2011中考专题代数综合试题

合集下载

江苏省13市2011年中考数学试题分类解析汇编专题2 代数式和因式分解

江苏省13市2011年中考数学试题分类解析汇编专题2 代数式和因式分解

某某13市2011年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1.(某某3分)已知1112a b -=,则ab a b -的值是 A .12 B .-12 C .2 D .-2 【答案】D 。

【考点】代数式变形。

【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可:1111222b a ab a b ab a b--=⇒=⇒=--。

2. (某某3分) 分解因式2x 2—4x+2的最终结果是A .2x(x -2)B .2(x 2-2x+1)C .2(x -1)2D .(2x -2)2【答案】C 。

【考点】提取公因式法和应用公式法因式分解。

【分析】利用提公因式法和运用公式法,直接得出结果: ()()22224222121x x x x x -+=-+=-。

故选C 。

3. (某某、某某2分)下列计算正确的是A .632a a a =*B .y y y =÷33C .mnn m 633=+ D .()623x x = 【答案】D 。

【考点】同底幂乘法,同底幂除法,合并同类项,幂的乘方。

【分析】根据同底幂乘法,同底幂除法,合并同类项,幂的乘方的运算法则,得出结果:A 、23235a a a a +⋅==,故本选项错误;B 331y y ÷=,故本选项错误; C 、3m 与3n 不是同类项,不能合并,故本选项错误;D 、()23326x x x ⨯==,正确。

故选D 。

4.(某某2分)下列运算正确的是A .235a a a +=B .236a a a ⋅=C .32a a a ÷=D .()328a a =【答案】C 。

【考点】,和除法,。

【分析】根据,和除法,的法则运算:A.2a 与3a 不是同类项,不能合并,选项错误;B.232356a a a a a +⋅==≠,选项错误;C.3232a a a a -÷==,选项正确;D.()322368a a a a ⨯==≠,选项错误。

2011年中考复习之代数易错题

2011年中考复习之代数易错题

2011年中考复习之代数易错题一、数与式( ) A .2, BC .2±, D.2.下列等式成立的是( ) A .1c ab abc =,B .632x x x =,C .112112a a a a ++=--,D .22a x a bxb =. 3.分式2264x x x +--的值为零,则x = .4.已知实数x12xx=-+,那么实数x 的取值范围为_____________。

5.0=在实数范围内成立, 那么x =_____________。

6.若x 2+y 2=3,xy =1,则x -y = .7.在实数范围内分解:x 4-4= .8.分解因式:31327m m -=________________________。

9.已知正数a b c 、、是△ABC 三边的长,且关于x 的方程22222()2()0a b x a ab x b c ----+=有两个相等的实数根,那么△ABC 的形状是 。

10.先化简:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,当b =-1时,从-2<a <2的范围内选取一个合适的整数a 代入求值.二、方程与不等式 ⑴不等式的解集 11.不等式6322+>+x x 的解是( )A . x>B .x C . x < D . x 12.不等式组2,.x x a >-⎧⎨>⎩的解集是x a >,则a 的取值范围是( )A . 2a <-,B . 2a =-,C . 2a >-,D . 2a ≥-.13.若不等式组0122x a x x +≥⎧⎨--⎩>有解,则a 的取值范围是: .14.已知关于x 的不等式组032x a x -⎧⎨-⎩>>0的整数解共有6个,则a 的取值范围是: .⑵字母系数15.如果关于x 的一元二次方程k 2x 2-(2k +1)x +1=0有两个不等实根,则k 的取值范围是: . 16.关于x 的方程(a -5)x 2-4x -1=0有实根,则a 满足: .17.关于x 的方程2(2)2(1)10k x k x k ---++=,且3k ≤.求证:方程总有实数根.⑶判别式18.已知一元二次方程222310x x m -+-=有两个实数根1x 、2x ,且满足不等式121214x x x x <+-,求实数m 的范围.19.菱形ABCD 边长为5,对角线交于O ,AO 、BO 的长是x 2+(2m -1)x +m 2+3=0的二根,求m .⑷解的定义20.已知实数a 、b 满足条件2720a a -+=,2720b b -+=,则a bb a+=____________.⑸增根21.m 为何值时,关于x 的方程11mx =+的解是负数?22.若关于x 的方程311x a x x--=-无解,求a .⑹应用背景23.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3小时,已知船在静水中的速度为8千米/时,水流速度为2千米/时,若A 、C 两地间距离为2千米,求A 、B 两地间的距离. ⑺失根24.解方程(1)1x x x -=-.三、函数 ⑴自变量25.函数y 中,自变量x 的取值范围是_______________.⑵字母系数26.若二次函数2232y mx x m m =-+-的图像过原点,则m =______________.27. y =(m -3)28m x -+3是一次函数,则m = .28.已知1y 和1x成反比例,2y 和2x 成正比例,且12y y y =+, 当1=x 时3, 11y x y ==-=-当时, 那么当=x _______时0y =。

2011全国中考数学真题解析120考点汇编 二次函数的代数应用

2011全国中考数学真题解析120考点汇编 二次函数的代数应用

(2012年1月最新最细)2011全国中考真题解析120考点汇编☆二次函数的代数应用一、选择题1.(2011•某某)某某中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3米,此时距喷水管的水平距离为米,在如图所示的坐标系中,这个喷泉的函数关系式是()A、B、C、D、考点:二次函数的应用。

分析:根据二次函数的图象,喷水管喷水的最大高度为3米,此时喷水水平距离为米,由此得到顶点坐标为(,3),所以设抛物线的解析式为y=a(x﹣)2+3,而抛物线还经过(0,0),由此即可确定抛物线的解析式.解答:解:∵一支高度为1米的喷水管喷水的最大高度为3米,此时喷水水平距离为米,∴顶点坐标为(,3),设抛物线的解析式为y=a(x﹣)2+3,而抛物线还经过(0,0),∴0=a()2+3, ∴a=﹣12,∴抛物线的解析式为y=﹣12(x ﹣)2+3. 故选:C .点评:此题主要考查了二次函数在实际问题中的应用,解题的关键是正确理解题意,然后根据题目隐含的条件得到待定系数所需要的点的坐标解决问题.2. (2011某某某某,13,3分)竖直向上发射的小球的高度h (m )关于运动时间t (s )的函数表达式为h =at 2+bt ,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )考点:二次函数的应用。

