第2部分 专题整合高频突破 1.1 集合与常用逻辑用语-2021届高三数学(文)二轮复习提优课件
高考数学专项复习专题一集合与常用逻辑用语
专题一集合与常用逻辑用语01 集合的概念题型一判断元素与集合的关系题型二根据元素与集合的关系求参数题型三利用集合互异性求参数题型四集合的描述方法题型五元素个数的求解及参数问题02 集合间的基本关系题型一判断集合的子集(真子集)个数题型二判断两个集合的包含关系及参数问题题型三两个集合相等求参数题型四空集性质及应用题型五根据集合相等关系进行计算03 集合的基本运算题型一根据交集结果求集合或参数题型一根据交集结果求集合或参数题型三根据补集结果求集合或参数题型四交并补混合运算确定集合或参数题型五容斥原理的应用题型六集合新定义04 充分条件与必要条件题型一根据充分不必要条件求参数题型二根据必要不充分条件求参数题型三根据充要条件求参数题型四充要条件的证明05 全称量词与存在量词题型一根据全称命题的真假求参数题型二根据特称(存在性)命题的真假求参数题型三含有一个量词的命题的否定的应用专题1 集合的概念题型一 判断元素与集合的关系 1.下面有四个语句: ①集合N *中最小的数是0; ②-a ∉N ,则a ∈N ;③a ∈N ,b ∈N ,则a +b 的最小值是2; ④x 2+1=2x 的解集中含有两个元素. 其中说法正确的个数是( ) A .0 B .1 C .2 D .3【答案】A【解析】因为N *是不含0的自然数,所以①错误; 取a =2,则-2∉N ,2 ∉N ,所以②错误;对于③,当a =b =0时,a +b 取得最小值是0,而不是2,所以③错误; 对于④,解集中只含有元素1,故④错误. 故选:A2.下列四个命题:①{0}是空集;②若a ∈N ,则-a ∉N ;③集合{x ∈R |x 2-2x +1=0}含有两个元素;④集合6|x Q N x ⎧⎫∈∈⎨⎬⎩⎭是有限集.其中正确命题的个数是( )A .1B .2C .3D .0【答案】D【解析】①{0}是含有一个元素0的集合,不是空集,所以①不正确; ②当a =0时,0∈N ,所以②不正确;③因为由x 2-2x +1=0,得x 1=x 2=1,所以{x ∈R |x 2-2x +1=0}={1},所以③不正确; ④当x 为正整数的倒数时,6x ∈N ,所以6|x Q N x ⎧⎫∈∈⎨⎬⎩⎭是无限集,所以④不正确.故选:D3.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5k n k n Z =+∈,0,1,2,3,4k =,给出如下四个结论:①[]20111∈;②[]33-∈;③若整数,a b 属于同一“类”,则[]0a b -∈;④若[]0a b -∈,则整数,a b 属于同一“类”.其中,正确结论的个数是( ). A .1 B .2C .3D .4【答案】C【解析】对于①,201154021÷=⋅⋅⋅,[]20111∴∈,①正确;对于②,352-=-+,即3-被5除余2,[]33∴-∉,②错误; 对于③,设15a n k =+,25b n k =+,()125a b n n ∴-=-,能被5整除,[]0a b ∴-∈,③正确;对于④,设5a b n -=,n Z ∈,即5a n b =+,n Z ∈, 不妨令5b m k =+,m Z ∈,0,1,2,3,4k =,则()555a n m k m n k =++=++,m Z ∈,n Z ∈,0,1,2,3,4k =,,a b ∴属于同一“类”, ④正确; 综上所述:正确结论的个数为3个. 故选:C .4.已知集合{10}A x x =,23a =+,则a 与集合A 的关系是( ) A .a A ∈ B .a A ∉ C .a A = D .{}a A ∈【答案】A【解析】解:{|10}A x x =,23224a =+<+=,10a <,a A ∴∈,故选:A .5.下列三个命题:①集合N 中最小的数是1;②a N -∉,则a N ∈;③a N ∈,N b ∈,则+a b 的最小值是2.