高考总复习之正态分布( 教师版)汇总
正态分布知识点高考
正态分布知识点高考正态分布,又称为高斯分布,是一种常见的连续型概率分布。
它在高考中占据重要地位,因此我们有必要了解并掌握相关的知识点。
本文将从基本概念、特点、参数、性质和应用等方面,介绍正态分布相关知识。
一、基本概念正态分布是一种理想的连续型概率分布,其概率密度函数呈钟形曲线,两头低,中间高,左右对称。
它由两个参数完全确定,即均值μ和标准差σ,分别决定了曲线的位置和形态。
二、特点1. 对称性:正态分布曲线是关于均值μ对称的,即在μ左右等距离的两个点处曲线的取值相等。
2. 唯一性:给定均值μ和标准差σ,正态分布曲线是唯一确定的,即每个参数对应一个特定的曲线。
3. 演趋性:正态分布曲线随着距离均值的增加或减少而变得越来越平缓,曲线两端向横轴无限延伸但不与其相交。
三、参数1. 均值μ:正态分布曲线的对称轴,决定了曲线的位置。
2. 标准差σ:正态分布曲线的形状参数,决定了曲线的宽度。
标准差越大,曲线越宽。
四、性质1. 正态分布曲线下的面积总和为1,即概率密度函数的积分等于1。
2. 68-95-99.7法则:在正态分布曲线上,约68%的数据位于均值的一个标准差范围内,约95%的数据位于均值的两个标准差范围内,约99.7%的数据位于均值的三个标准差范围内。
3. 随机变量的线性组合仍然服从正态分布。
4. 标准正态分布是均值为0,标准差为1的正态分布。
五、应用正态分布广泛应用于各个领域,包括自然科学、社会科学和工程等。
在高考中,正态分布常被用来描述和分析一些量化问题,如考试成绩、身高体重等。
利用正态分布的特性,可以进行相关问题的计算和预测。
总结:正态分布是一种重要的概率分布,具有对称性、唯一性和演趋性等特点。
它由均值和标准差两个参数完全确定,广泛应用于各个领域。
在高考中,掌握正态分布的基本概念、特点、参数、性质和应用非常重要,能够帮助学生更好地理解和解答相关问题。
高考正态分布知识点
高考正态分布知识点在统计学中,正态分布是一种重要的概率分布,也被称为钟形曲线或高斯分布。
在高考数学中,正态分布是一个常见的考察点,学生需要了解和掌握与正态分布相关的概念、性质和应用。
下面将详细介绍高考正态分布的知识点。
一、正态分布的定义和性质1. 正态分布的定义:正态分布是指在数理统计中,如果随机变量X服从一个数学期望为μ、方差为σ²的正态分布,则记为X~N(μ, σ²),其中N表示正态分布。
2. 正态分布的性质:(1)正态分布是对称的,其均值、中位数和众数都相等,即μ=中位数=众数。
(2)正态分布的图像呈现出典型的钟形曲线。
(3)正态分布的曲线在均值两侧呈现出逐渐减小的趋势,但是永远不会到达横轴。
(4)正态分布的曲线关于均值μ对称。
(5)正态分布的标准差σ越大,曲线越矮胖;标准差σ越小,曲线越瘦高。
(6)约68%的数据落在均值±1个标准差范围内;约95%的数据落在均值±2个标准差范围内;约99.7%的数据落在均值±3个标准差范围内。
二、正态分布的概率计算1. 标准正态分布:标准正态分布是指均值为0,标准差为1的正态分布。
记为Z~N(0, 1)。
对于标准正态分布,我们可以通过计算标准正态分布表来得到对应的概率值。
2. 普通正态分布:当随机变量X服从正态分布N(μ, σ²)时,可以进行标准化处理,将X转化为一个服从标准正态分布的随机变量Z。
即Z=(X-μ)/σ,这样就得到了一个标准正态分布。
对于普通正态分布,可以通过标准正态分布表和标准化公式来计算相应的概率值。
3. 概率计算:对于正态分布,我们常常需要计算在某个区间范围内的概率值。
对于标准正态分布,可以利用标准正态分布表查找对应的概率值。
对于普通正态分布,可以将其转化为标准正态分布进行计算。
三、正态分布的参数估计1. 样本均值的抽样分布:在统计学中,我们经常需要对总体的均值进行估计。
对于正态分布,样本均值的抽样分布也是一个正态分布,并且其均值等于总体均值,方差等于总体方差除以样本容量的平方根。
2.4正态分布练习(教师版)
1.已知随机变量X服从正态分布N(1,σ2),且P(0<X≤1)=0.4,则且P(X>2)=().A.0.4B.0.1C.0.6D.0.2【答案】B随机变量ξ服从正态分布,∴曲线关于对称,∵,∴.2.某校高考数学成绩ξ近似地服从正态分布N(100,52),且P(ξ<110)=0.96,则P(90<ξ<100)的值为()A.0.49B.0.48C.0.47D.0.46【答案】D∵ξ近似地服从正态分布N(100,52),∴P(ξ<100)=0.5,∴P(100<ξ<110)=P(ξ<110)-P(ξ<100)=0.96-0.5=0.46,∴P(90<ξ<100)=P(100<ξ<110)=0.46.3.经统计,某市高三学生期末数学成绩X-N(85,σ2),且P(80<X<90)=0.3,则从该市任选一名高三学生,其成绩不低于90分的概率是()A.0.35B.0.65C.0.7D.0.85【答案】A∵学生成绩X服从正态分布N(85,σ2),且P(80<X<90)=0.3,∵P(X≥90)=[1-P(80<X<90)]=,2.4正态分布∴从该市任选一名高三学生,其成绩不低于90分的概率是0.35.4.某校有1200人参加某次模拟考试,其中数学考试成绩近似服从正态分布N(105,σ2)(σ>0),试卷满分150分,统计结果量示数学成绩优秀(高于120分)的人数占总人数的,则此次数学考试成绩在90分到105分之间的人数约为()A.180B.240C.360D.480【答案】C∵P(X≤90)=P(X≥120)=0.2,∴P(90≤X≤120)=1-0.4=0.6,∴P(90≤X≤105)=P(90≤X≤120)=0.3,∴此次数学考试成绩在90分到105分之间的人数约为1200×0.3=360.5.某住宅小区有1500名户,各户每月的用电量近似服从正态分布N(200,100),则月用电量在220度以上的户数估计约为()(参考数据:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974)A.17B.23C.34D.46【答案】C由题意,μ=200,σ=10,在区间(180,220)的概率为0.9544,∴用电量在220度以上的概率为=0.0228,∴用电量在220度以上的户数估计约为1500×0.0228≈34,6.已知随机变量X服从正态分布N(a,4),且P(X≤1)=0.5,则实数a的值为________.【答案】1∵X服从正态分布N(a,4),∴正态曲线关于直线x=a对称,又P(X≤1)=0.5,故a=1.7.某班有50名同学,一次数学考试的成绩ξ服从正态分布N(110,102),已知P(100≤ξ≤110)=0.34,估计该班学生数学成绩在120分以上的有________人.【答案】8∵考试的成绩ξ服从正态分布N(110,102).∴考试的成绩ξ关于ξ=110对称,∵P(100≤ξ≤110)=0.34,∴P(ξ≥120)=P(ξ≤100)=(1-0.34×2)=0.16,∴该班数学成绩在120分以上的人数为0.16×50=8.8.已知随机变量ξ,且ξ~N{μ,σ2),若P(﹣3<ξ<﹣1)=P(3<ξ<5),则μ=________【答案】1依题意,P(-3<ξ<-1)=P(3<ξ<5),又区间(-3,-1)和(3,5)关于x=1对称,结合正态分布的知识,关于x=μ对称的区域所对应的概率相等,所以μ=19.为了了解某地区高三男生的身体发育状况,抽查了该地区1000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态分布密度曲线如图所示,若体重大于58.5kg小于62.5kg属于正常情况,则这1000名男生中属于正常情况的人数约为________.(参考数据:P(μ-σ<X<μ+σ)=0.683,P(μ-2σ<X<μ+2σ)=0.954,P(μ-3σ<X<μ+3σ)=0.997)【答案】683依题意可知,μ=60.5,σ=2,故P(58.5<X<62.5)=P(μ-σ<X<μ+σ)=0.683,从而属于正常情况的人数约为1000×0.683=683.10.某市对所有高校学生进行普通话水平测试,发现成绩服从正态分布N(μ,σ2),下表用茎叶图列举出来抽样出的10名学生的成绩.(1)计算这10名学生的成绩的均值和方差;(2))给出正态分布的数据:P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.由(1)估计从全市随机抽取一名学生的成绩在(76,97)的概率.【答案】解:(1)=90,S2==49.(2)由(1)可估计,μ=90,σ=7.P(76<x<97)=P(μ-2σ<x<μ)+P(μ<x<μ+σ)=+=0.8185.11.下列说法中正确的是设随机变量X服从二项分布,则已知随机变量X服从正态分布且,则小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件“4个人去的景点互不相同”,事件“小赵独自去一个景点”,则;;.A. B. C. D.【答案】A设随机变量X服从二项分布,则,正确;服从正态分布,正态曲线的对称轴是.,,,正确;设事件“4个人去的景点不相同”,事件“小赵独自去一个景点”,则,所以,正确;,,故不正确.12.已知三个正态分布密度函数(x∈R,i=1,2,3)的图象如图所示,则()A.μ1<μ2=μ3,σ1=σ2>σ3B.μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3D.μ1<μ2=μ3,σ1=σ2<σ3【答案】D∵正态曲线关于x=μ对称,且μ越大图象越靠近右边,∴第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,只能从A,D两个答案中选一个,∵σ越小图象越瘦长,得到第二个图象的σ比第三个的σ要小13.设随机变量ξ服从正态分布N(2,σ2),则函数f(x)=2x2-4x+ξ不存在零点的概率()A. B. C. D.【答案】A∵函数f(x)=2x2-4x+ξ不存在零点,∴△=16-8ξ<0,∴ξ>2.∵随机变量ξ服从正态分布N(2,σ2),∴曲线关于直线x=2对称,∴P(ξ>2)=.14.已知随机变量X服从正态分布N(3,σ2),若P(1<X<5)=3P(X≥5),则P(X≤1)等于()A.0.2B.0.25C.0.3D.0.4【答案】A∵随机变量X服从正态分布N(3,σ2),∴对称轴是x=3,∴P(X≥5)=P(X≤1),∵P(1<X<5)=3P(X≥5),∴5P(X≤1)=1,解得P(X≤1)=0.2.15.(1)若(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a0+a2+a4=______.(2)7个人站成一排,若甲,乙,丙三人互不相邻的排法共有______种.(3)随机变量ξ服从正态分布N(1,σ2),已知P(ξ<0)=0.3,则P(ξ<2)=______.(4)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=______.【答案】(1)121(2)1440(3)0.7(4)(1)令x=1,则;再令x=-1,则a0-a1+a2-a3+a4-a5=-1,∴,(2)∵7个人站成一排,若甲、乙、丙彼此不相邻,∴采用插空法来解,先排列甲、乙、丙之外的4人,有A44种结果,再在排列好的4人的5个空里,排列甲、乙、丙,有A53种结果,根据分步计数原理知共有A44A53=1440种结果,(3)随机变量ξ服从正态分布N(1,σ2),∴曲线关于x=1对称,∴P(ξ<0)=P(ξ>2)=0.3,∴P(ξ<2)=1-0.3=0.7,(4)随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,可得np=30,npq=20,q=,则p=,16“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表;由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布,利用该正态分布,求Z落在(14.55,38.45)内的概率;将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:计算得所抽查的这100包速冻水饺的质量指标的标准差为;若Z~,则,.【答案】所抽取的100包速冻水饺该项质量指标值的样本平均数为:.(2)服从正态分布,且,,,落在内的概率是.根据题意得,;;;;的分布列为:X01234P.。
正态分布知识点总结
正态分布知识点总结正态分布(Normal distribution)是统计学中最为重要和常见的概率分布之一、其分布特点为钟形曲线,对称分布,均值为中心点,标准差决定了曲线的分散程度。
正态分布在实际应用中非常广泛,特别适用于描述大量独立随机变量之和的分布情况。
一、正态分布的定义和性质1.定义:若随机变量X服从一个均值为μ,标准差为σ的正态分布(记作X∼N(μ,σ)),则其概率密度函数为f(x)=1/(σ√(2π))*e^(-(x-μ)²/(2σ²))2.性质:a.对称性:正态分布是关于均值对称的,即平均值左右两侧的曲线是对称的。
b.中心极限定理:大量独立随机变量的和趋向于正态分布,即使原始数据并不服从正态分布,样本量足够大时,样本均值的分布也会接近正态分布。
c.峰度与偏度:正态分布的峰度为3,即其曲线边际趋于水平而不陡。
偏度为0,即左右两侧的概率密度完全对称。
d.累积分布函数:正态分布的累积分布函数可以用标准正态分布表查找,标准正态分布表给出了标准正态分布的累积概率,从而可以计算出任意正态分布的累积概率。
二、正态分布的参数1.均值(μ):正态分布的均值决定了分布曲线的中心位置。
在标准正态分布中,均值为0。
2.标准差(σ):正态分布的标准差决定了分布曲线的宽度和分散程度。
标准差越小,曲线越尖锐;标准差越大,曲线越平缓。
三、标准正态分布1. 定义:均值为0,标准差为1的正态分布称为标准正态分布(Standard Normal Distribution),记作Z∼N(0,1)。
2.标准化:通过标准化转换,将任意正态分布转化为标准正态分布。
转换公式为Z=(X-μ)/σ,其中X为原正态分布的随机变量,μ为原正态分布的均值,σ为原正态分布的标准差。
3.标准正态分布表:存储了标准正态分布的累积概率值,可用于求解任意正态分布的累积概率。
4.逆标准化:通过标准正态分布表,可以将给定累积概率对应的Z值逆向计算,得到对应的原始分布值。
高三数学正态分布知识点
高三数学正态分布知识点正文:正态分布是概率论和统计学中经常应用的一种重要分布。
其特点是在均值附近的概率较高,而在离均值较远处的概率较低。
在高中数学的学习中,正态分布也是一个重要的知识点。
本文将介绍高三数学正态分布的相关知识。
一、正态分布的定义正态分布,又称为高斯分布,是一种连续型概率分布。
对于一个服从正态分布的随机变量X,其概率密度函数可以表示为:f(x) = (1 / sqrt(2 * π * σ^2)) * exp(-(x - μ)^2 / (2 * σ^2))其中,μ是均值,σ是标准差。
二、正态分布的性质1. 对称性:正态分布是以均值为对称轴,两侧面积相等的曲线。
2. 峰度:正态分布的峰度是指曲线的陡峭程度,峰度值为3。
3. 切点:正态分布曲线与均值之间会有两个切点,也即均值加减标准差的位置。
三、标准正态分布标准正态分布是指均值为0,标准差为1的正态分布。
它是对正态分布进行标准化后的结果。
对于一个服从正态分布的随机变量X,可以通过以下公式将其转化为标准正态分布的随机变量Z:Z = (X - μ) / σ四、正态分布的应用正态分布在实际生活和科学研究中具有广泛的应用,以下是几个常见的应用场景:1. 质量控制:正态分布可以帮助企业在生产过程中进行质量控制,通过控制产品的均值和标准差,来确保产品的质量稳定。
2. 统计分析:正态分布在统计学中扮演了重要角色,可以用于分析和描述大量数据的分布情况,从而得出结论或进行预测。
3. 考试评分:在考试评分过程中,教师常常采用正态分布来确定分数段及相应的等级,从而更公平地进行评价。
4. 实验设计:科学实验中常常会涉及到测量误差和数据分布的问题,正态分布可以作为参考,帮助科研人员进行实验设计和数据分析。
五、常用的正态分布应用题1. 求解概率:给定正态分布的均值和标准差,可以求解指定区间的概率。
2. 求解分位数:给定正态分布的均值和标准差,可以求解给定概率下的分位数,即求解落在该概率下的随机变量取值。
高考数学之正态分布知识点
高考数学之正态分布知识点一、引言在高考数学中,正态分布是一个非常重要的知识点。
正态分布作为一种大量自然现象的模型,可以广泛应用于各个领域。
通过深入了解正态分布的性质和相关计算方法,对解决实际问题具有重要意义。
本文将从概念、性质、计算方法等多个方面介绍高考数学中与正态分布相关的知识点。
二、概念和性质1. 正态分布的定义正态分布是一种连续型概率分布,其特点是在均值处呈现对称的钟型曲线。
对于一个具有均值μ 和标准差σ 的正态分布,其概率密度函数可以表示为f(x) = (1/σ√(2π)) * e^((-1/2) * ((x-μ)/σ)^2),其中 e 是自然对数的底数,π 是圆周率。
2. 正态分布的性质正态分布有一些重要性质需要了解:- 对称性:正态分布曲线呈现关于均值的对称性,即左右两侧的面积相等。
- 均值与中位数与众数的关系:正态分布的均值、中位数和众数都相等。
- 标准正态分布:当均值为0,标准差为1时的正态分布称为标准正态分布。
对于任意一个正态分布,都可以通过标准化处理,将其转化为标准正态分布。
- 正态分布的累积分布函数:通过积分得到的累积分布函数可以用来计算正态分布在某个区间内的概率。
三、计算方法1. 标准正态分布的计算标准正态分布在高考数学中经常出现,因此了解其计算方法是必要的。
为了求得标准正态分布在某个区间内的概率,可以通过使用查表法或计算机软件进行计算。
查表法是将标准正态分布的累积分布函数值进行预先编制,然后通过查表得到相应的概率值。
当找不到准确的值时,可以通过线性插值或逆推法获得近似解。
2. 一般正态分布的计算对于一般正态分布的计算,可以通过标准化处理来简化计算过程。
步骤如下:- 将要求解的问题转化为标准正态分布的问题。
- 对所需的区间进行标准化处理,即通过计算 z 值来转化为标准正态分布的问题。
- 根据标准正态分布的累积分布函数求得相应的概率。
四、应用实例正态分布作为一种模型,在数理统计和实际问题中有广泛的应用。
2022年新高考数学总复习:正态分布