专题:数形结合。

分析:根据题中已知条件求出函数h =at 2+bt 的对称轴t =4,四个选项中的时间越接近4小球就越高.解答:解:由题意可知:h (2)=h (6), 即4a +2b =36a +6b , 解得b =﹣8a ,函数h =at 2+bt 的对称轴42bt a=-= 故在t =4s 时,小球的高度最高,题中给的四个数据只有C 第4.2秒最接近4秒,故选C.点评:本题主要考查了二次函数的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键,属于中档题.3. (2011•株洲8,3分)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分,则水喷出的最大高度是()A、4米B、3米C、2米D、1米考点:二次函数的应用。

2011中考数学真题解析10 代数式、整式及单项式、多项式的有关概念(含答案)

2011中考数学真题解析10 代数式、整式及单项式、多项式的有关概念(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编代数式、整式及单项式、多项式的有关概念一、选择题1. (2011盐城,4,3分)已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.5 考点:代数式求值.专题:计算题.分析:将所求代数式前面两项提公因式2,再将a ﹣b =1整体代入即可.解答:解:∵a ﹣b =1,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×1﹣3=﹣1.故选A .点评:本题考查了代数式求值.关键是分析已知与所求代数式的特点,运用整体代入法求解.2. (2011•台湾8,4分)若(7x ﹣a )2=49x 2﹣bx+9,则|a+b|之值为何( )A 、18B 、24C 、39D 、45考点:完全平方公式;代数式求值。

专题:计算题。

分析:先将原式化为49x 2﹣14ax+a 2=49x 2﹣bx+9,再根据各未知数的系数对应相等列出关于a 、b 的方程组,求出a 、b 的值代入即可.解答:解:∵(7x ﹣a )2=49x 2﹣bx+9,∴49x 2﹣14ax+a 2=49x 2﹣bx+9,∴⎩⎨⎧=-=-9142a b a , 解得⎩⎨⎧-=-=⎩⎨⎧==423423b a b a 或, 当a=3,b=42时,|a+b|=|3+42|=45;当a=﹣3,b=﹣42时,|a+b|=|﹣3﹣42|=45;故选D .点评:本题是一个基础题,考查了完全平方公式以及代数式的求值,要熟练进行计算是解此题的关键.3.(2011•湘西州)当a=3,b=2时,a2+2ab+b2的值是()A、5B、13C、21D、25考点:代数式求值;完全平方公式。

专题:计算题。

分析:先运用完全平方公式将a2+2ab+b2变形为:(a+b)2,再把a、b的值代入即可.解答:解:a2+2ab+b2=(a+b)2,当a=3,b=2时,原式=(3+2)2=25,故选:D.点评:此题考查的是代数式求值,并渗透了完全平方公式知识,关键是运用完全平方公式先将原式因式分解再代入求值.4.(2011海南,5,3分)“比a的2倍大1的数”用代数式表示是()A.2(a+1)B.2(a-1)C.2a+1 D.2a-1考点:列代数式。

广东省各地市2011年中考数学试题精选汇编:代数式和因式分解

广东省各地市2011年中考数学试题精选汇编:代数式和因式分解

广东2011年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1.(佛山3分)在①42a a ⋅;②23()a -;③122a a ÷;④23a a ⋅中,计算结果为6a 的个数是A 、1个B 、2个C 、3个D 、4个【答案】A 。

【考点】同底幂乘法运算法则,幂的乘方运算法则,同底幂除法运算法则。

【分析】根据同底幂乘、除法运算法则和幂的乘方运算法则,有①42426==a a a a +⋅;②23236()==a a a ⨯---;③12212210==a a a a -÷;④23235==a a a a +⋅。

故选A 。

2.(广州3分)下面的计算正确的是A 、3x 2•4x 2=12x 2B 、x 3•x 5=x 15C 、x 4÷x =x 3D 、(x 5)2=x 7【答案】C 。

【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;单项式乘单项式。

【分析】根据单项式的乘法、同底数幂的乘法和除法、幂的乘方等知识点进行判断:A 、3x 2•4x 2=12x 4,故本选项错误;B 、x 3•x 5=x 8,故本选项错误;C 、正确;D 、(x 5)2=x 10,故本选项错误。

故选C 。

3.(河源3分)下列各式运算正确的是()32352352331025A. B. C. D. a a a a a a ab a b a a a +⋅==÷= = 【答案】B 。

【考点】合并同类项,同底幂乘法、积和幂的乘方、同底幂除法运算法则。

【分析】根据合并同类项,同底幂乘法、积和幂的乘方、同底幂除法运算法则,A.指数不同不可以相加,选项错误;B.选项正确;C.()3236ab a b =,选项错误;D.1028 a a a ÷=选项错误。

故选B 。

4.(清远3分)下列选项中,与x y 2是同类项的是A .—2x y 2B .2x 2yC .x yD .x 2y 2 【答案】A 。

2011年中考数学二轮复习--代数几何综合题(附答案)

2011年中考数学二轮复习--代数几何综合题(附答案)

2010年中考数学二轮复习--代数几何综合题Ⅰ、综合问题精讲:代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题. Ⅱ、典型例题剖析【例1】(温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且BF AD =,EM 切⊙O 于M 。

⑴ △ADC∽△EBA ;⑵ AC2=12 BC·CE;⑶如果AB =2,EM =3,求cot∠CAD 的值。

解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵BF AD =,∴∠DCA=∠BAE, ∴△CAD∽△AEB⑵ 过A 作AH⊥BC 于H(如图)∵A 是BDC 中点,∴HC=HB =12 BC ,∵∠CAE=900,∴AC 2=CH·CE=12 BC·CE⑶∵A 是BDC 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2① ∵AC 2=12 BC·CE,BC·CE=8 ②①+②得:EC(EB +BC)=17,∴EC 2=17 ∵EC 2=AC 2+AE 2,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC=AE AC =132点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的非常突出.如,将∠CAD 转化为∠AEC 就非常关键.【例2】(自贡)如图 2-5-2所示,已知直线y=2x+2分别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90○。

过C 作CD ⊥x 轴,D 为垂足.(1)求点 A 、B 的坐标和AD 的长; (2)求过B 、A 、C 三点的抛物线的解析式。

2011中考代数式专题测试题及答案

2011中考代数式专题测试题及答案

(代数式)(试卷满分150分,考试时间120分钟)一、选择题(本题共10小题,每小题4分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内•每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1. 一个代数式减去x2-y2等于x2 2y2,则这个代数式是()。

