量子力学习题第一部分
第1章 量子力学基础-习题与答案
一、是非题1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。
对否 解:不对2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。
试用测不准关系判断该模型是否合理。
解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。
二、选择题1. 一组正交、归一的波函数123,,,ψψψ。
正交性的数学表达式为 a ,归一性的表达式为 b 。
()0,()1i i i i a d i jb ψψτψψ**=≠=⎰⎰2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E )(A) dxd(B) ∇2 (C) 用常数乘 (D) (E) 积分3. 下列算符哪些可以对易-------------------------------------------- (A, B, D )(A) xˆ 和 y ˆ (B) x∂∂和y ∂∂ (C) ˆx p和x ˆ (D) ˆx p 和y ˆ 4. 下列函数中 (A) cos kx (B) e -bx(C) e -ikx(D) 2e kx -(1) 哪些是dxd的本征函数;-------------------------------- (B, C ) (2) 哪些是的22dx d 本征函数;-------------------------------------- (A, B, C )(3) 哪些是22dx d 和dxd的共同本征函数。
------------------------------ (B, C )5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D )(A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )(A) de Bröglie (B) A.Einstein (C) W. Heisenberg (D) E. Schrödinger7. 首先提出微观粒子的运动满足测不准原理的科学家是:--------------( C )(A) 薛定谔 (B) 狄拉克 (C) 海森堡 (D) 波恩 8. 下列哪几点是属于量子力学的基本假设(多重选择):---------------( AB)(A)电子自旋(保里原理) (B)微观粒子运动的可测量的物理量可用线性厄米算符表征 (C)描写微观粒子运动的波函数必须是正交归一化的 (D)微观体系的力学量总是测不准的,所以满足测不准原理9. 描述微观粒子体系运动的薛定谔方程是:------------------------------( D ) (A) 由经典的驻波方程推得 (B) 由光的电磁波方程推得(C) 由经典的弦振动方程导出 (D) 量子力学的一个基本假设三、填空题:1. 1927年戴维逊和革未的电子衍射实验证明了实物粒子也具有波动性。
量子力学习题及解答
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)(有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hcλλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5:这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =】如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及,eVc e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
第一章 量子力学基础 例题与习题
第一章量子力学基础例题与习题一、练习题1.立方势箱中的粒子,具有的状态量子数,是A. 211 B. 231 C. 222 D. 213。
解:(C)。
2.处于状态的一维势箱中的粒子,出现在处的概率是多少?A.B.C.D.E.题目提法不妥,以上四个答案都不对。
解:(E)。
3.计算能量为100eV光子、自由电子、质量为300g小球的波长。
( )解:光子波长自由电子300g小球。
4.根据测不准关系说明束缚在0到a范围内活动的一维势箱中粒子的零点能效应。
解:。
5.链状共轭分子在波长方向460nm处出现第一个强吸收峰,试按一维势箱模型估计该分子的长度。
解:6.设体系处于状态中,角动量和有无定值。
其值是多少?若无,求其平均值。
解:角动量角动量平均值7.函数是不是一维势箱中粒子的一种可能的状态?如果是,其能量有没有确定值?如有,其值是多少?如果没有确定值,其平均值是多少?解:可能存在状态,能量没有确定值,8.求下列体系基态的多重性。
(2s+1) (1)二维方势箱中的9个电子。
(2)二维势箱中的10个电子。
(3)三维方势箱中的11个电子。
解:(1)2,(2)3,(3)4。
9.在0-a间运动的一维势箱中粒子,证明它在区域内出现的几率。
当,几率P怎样变?解:10.在长度l的一维势箱中运动的粒子,处于量子数n的状态。
求 (1)在箱的左端1/4区域内找到粒子的几率?(2)n为何值,上述的几率最大?(3),此几率的极限是多少?(4)(3)中说明什么?解:11.一含K个碳原子的直链共轭烯烃,相邻两碳原子的距离为a,其中大π键上的电子可视为位于两端碳原子间的一维箱中运动。
取l=(K-1)a,若处于基组态中一个π电子跃迁到高能级,求伴随这一跃迁所吸收到光子的最长波长是多少?解:12.写出一个被束缚在半径为a的圆周上运动的质量为m的粒子的薛定锷方程,求其解。
解:13.在什么条件下?解:14.已知一维运动的薛定锷方程为:。
和是属于同一本征值得本征函数,证明常数。
大学物理 第16章量子力学基本原理-例题及练习题
∴ n = 2,6,10...... 时概率密度最大
nhπ 6 × 10 = =1时 (3) n=1时: E = =1 2mL L
2 2 2 2 2 −38
A 例题3 例题3 设粒子沿 x 方向运动,其波函数为 ψ ( x ) = 方向运动, 1 + ix
( n = 1,2,3,...)