2022年新高考数学总复习:正态分布知识点一正态曲线及其性质(1)正态曲线:函数f(x)=12πσe-(x-μ)22σ2,x∈(-∞,+∞),其中实数μ和σ(σ>0)为参数.我们称函数f(x)的图象为正态分布密度曲线,简称正态曲线,期望为μ、标准差为σ的正态分布通常记作__X~N(μ,σ2)__.(2)正态曲线的性质:①曲线位于x轴__上方__,与x轴不相交;②曲线是单峰的,它关于直线__x=μ__对称;③曲线在__x=μ__处达到峰值1σ2π;④曲线与x轴之间的面积为__1__;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿着x轴平移;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越__集中__;σ越大,曲线越“矮胖”,表示总体的分布越__分散__.知识点二正态分布(1)正态分布的定义及表示.若对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=__⎠⎛abφμ,σ(x)d x__,则称X 服从正态分布,记作X~N(μ,σ2).(2)正态总体在三个特殊区间内取值的概率值:①P(μ-σ<X≤μ+σ)=__0.682_6__;②P(μ-2σ<X≤μ+2σ)=__0.954_4__;③P(μ-3σ<X≤μ+3σ)=__0.997_4__.归纳拓展对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知(1)P(X≥μ)=P(X≤μ)=0.5;(2)对任意的a有P(X<μ-a)=P(X>μ+a);(3)P(X<x0)=1-P(x≥x0);(4)P(a<X<b)=P(X<b)-P(X≤a).注:在X服从正态分布,即X~N(μ,σ2)时,要充分利用正态曲线的关于直线x=μ对称和曲线与x轴之间的面积为1.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)随机变量的均值是常数,样本的平均数是随机变量,它不确定.( √ )(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( √ )(3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ是正态分布的标准差.( √ )(4)若X ~N (0,1),则P (x <-12)<P (x ≥12).( × )题组二 走进教材2.(P 75B 组T2改编)设随机变量ξ服从正态分布N (4,3),若P (ξ<a -5)=P (ξ>a +1),则实数a 等于( B )A .7B .6C .5D .4[解析] 由题意知(a -5)+(a +1)2=4,∴a =6.题组三 走向高考3.(2015·山东)已知某批零件的长度误差ξ(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( B )(附:正态分布N (μ,σ2)中,P (μ-σ<ξ<μ+σ)=0. 682 7,P (μ-2σ<ξ<μ+2σ)=0.954 5)A .0.045 6B .0.135 9C .0. 271 8D .0.317 4[解析] 因为P (-3<ξ<3)=0. 682 7,P (-6<ξ<6)=0.954 5,所以P (3<ξ<6)=12×(0.954 5-0.682 7)=0.135 9.故选B .4.(2015·湖北,5分)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( C )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D .对任意正数t ,P (X ≥t )≥P (Y ≥t )[解析] 由正态分布密度曲线的性质可知,X ~N (μ1,σ21),Y ~N (μ2,σ22)的密度曲线分别关于直线x =μ1,x =μ2对称,因此结合题中所给图象可得,μ1<μ2,所以P (Y ≥μ2)<P (Y ≥μ1),故A 错误.又X ~N (μ1,σ21)的密度曲线较Y ~ N (μ2,σ22)的密度曲线“瘦高”,所以σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),B 错误.对任意正数t ,P (X ≤t )≥P (Y ≤t ),P (X ≥t )≤P (Y ≥t ),C 正确,D 错误.5.(2017·全国卷Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性; ②下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得x =116∑16i =1x i=9.97,s =116∑16i =1 (x i -x )2=116∑16i =1(x 2i -16x -2)≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.997 4,0.997 416≈0.959 2,0.008≈0.09.[解析] (1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.997 4,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.002 6,故X ~B (16,0.002 6).因此P (X ≥1)=1-P (X =0)=1-0.997 416≈0.040 8.X 的数学期望为E (X )=16×0.002 6=0.041 6.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.002 6,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.040 8,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由x -=9.97,s ≈0.212,得μ的估计值为μ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115(16×9.97-9.22)=10.02,因此μ的估计值为10.02.∑16i =1x 2i =16×0.2122+16×9.972≈1 591.134, 剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115(1 591.134-9.222-15×10.022)≈0.008,因此σ的估计值为0.008≈0.09.考点突破·互动探究考点一 正态分布的性质——自主练透例1 (2021·河北唐山模拟)已知随机变量X 服从正态分布N (0,1),随机变量Y 服从正态分布N (1,1),且P (X >1)=0.158 7,则P (1<Y <2)=( B )A .0.158 7B .0.341 3C .0.841 3D .0.658 7[解析] 由正态曲线的性质知,随机变量X 、Y 的正态曲线形状相同,(如图).由题意P (Y >2)=P (X >1)=0.158 7,∴P (1<Y <2)=0.5-0.158 7=0.341 3.故选B .名师点拨对X ~N (μ,σ2)中的μ,σ的意义不清楚,特别是对μ的认识不清楚,就会在解题时无从下手,导致随便给出一个结果.这里μ是随机变量X 的均值,σ是标准差,x =μ是正态分布密度曲线的对称轴.〔变式训练2〕设两个正态分布N (μ1,σ21)(σ1>0)和N (μ2,σ22)(σ2>0)的密度函数分别为φ1(x )和φ2(x ),其图象如图所示,则下列结论正确的是( C )①μ1<μ2②μ1>μ2③σ1<σ2④σ1>σ2A.①②B.②③C.①③D.③④[解析]f(x)=12πσe-(x-μ)22σ2中x=μ是对称轴,故μ1<μ2;σ越大,曲线越“矮胖”,σ越小曲线越“高瘦”,故σ1<σ2.故选C.考点二正态分布——多维探究例1角度1正态曲线的对称性(1)(2021·山东新高考质量测评联盟联考)在2019年高中学生信息技术测试中,经统计,某校高二学生的测试成绩X~N(86,σ2),若已知P(80<X≤86)=0.36,则从该校高二年级任选一名考生,他的测试成绩大于92分的概率为(D)A.0.86B.0.64C.0.36D.0.14[解析]由题意P(86<x≤92)=P(80<x≤86)=0.36,∴P(X>92)=0.5-0.36=0.14,故选D.角度2确定正态曲线的对称轴(2)(2021·福建模拟)已知随机变量X服从正态分布N(μ,σ2),若P(X<3)+P(X≤1)=1,则μ=__2__.[解析]因为X服从正态分布N(μ,σ2),所以P(X<3)+P(X≥3)=1,所以P(X≤1)=P(X≥3),由正态曲线的对称性知对称轴为X=2,所以μ=2.角度3三个常用数据(3)(2020·安阳二模)2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,已知某工厂生产口罩的质量指标ξ~N(15,0.002 5),单位为g,该厂每天生产的质量在(14.9 g,15.05 g)的口罩数量为818 600件,则可以估计该厂每天生产的质量在15.15 g以上的口罩数量为(D)参考数据:若ξ~N(μ,σ2),则P(μ-σ<ξ<μ+σ)=0.682 7,P(μ-2σ<ξ<μ+2σ)=0.954 5,P(μ-3σ<ξ<μ+3σ)=0.997 3.A.158 700B.22 750C .2 700D .1 350[解析] 由题意知,ξ~N (15,0.002 5), 即μ=15,σ2= 0.002 5,即σ=0.05;所以P (14.9<ξ<15.05)=P (μ-2σ<ξ<μ+σ)=0.682 7+0.954 52=0.818 6,所以该厂每天生产的口罩总量为 818 600÷0.818 6=1 000 000(件), 又P (ξ>15.15)=P (ξ>μ+3σ)=1- 0.997 32, 所以估计该厂每天生产的质量在15.15 g 以上的口罩数量为1 000 000×1-0.997 32=1350(件).故选D .[引申]本例(1)中若有1 000名学生参加测试,则测试成绩在80分以上的人数为__860__. [解析] 1 000×P (X >80)=1 000×[1-(0.5-0.36)]=860.名师点拨关于正态总体在某个区间内取值的概率求法(1)熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值; (2)充分利用正态曲线的对称性和曲线与x 轴之间面积为1.①正态曲线关于直线x =μ对称,从而在关于x =μ对称的区间上概率相等;②P (X <a )=1-P (X ≥a ),P (X <μ-a )=P (X ≥μ+a ).〔变式训练2〕(1)(角度1)(2021·江苏苏州调研)已知随机变量ξ服从正态分布N (1,σ2),且P (ξ<4)=0.9,则P (-2<ξ<1)=( C )A .0.2B .0.3C .0.4D .0.6(2)(角度2)(2021·江西模拟)已知随机变量ξ服从正态分布N (μ,σ2),若P (ξ<2)=P (ξ>8)=0.15,则P (2≤ξ<5)=( B )A .0.3B .0.35C .0.5D .0.7(3)(角度3)(2021·青岛模拟)已知某市居民在2019年用于手机支付的个人消费额ξ(单位:元)服从正态分布N (2 000,1002),则该市某居民手机支付的消费额在(1 900,2 200)内的概率为( C )附:随机变量ξ服从正态分布N (μ,σ2),则 P (μ-σ<ξ<μ+σ)=0.682 6,P (μ-3σ<ξ<μ+3σ)=0.997 4. A .0.975 9 B .0.84 C .0.818 5D .0.477 2[解析] (1)由P (ξ<4)=0.9,得P (ξ≥4)=0.1.又正态曲线关于x =1对称. 则P (ξ≤-2)=P (ξ≥4)=0.1,所以P (-2<ξ<1)=1-P (ξ≤-2)-P (ξ≥4)2=0.4.故选C .(2)根据题意,正态分布N (μ,σ2), 若P (ξ<2)=P (ξ>8)=0.15,则μ=5,即这组数据对应的正态曲线的对称轴x =5,则P (ξ<5)=0.5, 又由P (ξ<2)=0.15,得P (2≤ξ<5)=0.5-0.15=0.35.故选B . (3)∵服从正态分布N (2 000,1002), ∴μ=2 000,σ=100,则P (1 900<ξ<2 200)=P (μ-σ<ξ<μ+σ)+12[P (μ-2σ<ξ<μ+2σ)-P (μ-σ<ξ<μ+σ)]=0.682 6+12(0.954 4-0.682 6)=0.818 5.故选C .考点三,正态分布的综合应用例3 (1)(2021·贵州贵阳为明教育集团调研)如图,在正方形ABCD 中的阴影部分的上下边界分别是曲线C 1和C 2,其中C 1是正态分布N (0,0.52)的密度曲线,C 1与C 2关于x 轴对称,若在正方形中随机取一点,则该点取自阴影部分的概率是( C )参考数据:随机变量Z 服从正态分布N (μ,σ2)的概率为:P (μ-2σ<Z ≤μ+2σ)=0.954 4, P (μ-3σ<Z ≤μ+3σ)=0.997 4 A .0.682 6 B .0.954 4 C .0.477 2D .0.498 7(2)(2021·河南六市模拟)十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加,为了制定提升农民收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:(ⅰ)根据频率分布直方图,估计50位农民的平均年收入x -(单位:千元);(同一组数据用该组数据区间的中点值表示);(ⅱ)由频率分布直方图,可以认为该贫困地区农民年收入X 服从正态分布N (μ,σ2),其中μ近似为年平均收入x -,σ2近似为样本方差s 2,经计算得s 2=6.92,利用该正态分布,求:①在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入标准大约为多少千元?②为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1 000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?附参考数据:6.92≈2.63,若随机变量X 服从正态分布N (μ,σ2),则P (μ-σ<X <μ+σ)=0.6827,P (μ-2σ<X <μ+2σ)=0.9545,P (μ-3σ<X <μ+3σ)=0.9973.[解析] (1)因为C 1是正态分布N (0,0.52)的密度曲线, 且P (μ-2σ<Z ≤μ+2σ)=0.954 4, 所以P (-1<Z ≤1)=0.954 4,则阴影部分的面积S =0.954 4×2=1.908 8,所以若在正方形中随机取一点,则该点取自阴影部分的概率是1.908 84=0.477 2.故选C .(2)(ⅰ)x -=12×0.04+14×0.12+16×0.28+18×0.36+20×0.10+22×0.06+24×0.04=17.40千元.故估计50位农民的年平均收入x -为17.40千元. (ⅱ)由题意知X ~N (17.40,6.92), ①P (X >μ-σ)=12+0.682 72≈0.841 4,所以μ-σ=17.40-2.63=14.77时,满足题意, 即最低年收入大约为14.77千元.②由P (x ≥12.14)=P (x ≥μ-2σ)=0.5+0.954 52≈0.977 3,每个农民的年收入不少于12.14千元的事件的概率为0.977 3, 记1 000个农民的年收入不少于12.14千元的人数为ξ 则ξ~B (1 000,p ),其中p =0.977 3于是恰好有k 个农民的年收入不少于12.14千元的事件概率为P (ξ=k )=C k 1 000p k (1-p )1 000-k , 从而由P (ξ=k )P (ξ=k -1)=(1 001-k )×p k ×(1-p )>1,得k <1 001p而1 001p =978.277 3,所以,当0≤k ≤978时,P (ξ=k -1)<P (ξ=k ); 当979≤k ≤1 000时,P (ξ=k -1)>P (ξ=k ),由此可知,在所走访的1 000位农民中,年收入不少于12.14千元的人数最有可能是978人.名师点拨解决正态分布问题的三个关键点 若随机变量ξ~N (μ,σ2),则 (1)对称轴x =μ; (2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率〔变式训练3〕(2021·广西柳州铁路一中、玉林一中联考)从某公司生产线生产的某种产品中抽取1 000件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:(1)求这1 000件产品质量指标的样本平均数x -和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x -,σ2近似为样本方差s 2.①利用该正态分布,求P (175.6<Z <224.4);②已知每件该产品的生产成本为10元,每件合格品(质量指标值Z ∈(175.6,224.4))的定价为16元;若为次品(质量指标值Z ∉(175.6,224.4)),除了全额退款外且每件次品还须赔付客户48元,若该公司卖出100件这种产品,记Y 表示这些产品的利润,求E (Y ).附:150≈12.2,若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)≈0.68,P (μ-2σ<Z <μ+2σ)≈0.95. [解析] (1)由题意得x -=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200s 2=(170-200)2×0.02+(180-200)2×0.09+(190-200)2×0.22+(200-200)2×0.33+(210-200)2×0.24+(220-200)2×0.08+(230-200)2×0.02=150.即样本平均数为200,样本方差为150. (2)①由(1)可知,μ=200,σ=150≈12.2, ∴Z ~N (200,12.22),∴P (175.6<Z <224.4) =P (μ-2σ<Z <μ+2σ)≈0.95 ②设X 表示100件产品的正品数, 题意得X ~B (100,0.95),∴E (X )=95, ∴E (Y )=16E (X )-48×5-100×10=280.名师讲坛·素养提升利用均值与方差求解决策性问题例4 (2021·湖南益阳调研)已知6名某疾病病毒密切接触者中有1名感染病毒,其余5名未感染,需要通过化验血液来确定感染者.血液化验结果呈阳性的即为感染者,呈阴性即为未感染者.(1)若从这6名密切接触者中随机抽取2名,求抽到感染者的概率;(2)血液化验确定感染者的方法有:方法一是逐一化验;方法二是平均分组混合化验,先将血液样本平均分成若干组,对组内血液混合化验,若化验结果呈阴性,则该组血液不含病毒,若化验结果呈阳性,则对该组的备份血液逐一化验;直至确定感染者.(ⅰ)采取逐一化验,求所需化验次数ξ的分布列及数学期望;(ⅱ)采取平均分成三组混合化验(每组血液份数相同),求该分组方法所需化验次数的数学期望.你认为选择哪种化验方案更合理?请说明理由.[解析] (1)抽到感染者的概率P =C 11C 15C 26=515=13.