A. -3y2B. 2x2 y2C. 3y2-2x2D. 3y22.下列各组代数式中,属于冋类项的是()。

. 1 2. .1 ,2B .a2b 与a2cA . — a b 与一ab2 2C. 22与34 D .p与q3.下列计算正确的是()°A. 3x2-'X2 = 3 B .3a2 _ 2a2=1C. 3x2 5x3二8x5 D .3a2 _a2=2a255 44 334. a = 2 , b = 3 , c = 4,则a、b、c的大小关系是()°A. a>c>bB. b>a>cC. b>c>aD. c>b>a5•—个两位数,十位数字是x,个位数字是y,如果把它们的位置颠倒一下,得到的数是()°A. y xB. yxC. 10y xD. 10xy6. 若x2• kx -6 =(x • 3)(x -2),则k 的值为()。

A. 2B. -2C. 1D. -17. 若x2+ mx + 25是一个完全平方式,则m的值是()。

A. 20B. 10C. ±20D. ±102 2 &若代数式2y 3y =1,那么代数式4y ,6y-9的值是()。

A. 2B. 17C. ~7D. 79. 如果冷(2 —x)? + ;..;(x —3)2 = (x—2) + (3 —x),那么x 的取值范围是()。

A . x為B. x W 2 C. x>3 D. 2< x<310. 如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n盆花,每个图案花盆总数是S,按此推断S与n的关系式为()。

最新初中中考数学题库 2011年中考数学二轮复习-代数几何综合题(附答案)

最新初中中考数学题库 2011年中考数学二轮复习-代数几何综合题(附答案)

2010年中考数学二轮复习--代数几何综合题Ⅰ、综合问题精讲:代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题. Ⅱ、典型例题剖析【例1】(温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且BF AD =,EM 切⊙O 于M 。

⑴ △ADC∽△EBA ;⑵ AC2=12 BC·CE;⑶如果AB =2,EM =3,求cot∠CAD 的值。

解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵BF AD =,∴∠DCA=∠BAE, ∴△CAD∽△AEB⑵ 过A 作AH⊥BC 于H(如图)∵A 是BDC 中点,∴HC=HB =12 BC ,∵∠CAE=900,∴AC 2=CH·CE=12 BC·CE⑶∵A 是BDC 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2① ∵AC 2=12 BC·CE,BC·CE=8 ②①+②得:EC(EB +BC)=17,∴EC 2=17 ∵EC 2=AC 2+AE 2,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC=AE AC =132点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的非常突出.如,将∠CAD转化为∠AEC 就非常关键.【例2】(自贡)如图 2-5-2所示,已知直线y=2x+2分别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90○。

过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长; (2)求过B 、A 、C 三点的抛物线的解析式。

中考数学专题:圆与一次函数(代几综合)

中考数学专题:圆与一次函数(代几综合)