E n=4
p2 E = 2m p= nπh nh 2 mE = = a 2a
n=3 n=2 n=1
h 2a λ= = p n
二者是一致的。 二者是一致的。
( n = 1, 2, 3,...)
o a
x
例题2 粒子质量为m, 在宽度为L的一维无限 的一维无限深势 例题2 P516例1:粒子质量为m, 在宽度为 的一维无限深势 中运动,试求( 粒子在0 阱中运动,试求(1)粒子在0≤x≤L/4区间出现的概率。并 ≤ / 区间出现的概率。 求粒子处于n=1 状态的概率。 在哪些量子态上, 求粒子处于 1和n=∞状态的概率。(2)在哪些量子态上, 状态的概率 (2)在哪些量子态上 L/4处的概率密度最大?(3)求n=1时粒子的能量 补充 。 /4处的概率密度最大 (3)求 =1时粒子的能量(补充 处的概率密度最大? =1时粒子的能量 补充)。 2 nπ x 由题得: 解:(1) 由题得: 概率密度 |ψ | = sin
2 2 2 2 0
2
2
2
2
0
0
k
0
2
2
2 k
0
k
k
k
0
h ∴λ = = p
hc 2E m c + E
2 k 0
基本习题和答案解析量子力学
WORD格式整理量子力学习题(一)单项选择题 1. 能量为100ev 的自由电子的De Broglie 波长是 0 0 0 0 A. 1.2 A. B. 1.5 A. C. 2.1 A. D. 2.5 A. 2. 能量为0.1ev 的自由中子的De Broglie 波长是 0 0 0 0 A.1.3 A. B. 0.9 A. C. 0.5 A. D. 1.8 A. 3. 能量为0.1ev ,质量为1g 的质点的De Broglie 波长是 0A.1.4 A.B.1.9 0C.1.17 10J 2 A.D. 2.04.温度T=1k 时, 具有动能 010J 2 A. 0 A. =—k B T ( k B 2 为Boltzeman 常数)的氦原子的DeBroglie 波长是 0 A.8 A. B. 5.6 5.用 Bohr-Sommerfeld 0 A. 0 A. D. 12.6 0A. A. E n 二 n ,.B.C. 10 的量子化条件得到的一维谐振子的能量为(n 二0,1,2,…) E n = (n :);. 2 C. E n =(n 1) ? ■ .D. E n =2n •. 6.在0k 附近,钠的价电子的能量为3ev ,其 0 0A.5.2 A.B. 7.1 A.C. 8.4 De Broglie 波长是 0 A. 7. 钾的脱出功是2ev ,当波长为 最大能量为 A. 0.25 10J 8J. B. 1.25 C. 0.25 1046 J.D. 1.25 0A. D. 9.4 03500 A 的紫外线照射到钾金属表面时,光电子的 10」8J. 10J 6J. 8. 当氢原子放出一个具有频率--的光子,反冲时由于它把能量传递给原子而产生 的频率改变为 h A. . B. 2 . C.2七 2心 9. C ompton 效应证实了A.电子具有波动性.B.C.光具有粒子性.D. -2 '2走.D. PC .光具有波动性• 电子具有粒子性. 10. D avisson 和Germer 的实验证实了 A.电子具有波动性.B.光具有波动性. C.光具有粒子性.D. 电子具有粒子性. U (x )斗0,0:X7中运动,设粒子的状态由 [°°,x E0,X11.粒子在一维无限深势阱 J(x)二Csin 描写,其归一化常数C 为aA ^r 1. B. . C. .a• a■ a12.设t(x)—(x),在x-x ,dx 范围内找到粒子的几率为 22.D.13.设粒子的波函数为2A.屮(x, y, z) dxdydz.'■ (x, y,z),在x—x • dx范围内找到粒子的几率为2B.屮(x, y,z) dx.2 2C.( '- (x, y, z) dydz)dx .D. . dx dy dz'- (x, yz)14.设:Mx)和:2(x)分别表示粒子的两个可能运动状态,则它们线性迭加的态c「i(x)dd)的几率分布为2 2A.|汕1 +对2 .2 2 *B. |G屮l| +C2屮2 +C1C2屮1屮2.2 2 *C.k 屮1 +C2 屮2 +2GC2屮1屮2.2 2 * * * *D.- c^;2 +。