(2)(ⅰ)按逐一化验法,ξ的可能取值为1,2,3,4,5,P (ξ=1)=C 11C 16=16,P (ξ=2)=C 15C 11A 26=16,P (ξ=3)=A 25C 11A 36=16,P (ξ=4)=A 35C 11A 46=16,P (ξ=5)=A 45C 11+A 55A 56=13, 所以ξ的分布列为数学期望E (ξ)=1×16+2×16+3×16+4×16+5×13=103.(ⅱ)平均分成三组即按(2,2,2)分组, 记所需化验次数为η,则η=2,3, P (η=2)=13,P (η=3)=23×12+23×12=23所以η的分布列为数学期望E (η)=2×13+3×23=83.因为E (ξ)>E (η),所以按平均分组法较合理.名师点拨随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.〔变式训练4〕(2021·湖南郴州质检)某蔬菜种植基地有一批蔬菜需要两天内采摘完毕,天气预报显示这两天每天是否有雨相互独立,无雨的概率都为0.8.现有两种方案可以选择:方案一:基地人员自己采摘,不额外聘请工人,需要两天完成,两天都无雨收益为2万元,只有一天有雨收益为1万元,两天都有雨收益为0.75万元.方案二:基地额外聘请工人,只要一天就可以完成采摘,当天无雨收益为2万元,有雨收益为1万元.额外聘请工人的成本为a 万元.(1)若不额外聘请工人,写出基地收益X 的分布列及基地的预期收益; (2)该基地是否应该外聘工人?请说明理由. [解析] (1)基地收益X 的可能值为2,1,0.75,则P (X =2)=0.8×0.8=0.64,P (X =1)=0.8×0.2+0.2×0.8=0.32, P (X =0.75)=(1-0.8)×(1-0.8)=0.04, 故X 的分布列为则E (X )=2×0.64(2)设基地额外聘请工人时的收益为Y 万元, 则其预期收益E (Y )=2×0.8+1×0.2-a =1.8 -a E (Y )-E (X )=0.17-a综上可得,当额外聘请工人的成本高于0.17万元时,E (X )>E (Y ),不外聘工人, 当成本低于0.17万元时E (X )<E (Y ),外聘工人,当成本恰为0.17万元时,E (X )=E (Y ),是否外聘工人均可以.高考大题规范解答系列(六)——概率与统计考点一 离散型随机变量的分布列与期望(理)例1 (2021·山西联考)已知甲盒中有三个白球和三个红球,乙盒中仅装有三个白球,球除颜色外完全相同.现从甲盒中任取三个球放入乙盒中.(1)求乙盒中红球个数X 的分布列与期望; (2)求从乙盒中任取一球是红球的概率. 【标准答案】——规范答题 步步得分 (1)由题意知X 的可能取值为0,1,2,3.P (X =0)=C 03C 33C 36=120,P (X =1)=C 13C 23C 36=920,P (X =2)=C 23C 13C 36=920,P (X =3)=C 33C 03C 36=120,所以X 的分布列为所以E (X )=0×120+1×920+2×920+3×120=32.(2)当乙盒中红球个数为0时,P 1=0,当乙盒中红球个数为1时,P 2=920×16=340,当乙盒中红球个数为2,P 3=920×26=320, 当乙盒中红球个数为3时,P 4=120×36=140,所以从乙盒中任取一球是红球的概率为P 1+P 2+P 3+P 4=14.【评分细则】(1)第一问中,正确算出P (X =0),P (X =1),P (X =2),P (X =3)各得1分,列出分布列得1分,求出期望得1分.(2)第二问中,分类讨论,每种情况各占1分. (3)其他方法按步骤酌情给分.例2 (2019·课标Ⅰ,21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则乙药得1分,甲药得-1分;若都治愈或都未治愈,则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i (i =0,1,…,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则p 0=0,p 8=1,p i =ap i -1+bp i +cp i +1(i =1,2,…,7),其中a =P (X =-1),b =P (X =0),c =P (X =1).假设α=0.5,β=0.8.①证明:{p i +1-p i }(i =0,1,2,…,7)为等比数列; ②求p 4,并根据p 4的值解释这种试验方案的合理性. 【标准答案】——规范答题 步步得分(1)X 的所有可能取值为-1,0,1. P (X =-1)=(1-α)β, P (X =0)=αβ+(1-α)·(1-β), P (X =1)=α(1-β). 所以X 的分布列为(2)①由(1)得a =0.4,b =0.5,c =0.1.因此p i =0.4P i -1+0.5p i +0.1p i +1, 故0.1(p i +1-p i )=0.4(p i -p i -1), 即p i +1-p i =4(p i -p i -1). 又因为p 1-p 0=p 1≠0,所以{p i +1-p i }(i =0,1,2,…,7)是公比为4,首项为p 1的等比数列. ②由①可得p 8=p 8-p 7+p 7-p 6+…+p 1-p 0+p 0=(p 8-p 7)+(p 7-p 6)+…+(p 1-p 0)=48-13p 1.由于p 8=1,故p 1=348-1,所以p 4=(p 4-p 3)+(p 3-p 2)+(p 2-p 1)+(p 1-p 0) =44-13p 1=1257.p 4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理. 【评分细则】①每个式子1分,表格1分;给出X 的可能取值给1分; ②得出a 、b 、c 的值(有正确的)得1分; ③得到P i +1-P i =4(P i -P i -1)得1分; ④给出结论得1分;⑤得出P 8,P 4,P 1的表达式各得1分;⑥说明P 4非常小得1分; ⑦说明实验方案合理得1分. 【名师点评】1.核心素养:本题主要考查相互独立事件的概率、随机变量的期望、方差的应用、二项分布、决策问题等,考查数据处理能力、运算求解能力,考查或然与必然思想,考查的核心素养的逻辑推理、数学建模、数学运算、数据分析.2.解题技巧:破解此类题的关键:一是认真读题,读懂题意;二是会利用导数求最值;三是会利用公式求服从特殊分布的离散型随机变量的期望值;四是会利用期望值,解决决策型问题.〔变式训练1〕(2021·湖南五市十校教研教改共同体联考)某学校为了了解学生对新冠病毒的传播和预防知识的掌握情况,学校决定组织一次有关新冠病毒预防知识竞答.竞答分为必答题(共5题)和选答题(共2题)两部分.每位同学答题相互独立,且每道题答对与否互不影响.已知甲同学答对每道必答题的概率为45,答对每道选答题的概率为25.(1)求甲恰好答对4道必答题的概率;(2)在选答阶段,若选择回答且答对奖励5分,答错扣2分,选择放弃回答得0分.已知甲同学对于选答的两道题,选择回答和放弃回答的概率均为12,试求甲同学在选答题阶段,得分X 的分布列.[解析] (1)甲恰好答对4道必答题的概率为 P =C 45⎝⎛⎭⎫454×15=256625.(2)依题意,每道题选择回答并答对的概率为12×25=15,选择回答且答错的概率为12×35=310,选择放弃回答的概率为12.甲得分的可能性为-4分,-2分,0分,3分,5分和10分. 所以P (X =-4)=9100,P (X =-2)=C 1212×12×35=310, P (X =0)=12×12=14,P (X =3)=C 1212×12×25×35=325,P (X =5)=C 1212×12×25=15, P (X =10)=12×12×⎝⎛⎭⎫252=125.所以X 的分布列为考点一 随机抽样、频率分布直方图及其应用(文)例1 (2021·河南质量测评)“不忘初心、牢记使命”主题教育活动正在全国开展,某区政府为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n 名,获得了他们一周参加主题教育活动的时间(单位:时)的频率分布直方图,如图所示,已知参加主题教育活动的时间在(12,16]内的人数为92.(1)估计这些党员干部一周参与主题教育活动的时间的平均值;(2)用频率估计概率,如果计划对全区一周参与主题教育活动的时间在(16,24]内的党员干部给予奖励,且参与时间在(16,20],(20,24]内的分别获二等奖和一等奖,通过分层抽样方法从这些获奖人中随机抽取5人,再从这5人中任意选取3人,求3人均获二等奖的概率.【分析】 (1)先利用频率分布“直方图中各小矩形面积为1”求出a 的值,再利用各小矩形中点横坐标与该矩形面积积的和求平均值;(2)利用分层抽样的性质先求出在(16,20],(20,24]内分别抽取的人数,再用列举法求概率.【标准答案】——规范答题 步步得分 (1)由已知可得a =1÷4-(0.025 0+0.047 5+0.050 0+0.012 5)=0.115 0,2分得分点①所以这些党员干部一周参加主题教育活动的时间的平均值为(6×0.025+10×0.047 5+14×0.115+18×0.05+22×0.012 5)×4=13.644分得分点②(2)因为0.115 0×4×n =92,所以n =920.115 0×4=200.6分得分点③故参与主题教育活动的时间在(16,20]的人数为 0.050 0×4×200=40,参与主题教育活动的时间在(20,24]的人数为 0.012 5×4×200=10.8分得分点④则利用分层抽样抽取的人数:在(16,20]内为4人,9分得分点⑤ 设为a ,b ,c ,d ;在(20,24]内为1人,设为A ,从这5人中选取3人的事件空间为:{(a ,b ,c ),(a ,b ,d ),(a ,b ,A ),(a ,c ,d ),(a ,c ,A ),(a ,d ,A ),(b ,c ,d ),(b ,c ,A ),(b ,d ,A ),(c ,d ,A )},共10种情况,10分其中全是二等奖的有4种情况.11分 故P =410=25.12分得分点⑥【评分细则】①列对算式计算错误得1分,全对得2分; ②列对算式计算错误得1分,全对得2分; ③计算错误不得分;④求对(20,24],(16,20]上人数各得1分; ⑤求对(20,24]或(16,20]内抽取人数得1分;⑥列举出事件空间得1分,数对数目得1分;求对概率得1分. 【名师点评】本题主要考查随机抽样、频率分布直方图及概率,考查学生数据处理能力、运算能力. 〔变式训练1〕(2020·四川成都诊断)2019年12月,《生活垃圾分类标志》新标准分布并正式实施.为进一步普及生活垃圾分类知识,了解居民生活垃圾分类情况,某社区开展了一次关于垃圾分类的问卷调查活动,并对随机抽取的1 000人的年龄进行了统计,得到如下的各年龄段频数分布表和各年龄段人数频率分布直方图:(1)请补全各年龄段人数频率分布直方图,并求出各年龄段频数分布表中m ,n 的值; (2)现从年龄在[30,40)段中采用分层抽样的方法选取5名代表参加垃圾分类的知识交流活动,应社区要求,从被选中的这5名代表中任意选2名作交流发言,求选取的2名发言者中恰有1名年龄在[35,40)段中的概率.[解析] (1)∵第三组的频率为1-(0.04+0.06+0.03+0.02+0.01)×5=0.2, ∴第三组直方图的高为0.25=0.04.补全频率分布直方图如下图:由频率分布直方图,知m =0.02×1 000=200, n =0.02×(50-45)×1 000=100.(2)由(1)知年龄在[30,35)段中的人数与年龄在[35,40)段中的人数的比值为300200=32,所以采用分层抽样法抽取5名,年龄在[30,35)段中的有3名,年龄在[35,40)段中的有2名.不妨设年龄在[30,35)段中的3名为A 1,A 2,A 3,年龄在[35,40)段中的2名为B 1,B 2由于从5名代表中任选2名作交流发言的所有可能情况有:{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2},共10种,其中选取的2名发言者中恰有1名年龄在[35,40)段的情况有:{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{A 3,B 2},{A 3,B 2},共6种.故所求概率为P =610=35.考点二 线性回归分析例3 (2018·全国2)下图是某地区2000年至2016年环境基础设施投资y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①;y ^=-30.4+13.5t ,根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t .(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.【分析】 (1)模型①中取t =19,模型②中取t =9,求出对应的函数值即可;(2)利用所给折线图中数据的增长趋势,加以分析即可.【标准答案】——规范答题 步步得分(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 y ^=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 y ^=99+17.5×9=256.5(亿元). (2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.(以上给出了2种理由,答出其中任意一种或其他合理理由均可得分) 12分得分点④ 【评分细则】①根据模型①求出预测值给3分; ②根据模型②求出预测值给3分; ③判断模型②得到的预测值更可靠给2分; ④作出正确的判断,写出合理理由,给4分; 【名师点评】1.核心素养:本题主要考查线性回归方程的实际应用,考查考生的应用意识,分析问题与解决问题的能力以及运算求解能力,考查数学的核心素养是数据分析、数学建模、数学运算.2.解题技巧:统计中涉及的图形较多、常见的有条形统计图、折线图、茎叶图、频率分布直方图、应熟练地掌握这些图形的特点,提高识图与用图的能力.〔变式训练2〕(2021·安徽蚌埠质检)经销商小王对其所经营的某一型号二手汽车的使用年数x (0<x ≤10,x ∈N )与每辆的销售价格y (单位:万元)进行整理,得到如表的对应数据:(1)试求y 关于x 的回归直线方程;(2)已知每辆该型号汽车的收购价格ω(单位:万元)与使用年数x (0<x ≤10,x ∈N )的函数关系为ω=0.05x 2-1.75x +17.2,根据(1)中所求的回归方程,预测x 为何值时,小王销售一辆该型号汽车所获得的利润z 最大.附:回归直线的斜率和截距的最小二乘估计公式分别为b ^=∑i =1nx i y i -n x -·y-∑i =1nx 2i -n x -2,a ^=y --b ^ x -. [解析] (1)由表中数据,得x -=15×(2+4+6+8+10)=6,。
高中正态分布知识点
高中正态分布知识点正态分布(Normal distribution)在高中数学中起着重要的作用,它具有许多特点和应用。
正态分布是一种连续概率分布,其特征是以均值为中心对称,并且呈钟型分布。
它在统计学、概率论、自然科学等领域都有广泛的应用。
一、正态分布的特点正态分布的特点主要有三个方面:对称性、均值、标准差。
1. 对称性:正态分布的曲线以均值为中心对称,即曲线两侧的面积相等。
这意味着在正态分布中,均值附近的数值出现的概率较大,而离均值较远的数值出现的概率较小。
2. 均值:正态分布的均值是曲线的中心位置,也是分布的期望值。
在正态分布中,均值的取值是有用的参考,可以帮助我们了解数据集的中心倾向。
3. 标准差:正态分布的标准差决定了曲线的宽度,标准差较小意味着数据集的值相对集中,标准差较大意味着数据集的值相对分散。
标准差还可以用来衡量数据的离散程度。
二、正态分布的应用正态分布在实际生活中有广泛的应用,以下是几个常见的场景:1. 身高和体重:人类的身高和体重通常服从正态分布。
这使得我们可以通过计算均值和标准差来了解人群的平均身高和体重,也能够判断某个个体身高和体重是否在正常范围之内。
2. 考试成绩:考试成绩常常呈正态分布。
通过对成绩分布的分析,教师可以了解学生的表现情况,设计适合学生的教学方案。
3. 生物学实验数据:生物学实验中的许多测量结果,如细胞数量、药物浓度等,往往服从正态分布。
通过对实验结果的分析,科研人员可以评估实验的准确性和稳定性。
4. 财经领域:股市收益率、商品价格等经济指标常常符合正态分布。
金融机构和投资者可以利用正态分布来进行风险评估和预测。
三、正态分布的性质正态分布具有许多重要的性质,以下是其中几个常见的性质:1. 中心极限定理:中心极限定理是正态分布的一个重要应用。
它表明,当样本容量足够大时,样本均值的分布会接近于正态分布。
2. 正态分布的标准化:对于给定的正态分布,我们可以通过标准化处理将其转化为标准正态分布。
高考正态分布知识点归纳
高考正态分布知识点归纳作为中国高等教育的重要选拔方式,高考在很大程度上决定了学生的命运。
而统计学中的正态分布是高考中常出现的一个重要概念。
了解和掌握正态分布的相关知识点对于高考数学考试至关重要。
本文将从不同角度对高考正态分布知识点进行归纳和总结,以帮助考生更好地应对相关考题。
一、正态曲线和标准正态分布正态曲线是一种在统计学中经常使用的函数图形。
它呈现出钟形曲线的形状,具有中心对称、均值和标准差两个重要参数的特征。
高考中常见的正态分布问题会涉及到正态曲线的图形特点、标准差的计算等内容。
标准正态分布是指均值为0、标准差为1的正态分布。
对于任意一个正态分布,我们都可以通过标准化处理,将其转化为标准正态分布。
标准正态分布具有良好的性质,比如其面积一定等于1,可以使用标准正态分布表进行查找。
二、正态分布的性质和应用正态分布具有许多重要的性质,这些性质在高考中常常会涉及到。
首先是标准差的性质。
标准差越大,曲线越扁平;标准差越小,曲线越陡峭。
这个性质可以帮助我们察觉数据的分散程度。
其次是与正态分布有关的概率问题。
根据正态分布的特点,我们可以计算某个数值在一定范围内的概率。
例如,高考中常见的题目会要求计算某个班级或某个学生在全省排名中的百分位数。
最后是正态分布在抽样理论中的应用。
正态分布是许多统计方法的基础,比如样本均值的抽样分布、样本比例的抽样分布等。
这些应用在高考数学考试中也经常会出现。
三、正态分布与假设检验高考中的数学考卷通常涉及到学生的实际生活问题。
与实际问题相关的统计假设检验也常常和正态分布有关。
假设检验是一种通过收集样本数据,根据样本数据对总体参数进行推断的方法。
在高考中,常见的假设检验问题可能涉及到学生的身高、成绩等方面。
其中,若总体服从正态分布,则可以使用正态分布的性质进行假设检验。
对于高考数学考试中的假设检验问题,我们需要熟悉正态分布的假设检验步骤和相关公式,以便正确地解答相关题目。
四、高考试题中的正态分布问题在高考数学试卷中,正态分布相关的题目通常出现在概率与统计部分。