(2011南京)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是2。

(2010•文山州)如图,已知直线l的解析式为y=-x+6,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线n从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动时间为t秒,运动过程中始终保持n∥l,直线n与x轴、y轴分别相交于C、D两点,线段CD的中点为P,以P为圆心,以CD为直径在CD上方作半圆,半圆面积为S,当直线n与直线l重合时,运动结束.(1)求A、B两点的坐标;(2)求S与t的函数关系式及自变量t的取值范围;(3)直线n在运动过程中,①当t为何值时,半圆与直线l相切?②是否存在这样的t值,使得半圆面积S= 12S梯形ABCD?若存在,求出t值.若不存在,说明理由.(2011四川达州,21,6分)如图,在△ABC 中,∠A=90°,∠B=60°,AB=3,点D 从点A 以每秒1个单位长度的速度向点B 运动(点D 不与B 重合),过点D 作DE ∥BC 交AC 于点E .以DE 为直径作⊙O ,并在⊙O 内作内接矩形ADFE ,设点D 的运动时间为t 秒. (1)用含t 的代数式表示△DEF 的面积S ; (2)当t 为何值时,⊙O 与直线BC 相切?C【答案】解:(1)∵DE ∥BC ,∴∠ADE=∠B=60° 在△ADE 中,∵∠A=90° ∴ADAEADE =∠tan ∵AD=t t =⨯1,∴AE=t 3 又∵四边形ADFE 是矩形, ∴S △DEF =S △ADE =22332121t t t AE AD =⨯⨯=⨯()30<≤t ∴S=223t ()30<≤t (2)过点O 作OG ⊥BC 于G ,过点D 作DH ⊥BC 于H ,H G∵DE ∥BC ,∴OG=DH ,∠DHB=90° 在△DBH 中,BDDHB =sin ∵∠B=60°,BD=AD AB -,AD=t ,AB=3,∴DH=)3(23t -,∴OG=)3(23t - 当OG=DE 21时,⊙O 与BC 相切, 在△ADE 中,∵∠A=90°,∠ADE=60°,∴21cos ==∠DE AD ADE , ∵AD=t ,∴DE=2AD=t 2, ∴2)3(232⨯-=t t , ∴936-=t∴当936-=t 时,⊙O 与直线BC 相切(2011湖南娄底,25,10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD为直径作⊙O1,交BC于点E,过点E作EF⊥AB于F,建立如图12所示的平面直角坐标系,已知A,B两点的坐标分别为A(0,,B(-2,0).(1)求C,D两点的坐标.(2)求证:EF为⊙O1的切线.(3)探究:如图13,线段CD上是否存在点P,使得线段PC的长度与P点到y轴的距离相等?如果存在,请找出P点的坐标;如果不存在,请说明理由.【答案】(1)连结DE,∵CD是⊙O1的直径,∴DE⊥BC,∴四边形ADEO为矩形.∴OE=AD=2,DE=AO.在等腰梯形ABCD中,DC=AB.∴CE=BO=2,CO=4.∴C(4,0),D(2,).(2)连结O1E,在⊙O1中,O1E=O1C,∠O1EC=∠O1C E,在等腰梯形ABCD中,∠ABC=∠DCB.∴O1E∥AB,又∵EF⊥AB,∴O1E⊥EF.∵E在AB上,∴EF为⊙O1的切线(3)解法一:存在满足条件的点P.如右图,过P作PM⊥y轴于M,作PN⊥x轴于N,依题意得PC=PM,在矩形OMPN中,ON=PM,设ON=x,则PM=PC=x,CN=4-x,tan∠ABO=AOBO==∴∠ABO=60︒,∴∠PCN =∠ABO =60︒.MP在Rt △PCN 中, cos ∠PCN =12CN PC =, 即412x x -=, ∴x =83.∴PN =CN ·tan ∠PCN =(4-83)∴满足条件的P 点的坐标为(83). 解法二:存在满足条件的点P ,如右图,在Rt △AOB 中,AB 4. 过P 作PM ⊥y 轴于M ,作PN ⊥x 轴于N ,依题意得PC =PM , 在矩形OMPN 中,ON =PM ,设ON =x ,则PM =PC =x ,CN =4-x , ∵∠PCN =∠ABO ,∠PCN =∠AOB =90︒. ∴△PNC ∽△AOB , ∴PC CN AB BO =,即442x x-=. 解得x =83.又由△PNC ∽△AOB ,得834PN PC AO AB ==,∴PN =∴满足条件的P 点的坐标为(83(2010•泰州)如图,⊙O是O为圆心,半径为5的圆,直线y=kx+b交坐标轴于A、B两点.(1)若OA=OB①求k;②若b=4,点P为直线AB上一点,过P点作⊙O的两条切线,切点分别为C、D,若∠CPD=90°,求点P的坐标;(2)若k=-12,且直线y=kx+b分⊙O的圆周为1:2两部分,求b.(2010•连云港)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数y=-x+2的图象与x轴交于点A,与y轴交于点B,点P为AB上一动点.(1)连接CO,求证:CO⊥AB;(2)若△POA是等腰三角形,求点P的坐标;(3)当直线PO与⊙C相切时,求∠POA的度数;当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系,并写出t的取值范围.(2009•永州)如图,在平面直角坐标系内,O为原点,点A的坐标为(-3,0),经过A、O两点作半径为5/2的⊙C,交y轴的负半轴于点B.(1)求B点的坐标;(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.相切如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x 轴交于A,B两点,过A作直线l与x轴负方向相交成60°的角,且交y轴于C点,以点O2(13,5)为圆心的圆与x轴相切于点D.(1)求直线l的解析式;(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,当⊙O2第一次与⊙O1外切时,求⊙O2平移的时间.1. (东营)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C . ∴ △AMN ∽ △ABC .∴ AM AN AB AC=,即43x AN=.∴ AN =43x .∴ S =2133248MNP AMN S S x x x∆∆==⋅⋅=.(0<x <4) (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC. 由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC=,即45x MN=.∴ 54MN x =,∴ 58OD x =. 过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角,∴ △BMQ ∽△BCA .∴ BM QM BC AC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=.∴ x =4996. ∴ 当x =4996时,⊙O 与直线BC 相切. (3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC∴ △AMO ∽ △ABP .BD 图 2P 图 3B图 1∴ 12AM AO AB AP ==. AM =MB =2.故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x =2时,2332.82y =⨯=最大 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB . ∴2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭.∴()2322PEF S x ∆=-MNP PEFy S S ∆∆=-=()222339266828x x x x --=-+-. 当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴ 当83x =时,满足2<x <4,2y =最大. 综上所述,当83x =时,y 值最大,最大值是2.图 4(无锡)如图,已知点A从(1,0)出发,以1个单位长度/秒的速度沿x轴向正方向运动,以O,A为顶点作菱形OABC,使点B,C在第一象限内,且∠AOC=600,;以P(0,3)为圆心,PC为半径作圆.设点A运动了t秒,求:(1)点C的坐标(用含t 的代数式表示);(2)当点A在运动过程中,所有使⊙P与菱形OABC的边所在直线相切的t的值.解:(1)过C作CD x⊥轴于D,1OA t=+,1OC t∴=+,1 cos602tOD OC +∴==,3(1sin60DC OC==,∴点C的坐标为1)22t t⎛⎫++⎪⎪⎝⎭,.················(2分)(2)①当P与OC相切时(如图1),切点为C ,此时PC OC⊥,cos30 OC OP∴=,3 13t∴+=,1t∴=②当P与OA,即与x轴相切时(如图2),则切点为O,PC=过P作PE OC⊥于E,则12OE OC=,133cos302tOP+∴==.③当P与AB所在直线相切时(如图3),设切点为F,PF交OC于G,则PF OC⊥,FG CD∴==,3(1sin30PC PF OP∴==+.过C作CH y⊥轴于H,则222PH CH PC+=,22213322t⎫⎛+⎛⎫∴+-=+⎪⎪⎪⎝⎭⎝⎭⎝⎭,化简,得2(1)1)270t t+-++=,解得1t+=9310t=-<,1t∴=.∴所求t的值是1,1和1.2010 山东淄博)如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O 与x 轴交于A ,B 两点,与y 轴交于C ,D 两点.E 为⊙O 上在第一象限的某一点,直线BF 交⊙O 于点F ,且∠ABF =∠AEC ,则直线BF 对应的函数表达式为 .【答案】1-=x y ,1+-=x y23、如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),D(1,a)在直线BC上,⊙A是以A为圆心,AD为半径的圆.(1)求a的值;(2)求证:⊙A与BC相切;(3)在x负半轴上是否存在点M,使MC与⊙A相切,若存在,求点M的坐标;若不存在,说明理由;(4)线段AD与y轴交于点E,过点E的任意一直线交⊙A于P、Q两点,问是否存在一个常数K,始终满足PE•QE=K,如果存在,请求出K的值;若不存在,请说明理由.(2010安徽蚌埠)已知⊙O 过点D (3,4),点H 与点D 关于x 轴对称,过H 作⊙O 的切线交x 轴于点A 。

