability高可靠度163.high strength material高强度材料164.high thermal conductivity 热传导系数高165.high-rise pile cap高桩承台166.hydrate水化167.ignore entirely 完全忽视了168.in any particular mix 任何一种特定的配比169.in conjunction with 并结合170.in conjunction with 以及171.In practice在实践中172.In theory从理论上说173.inclined tension stresses斜向拉应力174.increment 增量175.innovative new structural forms新型的结构形式176.innumerable voids无数孔隙177.Internal 内部的178.is first mixed 最初被搅拌时179.is further limited 进一步限制180.is proportional to 成正比181.is undesirable excessive cracking 不希望发生过宽的裂缝182.it may be visually offensive并在感观上使人难以接受183.K-consolidation isotropic 各向同性的rgely overcome 大大克服teral direction 侧向186.leak badly严重渗漏187.limited to the outer layer of concrete混凝土的外层188.Linear variable differential transformer(LVDT)线性可变差动变压器(位移传感器)189.load on foundations基础上的荷载190.longitudinal reinforcement纵筋191.longitudinal纵向192.low pile cap低桩承台193.lower-floor columns 下部楼层柱194.magnitude and distribution大小和分布195.maintenance维修养护196.make use of 利用197.masonry砌体198.maximum amount 最大量199.mechanics of materials材料力学200.minimum steel ratio最小配筋率201.minute, interlocked crystals微小晶体交错的固体材料202.mm millimeter 毫米203.Modern structural engineering 现代结构工程204.moment of inertia惯性矩205.Monitor 监控206.mount安装在…上207.much longer spans than previouslythought possible跨度远远超出了原先的想象208.multiplied by the number of stories逐层累积209.Multi-span continuous beam bridge多跨连续梁桥210.multistory buildings多层建筑211.multistory buildings多层建筑212.nonlinearity非线性213.normally consolidated正常固结214.optimal structure design结构优化设计215.optimization最优化216.ordinary loads and spans常规跨度和荷载217.ordinary reinforcing steels 普通钢筋218.orthotropic正交的219.orthotropic正交异性的220.Oscillation振动221.over 30℃比方说在30℃以上222.overall improvement 整体上改善223.overconsolidated超固结224.Partially drained部分排水225.particularly important 尤为重要226.partition隔断227.Passage通道228.pedestrian load人群荷载229.pedestrians行人230.permanent action 永久作用231.Pier桥墩232.pile cap桩承台233.Pipeline管线234.piston活塞235.plane cross-section assumption平截面假定236.plastic hinge塑性铰237.plasticity塑性238.Plate Mechanics板壳力学239.Pore pressure transducer孔压传感器240.porous stone 透水石241.portal frame门架刚架桥242.Portland ceme硅酸盐水泥243.Post-cyclic循环后244.precast预制245.predesign preliminary design初步设计246.premature failure 过早破坏247.Pressure chamber压力室248.prestressed concrete structures 预应力混凝土结构249.Prestressed concrete预应力混凝土250.prestressing steel预应力钢筋251.principal determinant 主要决定因素252.principal tensile stress主拉应力253.prior to casting of the concrete在浇筑混凝土之前254.prolonged fire exposure长期暴露在火焰下255.quasi-permanent value of an action作用准永久值256.radial 径向的257.radius 半径258.range of application 应用范围259.reduces or eliminates 降低或消除260.reduction减少261.refined analysis精确的分析262.Reinforced concrete structure 钢筋混凝土结构263.reinforcement ratio配筋率264.relative movements 相对滑移265.reliability可靠度266.representative value of an action作用代表值267.resisting external loads承受外部荷载268.resist抵抗269.retaining wall挡墙270.Rigid Frame Bridge271.Rigid frame bridge刚构桥272.rigid gel硬质凝胶273.roller转轴274.safeguard以保证275.safety factor安全系数276.satisfactory joint performance很好地共同工作277.service loads使用荷载278.serviceability limit state正常使用极限状态279.sets into a rigid mass凝结成硬块280.shear force in the beam梁内剪力281.Shear force剪力282.shrinkage收缩283.shrinkage收缩284.Shuttering模板285.side span /middle span边、中跨径286.Significant savings 显著的节省效果287.Simply-supported beam简支梁288.Slab bridge板桥289.sleeve 套管290.slender members 细长构件291.small accidental bending moments偶然出现的小弯矩292.smear 涂抹293.some porosity 若干孔隙294.special precautions 专门的预防措施295.stainless steel 不锈钢296.standard value标准值297.static 静力的298.steel and concrete deform together钢筋和混凝土的变形要一致299.Stiffening trusses加劲桁架300.stiffness ratio刚度比301.stirrup steels 箍筋302.strain control method应变控制法303.strands, wires, or bars钢绞线、钢丝或钢筋304.stress concentration应力集中305.stress control method应力控制法306.Stress-strain relationship应力-应变关系307.structural mechanics结构力学308.subsoil地基309.sufficient thermal insulation 充分的温度绝缘310.sufficient water 足够的水311.sufficiently close 相当接近312.sufficiently strong bond 足够强的粘结力313.superimposed load附加荷载314.support支座315.surface moisture表面含水量316.Suspension Bridge 悬索桥317.Suspension bridge悬索桥318.T-beam T梁319.technical design技术设计320.tensile strength抗拉强度321.Tensile strength抗拉强度322.tension拉力323.That is即324.The cement paste 水泥浆325.the concrete is to be poured混凝土浇注326.the embedded reinforcement埋置在其内的钢筋327.the loads on the structure结构上作用的荷载328.The maximum size 最大尺寸329.The outside air temperature 室外气温330.the proportion of water 水的比例331.The ratio of water to cement 水与水泥的比332.the surrounding molecules of water周围的水分子333.the width of the forms模板的宽度334.theoretical 理论的335.there are limitations to this development这种发展受到了限制336.thermal expansion coefficients 热膨胀系数337.three-dimensional三维的338.tie beam系梁339.tied-arch bridge系杆拱桥340.too stiff to be worked硬得无法施工341.total design load总设计荷载中342.tower塔343.trigger导致344.truck loading汽车荷载345.Truss桁架346.typical pattern 典型模式347.ultimate limit states承载能力极限状态348.ultimate load design 极限荷载设计349.ultimate load极限荷载350.under exceptional conditions 在特殊情况下351.under the combined effects of serviceload and prestressing force在使用荷载和预应力的联合作用下352.undesirable characteristics of ordinaryreinforced concrete 普通钢筋混凝土的这些不足353.undesirable tensile stresses不利的拉应力354.undisturbed 未被扰动的355.uniform beam 等截面梁356.Uniform 相同的357.unprotected steel 无防护层钢筋358.unreinforced member不加钢筋的混凝土构件359.Unreliability不可靠度eful strength可以利用的强度361.variable action 可变作用362.versus 与…相对363.viaduct pier高架桥桥墩364.wallop冲击力365.well井366.width and number of cracks裂缝宽度和数量367.wing wall翼墙368.with its strength in tension a low andunreliable value其抗拉强度低且不稳定369.with little effort不太费力地370.with the passing of time 随着时间的推移371.workable mixture和易性好的配料372.yield strength屈服强度373.yield surface本构模型屈服面摘要:实验室研究旨在探讨软压实粘性土受到重复加载的反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