7.5正态分布(教师版) 讲义-2021-2022学年人教A版(2019)高中数学选择性必修三
正态分布一正态曲线及其性质1.我们称f(x)=()2221e2xμσσ--π,x∈R,其中μ∈R,σ>0为参数,为正态密度函数,称它的图象为正态密度曲线,简称正态曲线.2.若随机变量X的概率分布密度函数为f(x),则称随机变量X服从正态分布,记为X~N(μ,σ2).特别地,当μ=0,σ=1时,称随机变量X服从标准正态分布.3.若X~N(μ,σ2),则E(X)=μ,D(X)=σ2.4.正态曲线的特点:(1)非负性:对∀x∈R,f(x)>0,它的图象在x轴的上方.(2)定值性:曲线与x轴之间的面积为1.(3)对称性:曲线是单峰的,它关于直线x=μ对称.(4)最大值:曲线在x=μ处达到峰值1σ2π.(5)当|x|无限增大时,曲线无限接近x轴.(6)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①.(7)当μ一定时,曲线的形状由σ确定,σ较小时曲线“瘦高”,表示随机变量X的分布比较集中;σ较大时,曲线“矮胖”,表示随机变量X的分布比较分散,如图②.5.正态分布的几何意义:若X~N(μ,σ2),如图所示,X取值不超过x的概率P(X≤x)为图中区域A的面积,而P(a≤X≤b)为区域B的面积.二利用正态分布的性质求概率正态总体在三个特殊区间内取值的概率值P(μ-σ≤X≤μ+σ)≈0.682_7;P(μ-2σ≤X≤μ+2σ)≈0.954_5;P(u-3σ≤X≤μ+3σ)≈0.997_3.三正态分布的应用解题时,应当注意零件尺寸应落在[μ-3σ,μ+3σ]之内,否则可以认为该批产品不合格.判断的根据是小概率事件在一次试验中几乎是不可能发生的,而一旦发生了,就可以认为这批产品不合格.考点一 正态分布的特征【例1】(1)(2021·黑龙江鹤岗市·鹤岗一中高二期末(理))若随机变量()23,X N σ,且()50.2P X ≥=,则()15P X ≤≤等于( )A .0.6B .0.5C .0.4D .0.3(2)(2021·黄石市有色第一中学高二期末)设随机变量ξ服从正态分布()4,3N ,若()()51P a P a ξξ<-=>+,则实数a 等于( )A .7B .6C .5D .4【答案】(1)A(2)B【解析】(1)由于随机变量()23,X N σ,则()()15P X P X <=>, 因此,()()()()151********.20.6P X P X P X P X ≤≤=-<->=->=-⨯=.故选:A.(2)∵随机变量ξ服从正态分布N(4,3),∵P(ξ<a ﹣5)=P(ξ>a+1),∴x=a ﹣5与x=a+1关于x=4对称,∴a ﹣5+a+1=8,∴2a=12,∴a=6,故选:B .【练1】(2021·江苏常州市·高三期末)设随机变量(),1N ξμ,函数()22f x x x ξ=+-没有零点的概率是0.5,则()01P ξ<≤=( )附:若()2,N ξμσ,则()0.6826P X μσμσ-<≤+≈,()220.9544P X μσμσ-<≤+≈.A .0.1587B .0.1359C .0.2718D .0.3413【答案】B 【解析】函数()22f x x x ξ=+-没有零点,∴二次方程220x x ξ+-=无实根,44()0ξ∴∆=--<,1ξ∴<-, 又()22f x x x ξ=+-没有零点的概率是0.5,(1)0.5P ξ∴<-=,由正态曲线的对称性知:1μ=-,()1,1N ξ∴-,1,1μσ∴=-=,2,0,23,21μσμσμσμσ∴-=-+=-=-+=,(20)0.6826P ξ∴-<<=,(31)0.9544P ξ-<<=,[][]11(01)(31)(20)0.95440.68260.135922P P P ξξξ∴<≤=-<<--<<=-=, 故选:B.考点二 正态分布的实际应用【例2】(2021·安徽池州市)2020年新冠疫情以来,医用口罩成为防疫的必需品.根据国家质量监督检验标准,过滤率是生产医用口罩的重要参考标准,对于直径小于5微米的颗粒的过滤率必须大于90%.为了监控某条医用口罩生产线的生产过程,检验员每天从该生产线上随机抽取10个医用口置,检测其过滤率,依据长期生产经验,可以认为这条生产线正常状态下生产的医用口罩的过滤率Z 服从正态分布()2,N μσ.假设生产状态正常,生产出的每个口罩彼此独立.记X 表示一天内抽取10个口罩中过滤率小于或等于3μσ-的数量.(1)求()1P X ≥的概率;(2)求X 的数学期望()E X ;(3)一天内抽检的口罩中,如果出现了过滤率Z 小于3μσ-的口罩,就认为这条生产线在这一天的生产过程中可能出现了异常情况,需要对当天的生产过程进行检查维修,试问这种监控生产过程的方法合理吗?附:若随机变量()2,Z N μσ~,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=,()330.9974P Z μσμσ-<≤+=,100.99870.9871≈.【答案】(1)0.0129;(2)0.013;(3)这种监控生产过程的方法合理.【解析】(1)抽取口罩中过滤率在(]3,3μσμσ-+内的概率()330.9974P Z μσμσ-<≤+=,所以()10.997430.00132P Z μσ-≤-==, 所以()310.00130.9987P Z μσ>-=-=,故()()1011010.998710.98710.0129P X P X ≥=-==-=-=(2)由题意可知()~10,0.0013X B ,所以()100.00130.013E X =⨯=.(3)如果按照正常状态生产,由(1)中计算可知,一只口罩过滤率小于或等于3μσ-的概率()10.997430.00132P Z μσ-≤-==,一天内抽取的10只口覃中,出现过滤率小于或等于3μσ-的概率()0.11029P X ≥=,发生的概率非常小,属于小概率事件.所以一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程中可能出现了异常情况,需要对当天的生产过程进行检查维修.可见这种监控生产过程的方法合理.【练2】(2020·全国高三专题练习)标准的医用外科口罩分三层,外层有防水作用,可防止飞来进入口罩里面,中间层有过滤作用,对于直径小于5微米的颗粒阻隔率必须大于90%,近口鼻的内层可以吸湿,根据国家质量监督检验标准,过滤率是重要的参考标准,为了监控某条口罩生产线的生产过程,检验员每天从该生产线上随机抽取10个口罩,并检验过滤率.根据长期生产经验,可以认为这条生产线正常状态下生产的口罩的过滤率z 服从正态分布()2,N μσ.(1)假设生产状态正常,记X 表示一天内抽取的10个口罩中过滤率小于3μσ-的数量,求()1P X ≥及X 的数学期望;(2)下面是检验员在一天内抽取的10个口罩的过滤率: 1 2 3 4 5 6 7 8 9 10 0.9376 0.9121 0.9424 0.9572 0.9518 0.9058 0.9216 0.9171 0.9635 0.9268经计算得:10110.933510i i x x ===∑,()102110.018910i i s x x ==-≈∑(其中i x 为抽取的第i 个口罩的过滤率)用样本平均数x 作为μ的估计值,用样本标准差s 作为σ的估计值,利用该正态分布,求().09524P z ≥(精确到0.001)(附:若随机变量X 服从正态分布()2,N μσ,则①() 0.6826P X μμσσ-<<+=;②()220.9544P X μσμσ-<<+=;③()330.9974P X μσμσ-<<+=;另:100.99870.9871≈)【答案】(1)()0.11029P X ≥=,()0.013E X =;(2)0.1587.【解析】(1)已知检验率服从正态分布()2,N μσ,则事件()10.997430.00132P X μσ-<-== 当生产状态正常时,重复不放回的取10个口罩属于独立重复事件,10n =,0.0013p =,故有:().1000013003.1E X np ==⨯=,而()()()100010101101110.99870.0129P X P X C p p ≥=-==--=-=. (2)由题意知:由平均数近似估计μ,则有()()10.68260.95240.15872P z P z x s -≥=≥+==. 考点三 正态分布与其他知识的综合运用【例3】(2021·内蒙古赤峰市)疫情防控期间,为了让大家有良好的卫生习惯某校组织了健康防护的知识测试(百分制)活动,活动结束后随机抽取了200名学生的成绩,并计算得知这200个学生的平均成绩为65,其中5个低分成绩分别是30、33、35、38、38;而产生的10个高分成绩分别是90、91、91、92、92、93、95、98、100、100.(1)为了评估该校的防控是否有效,以样本估计总体,将频率视为概率,若该校学生的测试得分近似满足正态分布()2,N μσ(μ和2σ分别为样本平均数和方差),则认为防控有效,否则视为效果不佳.经过计算得知样本方差为210,请判断该校的疫情防控是否有效,并说明理由.(参考数据:21014.5≈)规定:若()220.9544P X μσμσ-<<+>,()330.9974P X μσμσ-<<+>,则称变量X “近似满足正态分布()2,N μσ的概率分布”. (2)学校为了鼓励学生对疫情防控的配合,决定对90分及以上的同学通过抽奖的方式进行奖励,得分低于94分的同学只有一次抽奖机会,不低于94分的同学有两次抽奖机会.每次抽奖获得50元奖金的概率是34,获得100元的概率是14.现在从这10个高分学生中随机选一名,记其获奖金额为Y ,求Y 的分布列和数学期望.【答案】(1)该校的疫情防控是有效的,理由见解析;(2)分布列见解析,87.5.【解析】(1)据该校的疫情防控是有效的,理由如下: 21014.5≈,265214.536μσ∴-=-⨯=,265214.594μσ+=+⨯=, 365314.521.5μσ-=-⨯=,365314.5108.5μσ+=+⨯=,得分小于36分的学生有3个,得分大于94分的有4个,()72210.9650.9544200P X μσμσ∴-<<+=-=>, 学生的得分都在[]30,100间,()3310.9974P X μσμσ∴-<<+=>. ∴学生得分近似满足正态分布()65,210N 的概率分布,因此该校的疫情防控是有效的;(2)设这名同学获得的奖金为Y ,则Y 的可能值为50、100、150、200,()6395010420P Y ==⨯=,()2614331001041048P Y ⎛⎫==⨯+⨯= ⎪⎝⎭, ()124313*********P Y C ==⨯⨯⨯=,()241120010440P Y ⎛⎫==⨯= ⎪⎝⎭, 故Y 的分布列为: Y 50 100 150 200 P 920 38 320 140()93315010015020087.52082040E Y ∴=⨯+⨯+⨯+⨯=. 【练3】(2021·江西南昌市)2020年国庆节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握国庆节期间车辆出行的高峰情况,在某高速公路收费站点记录了3日上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费站点,它们通过该收费站点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作[20,40)、9:40~10:00记作[40,60),10:00~10:20记作[60,80),10:20~10:40记作[80,100),例如:10点04分,记作时刻64.(Ⅰ)估计这600辆车在9:20~10:40时间内通过该收费站点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(Ⅱ)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X ,求X 的分布列;(Ⅲ)根据大数据分析,车辆在每天通过该收费站点的时刻T 服从正态分布()2~,N μσ,其中μ可用3日数据中的600辆车在9:20~10:40之间通过该收费站点的时刻的平均值近似代替,2σ用样本的方差近似代替(同一组中的数据用该组区间的中点值代表).假如4日全天共有1000辆车通过该收费站点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).附:若随机变量T 服从正态分布()2,N μσ,则()0.6827P T μσμσ-<≤+=,(22)0.9545P T μσμσ-<≤+=,(33)0.9973P T μσμσ-<≤+=.【答案】(Ⅰ)10:04;(Ⅱ)答案见解析;(Ⅲ)819.【解析】(Ⅰ)这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值为:(300.005500.015700.020900.010)2064⨯+⨯+⨯+⨯⨯=,即10∶04(Ⅱ)由频率分布直方图和分层抽样的方法可知,抽取的10辆车中,在10:00前通过的车辆数就是位于时间分组中在20,60这一区间内的车辆数,即(0.0050.015)20104+⨯⨯=,所以X 的可能的取值为0,1,2,3,4.所以()464101014C P X C ===,()31644108121C C P X C ===,()2264410327C C P X C ===, ()136********C C P X C ===,()4441014210C P X C ===. 所以X 的分布列为: X0 1 2 3 4 P 114 821 37 435 1210 (Ⅲ)由(1)得64μ=,22222(3064)0.1(5064)0.3(7064)0.4(9064)0.2324σ=-⨯+-⨯+-⨯+-⨯=车辆 所以18σ=,估计在9:46~10:40之间通过的车辆数也就是在46,100通过的车辆数,由()2~64,18T N ,得()(22)(641864218)0.818622P T P T P T μσμσμσμσ-<≤+-<≤+-≤≤+⨯=+=,所以估计在在9:46~10:40之间通过的车辆数为10000.8186819⨯≈.课后练习1.(2020高二上·天津期末)在某次高三联考数学测试中,学生成绩服从正态分布(100,σ2)(σ>0),若ξ在(85,115)内的概率为0.75,则任意选取一名学生,该生成绩高于115的概率为()A.0.25B.0.1C.0.125D.0.5【答案】C【考点】正态分布曲线的特点及曲线所表示的意义【解析】由题意得,区间(85,115)关于μ=100对称,=0.125,所以P(ξ≥115)=1−P(85<ξ<115)2即该生成绩高于115的概率为0.125.故答案为:C.【分析】根据题意由正态分布表曲线的对称性即可得出该生成绩高于115的概率。
2022新高考数学高频考点题型归纳51正态分布(教师版)
专题51正态分布--2022年(新高考)数学高频考点+重点题型一、关键能力(1)通过误差模型,了解服从正态分布的随机变量.通过具体实例,借助频率直方图的几何直观,了解正态分布的特征.(2)了解正态分布的均值、方差及其含义..二、教学建议(1)正态分布的图像和性质(2)概率统计在决策中的应用三、必备知识1.正态曲线及其性质(1)正态曲线:函数φμ,σ(x)=12πσe-(x-μ)22σ2,x∈(-∞,+∞),其中实数μ,σ(σ>0)为参数,我们称φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的性质:①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值12πσ;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中,如图乙所示:甲乙2.正态分布一般地,如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=⎠⎛abφμ,σ(x)d x,则称随机变量X服从正态分布(normal distribution).正态分布完全由参数μ和σ确定,因此正态分布常记作N(μ,σ2).如果随机变量X服从正态分布,则记为X~N(μ,σ2).3.正态总体三个特殊区间内取值的概率值①P(μ-σ<X≤μ+σ②P(μ-2σ<X≤μ+2σ③P(μ-3σ<X≤μ+3σ4.3σ原则通常服从正态分布N(μ,σ2)的随机变量X只取(μ-3σ,μ+3σ)之间的值.四、高频考点+重点题型 考点一:正态曲线及其性质 例1-1【多选题】若随机变量,,其中,下列等式成立有( )A .B .C .D .【答案】AC 【解析】随机变量服从标准正态分布,正态曲线关于对称,,,根据曲线的对称性可得:A.,所以该命题正确;B.,所以错误;C.,所以该命题正确;D.或,所以该命题错误. 故选:.例1-2.设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A.P (Y ≥μ2)≥P (Y ≥μ1)B.P (X ≤σ2)≤P (X ≤σ1)C.对任意正数t ,P (X ≤t )≥P (Y ≤t )D.对任意正数t ,P (X ≥t )≥P (Y ≥t ) [答案] C[解析] 由正态曲线的性质及题图知,μ1<μ2,0<σ1<σ2.故对任意正数t ,P (X ≤t )≥P (Y ≤t )正确.例1-3.【多选题】已知正态分布的密度函数()()222,2x x μσμσϕπσ--=,(),x ∈-∞+∞,以下关于正态曲线的说法正确的是( ) A .曲线与x 轴之间的面积为1 B .曲线在x μ=2πσC .当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移D .当μ一定时,曲线的形状由σ确定,σ越小,曲线越“矮胖”()0,1N ξ()()x P x φξ=≤0x >()()1x x φφ-=-()()22x x φφ=()()21P x x ξφ<=-()()2P x x ξφ>=-ξ(0,1)N ∴0ξ=()(x P x φξ=0)x >()()1()x x x φφξφ-=≥=-(2)(2),2()2()x x x x φφξφφξ=≤=≤()()22x x φφ=(||)=()12()12[1()]2()1P x P x x x x x ξξφφφ<-≤≤=--=--=-(||)(P x P x ξξ>=>)=1()()1()1()22()x x x x x x ξφφφφφ<--+-=-+-=-AC【答案】ABC 【分析】根据正态分布的性质结合解析式依次判断即可得出. 【详解】由正态分布的密度函数的解析式()()222,1e 2x x μσμσϕπσ--=可知曲线与x 轴之间的面积即为必然事件的概率,其值为1,故A 正确;()2202x μσ--≤,(),12x μσϕπσ∴≤,当且仅当x μ=时取等号,∴曲线在x μ=处达到峰值12πσ,故B 正确; 其图像关于直线对称,且当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,故C 正确;当μ一定时,曲线的形状由σ确定,σ越小,曲线越“高瘦”,故D 错误.. 