中考数学总复习经典(代数)试题

中考数学总复习经典(代数)试题

中考数学总复习经典(代数)题(一)代数试题1、小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟 C .25分钟 D .27分钟2、小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2)1c >;(3)0b >;(4)0a b c ++>;(5)0a b c -+>.你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个3、. 在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是知αβ、是关于x 的一4、已元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是( ) A.3或-1 B.3 C. 1 D. –3或15、下列图形都是二次函数y=ax2+bx+a2-1的图象,若b >0,则a 的值等于( )A 、B 、-1C 、D 、16、如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是7、如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),则结论:①2AF =;②5BF =;③5OA =;④3OB =中,正确结论的序号是_ . 8、二次函数c bx ax y ++=2的图象如图6所示,则下列关系式不正确的是( )A .a <0B.abc >0C.c b a ++>0D.ac b 42->09、已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列结论中不正确的有( )个.①abc>0②2a+b=0③方程ax 2+bx+c=0(a ≠0)必有两个不相等的实根 ④a+b+c>0⑤当函数值y 随x 的逐渐增大而减小时,必有x ≤1A 、1B 、2C 、3D 、410、如图101,二次函数2y ax bx c =++的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴相交于负半轴.(以下有(1)、(2)两问,每个考生只须选答一问,若两问都答,则只以第(2)问计分)第(1)问:给出四个结论:① 0a >;② 0b >;③ 0c >;④ 0a b c ++=.其中正确结论的序号是 (答对得3分,少选、错选均不得分).第(2)问:给出四个结论:① 0abc <;② 20a b +>;③ 1a c +=;④1a >.其中正确结论的序号是 (答对得5分,少选、错选均不得分). 11、如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数的图象上.若点A 的坐标为(-2,-2),则k 的值为( )(11题图)A 、1B 、-3C 、4D 、1或-3 (第7题) 图1018题12、如图8,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发, 沿O-C-D-O 的路线作匀速运动.设运动时间为t 秒, ∠APB 的度数 为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是13、 如图11,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x=(0x >)的 图象上,则点E 的坐标是( , ).14、如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息: (1)b2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有( )14题 A 、2个 B 、3个 C 、4个 D 、1个15、已知:如图所示,抛物线y=ax 2+bx+c 的对称轴为x=-1,与x 轴交于A 、B 两点,交y 轴于点C ,且OB=OC ,则下列结论正确的个数是 . ①b=2a ②a-b+c>-1 ③0<b 2-4ac<4 ④ac+1=bA.1个B.2个C.3个D.4个16、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=ca.根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为 . 17、已知二次函数2(0)y ax bx c a =++≠的图象如图(1)所示,则直线y ax b =+与反比例函数acy x=,在同一坐标系内的大致图象为( ) (18题图)xA .xB .D .xC .18、二次函数y=ax 2+bx+c(a ≠0)的图像如图所示,下列结论正确的是( )A.ac <0B.当x=1时,y >0C.方程ax 2+bx+c=0(a ≠0)有两个大于1的实数根D.存在一个大于1的实数x 0,使得当x <x 0时,y 随x 的增大而减小; 当x >x 0时,y 随x 的增大而增大. 19、甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1, 工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少( )A.12天B.14天C.16天D.18天20、关于x 的一次函数21y kx k =++的图象可能正确的是( )21、(2010年杭州月考)如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )22、如图所示是二次函数.2y ax bx c =++图象的一部分,图象过A 点(3,0),二次函数图象对称轴为1x =,给出四个结论:①24b ac >;②0bc <;③20a b +=;④0a b c ++=,其中正确结论是( ) A .②④B .①③C .②③D .①④23、如图6所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )24、若A (1,413y -),B (2,45y-),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y的大小关系是A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<xxxxD.第20题图ADCB图6(第1925、已知αβ,为方程2420x x ++=的二实根,则31450αβ++= . 26、在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( )A .B .C .D .27、如图4,直线24y x =-+与x 轴,y 轴分别相交于A B ,两点,C 为OB 上一点,且12∠=∠,则ABC S =△ ( ) A .1 B .2 C .3 D .428、 如图已知一次函数y=kx+b 和y=mx+n 的图象交于点P ,则根据图象可得不等式组0<mx+n <kx+b 的 解集是-29、如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx>kx+b>mx-2的解集是------29题图 30题图 31题图 30、如图,已知A (-4,2)、B (2,-4)是一次函数y=kx+b 的图象和反比例函数的图象上的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与y 轴的交点C 的坐标及△AOB 的面积; (3)直接写出方程kx+b=0的解; (4)直接写出不等式kx+b >0的解.31、如图:已知A (-4,n )、B (2,-4)是一次函数y 1=kx+b 的图象与反比例函数 的图象的两个交点.(1)求反比例函数和一次函数的解折式.(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积. (3)求不等式y 1<y 2的解集(请直接写出答案).图432题图32、如图,已知一次函数y=kx+b 的图象过点(1,-2),则关于x 的不等式kx+b+2≤0的解集是 33、已知一次函数y=kx+b 的图象经过点(1,2),且不经过第三象限,那么关于x 的不等式kx+b >2的解集是34、小明从图5所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个35、小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l 1、l 2,如图所示,他解的这个方程组是( )A 、B 、C 、D 、136、如图,直线y kx b =+经过A (-2,-1)和B (-3,0)两点,则不等式组102x kx b <+< 的解集为 .37、如图,半径为5的⊙P 与轴交于点M (0,-4),N (0,-10),函数(0)ky x x=<的图像过点P ,则k = . 38、已知点(-1,y 1),(2,y 2),(3,y 3)在反比例函数y= 的图象上.下列结论中正确的是( )A 、y 1>y 2>y 3B 、y 1>y 3>y 2C 、y 3>y 1>y 2D 、y 2>y 3>y 139、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①240b ac ->;②0abc >;③80a c +>;④930a b c ++<. 其中,正确结论的个数是(A )1 (B )2 (C )3(D )4第37题第39题图540、 抛物线c bx ax y ++=2图像如图所示,则一次函数24b ac bx y +--=与反比例函数 a b cy x++=在同一坐标系内的图像大致为(41题图)C. D . 41、二次函数y=x 2-x-2的图象如图所示,则函数值y <0时x 的取值范围是( )A 、x <-1B 、x>2 C 、-1<x <2 D 、x <-1或x >242、如图,已知正方形ABCD 的边长为4 ,E 是BC 边上的一个 动点,AE ⊥EF , EF 交DC 于F , 设BE =x ,FC =y ,则当 点E 从点B 运动到点C 时,y 关于x 的函数图象是( ).43、(1)已知点A(2,3),将线段OA 绕点O 逆时针旋转900得到对应线段OA ’,则点A ’关于直线y=1对称的点的坐标是 ;(2)将直线y=2x+3向右平移2个单位长度得到直线L 1,则直线L 1关于直线y=1对称的直线的解析式为 ;(3)写出直线y=kx+b 关于直线y=1对称的直线的解析式 。

最新初中中考数学题库 2011年中考数学二轮复习-代数综合题(附答案)

最新初中中考数学题库 2011年中考数学二轮复习-代数综合题(附答案)