abutment 桥墩accessory 辅助设备admixture 掺合剂aggregate 骨料alignment 定线anchorage 固定支座 aqueduct 沟渠asphalt 沥青backfill 回填 barrier 挡板basement 基础 bench 阶地 bituminous 含沥青的blast 爆破boring 钻探budget 预算bulldozer 推土机cable 钢索capillarity 毛细管现象catchbasin 截水沟compact 压实compressed air 压缩空气 compressibility 压缩系数 computer-aided 计算机辅助 cofferdam 沉箱corridor 走廊cross-section 断面cut-and-cover 随挖随填cylindrical shield 圆形盾构discontinuity 不整合drainage system 排水系统dredge 挖掘driveshaft 主动轴durability 耐久性earthquake-resistant 抗地震的elastic modulus 弹性模量elasticity 弹性力学excavate 挖掘 execution 施工expressway 高速公路fiber-reinforced concrete 纤维增强混凝土fiberglass 玻璃丝flange 翼缘footing 基础geotechnical 岩土工程的 girder 桁架gradation 级配guardrail 栏杆grout 水泥浆habitation 住宅headroom 净空heterogeneity 不均匀性 hyperbolic paraboloid 双曲抛物面inclination 倾角 infrastructure 基础设施infiltrate 渗透 intermediate pier 中间桥墩 jack 千斤顶jumbo 隧道盾构lock 水闸 mat foundation 板式基础 metropolitan 大城市muck 软泥municipal 市政的neutral axis 中和轴outlet 排水口pedestrian 行人 pin joint 铰接pilot tunnel (隧道)导洞 plain concrete 素混凝土plotter 绘图机 plotting 测绘pneumatic-tired roller 汽胎压路机porous 疏松的 precipitation 降水量preliminary design 初步设计 ramp 斜坡 reaction 反力runoff 雨量 rupture 破裂shaft 竖井silo 竖井slab foundation 平板基础slant 倾斜slate 板岩slip form滑动模板 statically indeterminate structure 超静定结构stiffness 劲度strata 地层subcontractors 转包合同 subsoil 天然地基subside 沉降 sump水坑sunken-tube tunnel 沉管隧道supervise 监督 survey 测量 suspension bridge 悬索桥swell 膨胀 tamp 夯实tensile strength 抗拉强度terrace 阶地timber 木料topography 地形tremor 震动 underclearance 桥下净空valley 河谷 weather 受侵蚀yield strength 屈服强度句子:The sizes of footing are determined by dividing the loads to be imposed at the base of the footing by the allowable bearing pressure which can be imposed on the soil or rock of the earth基础的尺寸是由可能施加在基础底部的荷载除以地基和岩石能够承当的容许支承压力来确定的。