量子力学(第1-4章)考试试题
第一至四章 例题一、单项选择题1、普朗克在解决黑体辐射时提出了 【 】A 、能量子假设B 、光量子假设C 、定态假设D 、自旋假设2、若nn n a A ψψ=ˆ,则常数n a 称为算符A ˆ的 【 】 A 、本征方程 B 、本征值 C 、本征函数 D 、守恒量3、证实电子具有波动性的实验是 【 】A 、 戴维孙——革末实验B 、 黑体辐射C 、 光电效应D 、 斯特恩—盖拉赫实验4、波函数应满足的标准条件是 【 】A 、 单值、正交、连续B 、 归一、正交、完全性C 、 连续、有限、完全性D 、 单值、连续、有限 5、已知波函数 )exp()()exp()(1Et ir Et i rϕϕψ+-=, )exp()()exp()(22112t E i r t E i rϕϕψ+-=,)exp()()exp()(213Et ir Et i r-+-=ϕϕψ,)exp()()exp()(22114t E ir t E i r-+-=ϕϕψ其中定态波函数是 【 】 A 、ψ2 B 、ψ1和ψ2 C 、ψ3 D 、3ψ和ψ46、在一维无限深势阱⎩⎨⎧≥∞<=a x ax x U ,,0)(中运动的质量为μ的粒子的能级为 【 】A. πμ22222 n a B. πμ22224 n a C. πμ22228 n a D. πμ222216 n a. 7、量子力学中用来表示力学量的算符是 【 】 A 、线性算符 B 、厄米算符 C 、幺正算符 D 、线性厄米算符8、]ˆ ,ˆ[x p x= 【 】 A 、0 B 、 i C 、 i - D 、29、守恒量是 【 】A 、处于定态中的力学量B 、处于本征态中的力学量C 、与体系哈密顿量对易的力学量D 、其几率分布不随时间变化的力学量10、某体系的能量只有两个值1E 和2E ,则该体系的能量算符在能量表象中的表示为【 】A 、⎥⎦⎤⎢⎣⎡1221E E E E B 、⎥⎦⎤⎢⎣⎡2100E E C 、⎥⎦⎤⎢⎣⎡0021E E D 、⎥⎦⎤⎢⎣⎡2211E E E E 11、)(r nlmψ为氢原子归一化的能量本征函数,则=''⎰τψψd m l n nlm 【 】A 、0B 、1C 、m m l l ''δδD 、m l lm ''δδ 二、填空题 1、19世纪末20世纪初,经典物理遇到的困难有(举三个例子) 。
量子力学练习参考解答
量子力学练习参考解答第一章 波函数与薛定谔方程1.1,1.2,1.3题解答略。
1.4(a )设一维自由粒子的初态为一个Gauss 波包,222412)(1)0,(απαψxx p i e e x -=证明:初始时刻,0=x ,0p p =[]2)(12α=-=∆x x x[]α2)(12=-=∆p p p2 =∆⋅∆p x证:初始时刻012222===-+∞∞-+∞∞-⎰⎰dx exdx x x x απαψ2122222222απαψα===-∞+∞-∞+∞-⎰⎰dx exdx x x x()22122α=-=∆xx x)0,(x ψ的逆变换为⎰+∞∞--=dx ex p ipx/)0,(21)(ψπϕ=⎰+∞∞---dx eeeipx x x p i/2412220)(121απαπ=2220()22214(/)p p eααπ--22202()()p p p eααϕπ--=因此02)(p dp p p p ==⎰+∞∞-ϕ2222222)(0αϕ +==⎰∞+∞-p dp p p p()α22122 =-=∆p p p2 =∆⋅∆p x注:也可由以下式子计算p 和2p :2222(,0)()(,0)(,0)()(,0)dp x ix dx dxd p x x dxdx ψψψψ+∞*-∞+∞*-∞=-=-⎰⎰1.5 设一维自由粒子的初态为)0,(x ψ,证明在足够长时刻后,()[]⎪⎭⎫⎝⎛⋅⎥⎦⎤⎢⎣⎡⋅-=t mx t imx i t m t x ϕπψ2exp 4exp ,2式中()()⎰+∞∞--=dx e x k ikx0,21ψπϕ是)0,(x ψ的Fourier 变换。
提示:利用()x e e x i i δπααπα=-∞→24/lim。