2010年中考数学二轮复习--代数综合题Ⅰ、综合问题精讲:代数综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题.主要包括方程、函数、不等式等内容,用到的数学思想方法有化归思想、分类思想、数形结合思想以及代人法、待定系数法、配方法等.解代数综合题要注意归纳整理教材中的基础知识、基本技能、基本方法,要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,要抓住题意,化整为零,层层深人,各个击破.注意知识间的横向联系,从而达到解决问题的目的. Ⅱ、典型例题剖析【例1】(丽水,8分)已知关于x 的一元二次方程x 2-(k +1) x -6=0的一个根是2,求方程的另一根和k 的值.解:设方程的另一根为x 1,由韦达定理:2 x 1=-6, ∴ x 1=-3.由韦达定理:-3+2= k +1,∴k=-2.【例2】(嘉峪关,7分)已知关于x 的一元二次方程(k+4)x 2+3x+k 2-3k -4=0的一 个根为0,求k 的值.解:把x=0代入这个方程,得k 2-3k -4=0,解得k 1=l ,k 2=-4.因为k+4≠0.所以k ≠-4,所以k =l 。

点拨:既然我们已经知道方程的一个根了,那么我们就可以将它代入原方程,这样就可以将解关于x 的方程转化为解关于k 的方程.从而求出b 的解.但应注意需满足k+4的系数不能为0,即k ≠-4。

【例3】(自贡,5分)已对方程 2x 2 +3x -l =0.求作一个二次方程,使它的两根分别是已知方程两根的倒数.解:设2 x 2+3x -l =0的两根为x 1、x 2则新方程的两根为1211, x x 得12123212x x x x ⎧+=-⎪⎪⎨⎪=-⎪⎩所以12121211==3 x x x x x x ++所以新方程为y 2-3y -2=0· 点拨:熟记一元二次方程根与系数的关系是非常必要的【例4】(内江,8分)某产品每件成本10元,试销阶段每件产品的日销售价x (元)与产品的日销售量y (件)之间的关系如下表:⑴在草稿纸上描点,观察点的颁布,建立y 与x 的恰当函数模型。

2011年中考数学试题及解析171套试题试卷_10

2011年中考数学试题及解析171套试题试卷_10

北京市2011年中考数学试卷—解析版一、选择题(共8小题,每小题4分,满分32分)1、(2011•北京)﹣的绝对值是( )A 、﹣B 、C 、﹣D 、考点:绝对值。

专题:计算题。

分析:数轴上某个数与原点的距离叫做这个数的绝对值.解答:解:数轴上某个数与原点的距离叫做这个数的绝对值,在数轴上,点﹣到原点的距离是,所以﹣的绝对值是﹣.故选D .点评:本题考查绝对值的基本概念:数轴上某个数与原点的距离叫做这个数的绝对值.2、(2011•北京)我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( ) A 、66.6×107 B 、0.666×108 C 、6.66×108 D 、6.66×107考点:科学记数法与有效数字。

分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于1 048576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a 有关,与10的多少次方无关.解答:解:665 575 306≈6.66×108.故选C .点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3、(2011•北京)下列图形中,即是中心对称又是轴对称图形的是( )A 、等边三角形B 、平行四边形C 、梯形D 、矩形考点:中心对称图形;轴对称图形。

分析:根据轴对称图形与中心对称图形的概念求解,四个选项中,只有D 选项既为中心对称图形又是轴对称图形解答:解:A 、是轴对称图形,不是中心对称图形.故本选项错误;B 、是不是轴对称图形,是中心对称图形.故本选项错误;C 、是轴对称图形,不是中心对称图形.故本选项错误;D 、既是轴对称图形,又是中心对称图形.故本选项正确.故选D .点评:本题主要考察中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.4、(2011•北京)如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,若1AD =,3BC =,则AO CO的值为( )A 、B 、C 、D 、考点:相似三角形的判定与性质;梯形。

2011年初中数学中考复习专题(5)_代数综合题及答案[1]

2011年初中数学中考复习专题(5)_代数综合题及答案[1]

初三数学第二轮复习专题(5) 代数综合题 一、典型题例:1、如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .求抛物线对应的函数表达式;(1) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P AC N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(2) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D,重合),经过AB E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;(3) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).2、如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.O x y A B C4 1 2- O B x y A M C1 3-3、如图,二次函数的图象经过点D(0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P ,使PA+PD 最小,求出点P 的坐标;⑶在抛物线上是否存在点Q ,使△QAB 与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.4、如图9,已知正比例函数和反比例函数的图象都经过点(33)A ,. (1)求正比例函数和反比例函数的解析式;(2)把直线O A 向下平移后与反比例函数的图象交于点(6)B m ,,求m 的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形O ECD 的面积1S 与四边形O ABD 的面积S 满足:123S S ?若存在,求点E 的坐标; 若不存在,请说明理由.y xOC DBA336二、能力提升:1、如图,已知抛物线2y x bx c =++经过(10)A ,,(02)B ,,顶点为D . (1)求抛物线的解析式;(2)将OAB △绕点A 顺时针旋转90°后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB △的面积是1NDD △面积的2倍,求点N 的坐标.2、如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B . (1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=°,求点P 的坐标.y x B A O D(第26题) yxO A B C3、如图所示,将矩形OABC 沿AE 折叠,使点O 恰好落在BC 上F 处,以CF 为边作正方形CFGH ,延长BC 至M ,使CM =|CF —EO |,再以CM 、CO 为边作矩形CMNO(1)试比较EO 、EC 的大小,并说明理由 (2)令;四边形四边形CNMN CFGHS S m =,请问m 是否为定值?若是,请求出m 的值;若不是,请说明理由(3)在(2)的条件下,若CO =1,CE =31,Q 为AE 上一点且QF =32,抛物线y =mx 2+bx+c 经过C 、Q 两点,请求出此抛物线的解析式.(4)在(3)的条件下,若抛物线y =mx 2+bx+c 与线段AB 交于点P ,试问在直线BC 上是否存在点K ,使得以P 、B 、K 为顶点的三角形与△AEF 相似?若存在,请求直线KP 与y 轴的交点T 的坐标?若不存在,请说明理由。

中考数学复习:代几综合题—以代数为主的综合

中考数学复习:代几综合题—以代数为主的综合

1 / 29 代几综合题(以代数为主的综合)
知识梳理
教学重、难点
作业完成情况
典题探究
例1 已知抛物线c bx ax y 2与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、
C (5,0)两点.
(1)求此抛物线的解析式;
(2)若点D 为线段OA 的一个三等分点, 求直线DC 的解析式;
(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达
抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径
最短的点E 、点F 的坐标,并求出这个最短总路径的长.
例2 在平面直角坐标系xOy 中,抛物线223y mx mx n 经过(35)(02)P A ,,,两点.
(1)求此抛物线的解析式;
(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线,直线与抛物线的对称轴交于C 点,求直线的解析式;b5E2RGbCAP
(3)在(2)的条件下,求到直线OB OC BC ,,距离相等的点的坐标.。