Retaining walls are those walls subject to horizontal earth pressures due to the retention of earth behind them挡土墙是指那些因墙后有土而承受水平土压力的墙Mat or raft foundations are large,thick,and usually heavily reinforced concrete mats which transfer loads from a number of columns or columns and walls to theunderlying soil or rock板式基础或浮筏基础通常是指把荷载从柱子或者柱子和墙传到地基土或岩石的面积、厚土、重量都很大的钢筋混凝土底板Well points,pumping from deep wells,or pumping from sumps are methods used to dewater construction sites during foundation installation从深井中抽水或从集水井中抽水的井点是在基础施工期间用于施工现场排水的方法。

If dewatering operations are performed in an area surrounded by exising structures,precautions must be taken to protect them,as the lowering of the groundwater may cause the soil on which they are suppored to subside如果排水作业在有现存建筑物包围的场地进行,就必须采取预防措施来保护这些建筑物,因为降低地下水可能会引起支承这些建筑物的下沉。

Compressibility is an important soil characteristic because of the possibility of compacting the soil by rolling,tamping,vibratin,or other means,thus increasing its density and load-bearing strength因为可以通过碾压、夯实、捣鼓或其它方法压实土以增加其密实和提高其承载强度,所以可压缩性是土的一个重要特性Shock waves also are utilized to determine the depth of bedrock by measuring the time required for the shock wave to travel to the bedrock and return to the surface as a reflected wave通过测定震动波传到基岩和作为反射波回到地面所需的时间,可确定基岩的深度。

Shield can be steered by varying the thrust of the jacks from left side to right side of from top to bottom,thus varing the tunnel direction left or right or up or down盾构可由从上到下或从左到右改变千斤顶的推力来驱动,这样就可以上下左右改变隧道的方向In large shields,an erector arm is used in the rear side of the shield to place the metal support segments along the circumference of the tunnel在大型盾构中,盾构后面的起重臂用来沿隧道的周边安装金属支撑管片A circular shield has proved to be most efficient in resisting the pressure of soft ground,so most shield-driven tunnels are circular实践证明,圆形盾构抵抗软土压力是最有效的,所以大多数盾构掘进的隧道都是圆形的。

They evaluate and work to minimize the potential settlement of buildings and other structures that stems form the pressure of their weight on the earth. 他们计算建筑和其他结构由于自重压力可能引起的沉降,并采取措施使之减少到最少。

They coordinate the activities of virtually everyone engaged in the work.事实上,他们协调工程中每个人的活动。

They may also manage private engineering firms ranging in size from a few employees to hundreds.他们也可能管理规模为从几个到数百个雇员的私营工程公司。

Many teaching civil engineers engage in basic research that eventually leads to technical innovations in construction materials and methods.许多从事教学的土木工程师参与会导致建筑材料和施工方法技术革新的基础研究。

Piles of stone were placed at short intervals across the river, providing the bridge piers,and then a path from bank to bank was made by laying flat stone slabs across adjacent piers.横跨河流以很小的间距布置石堆作为桥墩,然后用平坦的石头横过相邻的桥墩就建成连接两岸的通道。

相关文档
最新文档