证:依照平面波的时刻转变规律 ()t kx i ikxe e ω-→ , m k E 22==ω,任意时刻的波函数为()()()dk e k t x mtkkx i 2/221, -+∞∞-⎰=ϕπψ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⋅=⎰∞+∞-22/2ex p 212t mx k m t i k dk etimx ϕπ(1) 那时刻足够长后(所谓∞→t ),上式被积函数中的指数函数具有δ函数的性质,取m t 2 =α , (2)参照此题的解题提示,即得()()⎰+∞∞--⎪⎭⎫ ⎝⎛-⋅≈k d t mx k k e t m et x i timx δϕππψπ4/2221,2⎪⎭⎫⎝⎛=-t mx e e t m t imx i ϕπ2/4/2 (3) 1.6 依照粒子密度散布ρ和粒子流密度散布j的表示式, ()()()t r t r t r ,,,*ψψρ=()()()()()[]t r t r t r t r mi t r j ,,,,2,**ψψψψ∇-∇-=概念粒子的速度散布v()()()()⎥⎦⎤⎢⎣⎡∇-∇-==t r t r t r t r m i j v ,,,,2**ψψψψρ 证明:0=⨯∇v 。
量子力学习题汇集
量⼦⼒学习题汇集第⼀章习题1.证明下列算符等式[][][][][][][][][][][][][][][]0,,,,,,,,,,,,,,,=+++=+=+=+B A C A C B C B A BC A C B A C AB CB AC A B BC A C A B A C B A2.设粒⼦波函数为),,(z y x ψ,求在()dx x x +, 范围内找到粒⼦的⼏率.3.在球坐标中,粒⼦波函数为()??ψ,,r ,试求:1)在球壳(r,r+dr)中找到粒⼦的⼏率;2)在()??,⽅向的⽴体⾓Ωd 中找到粒⼦的⼏率.4.已知⼒学量F 的本征⽅程为n n n F ?λ?=求在状态波函数332211ψc c c ++=下测⼒学量F 的可能值,相应的⼏率及平均值(假设波函数ψ已归⼀或不归⼀的情况).第⼆章习题1.⼀粒⼦在⼆维势场∞=,,0),(y x V 其它by a x <<<<0,0中运动,求粒⼦的能级和波函数.能级是否简并2.由哈密顿算符()2232222212222z y x m m H ωωω+++?-=η所描述的体系,称各向异性谐振⼦.求其本征态和本征值.3.利⽤递推关系--=+-11212)(n n n n n x dx d ψψαψ证明()22222)2)(1()12()1(2并由此证明在n ψ态下2,0nE T P ==第四章习题1.证明 )cos sin (cos i A +=ψ为2L 和y L 的共同本征态,并求相应的本征值。
说明当体系处在此状态时,z L 没有确定值。
2.对于⼀转动惯量为I 的平⾯转⼦,其能量算符为IL H z 2=,求体系的能量本征态。
如??ψsin )0,(A =,求),(t ?ψ。
3.量⼦化对称陀螺的哈密顿量可写成()222212121z y x L I L L I H ++=试求该对称陀螺的能量本征值。
4.⼀质量为m 的粒⼦被限制在半径为a r = 和b r =的⼆个不可穿透同⼼球⾯之间运动,不存在其它势。
量子力学练习一+解答
量子力学练习一1.爱因斯坦在解释光电效应时,提出 概念;爱因斯坦光电效应方程为 ;电子的康普顿波长为 。
光量子(光子)21v 2h m A ν=+ 20 2.4310Ac h m cλ-==⨯ 2.玻尔氢原子理论的三个基本假设是:(1)(2) (3) 。
定态假设 跃迁假设 角动量量子化假设3.能量为100eV 的电子,其德布罗意物质波的波长为 。
101.210m -⨯4.在量子力学中,描述系统的运动状态用波函数()r ψ,一般要求波函数满足三个条件即 ; ; 。
根据玻恩对波函数的统计解释,电子呈现的波动性只是反映客体运动的一种统计规律,称为 波,波函数模的平方()2r ψ表示粒子在空间的几率分布,称为 。
而()2r d ψτ表示 ,要表示粒子出现的绝对几率,波函数必须 。