故选:ABC. 【规律方法】1.求正态曲线的两个方法(1)图解法:明确顶点坐标即可,横坐标为样本的均值μ,纵坐标为12πσ. (2)待定系数法:求出μ,σ便可. 2.正态分布下2类常见的概率计算(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x =μ对称,曲线与x 轴之间的面积为1.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.3.正态总体在某个区间内取值概率的求解策略(1)充分利用正态曲线对称性和曲线与x 轴之间面积为1.(2)熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值. (3)注意概率值的求解转化: ①P (X <a )=1-P (X ≥a ); ②P (X <μ-a )=P (X ≥μ+a );③若b <μ,则P (X <b )=1-P μ-b <X <μ+b 2.特别提醒:正态曲线,并非都关于y 轴对称,只有标准正态分布曲线才关于y 轴对称.对点练1.某校1000名学生的某次数学考试成绩服从正态分布,正态分布密度曲线如图所示,则成绩位于区间(51,69]的人数大约是( ) A .997 B .954C .800D .683【答案】D 【解析】由题图知,,其中,,∴, ∴人数大约为×1000≈683. 故选:D.对点练2.(多选题)海头高级中学高二年级组织了一次调研考试,考试后统计的数学成绩服从正态分布,其密度函数,则下列命题正确的是( ) A .这次考试的数学平均成绩为100B .分数在120分以上的人数与分数在90分以下的人数相同C .分数在130分以上的人数与分数在70分以下的人数大致相同D .这次考试的数学成绩方差为10 【答案】AC 【解析】因为数学成绩服从正态分布,其密度函数,,所以,,即.所以这次考试的平均成绩为,标准差为,故A 正确,D 错误. 因为正态曲线的对称轴为,所以分数在120分以上的人数与分数在90分以下的人数不相同,故B 错误; 分数在130分以上的人数与分数在70分以下的人数大致相同,故C 正确. 故选:AC对点练3. 设X ~N (1,1),,那么向正方形ABC D 中随机投掷10 000个点,则落入阴影部分的点的个数的估计值是( )(注:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ%,P (μ-2σ<X ≤μ+2σ%) A .7 539 B .6 038 C .7 028 D .6 587 答案:D解析:∵X ~N (1,1),∵μ=1,σ=1.∵P (μ-σ<X <μ+σX X ()2~,X N μσ60μ=9σ=()()51690.6827P x P x μσμσ-<≤+=<≤≈2(100)200(),x P x x R --=∈()2(100)200--=x P x x ∈R 100μ=22200σ=10σ=10010100x =∵P (0<XP (1<X ∵向正方形ABC 考点二 :正态分布的应用例2-1(2021·陕西·西北工业大学附属中学高三月考(理))某行业对本行业人员的身高有特殊要求,该行业人员的身高X (单位:cm )服从正态分布()()2188,0N σσ>.已知1(186)100P X ≤=,49(189)50P X ≤=. (1)从该行业中随机抽取一人,求此人身高在区间(]187,190的概率;(2)从该行业人员中随机抽取3人,设这3人中身高在区间(]189,190上的人数为ξ,求ξ的分布列和数学期望()E ξ(分布列结果可以只列式不计算). 【答案】 (1)97100(2)分布列见解析;()0.03E ξ=. 【分析】(1)根据正态分布曲线的对称性,得到(186189)(189)(186)P X P X P X <≤=≤-≤,即可求解;(2)根据题意,求得1(189190)100P X <≤=,得到ξ服从二项分布1(3,)100B ξ,结合独立重复试验的概率公式和二项分布期望公式,即可求解.(1)解:由题意,该行业人员的身高X (单位:cm )服从正态分布()2188,N σ,可得正态分布曲线的对称轴为188x μ==,根据正态分布曲线的对称性,可得(187190)(186189)P X P X <≤=<≤ 因为1(186)100P X ≤=,49(189)50P X ≤=, 可得49197(186189)(189)(186)50100100P X P X P X <≤=≤-≤=-=. (2)解:由1(186)100P X ≤=,可得99(190)1(186)100P X P X ≤=-≤=, 又由49(189)50P X ≤=,可得1(189190)(190)(189)100P X P X P X <≤=≤-≤=, 则随机变量ξ服从二项分布1(3,)100B ξ, 可得0331(0)(1)100P C ξ==⋅-,12311(1)()(1)100100P C ξ==⋅-,22311(2)()(1)100100P C ξ==⋅-,3331(3)()100P C ξ==,所以随机变量ξ的分布列为:可得随机变量ξ的期望为()30.03100E ξ=⨯=. 例2-2.某篮球队在某赛季已结束的8场比赛中,队员甲得分分别为7,8,10,15,17,19,21,23. (1)根据这8场比赛,估计甲每场比赛中得分的均值μ和标准差σ;(2)假设甲在每场比赛的得分服从正态分布N (μ,σ2),且各场比赛间相互没有影响,依此估计甲在82场比赛中得分在不低于26分的平均场数(结果保留整数). 参考数据:32≈≈≈正态总体N (μ,σ2)在区间(μ-2σ,μ+2σ解 (1)由题意可得μ=18(7+8+10+15+17+19+21+23)=15,σ2=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]所以σ≈所以估计甲每场比赛中得分的均值μ为15,标准差σ (2)设甲每场比赛中的得分为随机变量X , 由(1)得甲在每场比赛中得分不低于26分的概率 P (X ≥26)≈12[1-P (μ-2σ<X <μ+2σ)]≈12设在82场比赛中,甲得分不低于26分的次数为Y , 则Y ~BY 的均值E (Y )=82×≈2.由此估计甲在82场比赛中得分在不低于26分的平均场数为2.例2-3 (2020·全国高三其他(理))某公司订购了一批树苗,为了检测这批树苗是否合格,从中随机抽测100株树苗的高度,经数据处理得到如图(1)所示的频率分布直方图,其中最高的16株树苗的高度的茎叶图如图(2)所示,以这100株树苗的高度的频率估计整批树苗高度的概率.(1)求这批树苗的高度高于米的概率,并求图(1)中,,的值;(2)若从这批树苗中随机选取3株,记为高度在的树苗数量,求的分布列1.60a b c ξ(]1.40,1.60ξ和数学期望;(3)若变量满足且,则称变量满足近似于正态分布的概率分布.如果这批树苗的高度满足近似于正态分布的概率分布,则认为这批树苗是合格的,将顺利被签收,否则,公司将拒绝签收.试问:该批树苗能否被签收?【答案】(1)概率为,,,;(2)分布列答案见解析,数学期望;(3)被签收. 【解析】(1)由题图(2)可知,100株样本树苗中高度高于米的共有15株, 以样本的频率估计总体的概率,可得这批树苗的高度高于米的概率为. 记为树苗的高度,结合题图(1)(2)可得:, , . 因为组距为,所以,,.(2)以样本的频率估计总体的概率,可得:从这批树苗中随机选取1株,高度在的概率为.因为从这批树苗中随机选取3株,相当于三次独立重复试验, 所以随机变量服从二项分布, 故的分布列为,即(或).(3)由,取,,由(2)可知,,S ()06826P S μσμσ-<≤+>.()220.9544P S μσμσ-<≤+>S ()2,N μσ()1.5,0.01N 0.150.2a = 1.3b = 3.5c =2.1 1.601.600.15X ()()21.20 1.30 1.70 1.800.02100P X P X ≤≤=<≤==()()131.30 1.40 1.60 1.700.13100P X P X <≤=<≤==()()()11.40 1.50 1.50 1.60120.0220.130.352P X P X <≤=<≤=-⨯-⨯=0.10.2a = 1.3b = 3.5c =(]1.40,1.60()()()1.40 1.60 1.40 1.50 1.50 1.600.7P X P X P X <≤=<≤+<≤=ξ()3,0.7B ξ()()330.30.70,1,2,3nnn P n C n ξ-==⨯⨯=00.02710.18920.44130.343 2.1E x =⨯+⨯+⨯+⨯=)30.7 2.1E =⨯=()1.5,0.01N 1.50μ=0.1σ=()()1.40 1.600.70.6826P X P X μσμσ-<≤+=<≤=>又结合(1),可得,所以这批树苗的高度满足近似于正态分布的概率分布, 应认为这批树苗是合格的,将顺利被该公司签收. 【规律方法】1.在解决有关问题时,通常认为服从正态分布N (μ,σ2)的随机变量X 只取(μ-3σ,μ+3σ)之间的值.如果服从正态分布的随机变量的某些取值超出了这个范围就说明出现了意外情况.2.求正态变量X 在某区间内取值的概率的基本方法: (1)根据题目中给出的条件确定μ与σ的值.(2)将待求问题向(μ-σ,μ+σ],(μ-2σ,μ+2σ],(μ-3σ,μ+3σ]这三个区间进行转化; (3)利用X 在上述区间的概率、正态曲线的对称性和曲线与x 轴之间的面积为1求出最后结果.对点练1.(2020·黑龙江爱民·牡丹江一中开学考试(理))2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,已知某工厂生产口罩的质量指标,单位为g ,该厂每天生产的质量在的口罩数量为818600件,则可以估计该厂每天生产的质量在g 以上的口罩数量为( ) 参考数据:若,则,,.A .158 700B .22 750C .2 700D .1 350【答案】D 【解析】由题意知,,即,,即; 所以,所以该厂每天生产的口罩总量为(件), 又, 所以估计该厂每天生产的质量在g 以上的口罩数量为(件). 故选:D对点练2.某校在一次月考中有900人参加考试,数学考试的成绩服从正态分布X ~N (90,()()22 1.30 1.70P X P X μσμσ-<≤+=<≤0.960.9544=>()1.5,0.01N ()~15,0.0025N ξ()14.9,15.05g g ()2~,N ξμσ()0.6827P μσξμσ-<<+=()220.9545P μσξμσ-<<+=()330.9973P μσξμσ-<<+=()~15,0.0025N ξ15μ=20.0025σ=0.05σ=()()0.68270.954514.915.0520.81862P P ξμσξμσ+<<=-<<+==8186000.81861000000÷=()()10.997315.1532P P ξξμσ->=>+=10.9973100000013502-⨯=a 2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的35,则此次月考中数学考试成绩不低于110分的学生约有________人.[答案]180 解析:因为数学成绩服从正态分布X ~N (90,a 2),所以其正态分布曲线关于直线x =90对称,又因为成绩在70分到110分之间的人数约为总人数的35,由对称性知成绩在110分以上的人数约为总人数的12×⎝⎛⎭⎫1-35=15,所以此次数学考试成绩不低于110分的学生约有15×900=180(人).对点练3.(2021·全国·高二课时练习)一投资者要在两个投资方案中选择一个,这两个方案的利润ξ(万元)分别服从正态分布()28,3N 和()23,2N ,投资者要求“利润不低于5万元”的概率尽量大,那么他应选择哪个方案? 【答案】应选择第一套方案 【分析】由题意,只需求出两个方案中“利润超过5万元”的概率哪个大,大的即为最佳选择方案,根据正态分布分别计算即可. 【详解】 对于第一套方案()28,3N ξ,因为8μ=,3σ=,所以()()838351168.3%P P ξξ-≤≤+=≤≤≈. 所以()()()1151168.3%15.85%22511P P ξξ<=-=⨯-=⎡⎤⎣⎦≤≤. 所以()5115.85%84.15%P ξ≥=-=.对于第二套方案()2~3,2N ξ,因为3μ=,2σ=,所以()()32321568.3%P P ξξ-+≈≤≤=≤≤. 所以()()()1151168.3%15.85%1522P P ξξ>=-=⨯-=⎡⎤⎣⎦≤≤. 所以应选择第一套方案. 【总结提升】 假设检验的思想(1)统计中假设检验的基本思想:根据小概率事件在一次试验中几乎不可能发生的原则和从总体中抽测的个体的数值,对事先所作的统计假设作出判断:是拒绝假设,还是接受假设. (2)若随机变量ξ服从正态分布N (μ,σ2) (3)对于小概率事件要有一个正确的理解:小概率事件是指发生的概率小于3%的事件.对于这类事件来说,在大量重复试验中,平均每试验大约33次,才发生1次,所以认为在一次试验中该事件是几乎不可能发生的.不过应注意两点:一是这里的“几乎不可能发生”是针对“一次试验”来说的,如果试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,也有3%犯错的可能性.考点三、正态分布与其他考点交汇考查例3-1.一试验田某种作物一株生长果实个数x 服从正态分布N (90,σ2),且P (x <70)=,从试验田中随机抽取10株,果实个数在[90,110]的株数记作随机变量X ,且X 服从二项分布,则X 的方差为( ) A .3 答案:B解析:∵x ~N (90,σ2),且P (x 所以P (x ∵P (90<x ∵X ~BX例3-2. 2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间x (单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数x 和样本方差s 2(同一组的数据用该组区间中点值代表);(2)由直方图可以看出,目前该校学生每周的阅读时间x 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2.①一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若X ~N (μ,σ2),令Y =X -μσ,则Y ~N (0,1),且P (X ≤a )=P ⎝⎛⎭⎫Y ≤a -μσ.利用直方图得到的正态分布,求P (X ≤10).②从该高校的学生中随机抽取20名,记Z 表示这20名学生中每周阅读时间超过10小时的人数,求P (Z ≥Z 的均值.参考数据:178≈40319≈Y ~N (0,1),则P (Y ≤解 (1)x s 2=(6-9)2222222(2)∵由题意知μ=9,σ2X ~Nσ==17810≈43, P (X ≤10)=P ⎝⎛⎭⎪⎪⎫Y ≤10-943=P (Y ∵由∵知P (X >10)=1-P (X 可得Z ~BP (Z ≥2)=1-P (Z =0)-P (Z =1)20-C 12019 Z 的均值E (Z思维升华 解决正态分布问题有三个关键点:(1)对称轴x =μ;(2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x =0. 例3-3.(2021·全国·高二课时练习)设随机变量(),1N ξμ,函数()22f x x x ξ=+-()01P ξ<<≈( ) 附:若()2,N ξμσ,则()0.6827P X μσμσ-<<+≈,()220.9545P X μσμσ-<<+≈.【答案】B 【分析】首先根据函数()f x 没有零点求出ξ的取值范围,再根据()f x 没有零点的概率是0.5,得到()10.5P ξ<-=,再根据正态曲线的性质得到μ的值;然后再根据正态曲线的对称性求出()01P ξ<<的值即可. 【详解】若函数()22f x x x ξ=+-没有零点,∴二次方程220x x ξ+-=无实根, ∴()440ξ∆=-⨯-<,∴1ξ<-.又∴()22f x x x ξ=+-∴()10.5P ξ<-=.由正态曲线的对称性知1μ=-, ∴()1,1N ξ-,∴1μ=-,1σ=,∴2μσ-=-,0μσ+=,23μσ-=-,21μσ+=, ∴()200.6827P ξ-<<≈,()310.9545P ξ-<<≈, ∴()()()10131202P P P ξξξ<<=-<<--<<⎡⎤⎣⎦()10.95450.68270.13592≈⨯-=. 故选:B.例3-4.(2021·全国·高二课时练习)某学校工会积极组织该校教职工参与“日行万步”活动.界定日行步数不足4千步的人为“不健康生活方式者”,不少于10千步的人为“超健康生活方式者”,其他为“一般生活方式者”.某日,学校工会随机抽取了该校400名教职工,统计他们的日行步数,按步数分组,得到频率分布直方图如图所示.(1)求400名教职工日行步数(千步)的样本平均数(结果四舍五入保留整数).(2)由频率分布直方图可以认为该校教职工的日行步数ξ(千步)服从正态分布()2,N μσ,其中μ为样本平均数,标准差σ()2,4.5ξ∈的人数(结果四舍五入保留整数).(3)用样本估计总体,将频率视为概率.若工会从该校教职工中随机抽取2人作为“日行万步”活动的慰问奖励对象,规定:“不健康生活方式者”给予精神鼓励,奖励金额每人0元;“一般生活方式者”奖励金额每人100元;“超健康生活方式者”奖励金额每人200元.求工会慰问奖励金额X 的分布列和数学期望.附:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<<+≈,()220.9545P μσξμσ-<<+≈. 【答案】 (1)7 (2)54(3)分布列见解析,200 【分析】(1)根据频率分布直方图直接计算可得;(2)根据正态分布的概率公式计算出概率即可得出;(3)可得X 的可能取值为400,300,200,100,0,求出X 取不同值的概率,即可得出分布列求出期望.(1)0.0410.0830.1650.4470.1690.1110.0213 6.967x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=≈. (2)()27,2.5N ξ,()4.59.50.6827P ξ∴<<≈,()2120.9545P ξ<<≈,()()()()12 4.5212 4.59.50.13592P P P ξξξ∴<<=<<-<<≈. 