广东2011年中考数学试题分类解析汇编专题2:代数式和因式分解

广东2011年中考数学试题分类解析汇编专题2:代数式和因式分解

广东2011 年中考数学试题分类解析汇编专题2:代
数式和因式分解
广东2011 年中考数学试题分类解析汇编
专题2:代数式和因式分解
一、选择题
1.(佛山3 分)在①;②;③;④中,计算结果为的个数是
A、1 个
B、2 个
C、3 个
D、4 个
【答案】A。

【考点】同底幂乘法运算法则,幂的乘方运算法则,同底幂除法运算法
则。

【分析】根据同底幂乘、除法运算法则和幂的乘方运算法则,有①;②;
③;④。

故选A。

2.(广州3 分)下面的计算正确的是
A、32?42=122
B、3?5=15
C、4÷=3
D、(5)2=7
【答案】C。

【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;单项
式乘单项式。

【分析】根据单项式的乘法、同底数幂的乘法和除法、幂的乘方等知识点
进行判断:A、32?42=124,故本选项错误;B、3?5=x8,故本选项错误;C、正确;D、(5)2=10,故本选项错误。

故选C。

3.(河源3 分)下列各式运算正确的是
【答案】B。

【考点】合并同类项,同底幂乘法、积和幂的乘方、同底幂除法运算法。

浙江省2011年中考数学试题分类解析汇编 专题2 代数式和因式分解

浙江省2011年中考数学试题分类解析汇编 专题2 代数式和因式分解

某某2011年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1.(某某某某、某某3分)下列计算正确的是(A )32xx x =⋅ (B )2x x x =+ (C )532)(x x =(D )236x x x =÷【答案】A 。

【考点】同底数幂的乘法,合并同类项,幂的乘方,同底数幂的除法。

【分析】根据同底数幂的乘法、合并同类项、幂的乘方、同底数幂的除法的运算法则计算即可:A 、正确;B 、x +x =2x ,选项错误;C 、(x 2)3=x 6,选项错误;D 、x 6÷x 3=x 3,选项错误。

故选A 。

2.(某某某某、某某3分)下列各式能用完全平方公式进行分解因式的是A 、x 2+1B 、x 2+2x ﹣1C 、x 2+x+1D 、x 2+4x+4【答案】D 。

【考点】运用公式法因式分解。

【分析】完全平方公式是:(a ±b )2=a 2±2a b +b 2,由此可见选项A 、B 、C 都不能用完全平方公式进行分解因式,只有D 选项可以。

故选D 。

3.(某某某某、某某3分)计算111aa a ---的结果为A 、11aa +-B 、1aa -- C 、﹣1 D 、2【答案】C 。

【考点】分式的加减法。

【分析】根据同分母的分式加减,分母不变,分子相加减的运算法则,得111111a a a a a --==----。

故选C 。

4.(某某某某3分)计算a 2·a 3,正确的结果是A .2a 6B .2a 5C .a 6D .a 5【答案】B 。

【考点】同底幂乘法。

【分析】根据同底幂乘法法则,直接得出结果:a 2·a 3=a 2+3=a 5。

故选B 。

5.(某某某某3分)下列计算正确的是 (A)632)(a a = (B) 422a a a =+ (C)a a a 6)2()3(=⋅ (D)33=-a a【答案】A 。

【考点】幂的乘方与积的乘方,合并同类项,同底数幂的乘法。

云南省贵州省2011年中考数学试题分类解析汇编 专题2 代数式和因式分解

云南省贵州省2011年中考数学试题分类解析汇编 专题2 代数式和因式分解

某某某某2011年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1.(某某某某3分)列各式运算中,正确的是 A 、3a•2a=6a B 、3223-=- C 、3282-= D 、(2a+b )(2a ﹣b )=2a 2﹣b 2【答案】B 。

【考点】单项式乘单项式,绝对值,二次根式的化简,平方差公式。

【分析】根据单项式乘单项式,绝对值,二次根式的化简法则和平方差公式进行计算:A 、3a•2a=6a 2,故本选项错误;B 、根据负数的绝对值是它的相反数,故本选项正确;C 、328422222-=-=,故本选项错误;D 、根据平方差公式,得原式=4a 2-b 2,故本选项错误。

故选B 。

2.(某某某某、某某、某某、某某、某某、怒江、迪庆、某某3分)下列运算,结果正确的是A.224a a a +=B.222()a b a b -=-C.22()()2a b ab a ÷=D.2224(3)6ab a b =【答案】C 。

【考点】合并同类项,完全平方公式,单项式的除法,积和幂的乘方。

【分析】因为A.2222a a a +=,B.222()2a b a ab b -=-+,D.22222224(3)3()9ab a b a b ==C.2211102()()222a b ab a b ab a --÷===,故选C 。

3.(某某某某3分)下列计算正确的是2+a 2=a 46÷a 2=a 3 C.a·a 2=a 3 D.(a 2)3=a 5【答案】C 。

【考点】合并同类项,同底幂乘除法、幂的乘方运算规则。

【分析】根据合并同类项,同底幂乘除法、幂的乘方运算规则:A.∵a 2+a 2=2a 2,∴选项错误;B.∵a 6÷a 2=a 6-2=a 4,∴选项错误;C.∵a·a 2=a 1+2=a 3,∴选项正确;D.∵(a 2)3=a 2╳3=a 6,∴选项错误。

中考专题25——代数综合(7道)

中考专题25——代数综合(7道)

中考专题25——代数综合2009年第23题.已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位, 求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持 不变,得到一个新的图象.请你结合这个新的图 象回答:当直线1(2y x b b k =+<)与此图象有两 个公共点时,b 的取值范围.2010年第23题.已知反比例函数ky x=的图象经过点(31)A -,. (1) 试确定此反比例函数的解析式;(2) 点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由;(3) 已知点(36)P m m +, 也在此反比例函数的图象上(其中 0m <),过P 点作x轴的垂线,交x 轴于点M . 若线段PM 上存在一点Q ,使得△OQM 的面积是12, 设Q 点的纵坐标为n ,求2239n n -+的值.2011年第23题.在平面直角坐标系xOy 中,二次函数2(3)3(0)y mx m x m =+-->的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 。