单值的、连续的、平方可积的;几率或概率 几率密度或概率密度;在空间体积d τ中找到粒子的几率或概率;归一化 5.测不准关系/2x x p ∆∆≥ 表明,微观粒子的位置(坐标)和动量 ,这是 的反映,当0→ 时,量子力学将回到经典力学,或者说 可以忽略。
而/2E t ∆∆≥ 说明原子处于激发态时有一定的时间限制,则原子激发能级有一定 ,这是原子光谱存在 的根源。
不能同时具有完全确定的值 粒子的波动-粒子两重性 量子效应 宽度 自然宽度6.在量子力学中,力学量通常用算符表示,在坐标表象中,动量变为动量算符即ˆp = ,在动量表象中,坐标变为坐标算符,即ˆr=。
i -∇ p i ∇7.设波函数()22xx Aeαψ-=,α为常数,求归一化常数A()222222222*21x x x x dx A e Ae dx Ae dx Aαααψ∞∞∞----∞-∞-∞====⎰⎰⎰其中利用2xe dx ∞--∞=⎰A =1/41/22απ⎛⎫⎪⎝⎭8.已知做直线运动的粒子处于状态()11x ixψ=- (1)将()x ψ归一化;(2)求出粒子坐标取值几率为最大处的位置和最大几率密度。
量子力学习题第一部分
量子力学习题第一部分量子力学习题第一部分一基本概念: Plank量子论,Bohr量子论,德布罗意关系,Bohr 量子化条件,波函数的统计诠释,量子力学基本假设,坐标波函数和动量波函数的关系,不确定关系,定态,守恒量,全同性原理。
二基本实验现象及规律: 黑体辐射,光电效应,Davisson和Germer 实验,正常Zeeman效应,反常Zeeman效应,光谱精细结构,Stark 效应,自旋存在的实验证据,Stern-Gerlach实验,自旋单态,自旋三重态。
三简单证明:1. 若坐标波函数是归一化的,则动量波函数也是归一化的。
2. 由薛定谔方程证明几率守恒。
3. 证明定态的叠加不是定态。
4. 证明在定态下,任意力学量的平均值不随时间改变。
5. 证明在定态下,任意力学量的测值几率分布不随时间变化。
6. 证明对一维运动,若一函数是薛定谔方程的解,则其复共轭也是解,且对应于同一能级。
7. 证明对一维束缚态总可以取实函数描述。
8. 证明对于一维定态问题,若粒子处于有限阶梯形方势阱中运动,则波函数及其一阶导数连续。
9. 证明对于一维运动,若势函数具有反射不变性,则体系有确定的宇称。
10. 证明坐标和动量的对易关系。
11. 证明角动量间的对易关系。
12. 证明坐标和角动量的对易关系。
13. 证明动量和角动量的对易关系。
14. 证明厄米算符的本征值是实数。
15. 证明在任何态下平均值为实数的算符必为厄米算符16. 证明厄米算符的本征值必为实数。
17. 证明若体系有两个彼此不对易的力学量,则体系的能级一般是简并的。
18. 证明书中求和规则(两题)。
19. 证明(σ ?A )(σ ?B ) =B A ?+ i σ ?(B A ?)20. 证明a 和a + 分别为下降和上升算符,并求它们在占有数表象下的表示。
四计算:1. 设一维运动粒子具有确定动量,验证不确定关系。
2. 设一维运动粒子具有确定位置,验证测不准关系。
3. 设一维运动粒子用gauss 波包描述,验证测不准关系。
量子力学习题集
量⼦⼒学习题集量⼦⼒学习题第⼀章绪论1.1 由⿊体辐射公式导出维恩位移定律:能量密度极⼤值所对应的波长λm 与温度T 成反⽐,即λm T=b (常量);并近似计算b 的数值,准确到⼆位有效数字。
1.2 在0K 附近,钠的价电⼦能量约为3eV ,求其德布罗意波长。
1.3 氦原⼦的动能是E=3kT/2(k 为玻⽿兹曼常数),求T=1K 时,氦原⼦的德布罗意波长。
1.4 利⽤玻尔-索末菲的量⼦化条件,求:(1)⼀维谐振⼦的能量;(2)在均匀磁场中作圆周运动的电⼦轨道的可能半径。
已知外磁场H =10特斯拉,玻尔磁⼦M B =9×10-24焦⽿/特斯拉,试计算动能的量⼦化间隔?E ,并与T =4K 及T =100K 的热运动能量相⽐较。
1.5 两个光⼦在⼀定条件下可以转化为正负电⼦对。
如果两光⼦的能量相等,问要实现这种转化,光⼦的波长最⼤是多少?第⼆章波函数和薛定谔⽅程2.1 由下列两定态波函数计算⼏率流密度: (1) ψ1=e ikr /r , (2) ψ2=e -ikr /r .从所得结果说明ψ1表⽰向外传播的球⾯波,ψ2表⽰向内(即向原点)传播的球⾯波。