故该校被抽取的400名教职工中日行步数()2,4.5ξ∈的人数约为4000.135954⨯=. (3)用样本估计总体,从该校教职工中随机抽取1人,是“超健康生活方式者”的概率为()0.050.0120.12+⨯=,是“不健康生活方式者”的概率为()0.020.0420.12+⨯=,是“一般生活方式者”的概率为10.120.120.76--=.由题意知X 的可能取值为400,300,200,100,0,()222400C 0.120.0144P X ==⨯=,()12300C 0.120.760.1824P X ==⨯⨯=,()12222200C 0.120.12C 0.760.6064P X ==⨯⨯+⨯=,()12100C 0.120.760.1824P X ==⨯⨯=,()200.120.0144P X ===,∴X 的分布列为4000.01443000.18242000.60641000.182400.0144200E X =⨯+⨯+⨯+⨯+⨯=.巩固训练一.单选题1.(2020·湖北十堰·期末)设某地胡柚(把胡柚近似看成球体)的直径(单位:服从正态分布,则在随机抽取的1000个胡柚中,直径在,内的个数约为附:若,则,.A .134B .136C .817D .819【答案】B 【解析】由题意,,,则. 故直径在,内的个数约为. 故选:.2.(2021·全国·高考真题)某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是( )A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .σC .σD .σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等 【答案】D 【分析】由正态分布密度曲线的特征逐项判断即可得解. 【详解】对于A ,2σ为数据的方差,所以σ越小,数据在10μ=附近越集中,所以测量结果落在()9.9,10.1内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B 正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在()9.9,10.0的概率与落在()10.2,10.3的概率不同,所)mm (75,16)N (7983]()2~(,)X N μσ()0.6827P X μσμσ-<+=(22)0.9545P X μσμσ-<+=75μ=4σ=1(7983)[(22)()]2P X P X P X μσμσμσμσ<=-<+-+<+1(0.95450.6827)0.13592=⨯-=(7983]0.135********.9136⨯=≈B以一次测量结果落在()9.9,10.2的概率与落在()10,10.3的概率不同,故D 错误. 故选:D.3.已知随机变量ξ服从正态分布N (0,1),若P (-1<ξ<0)=p ,则P (ξ>1)=( )A.12-P 2B.12+P2 C.12+P D.12-P D∵随机变量ξ服从正态分布N (0,1), ∴μ=0.由P (-1<ξ<0)=p ,得P (0<ξ<1)=p , ∴P (ξ>1)=12-p .故选D.4.在某项测试中,测量结果ξ服从正态分布N (1,σ2)(σ>0),若P (0<ξP (0<ξ<2)=( )B由正态分布的图象和性质得P (0<ξ<2)=2P (0<ξ<1)=2× 5.B由题意知P (ξ≥P (ξ≥P (ξ<2)=P (ξξ=4,即P (ξ≤4)=12,即一个摄像头在4年内能正常工作的概率为12.所以两个该品牌的摄像头在4年内都能正常工作的概率为12×12=14.故选B.6.(2020·贵州模拟)在某校高三月考中理科数学成绩X ~N (90,σ2)(σ>0),统计结果显示P (60≤X ≤A .78B .156C .234D .390 A因为成绩X ~N (90,σ2),所以其正态曲线关于直线x =90对称.又P (60≤X ≤12××780=78人,故选A.7.(2021·全国·高二课时练习)若随机变量()2,X N μσ,则Y aX b =+服从的正态分布为______(填序号).①()2,N a μσ;②()0,1N ;③2,N a b μσ⎛⎫ ⎪⎝⎭;④()22,N a b a μσ+.【答案】④ 【分析】根据变量线性变化后,其均值、方差的变化情况判断. 【详解】∴()2,XN μσ,Y aX b =+,∴()()()E Y E aX b aE X b a b μ=+=+=+,()()()222D Y D aX b a D X a σ=+==,故()22,YN a b a μσ+.故④正确.故答案为:④二.多选题8.甲、乙两类水果的质量(单位:kg)分别服从正态分布N (μ1,σ21),N (μ2,σ22(附:正态密度曲线函数如下:φμ,σ(X )=12πσ e -(x -μ)22σ2)A .甲类水果的平均质量μ1B .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小D .乙类水果的质量服从正态分布的参数σ2 ABC由题中图象可知甲图象关于直线xx ∴μ1μ2∵甲图象比乙图象更“高瘦”,∴甲类水果的质量比乙类水果的质量更集中于平均值左右,故B 正确;∵12πσ2∴σ2≠ 9.已知随机变量X 服从正态分布N (100,102)(参考数值:随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σP (μ-2σ<ξ<μ+2σP (μ-3σ<ξ<μ+3σ是( ) A .E (X )=100 B .D (X )=100 C .P (X ≥ D .P (X ≤ ABC∵随机变量X 服从正态分布N (100,102), ∴曲线关于x =100对称, 根据题意可得,P (90<xP (80<x ∴P (x ≥12×P (x ≤12×而A ,B 都正确. 故选ABC.10.已知三个正态分布密度函数φi (x )=12πσie -(x -μi )22σ2i (x ∈R ,iμ1,μ2,μ3,σ1,σ2,σ3的大小关系正确的是( )A .μ1<μ2=μ3B .σ1=σ2<σ3C .μ1>μ2=μ3D .σ1=σ2>σ3AB∵正态分布关于x =μ对称,且μ越大图象的对称轴越靠近右边∴第一个曲线的均值比第二和第三的图象的均值小,且二,三两个的均值相等,故μ1<μ2=μ3∵σ越小,曲线越瘦高,则第二个图象σ要比第三个的σ要小,故σ1=σ2<σ3.故选AB. 三.填空题11.已知随机变量X ~N (1,σ2),若P (XP (X ≥2)=________.随机变量X 服从正态分布N (1,σ2),∴正态曲线关于x =1对称,∴P (X ≥2)=P (X ≤0)=1-P (X12.已知随机变量X 服从正态分布N (0,82),若P (XP (-2≤X ≤2)=________.因为μ=0,所以P (X >2)=P (XP (-2≤X ≤2)=1-2×13.若随机变量X ~N (10,σ2),P (X >12)=m ,P (8≤X ≤10)=n ,则m +n =________,2m +1n 的最小值为________.126+42 ∵随机变量X 服从正态分布X ~N (10,σ2), ∴P (X ≥10)=12,由P (8≤X ≤10)=n ,得P (10≤X ≤12)=n , 又P (X >12)=m ,∴m +n =12,且m >0,n >0,则2m +1n =⎝⎛⎭⎫2m +1n (2m +2n )=6+4n m +2mn≥6+24n m ·2mn=6+4 2. 当且仅当4n m =2mn ,即m =2-22,n =2-12时等号成立.∴2m +1n 的最小值为6+4 2. 故答案为6+4 2.14.按照国家标准规定,500g 袋装奶粉每袋质量必须服从正态分布X ~N (500,σ2),经检测某种品牌的奶粉P (490≤X ≤390由X ~N (500,σ2),得μ=500, 又P (490≤X ≤ ∴P (X ≥510)=,2)∴P (X ∴×400=390.15.随机变量ξ服从正态分布ξ~N (μ,σ2),若P (μ-2≤ξ≤μP (ξ>μ+2)=________.∵随便变量ξ服从正态分布ξ~N (μ,σ2), ∴P (μ-2≤ξ≤μ+2)=2P (μ-2≤ξ≤μ ∴P (ξ>μ+2)=12[1-P (μ-2≤ξ≤μ+2)]=12×16.已知某公司生产的一种产品的质量X (单位:千克)服从正态分布N (100,64).现从该产品的生产线上随机抽取10 000件产品,则其中质量在区间(92,100)内的产品估计有________件.质量在区间(108,116)内的产品估计有________件.(附:若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)≈P (μ-2σ<X <μ+2σ)≈ 3 413 1 359由X 服从正态分布N (100,64),得μ=100,σ=8, ∴P (92<X <100)=,2)∴质量在区间(92,100)内的产品估计有10 000××,2)=1 359件.四.解答题17.某厂包装白糖的生产线,正常情况下生产出来的白糖质量服从正态分布N (500,52)(单位:g).(1)求正常情况下,任意抽取一包白糖,质量小于485 g 的概率约为多少?(2)该生产线上的检测员某天随机抽取了两包白糖,称得其质量均小于485 g ,检测员根据抽检结果,判断出该生产线出现异常,要求立即停产检修,检测员的判断是否合理?请说明理由.(附:X ~N (μ,σ2),则P (μ-σ≤X ≤μ+σP (μ-2σ≤X ≤μ+2σP (μ-3σ≤X ≤μ+3σ (1)设正常情况下,该生产线上包装出来的白糖质量为X g ,由题意可知X ~N (500,52). 由于485=500-3×5,所以根据正态分布的对称性与“3σ原则”可知: P (X <485)=12[1-P (500-3×5≤X ≤500+3×5)]≈12×(2)检测员的判断是合理的.因为如果生产线不出现异常的话,由(1)可知,随机抽取两包检查,质量都小于485g 的概率约为:0.0013××10-6,几乎为零,但这样的事件竟然发生了,所以有理由认为生产线出现异常,检测员的判断是合理的.18.(2020·宿州模拟)在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的100人的得分统计结果如下表所示:人得分的平均值.(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求Pξ≤(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案: ①得分不低于μ可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; ②每次获赠的随机话费和对应的概率如下表所示:X 的分布列与数学期望(附:参考数据:①35×2+45×13+55×21+65×25+75×24+85×11+95×4=6550; ②198≈14;③若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σP (μ-2σ<X ≤μ+2σP (μ-3σ<X ≤μ+3σ (1)由题意得,μ=35×2+45×13+55×21+65×25+75×24+85×11+95×4100σ=198≈14,∴Pξ≤P (μ-2σ<ξ≤μ+σ,2)(2)由题意知,P (ξ<μ)=P (ξ≥μ)=12,获赠话费X 的可能取值为20,40,50,70,100, P (X =20)=12×23=13,P (X =40)=12×23×23=29,P (X =50)=12×13=16,P (X =70)=12×23×13+12×13×23=29,P =(X =100)=12×13×13=118,则X 的分布列如表所示:E (X )=20×13+40×29+50×16+70×29+100×118=45.19.(2021·全国·高二课时练习)现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求: (1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率. 【答案】(1)23(2)25(3)35【分析】(1)求出从6个节目中依次抽取2个节目的试验的基本事件总数,再求出第1次抽到舞蹈节目的事件所含基本事件数即可.(2)求出第1次和第2次都抽到舞蹈节目的事件所含基本事件数,结合(1)中信息即可得解. (3)利用(1)(2)的结论结合条件概率的定义计算作答.(1)设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB ,从6个节目中不放回地依次抽取2个的基本事件总数为()26A 30n Ω==,根据分步计数原理有()1145A A 20n A ==,所以()()()202303n A P A n Ω===. (2)由(1)知,()24A 12n AB ==,所以()()()122305n AB P AB n Ω===. (3)由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为 ()()()235253P AB P B A P A ===.20.(2021·四川·成都七中高三期中(理))已知某品牌电子元件的使用寿命X (单位:天)服从正态分布() 9864N ,. (1)一个该品牌电子元件的使用寿命超过100天的概率为_______________________; (2)由三个该品牌的电子元件组成的一条电路(如图所示)在100天后仍能正常工作(要求K 能正常工作,A , B 中至少有一个能正常工作,且每个电子元件能否正常工作相互独立)的概率为__________________. (参考公式:若()2,XN μσ,则()0.250.250.2P X μσμσ-<≤+=)【答案】0.432125【分析】 由题设可知98,8μσ==,利用正态分布的对称性求电子元件的使用寿命超过100天的概率,应用独立事件的乘法公式、互斥事件的加法公式求电路在100天后仍能正常工作的概率.【详解】由题设知:98,8μσ==,∴()10.250.25(100)0.42P X P X μσμσ--<≤+>==. 由题意,要使电路能正常工作的概率22222222232(1)(1)555555555125P =⨯⨯+⨯-⨯+⨯⨯-=. 故答案为:0.4,32125. 21.(2021·全国·高三月考(理))2020年是比较特殊的一年,延期一个月进行的高考在万众瞩目下顺利举行并安全结束.在备考期间,某教育考试研究机构举办了多次的跨地域性的联考,在最后一次大型联考结束后,经统计分析发现,学生的模拟测试成绩X 服从正态分布()2550,N σ(满分为750分).已知(450)0.1P X <=,(600)0.3P X >=.现在从参加联考的学生名单库中,随机抽取4名学生.(1)求抽到的4名学生中,恰好有2名学生的成绩落在区间[500,600]内,2名学生的成绩落在区间[650,750]内的概率;(2)用ξ表示抽取的4名同学的成绩落在区间[500,600]内的人数,求ξ的分布列和数学期望()E ξ.【答案】(1)0.0096(2)分布列答案见解析,数学期望:1.6【分析】(1)根据正态分布的性质求得(650)0.1P X ≥=,(500600)0.4P X ≤≤=,然后利用二项分布列概率公式计算;(2)根据题意判定~(4,0.4)B ξ,进而利用二项分布列公式计算分布,并求得期望值. (1)根据正态分布的特点可知,(650)(450)0.1P X P X ≥=<=,(500600)2(0.50.3)0.4P X ≤≤=-=.用A 表示事件“抽到的4名学生中,恰好有2名学生的成绩落在区间[500,600]内,2名学生的成绩落在区间[650,750]内”,则2224()0.40.10.0096P A C =⨯⨯=.。
正态分布知识点归纳总结
正态分布知识点归纳总结一、正态分布的概念正态分布是概率论和统计学中最重要的连续概率分布之一,具有许多重要的性质和应用。
它的密度函数表达式为:\[f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]其中,μ是分布的均值(也称为期望值),σ是分布的标准差,π是圆周率。
该密度函数描述了正态分布的概率密度曲线,呈钟形曲线,中心对称。
正态分布具有以下几个重要的性质:1. 对称性:正态分布是关于均值对称的,即以均值为中心呈对称分布。
2. 峰度:正态分布的峰度为3,表示分布的尾部平缓,数据集中在均值附近。
3. 位置参数和尺度参数:正态分布具有两个参数,均值μ用于描述分布的位置,标准差σ用于描述分布的离散程度。
4. 68-95-99.7法则:正态分布在均值附近有着特别的区间划分规律,约68%的数据落在均值附近一个标准差的范围内,约95%的数据落在两个标准差的范围内,约99.7%的数据落在三个标准差的范围内。
二、正态分布的特性正态分布具有一些独特的特性,使得它在统计学和概率论中广泛应用。
以下是一些正态分布的特性:1. 中心极限定理:若从任意总体中抽取样本,在样本容量足够大时,样本均值的分布将近似服从正态分布,这就是中心极限定理。
2. 独特的形状:正态分布的概率密度函数呈钟形曲线,两侧逐渐平缓衰减,分布的形状独特,使得其具有许多重要的性质。
3. 偏度和峰度:正态分布的偏度(skewness)为0,表示分布的对称性;峰度(kurtosis)为3,表示分布比较平缓。
4. 边缘分布:正态分布具有边缘分布的性质,在多维情况下,边缘分布为正态分布。
正态分布的这些特性使得它成为了统计学和概率论中极为重要的概率分布,被广泛应用于假设检验、置信区间估计、回归分析、贝叶斯分析等统计方法。
三、正态分布的应用正态分布在实际应用中具有广泛的意义,涉及到许多不同领域。
高中数学正态分布知识点总结
高中数学正态分布知识点总结
正态分布,又称高斯分布,是统计学中最为重要的分布之一。
高中数学研究中,正态分布也是重点内容之一,本文将对高中数学正态分布知识点进行总结。
定义
正态分布是一种连续型的概率分布,是一种钟形曲线,分布函数呈钟形。
它的参数由均值μ 和标准差σ 。
正态分布的概率密度函数为:
$$ f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-
\mu)^2}{2\sigma^2}} $$
性质
1. 正态分布的随机变量总体分布是完全由两个参数:平均数和标准差决定的。
2. 标准正态分布是平均数为0,标准差为1的正态分布。
3. 正态分布曲线呈钟形,左右对称,中心峰值在平均数处,随着标准差增大曲线变扁平。
根据“68-95-99.7”规则,在平均数左右1个标准差范围内的数据占比约为68%,在左右2个标准差范围内的数据占比约为95%,在左右3个标准差范围内的数据占比约为99.7%。
应用
正态分布广泛应用于科学、工程、金融管理等领域。
在高中数学研究中,正态分布常用于以下几个方面:
1. 描述一个随机变量服从正态分布的特征;
2. 判断一组数据是否服从正态分布;
3. 根据正态分布性质计算一组数据的概率或置信区间等。
常见问题
1. 什么情况下数据可以视为近似正态分布?