(1)求点A 的坐标;(2)当45ABC ∠=︒时,求m 的值;(3)已知一次函数y kx b =+,点P (n ,0)是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数2(3)3(0)y mx m x m =+-->的图象于N 。

若只有当22n -<<时,点M 位于点N 的上方,求这个一次函数的解析式。

2012年第23题.已知二次函数23(1)2(2)2y t x t x =++++ 在0x =和2x =时的函数值相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分代数综合测练
【复习要点】
初中代数综合题的特点:代数综合题是初中数学中知识覆盖面最广,综合性最强,解题方法灵活、多样的题型之一.近几年的中考综合题多以代数知识为主.解代数综合题必须认真审题、正确分析理解题意.解题过程中常用到转化、数形结合、分类讨论、方程等数学思想与方法.
【例题解析】
例1:某化工原料经销公司购进7O00 kg某种化工原料,购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于每千克30元,市场调查发现:单价定为每千克70元时,日均销售60kg;单价每降低l元时,均多售出2kg.在销售过程中,每天还要支出其他费用500元(天数不足一天时。

按一天计算).设销售单价为x元,日均获利为y元.
(1)求y关于x的函数关系式及的取值范围;
(2)用(1)中求得的函数关系式指出单价定为多少元时日均获利最多?为多少元?
(3)若将这种化工原料全部售出。

比较|{均获利最多和销售单价最高这两种销售方式,哪一种获总利较多?多多少?
解析:此题要抓住“日均获利=每千克获利×销售量-每天支出”这个数量关系。

(1)因为销售单价为x 元,则每千克降低(70一x )元,日均多售2(70--x)kg,日均销量[60+2(70—x)] kg , 每千克获利(x 一30)元,依题意得y=(x 一30) [60+2(70一x)]一500,即为y=(x —30) (200 —2x) —500= -2x2+260x-6500 (30~x≤7O).①
(2)由式①得Y=一2(x 一65)+1 950.故单价为65元时,日均获利最多为1950元.
(3)当日均获利最多时,单价为65元,日均销售60+2(70一65)=70(kg)。

总利润为1 950×1 00=195 000(元).当销售单价最高为70元时,日均销售为60kg,销售l l7天,获总利为(70-30)×7 000-117×500=221 500(元) , 221 500 -195 000=26 500(元).所以,销售单价最高时获总利较多,多获利26 500元.
反思:解数学应用题的主要思路是构建数学模型,建立函数关系,再利用函数的特征来求解.
例2 、(2009湖州市)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加。

据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆。

(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位。

据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案。

解析:(1)设家庭轿车拥有量的年平均增长率为x,根据题意,得64(1+x)2=100。

解得
x=1/4=25%或x=-9/4(不符合题意,舍去)。

则100×(1+25%)=125。

即该小区到2009年底家庭轿车将达到125辆。

(2)设该小区可建室内车位a个,则可建露天车位1500005000
1505
1000
a
a
-
=-,可得:
O B A
y x S S S S r r r r
O O O O O α A B C D {150521505 2.5a a
a a -≥-≤解得150
207a ≤≤。

又a 是正整数,所以a=20或21;当a=20时,b=50;当
a=21时,b=45。

故共有两个方案:方案一,建室内车位20个,露天车位50个;方案二,建室内车位21个,露天车位45个。

反思:此题需结合方程(组)、不等式(组)进行解答,综合程度较高,有一定的难度。

【实弹射击】
(一)、选择题
1、(08年福州市)已知抛物线21y x x x =--于轴的一个点为(m,0)则代数式22008m m -+的值为( )
A 、2006
B 、2007
C 、2008
D 、2009
2.(10枣庄市)如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )
A .―2― 3
B .―1― 3
C .―2+ 3
D .1+ 3 3.(10枣庄市)如图,正△AOB 的顶点A 在反比例函数
y =3x (x >0)的图象上,则点B 的坐标为( )
A .(2,0)
B .(3,0)
C .(23,0)
D .(32,0) 4.(10岳阳市)如图,⊙O 的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图像大致是( )
(二)、填空题
5. (10泉州市)在一次函数32+=x y 中,y 随x 的增大而
(填“增大”或“减小”),当50≤≤x 时,y 的最小值为 . 6.(10南通市) 设x 1、x 2 是一元二次方程x 2+4x -3=0的两个根,2x 1(x 22+5x 2-3)+a =2,则a =
7.(2010年镇江市)已知实数x ,y 满足2
330x x y ++-=,x y +则的最大值为_______.
8.(08年内江市)有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,
购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需_____钱
9.(08年湖北)已知不等式组211x m n
x m +>+⎧⎨-<-⎩的解集为12x -<<,则2008()m n += . C A O B
O x (元/件) y (万件) y 1=-x +70 y 2=2x -38
10.(08梅州)已知直线y m x =与双曲线k
y x =的一个交点A 的坐标为(1,2)--,则
m = ,
k = ,它们的另一个交点坐标是 。

(三)、解答题
11.(08.湖北)如图,利用一面墙(墙的长度不超过45m ),用80 m 长的篱笆围一个矩形场地。

(1)怎样围才能使矩形场地的面积为750 m 2?
(2)能否使所围矩形场地的面积为810 m 2,为什么?
12. (10内江市)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示: 销售方式 粗加工后销售 精加工后销售
每吨获利(元) 1000 2000
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工.
①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
13.(08年鄂州市)某货运码头,有稻谷和棉花共2680t ,其中稻谷比棉花多380t .
(1)求稻谷和棉花各是多少?
(2)现安排甲、乙两种不同规格的集装箱共50个,将这批稻谷和棉花运往外地.已知稻
谷35t 和棉花15t 可装满一个甲型集装箱;稻谷25t 和棉花35t 可装满一个乙型集装箱.按此要求安排甲、乙两种集装箱的个数,有哪几种方案?
14.(2010.十堰)如图所示,某地区对某种药品的需求量y 1(万件),供应量y 2(万件)
与价格x (元/件)分别近似满足下列函数关系式:y 1=-x + 70,
y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2时,该药品的价格称为稳定价格,需求量称为稳
定需求量.
(1)求该药品的稳定价格与稳定需求量(2)价格在什么范围内,该
药品的需求量低于供应量?
(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补
贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需
求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应
量等于需求量.
15.自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额 销售的件数)。

如下表所示甲、乙两位职工今年五月份的工资情况信息:
职工甲乙
月销售件数(件)200 1800
月工资(元)1800 1700
(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?
(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?。

相关文档
最新文档