2.2 ⼀粒⼦在⼀维势场ax a x x x U >≤≤∞∞=00,,0,)(中运动,求粒⼦的能级和对应的波函数。
2.3 求⼀维谐振⼦处在第⼀激发态时⼏率最⼤的位置。
2.4 ⼀粒⼦在⼀维势阱ax a x U x U ≤>??>=,0,0)(0中运动,求束缚态(02.5 对于⼀维⽆限深势阱(0x 和?x ,并与经典⼒学结果⽐较。
2.6 粒⼦在势场xa a x x V x V ≤<<≤??-∞=00,0,,)(0中运动,求存在束缚态(E <0)的条件( ,m ,a ,V 0关系)以及能级⽅程。
2.7 求⼆维各向同性谐振⼦[V =21k (x 2+y 2)]的能级,并讨论各能级的简并度。
2.8粒⼦束以动能E =mk222从左⽅⼊射,遇势垒00,,0)(0≥=x x V x V求反射系数、透射系数。
第一章量子力学基础习题
第一章 量子力学基础一.选择题1. 已知某色光照射到一金属表面、产生了光电效应,若此金属的逸出电势是0U (使电子从金属逸出需做功0eU )则此单色光的波长λ必须满足: A(A )0/eU hc ≤λ (B )()o hc eU λ≥(C )()()0/eU hc λ≤ (D )()()0/eU hc λ≥2. 用强度为I ,波长为λ的X 射线(伦琴射线)分别照射锂(Z=3)和铁(Z=26),若在同一散射角下测得康普顿散射的X 射线波长分别Li λ和()11,Fe L F λλλλ>,它们对应的强度分别为1L I 和Fe I ,则(A )11,L Fe L Fe I I λλ>< (B )11,L Fe L Fe I I λλ== (C )11,l Fe L Fe I I λλ=>(D )11,L Fe L Fe I I λλ<> [ C ]3. 根据玻尔氢原子理论,氢原子中的电子在第一和第三轨道上运动时速度大小之比21:v v 是: (A )1; (B )19; (C )3;(D )9 。
[ C ]4. 若外来单色光将氢原子激发至第三激发态,则当氢原子跃迁回低能态时,可发出的可见光光谱的条数是: C (A )1; (B )2; (C )3; (D ) 65. 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是0.40A ,则U 约为(A )150V (B )330V (C )630V (D )940V(普朗克常量34606310.h j s -=⨯) [ D ] 6. 若α粒子(电量为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A )()2h eRB (B )()h eRB(C )()12eRBh (D ))1eRBh [ A ] 7. 已知粒子在一维矩形无限深势阱中运动,其波函数为:()32x x a πφ=(-a ≤x ≤a )那么粒子在x=5a/6处出现的几率密度为: (A )1/(2a ) (B )1/a(C) (D) [ ]解答:()2222531516cos cos 242ax a a aπρϕπ====, 故选(A )。
量子力学习题1
量子力学部分
2011年12月27日
一.量子力学基本原理之一——波函数
微观粒子的运动状态可以用波函数 完全描述。t 时 刻,波函数在空间某点的绝对值的平方与该时刻在该点附近找 到粒子的概率密度成正比。
表示 t 时刻, 微观粒子在空间 r 点出现的相对概率密度。
波函数 r , t 本身没有直接的物理意义。它并不像经典 波那样代表什么实在的物理量的波动。
2 2 U r C r EC r 2m 2 2 U r r C r EC r 2m
将U(r)+c代入方程中
EC C E
故波函数与时间无关的部分不改变,能量本征值 改变.
( x)
2
2 2 nπ sin x a a
n
2
16E1
n3
9E1
n2
n 1
4E1 E1
x0
5
a
x0
a
Ep 0
b. 线性谐振子 势能U x 1 m 2 x 2 1 kx2 , k
线性谐振子定态波函数为
2
2
m
n x An e
2 x2
2
H n x
其中An
2 n n!