答:当数据分布对称、峰型接近于钟形且数据量较大时,可以近似视为正态分布。
2. 怎样验证一组数据是否服从正态分布?
答:可用正态概率图和Shapiro-Wilk检验等方法进行验证。
正态分布高考知识点归纳总结
正态分布高考知识点归纳总结正态分布是高中数学中一个重要的概率分布,也是高考中经常涉及到的知识点之一。
本文将对正态分布相关的知识进行归纳总结,以帮助大家对这一概念有更深入的理解和应用。
1. 正态分布的定义与性质正态分布,又称高斯分布,是一种连续型概率分布。
它的概率密度函数具有以下特点:- 对称性:正态分布的概率密度函数呈现对称分布,关于均值的左右两侧呈镜像关系。
- 峰度:正态分布的峰度较高,峰值较为陡峭,符合钟形曲线的特点。
- 累积分布函数:正态分布的累积分布函数具有一定的难度,通常需要借助查表或计算器进行计算。
2. 正态分布的参数正态分布由两个参数决定:均值μ和标准差σ。
均值μ决定了正态分布的位置,标准差σ决定了正态分布的形态。
常见的正态分布符号表示为N(μ, σ^2),其中N表示正态分布。
3. 正态分布的标准化为了便于计算和研究,人们引入了标准正态分布。
标准正态分布是具有均值为0、标准差为1的正态分布。
对于任意一个正态分布变量X,可以通过标准化将其转化为标准正态分布变量Z。
4. 正态分布的应用正态分布广泛应用于各个领域,特别是在统计分析和概率论中。
在高考中,正态分布常用于以下问题:- 概率计算:通过正态分布的概率密度函数和累积分布函数,计算给定区间内的概率值。
- 参数估计:通过样本数据拟合正态分布,并估计未知参数。
- 假设检验:根据正态分布的特点进行假设检验,判断样本数据是否能代表总体。
5. 正态分布的特殊情形除了一般的正态分布之外,还存在一些特殊的情形,包括:- 标准正态分布:均值为0,标准差为1,通常用Z表示。
- 标准化:通过减去均值并除以标准差,将一般的正态分布转化为标准正态分布。
- 单侧正态分布:仅在正数或负数那一侧有概率,通常在假设检验中应用。
- 中心极限定理:通过多次独立实验得到的样本均值服从近似正态分布,是统计学中重要的理论基础。
6. 正态分布与高考在高考中,正态分布通常以应用题的形式出现。
高三正态分布的知识点
高三正态分布的知识点正态分布是概率论和统计学中非常重要的概念之一,它在高三数学课程中也是必学的知识点。
本文将介绍高三正态分布的基本概念、性质以及应用。
1. 正态分布的基本概念正态分布,又称为高斯分布,是一种连续型的概率分布。
它的特点是呈钟形曲线,两侧尾部逐渐衰减,并且平均值、中位数和众数都相等。
正态分布的图像称为正态曲线,其表现形式为一个关于均值的对称曲线,均值处为最高点。
2. 正态分布的性质(1)正态分布是对称分布,即中心对称的曲线。
(2)正态分布的均值、中位数和众数都相等,且位于曲线的中心位置。
(3)正态分布的标准差越小,曲线越尖;标准差越大,曲线越平缓。
(4)正态分布可以通过改变均值和标准差控制其位置和形状。
(5)正态分布以均值为中心,标准差为单位,将整个曲线划分为若干个标准差区间,分别为68-95-99.7规则,分别包含了相应比例的数据。
3. 正态分布的应用正态分布广泛应用于各个领域,特别在高三数学中的统计与概率部分。
(1)在考试成绩分析中,假设考试成绩服从正态分布,可以通过计算均值和标准差来评估考试难度和判定学生的等级。
(2)在质量控制中,可以通过正态分布来确定生产过程中的误差界限和质量合格标准。
(3)在人体测量学中,如身高、体重等指标的分布可以近似地服从正态分布,用于制定相关医疗标准。
(4)在金融领域中,股票价格的变动、利润的波动等数据也常常服从正态分布,用于风险评估和投资决策。
4. 正态分布的计算方法正态分布的计算主要涉及标准化和逆标准化。
(1)标准化:将原始数据转化为标准正态分布,即均值为0,标准差为1的分布。
标准化的方法是通过减去均值再除以标准差。
(2)逆标准化:将标准正态分布的数值转化为原始分布的数值。
逆标准化的方法是通过乘以标准差再加上均值。
总结:正态分布是高三数学中的重要知识点,掌握了正态分布的基本概念、性质和应用,可以更好地理解和解决与正态分布相关的问题。
通过计算方法的学习,我们能够对数据进行标准化和逆标准化,为进一步的数据分析提供基础。
正态分布【题集】-讲义(教师版)
正态分布【题集】1. 正态曲线A.(1)(2)(3)B.(1)(3)(4)C.(2)(3)(4)D.(1)(2)(3)(4)1.关于正态曲线的性质有下列叙述:(1)曲线关于直线对称,这条曲线在轴的上方;(2)曲线对应的正态总体概率密度函数是偶函数;(3)曲线在处处于最高点,由这一点向左、右两边延伸时,曲线逐渐降低;(4)曲线的对称位置由确定,曲线的形状由确定,越大曲线越“矮胖”,反之,曲线越“高瘦”.其中正确的是( ).【答案】B【解析】根据正态曲线的性质:当时,正态曲线在轴上方,只有当时,正态曲线才关于轴对称,所以不正确.【标注】【知识点】正态分布xyOA.B.C.D.2.已知三个正态分布密度函数(,)的图象如图所示,则().,,,,【答案】D【解析】因为正态曲线关于直线对称,所以可得.又因为的值反映的是这组数据的集中情况,其值越小图象越瘦长,越大图象越矮胖,所以可得,故选.【标注】【知识点】正态分布A. B. C. D.3.以下关于正态分布密度曲线说法中正确的个数是().①曲线都在轴的上方,左右两侧与轴无限接近,最终可与轴相交;②曲线关于直线对称;③曲线呈现“中间高,两边低”的钟形形状;④曲线与轴之间的面积为.【答案】C【标注】【知识点】正态分布2. 正态分布A.与B.与C.与D.与4.设有一正态总体,它的概率密度组成函数,则这个正态总体的平均数与标准差分别是( ).【答案】B【解析】∵,∴,.【标注】【知识点】正态分布,A. B. C. D.5.已知随机变量服从正态分布,且,则等于().【答案】B【解析】因为服从正态分布,且,易知,对称轴为,所以.故选.【标注】【知识点】正态分布A. B. C. D.6.已知随机变量服从正态分布,若,则的值等于().【答案】D【解析】,∴.故选.【标注】【知识点】正态分布A. B. C. D.7.已知随机变量服从二项分布,随机变量服从正态分布.若,则().【答案】A【解析】∵随机变量服从二项分布,∴,∵,∵随机变量服从正态分布,∴对称轴是,和关于对称轴对称,∴,故选.【标注】【知识点】n次独立重复试验与二项分布A.B.C.D.8.已知某批零件的长度误差(单位:)服从正态分布,若,,现从中随机抽取一件,其长度误差落在区间内的概率( ).【答案】A【解析】已知某批零件的长度误差服从正态分布,正态曲线,大致如图,∵,,由对称性可得.故选.【标注】【知识点】正态分布9.已知正态分布的密度曲线是,.给出以下四个命题:①对任意,成立.②如果随机变量服从,且,那么是上的增函数.③如果随机变量服从,那么的期望是,标准差是.④随机变量服从,则,,.其中,真命题的序号是 .(写出所有真命题的序号)【答案】①②④【解析】如果随机变量,∴,,即,故③错,故填①②④.【标注】【知识点】正态分布10.设,若,求.【答案】.【解析】由题意知,,∴正态密度曲线关于对称,又,∴,又,∴,∴.【标注】【知识点】正态分布【素养】数据分析【素养】数学运算(1)(2)11.设随机变量,若.求的值.求.【答案】(1)(2)..【解析】(1)(2)由知密度函数关于直线对称,又,∴,∴..【标注】【知识点】正态分布原则12.已知随机变量服从正态分布,则().参考数据:,,A. B. C. D.【答案】B【解析】∵随机变量服从正态分布,∴图象关于对称,期望为,方差为,∴,∴,选.【标注】【知识点】正态分布A.上午生产情况正常,下午生产情况异常B.上午生产情况异常,下午生产情况正常C.上午、下午生产情况均正常D.上午、下午生产情况均异常13.某厂生产的零件外径,今从该厂上午、下午生产的零件中各取一件,测得其外径分别为,,则可认为().【答案】A【解析】∵,∴,,,而,.故选.【标注】【知识点】正态分布A. B. C. D.14.已知某批零件的长度误差服从正态分布,从中随机取一件,其长度误差落在区间内的概率为().【答案】B【解析】由题意可知,,则有:,,,,,故选.【标注】【知识点】正态分布15.若在一次数学考试中,某班学生的分数为,且,满分为分,这个班的学生共有人,求这个班在这次数学考试中及格(不小于分)的人数和分以上(不包括分)的人数.【答案】;.【解析】∵,∴,,∴,∴的概率为,∴的概率为,及格人数为,分以上人数为.【标注】【知识点】正态分布正态分布的实际应用(1)(2)16.为了了解某年龄段人群的午休睡眠质量,随机抽取了名该年龄段的人作为被调查者,统计了他们的午休睡眠时间,得到如图所示的频率分布直方图.频率组距睡眠时间分钟求这名被调查者的午休平均睡眠时间.(同一组中数据用该组区间中点作代表)由直方图可以认为被调查者的午休睡眠时间服从正态分布,其中,分别取被调查者的平均午休睡眠时间和方差,那么这名被调查者中午休睡眠时间低于分钟(3)(含)的人数估计有多少?如果用这名被调查者的午休睡眠情况来估计某市该年龄段所有人的午休睡眠情况,现从全市所有该年龄段人中随机抽取人,记午休睡眠时间不超过分钟(含)的人数为,求.(精确到)附:①,.②,则;;.【答案】(1)(2)(3).人..【解析】(1)(2)(3).服从正态分布,,,,,,(人).∴这名被调查者中午休睡眠时间低于分钟(含)的人数估计有人.,随机变量的取值为,,,,,,服从二项分布,,∴.【标注】【知识点】众数、中位数、平均数;离散型随机变量的数学期望;正态分布;n次独立重复试验与二项分布(1)(2)17.某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查.根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立.若零件的长度满足,则认为该零件是合格的,否则该零件不合格.假设某一天小张抽查出不合格的零件数为,求及的数学期望.小张某天恰好从个零件中检查出个不合格的零件,若以此频率作为当天生产零件的不合格率.已知检查一个零件的成本为元,而每个不合格零件流入市场带来的损失为元.假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由.附:若随机变量服从正态分布,则,,.【答案】(1)(2),.为了使损失尽量小,小张需要检查其余所有零件;证明见解析.【解析】(1)(2)由正态分布得出,,∴,所以不合格零件的概率为,,∴,则.由题可知不合格率为,若不检查,损失的期望为,若检查,成本为,,当充分大时,,所以为了使损失尽量小,小张需要检查其余所有零件.【标注】【知识点】n次独立重复试验与二项分布;离散型随机变量的数学期望3. 标准正态分布18.若随机变量,则.【答案】【解析】由正态分布曲线的对称性知.【标注】【知识点】正态分布19.随机变量服从正态分布,如果,则.【答案】【解析】∵,∴,..【标注】【知识点】正态分布【素养】数学运算【素养】数据分析A.B.C.D.20.设随机变量服从正态分布,则下列结论不正确的是().()()()()【答案】C【解析】∵,∴正确;∵,∴正确,不正确;∵,∴,∴正确.故选:.【标注】【知识点】正态分布21.世界军人运动会,简称“军运会”,是国际军事体育理事会主办的全球军人最高规格的大型综合性运动会,每四年举办一届,会期至天,比赛设个大项,参赛规模约多个国家余人,规模仅次于奥运会,是和平时期各国军队展示实力形象、增进友好交流、扩大国际影响的重要平台,被誉为“军人奥运会”.根据各方达成的共识,军运会于年月日至日在武汉举行,赛期天,共设置射击、游泳、田径、篮球等个大项、个小项.其中,空军五项、军事五项、海军五项、定向越野和跳伞个项目为军事特色项目,其他项目为奥运项目.现对某国在射击比赛预赛中的得分数据进行分析,得到如下的频率分布直方图.(1)(2)(3)分数频率组距估计某国射击比赛预赛成绩得分的平均值(同一组中的数据用该组区间的中点值代表).根据大量的射击成绩测试数据,可以认为射击成绩近似地服从正态分布,经计算第()问中样本标准差的近似值为,用样本平均数作为的近似值,用样本标准差作为的估计值,求射击成绩得分恰在到的概率;[参考数据:若随机变量服从正态分布,则,,].某汽车销售公司在军运会期间推广一款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷骰子的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知骰子出现任意点数的概率都是,方格图上标有第格,第格,第格,,第格.遥控车开始在第格,客户每抛掷一次骰子,遥控车向前移动一次,若抛掷出正面向上的点数是,,,,点,遥控车向前移动一格(从到),若抛掷出正面向上的点数是点,遥控车向前移动两格(从到),直到遥控车移动到第格(胜利大本营)或第格(失败大本营)时,游戏结束.设遥控车移动到第格的概率为,试证明是等比数列,并求,以及根据的值解释这种游戏方案对意向客户是否具有吸引力.【答案】(1)(2)(3)..证明见解析;;有吸引力.【解析】(1)(2)(3).因为,所以.遥控车开始在第格为必然事件,,第一次掷骰子,正面向上不出现点,遥控车移动到第格,其概率为,即;遥控车移到第格格的情况是下列两种,而且也只有两种:①遥控车先到第格,抛掷出正面向上的点数为点,其概率为,②遥控车先到第格,抛掷骰子正面向上不出现点,其概率为,故,,故时,是首项为,公比为的等比数列,故,,,.故这种游戏方案参与中奖的可能性较大,对意向客户有吸引力.【标注】【知识点】频率分布直方图;用样本的数字特征估计总体的数字特征问题;正态分布;相互独立事件的概率乘法公式;数列的实际应用。
高考数学正态分布知识点
高考数学正态分布知识点在高考数学中,正态分布是一个重要的知识点。
正态分布是一种连续型的概率分布,在统计学和概率论中有广泛的应用。
它是以高斯函数为基础的,其图像呈钟形,左右对称,中央峰值最高。
正态分布的特点是其均值和标准差对整个分布起决定性的作用。
一、正态分布的特点正态分布的图像呈钟形曲线,左右对称。
在均值左右两侧,分布的呈对称关系,这也是正态分布的一个重要特点。
正态分布的图像由两部分组成,左半部分和右半部分,两部分完全对称。
二、正态分布的概率密度函数正态分布的概率密度函数可以用数学公式来表示。
设X是一个服从正态分布的随机变量,其概率密度函数可以表示为f(x) = (1/σ√(2π)) *e^(-(x-μ)^2 / (2σ^2)),其中μ为均值,σ为标准差,e为自然对数的底。
三、正态分布的标准化对于正态分布,我们经常需要将不同的分布标准化为标准正态分布,这样方便计算和比较。
标准正态分布是均值为0,标准差为1的正态分布。
标准化的方法是使用标准化公式Z = (X-μ) / σ,将原来的分布转化为标准正态分布。
四、正态分布的应用正态分布在现实生活中有很多应用,尤其在统计学和自然科学领域中得到广泛的应用。
在概率论中,正态分布被广泛用来建立概率模型,描述随机变量的分布。
在统计学中,正态分布用来表示大量数据集中的特性,如人类身高、体重等。
五、正态分布的性质正态分布具有许多重要的性质。
首先,正态分布的均值决定了整个分布的位置。
均值越大,分布就越向右偏移;均值越小,分布越向左偏移。
其次,正态分布的标准差决定了分布的形状。
标准差越大,分布越扁平,越分散;标准差越小,分布越陡峭,越集中。
六、正态分布的应用举例正态分布在实际问题中的应用非常广泛。
例如,在质量控制中,正态分布用来设置产品合格标准;在股市分析中,正态分布用来预测股票价格的波动;在心理学中,正态分布用来描述人群的智力水平等。
七、正态分布的参数估计对于一个正态分布的样本,我们可以通过样本估计参数来推断总体的特性。
高考复习资料之正态分布
3. 把 ~ N (0,1) 即 μ =0, σ =称1为 标准正态分布 ,这样的正态总体称为 标准正态总体 ,其密度函数为
f (x)
1
12 x
e 2 ,x ∈(-∞,+∞),相应的曲线称为 标准正态曲线 .