能量本征值和零点能
c. 方势垒的穿透
1 零点能(基态能量)为: E0 2
1 E n , 2
n 0,1, 2,3
隧道效应
隧道效应是微观粒子波动性的体现 已完全被实验证实, 并制成扫描隧道显微镜 (STM )
N n 2(2l 1) 2 6 10 ... 2[2(n 1) 1]
量子力学作业习题
第一章 量子力学的诞生[1] 在宏观世界里,量子现象常常可以忽略.对下列诸情况,在数值上加以证明: ( l )长l=lm ,质量M=1kg 的单摆的零点振荡的振幅;( 2 )质量M=5g ,以速度10cm/s 向一刚性障碍物(高5cm ,宽1cm )运动的子弹的透射率;( 3 )质量M= 0.1kg ,以速度0.5m/s 运动的钢球被尺寸为1×1.5m 2时的窗子所衍射.[2] 用h,e,c,m (电子质量), M (质子质量)表示下列每个量,给出粗略的数值估计: ( 1 )玻尔半径(cm ) ; ( 2 )氢原子结合能(eV ) ; ( 3 )玻尔磁子;( 4 )电子的康普顿波长(cm ) ; ( 5 )经典电子半径(cm ) ; ( 6 )电子静止能量(MeV ) ; ( 7 )质子静止能量( MeV ) ; ( 8 )精细结构常数;( 9 )典型的氢原子精细结构分裂[3]导出、估计、猜测或背出下列数值,精确到一个数量级范围内,( 1 )电子的汤姆逊截面;( 2 )氢原子的电离能;( 3 )氢原子中基态能级的超精细分裂能量;( 4 )37Li ( z=3 )核的磁偶极矩;( 5 )质子和中子质量差;( 6 )4He 核的束缚能;( 7 )最大稳定核的半径;( 8 )Π0介子的寿命;( 9 )Π-介子的寿命;( 10 )自由中子的寿命.[4]指出下列实验中,哪些实验表明了辐射场的粒子性?哪些实验主要证明能量交换的量子性?哪些实验主要表明物质粒子的波动性?简述理由.( 1 )光电效应;( 2 )黑体辐射谱;( 3 ) Franck – Hertz 实验;( 4 ) Davisson -Ger - mer 实验;( 5 ) Compton 散射.[5]考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕,利用检测器能定出电子撞击屏幕的位置.在下列各种情形下,画出入射电子强度随屏幕位置变化的草图,给出简单解释. ( 1 ) A 缝开启,B 缝关闭; ( 2 ) B 缝开启,A 缝关闭; ( 3 )两缝均开启. [6]验算三个系数数值:(1)h 2e m ;(2)h 2nm ;(3)hc第二章 波函数与Schr ödinger 方程[1] 试用量子化条件,求谐振子的能量[谐振子势能2221)(x m x V ω=] [2] 一维运动的粒子处在⎩⎨⎧<≥=-0,00,)(x x Axe x x 当当λψ的状态,其中0>λ,求:(1)粒子动量的几率分布函数;(2)粒子动量的平均值。
量子力学第一章课外练习题
第一章绪论一、填空题1、1923年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性,对于质量为1克,速度为1米/秒的粒子,其德布洛意波长为0.123A〔保留三位有效数字〕。
2、自由粒子的质量为m,能量为E,其德布罗意波长为h/p=h/√2mE(不考虑相对论效应)。
3、写出一个证明光的粒子性的:康普顿效应的发现,从实验上证实了光具有粒子性。
4、爱因斯坦在解释光电效应时,提出光的频率决定光子的能量,光的强度只决定光子的数目概念。
5、德布罗意关系为p=h/λ n〔没有写为矢量也算正确〕。
7、微观粒子具有波粒二象性。
8、德布罗意关系是粒子能量E、动量P与频率ν、波长λ之间的关系,其表达式为E=hv9、德布罗意波长为λ,质量为m的电子,其动能为已知。
10、量子力学是反映微观粒子运动规律的理论。
11、历史上量子论的提出是为了解释的能量分布问题。
用来解释光电效应的爱因斯坦公式为已知。
12、设电子能量为4电子伏,其德布罗意波长为待定nm。
13、索末菲的量子化条件为在量子理论中,角动量必须是h的整数倍,E待定。
应用这个量子化条件可以求得一维谐振子的能级=n14、德布罗意假说的正确性,在1927年为戴维孙和革末所做的电子衍射实验所证实,德布罗意关系〔公式〕为见P11。
15、1923年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性。
根据其理论,质量为 ,动量为p的粒子所对应的物质波的频率为,波长为若对于质量为1克,速度为1米/秒的粒子,其德布洛意波长为待定〔保留三位有效数字〕。
16、1923年,德布罗意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性,对于经过电压为100伏加速的电子,其德布洛意波长为0.123A〔保留三位有效数字〕。
二、选择题1、利用爱因斯坦提出的光量子概念可以成功地解释光电效应。
A. 普朗克B. 爱因斯坦C. 玻尔D. 波恩2、1927年C和等人所做的电子衍射试验验证了德布洛意的物质波假设。
量子力学第一章例题
第一章例题
1.2利用玻尔一索末菲的量子化条件求一维谐振子的能量。
解方法一:
按经典力学,质量为,角频率为的一维谐振子的能量
(a)
可改写成如下形式
(b)
上式是椭圆方程(右图),两半轴a、b分别为
利用量子化条件
(c)
但椭圆面积=
代入(c)得
方法二:
设谐振子位置可表示为
(d)
显然(e)
谐振子能量
将p、q代入上式得
利用(d)、(e)计算
半此代入量子化条件
得
即
代入(f),即得谐振子能量 E=nhv
1.3用玻尔一索末菲量子化条件求质量为的料子在长为l的一维盒子中作自由运动的能量。
解如图所示,设粒子开始时以速度v向右运动,设与右壁作弹性撞碰,动量数值不变方向相反,由量子化条件
得
粒子能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子力学习题第一部分
一基本概念: Plank量子论,Bohr量子论,德布罗意关系,Bohr量子化条件,波函数的统计诠释,量子力学基本假设,坐标波函数和动量波函数的关系,不确定关系,定态,守恒量,全同性原理。
二基本实验现象及规律: 黑体辐射,光电效应,Davisson和Germer实验,正常Zeeman效应,反常Zeeman效应,光谱精细结构,Stark效应,自旋存在的实验证据,Stern-Gerlach实验,自旋单态,自旋三重态。
三简单证明:
1. 若坐标波函数是归一化的,则动量波函数也是归一化的。
2. 由薛定谔方程证明几率守恒。
3. 证明定态的叠加不是定态。
4. 证明在定态下,任意力学量的平均值不随时间改变。
5. 证明在定态下,任意力学量的测值几率分布不随时间变化。
6. 证明对一维运动,若一函数是薛定谔方程的解,则其复共轭也是解,且对应于同一能级。
7. 证明对一维束缚态总可以取实函数描述。
8. 证明对于一维定态问题,若粒子处于有限阶梯形方势阱中运动,则波函数及其一阶导数连续。
9. 证明对于一维运动,若势函数具有反射不变性,则体系有确定的宇称。
10. 证明坐标和动量的对易关系。
11. 证明角动量间的对易关系。
12. 证明坐标和角动量的对易关系。
13. 证明动量和角动量的对易关系。
14. 证明厄米算符的本征值是实数。
15. 证明在任何态下平均值为实数的算符必为厄米算符
16. 证明厄米算符的本征值必为实数。
17. 证明若体系有两个彼此不对易的力学量,则体系的能级一般是简并的。
18. 证明书中求和规则(两题)。
19. 证明()() =+ i()
20. 证明a和a+ 分别为下降和上升算符,并求它们在占有数表象下的表示。
四计算:
1. 设一维运动粒子具有确定动量,验证不确定关系。
2. 设一维运动粒子具有确定位置,验证测不准关系。
3. 设一维运动粒子用gauss波包描述,验证测不准关系。
4.一维自由运动粒子,求波函数。
5. 粒子处于一维无限深势阱中,求能级和波函数。
6. 二维无限深势阱中运动的粒子,求能级和波函数,并讨论简并度。
7. 求平面转子的能级和波函数。
8. 求角动量z分量的本征值和本征态。
9. 粒子处于一维无限深势阱中,求坐标和动量的平均值,并对结果给予解释。
10. 求带电谐振子处于外电场中时的能级和波函数。
11. 确定三维中心力场中运动粒子体系的力学量的完全集。
12. 对正常Zeeman效应,确定体系的守恒量。
13. 对反常Zeeman 效应,确定体系的守恒量。
14. 计及自旋-轨道耦合,确定中心立场中运动粒子的守恒量。
15. 利用周期性边界条件,求自由运动粒子的波函数。
16. 利用不确定关系估算谐振子的基态能量。
17. 证明在离散的能量本征态(束缚态)下,动量平均值为零。
18. 证明在Lz 的本征态下,求Lx ,Ly ,Lz 的平均值。
19. 设体系处于态C1Y11 + C2Y20,求Lz的可能测值及平均值;求L2的可能测值及相应几率。
20. 求力学量的平均值随时间的演化规律。
21. 设有两个全同的自由粒子,都处于动量的本征态,分别讨论不计交换对称性、波色子和费米子情况下它们在空间的相对距离的概率分布。
22. 三个全同粒子体系,设单粒子有三个态,确定对称化和反对称化态的个数,并写出这些态。
23. 求氢原子能级的简并度(计及自旋和不计自旋)。
24,求氢原子的电流分布和磁矩。
25. 求坐标算符和动量算符在坐标表象中的表示。
26. 求坐标算符和动量算符在动量表象中的表示。
27. 中心力场中的自旋为1/2的粒子,考虑到轨道于自旋耦合,写出体系的哈密顿量,确定体系力学量完全集合,求体系耦合表象下的基。
28. 定量解释碱金属原子光谱的双线结构。
29. 定量分析正常塞曼效应。
30. 定量解释反常塞曼效应。
31. 求两自旋为1/2全同例子体系的波函数。
32. 求自旋单态和自旋三重态下,S2和Sz的本征值。
33. 在z表象下,求x的本证态。
34. 在z表象下,求n的本证态。
35. 在z本征态下,求(ΔSx)2和(ΔSy)2的平均值。
36. 对在外电场中的线性谐振子,用微扰论和精确解分别求解。
37. 定量分析氢原子的一级Stark效应。