2
4 .利用标准正态分布表可求得标准正态总体在某一区间内取值的概率 .
(1)对于标准正态总体 N (0,1) , ( x0 ) 是总体取值小于 x0 的概率,即:
.
(5) 某种零件的尺寸服从正态分布
N(0,4), 则不属于区间 (-4,4) 这个尺寸范围的零件约占总数
的
.
(6)某次抽样调查结果表明 ,考生的成绩 (百分制 )近似服从正态分布 ,平均成绩为 72 分,96分以上的考生
占考生总数的 2.3%,则考生成绩在 60 至 84 分之间的概率为
.
参考答案 :
( 2)在 N ( , 2 ) 下,求 P( μ-1.84 σ<X< μ +1.84 σ)
* 5.对于正态总体 N ( , 2 ) 取值的概率:
(1) (μ-σ,μ+σ):
(2) (μ-2σ, μ+2σ):
(3) (μ-3σ, μ+3σ):
取值的概率分别为 68.3%、95.4%、99.7%。因此我们时常只在区间 (μ-3σ, μ+3σ)内研究正态总体
(C) 只有 (3)(4)(5)(6) (D) 只有 (1 )(5)(6)
7.把一个正态曲线 a 沿着横轴方向向右移动 2 个单位 ,得到一个新的曲线 b,下列说法不正确的是
(A)曲线 b 仍然是正态曲线
(B)曲线 a 和曲线 b 的最高点的纵坐标相等
(C)以曲线 a 为概率密度曲线的总体的方差比以曲线 b 为概率密度曲线的总体的方差大 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题 正态分布【高考会这样考】利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义. 【复习指导】掌握好正态密度曲线的特点,尤其是其中的参数μ、σ的含义,会由其对称性求解随机变量在特定区间上的概率.基础梳理1.正态曲线及性质(1)正态曲线的定义 函数()()R x ex f x ∈⋅=--,21222σμσπx ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,我们称φμ,σ(x )的图象(如图)为正态分布密度曲线,简称正态曲线. (2)正态曲线的解析式①指数的自变量是x 定义域是R ,即x ∈(-∞,+∞). ②解析式中含有两个常数:π和e ,这是两个无理数.③解析式中含有两个参数:μ和σ,其中μ可取任意实数,σ>0这是正态分布的两个特征数.④解析式前面有一个系数为12πσ,后面是一个以e 为底数的指数函数的形式,幂指数为-(x -μ)22σ2.六条性质 正态曲线的性质正态曲线φμ,σ(x)=12πσe -(x -μ)22σ2,x ∈R 有以下性质:(1)曲线位于x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x =μ对称; (3)曲线在x =μ处达到峰值1σ2π; (4)曲线与x 轴围成的图形的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x 轴平移;(6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. 三个邻域会用正态总体在三个特殊区间内取值的概率值结合正态曲线求随机变量的概率.落在三个邻域之外是小概率事件,这也是对产品进行质量检测的理论依据.2.正态分布(1)正态分布的表示X 为正态分布,记作N (μ,σ2).(2)正态总体在三个特殊区间内取值的概率值①P(μ-σ<X ≤μ+σ)=0.6826;②P(μ-2σ<X ≤μ+2σ)=0.9544;③P(μ-3σ<X ≤μ+3σ)=0.9974.双基自测1.设有一正态总体,它的概率密度曲线是函数f(x)的图象,且f(x)=18πe-(x-10)28,则这个正态总体的平均数与标准差分别是().A.10与8 B.10与2 C.8与10 D.2与10解析由18πe-(x-10)28=12πσe-(x-μ)22σ2,可知σ=2,μ=10.2.(2011·湖北)已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)等于().A.0.6 B.0.4 C.0.3 D.0.2解析由P(ξ<4)=0.8知P(ξ>4)=P(ξ<0)=0.2,故P(0<ξ<2)=0.3.故选C.3.(2010·广东)已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.682 6,则P(X>4)等于().A.0.158 8 B.0.158 7 C.0.158 6 D.0.158 5解析由正态曲线性质知,其图象关于直线x=3对称,∴P(X>4)=0.5-1 2P(2≤X≤4)=0.5-12×0.682 6=0.158 7.故选B.4.(2010·山东)已知随机变量X服从正态分布N(0,σ2),若P(X>2)=0.023,则P(-2≤X≤2)等于().A.0.477 B.0.628 C.0.954 D.0.977解析P(-2≤X≤2)=1-2P(X>2)=0.954.5.设随机变量X服从正态分布N(2,9),若P(X>c+1)=P(X<c-1),则c等于().A.1 B.2 C.3 D.4解析∵μ=2,由正态分布的定义知其函数图象关于x=2对称,于是c+1+c-12=2,∴c=2.考向一正态曲线的性质【例1】►若一个正态分布的概率密度函数是一个偶函数,且该函数的最大值为142π.(1)求该正态分布的概率密度函数的解析式;(2)求正态总体在(-4,4]的概率.[审题视点] 要确定一个正态分布的概率密度函数的解析式,关键是求解析式中的两个参数μ,σ的值,其中μ决定曲线的对称轴的位置,σ则与曲线的形状和最大值有关.解(1)由于该正态分布的概率密度函数是一个偶函数,所以其图象关于y轴对称,即μ=0.由12πσ=12π·4,得σ=4,故该正态分布的概率密度函数的解析式是φμ,σ(x)=142πe-x232,x∈(-∞,+∞).(2)P(-4<X≤4)=P(0-4<X≤0+4)=P(μ-σ<X≤μ+σ)=0.682 6.解决此类问题的关键是正确理解函数解析式与正态曲线的关系,掌握函数解析式中参数的取值变化对曲线的影响.【训练1】设两个正态分布N(μ1,σ21)(σ1>0)和N(μ2,σ22)(σ2>0)的密度函数图象如图所示,则有().A.μ1<μ2,σ1<σ2 B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2 D.μ1>μ2,σ1>σ2解析根据正态分布N(μ,σ2)函数的性质:正态分布曲线是一条关于直线x=μ对称,在x=μ处取得最大值的连续钟形曲线;σ越大,曲线的最高点越低且较平缓;反过来,σ越小,曲线的最高点越高且较陡峭,故选A.答案 A考向二 服从正态分布的概率计算【例2】►设X ~N (1,22),试求 (1)P (-1<X ≤3); (2)P (3<X ≤5); (3)P (X ≥5).[审题视点] 将所求概率转化到(μ-σ,μ+σ].(μ-2σ,μ+2σ]或[μ-3σ,μ+3σ]上的概率,并利用正态密度曲线的对称性求解. 解 ∵X ~N (1,22),∴μ=1,σ=2. (1)P (-1<X ≤3)=P (1-2<X ≤1+2) =P (μ-σ<X ≤μ+σ)=0.682 6. (2)∵P (3<X ≤5)=P (-3<X ≤-1),∴P (3<X ≤5)=12[P (-3<X ≤5)-P (-1<X ≤3)] =12[P (1-4<X ≤1+4)-P (1-2<X ≤1+2)] =12[P (μ-2σ<X ≤μ+2σ)-P (μ-σ<X ≤μ+σ)] =12×(0.954 4-0.682 6) =0.135 9.(3)∵P (X ≥5)=P (X ≤-3), ∴P (X ≥5)=12[1-P (-3<X ≤5)] =12[1-P (1-4<X ≤1+4)] =12[1-P (μ-2σ<X ≤μ+2σ)] =12×(1-0.954 4)=0.022 8.求服从正态分布的随机变量在某个区间取值的概率,只需借助正态曲线的性质,把所求问题转化为已知概率的三个区间上.【训练2】 随机变量ξ服从正态分布N (1,σ2),已知P (ξ<0)=0.3,则P (ξ<2)=________.解析 由题意可知,正态分布的图象关于直线x =1对称,所以P (ξ>2)=P (ξ<0)=0.3,P (ξ<2)=1-0.3=0.7.考向三 正态分布的应用【例3】►2011年中国汽车销售量达到1 700万辆,汽车耗油量对汽车的销售有着非常重要的影响,各个汽车制造企业积极采用新技术降低耗油量,某汽车制造公司为调查某种型号的汽车的耗油情况,共抽查了1 200名车主,据统计该种型号的汽车的平均耗油为百公里8.0升,并且汽车的耗油量ξ服从正态分布N (8,σ2),已知耗油量ξ∈[7,9]的概率为0.7,那么耗油量大于9升的汽车大约有________辆.[审题视点] 根据正态密度曲线的对称性求解.解 由题意可知ξ~N (8,σ2),故正态分布曲线以μ=8为对称轴,又因为P (7≤ξ≤9)=0.7,故P (7≤ξ≤9)=2P (8≤ξ≤9)=0.7,所以P (8≤ξ≤9)=0.35,而P (ξ≥8)=0.5,所以P (ξ>9)=0.15,故耗油量大于9升的汽车大约有1 200×0.15=180辆.服从正态分布的随机变量在一个区间上的概率就是这个区间上,正态密度曲线和x 轴之间的曲边梯形的面积,根据正态密度曲线的对称性,当P (ξ>x 1)=P (ξ<x 2)时必然有x 1+x 22=μ,这是解决正态分布类试题的一个重要结论. 【训练3】 工厂制造的某机械零件尺寸X 服从正态分布N ⎝ ⎛⎭⎪⎫4,19,问在一次正常的试验中,取1 000个零件时,不属于区间(3,5]这个尺寸范围的零件大约有多少个?解 ∵X ~N ⎝ ⎛⎭⎪⎫4,19,∴μ=4,σ=13. ∴不属于区间(3,5]的概率为 P (X ≤3)+P (X >5)=1-P (3<X ≤5) =1-P (4-1<X ≤4+1) =1-P (μ-3σ<X ≤μ+3σ)=1-0.997 4=0.002 6≈0.003,∴1 000×0.003=3(个),即不属于区间(3,5]这个尺寸范围的零件大约有3个.阅卷报告19——正态分布中概率计算错误【问题诊断】 正态分布是高中阶段唯一连续型随机变量的分布,这个考点虽然不是高考的重点,但在近几年新课标高考中多次出现,其中数值计算是考查的一个热点,考生往往不注意对这些数值的记忆而导致解题无从下手或计算错误. 【防范措施】 对正态分布N (μ,σ2)中两个参数对应的数值及其意义应该理解透彻并记住,且注意第二个数值应该为σ2而不是σ,同时,记住正态密度曲线的六条性质.【示例】► 已知某次数学考试的成绩服从正态分布N (116,64),则成绩在140分以上的考生所占的百分比为( ). A .0.3% B .0.23% C .1.5%D .0.15%错因 (1)不能正确得出该正态分布的两个参数μ,σ导致计算无从下手.(2)对正态分布中随机变量在三个区间内取值的概率数值记忆不准,导致计算出错. 实录 同学甲 A 同学乙 B 同学丙 C正解 依题意,μ=116,σ=8,所以μ-3σ=92,μ+3σ=140,而服从正态分布的随机变量在(μ-3σ,μ+3σ)内取值的概率约为0.997,所以成绩在区间(92,140)内的考生所占百分比约为99.7%,从而成绩在140分以上的考生所占的百分比为1-99.7%2=0.15%.故选D. 答案 D【试一试】 在正态分布N ⎝ ⎛⎭⎪⎫0,19中,数值落在(-∞,-1)∪(1,+∞)内的概率为( ).A .0.097B .0.046C .0.03D .0.002 6解析∵μ=0,σ=13,∴P(x<-1或x>1)=1-P(-1≤x≤1)=1-P(μ-3σ≤x≤μ+3σ)=1-0.997 4=0.002 6. 答案D。