其中正确命题的个数是( ) A .0 B .1 C .2 D .3【答案】A【解析】①N 表示自然数集,最小的数为0,①错误; ②若32a N -=-∉,则32a N =∉,②错误;③若0a =,1b =,则1a b +=,③错误. ∴正确命题的个数为0个故选:A6.用符号“∈”或“∉”填空:(1)0________N *,5________Z ;(2)23________{x |x <11},32________{x |x >4};(3)(-1,1)________{y |y =x 2},(-1,1)________{(x ,y )|y =x 2}.【答案】∉ ∉ ∉ ∈ ∉ ∈ 【解析】(1)*0N ∉ 5∉Z ;(2)22(23)(11)>,2311∴>,∴23{|11}∉<x x ; 22(32)4>,即324>,∴32{|4}∈>x x ;(3)(-1,1)为点,{y |y =x 2}中元素为数,故(-1,1) ∉{y |y =x 2}. 又∵(-1)2=1,∴(-1,1)∈{(x ,y )|y =x 2}. 故答案为:∉;∉;∉;∈;∉;∈ 题型二 根据元素与集合的关系求参数1.若由a 2,2019a 组成的集合M 中有两个元素,则a 的取值可以是( ) A .0 B .2019 C .1 D .0或2019【答案】C【解析】若集合M 中有两个元素,则a 2≠2 019a .即a ≠0且a ≠2 019. 故选:C.2.若集合2{|320}A x R ax x =∈-+=中只有一个元素,则(a = )A .92B .98C .0D .0或98【答案】D【解析】解:集合2{|320}A x R ax x =∈-+=中只有一个元素, 当0a =时,可得23x =,集合A 只有一个元素为:23.当0a ≠时:方程2320ax x -+=只有一个解:即980a ∆=-=, 可得:98a =. 故选:D .3.已知集合A 是由a ﹣2,2a 2+5a ,12三个元素组成的,且﹣3∈A ,求a =________. 【答案】32-【解析】解:由﹣3∈A ,可得﹣3=a ﹣2,或﹣3=2a 2+5a , 由﹣3=a ﹣2,解得a =﹣1,经过验证a =﹣1不满足条件,舍去.由﹣3=2a 2+5a ,解得a =﹣1或32-,经过验证:a =﹣1不满足条件,舍去.∴a =32-.故答案为:﹣32.4.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为________. 【答案】3 【解析】∵2{0,,32}A m m m =-+,且2A ∈,∴2m =或2322m m -+=,即2m =或0m =或3m =,当2m =时,与元素的互异性相矛盾,舍去;当0m =时,与元素的互异性相矛盾,舍去;当3m =时,{}032A =,,满足题意,∴3m =,故答案是3. 5.已知集合2{|320}A x ax x =-+=,其中a 为常数,且a R ∈. (1)若A 中至少有一个元素,求a 的取值范围; (2)若A 中至多有一个元素,求a 的取值范围. 【答案】(1)89≤a ;(2)89≤a 或0=a 【解析】解:(1)0a =,由320x -+=,解得23x =,满足题意,因此0a =. 0a ≠时,A 中至少有一个元素,∴980a ∆=-,解得89≤a ,0a ≠. 综上可得:a 的取值范围是89≤a . (2)0a =,由320x -+=,解得23x =,满足题意,因此0a =. 0a ≠时,A 中至多有一个元素,∴980a ∆=-,解得89≤a . 综上可得:a 的取值范围是89≤a 或0=a . 题型三 利用集合互异性求参数1.含有三个实数的集合既可表示为{,,0}bb a,也可表示为{,,1}a a b +,则+a b 的值为____. 【答案】0【解析】由题意{,,0}{,,1}b b a a b a=+,可得0a ≠,根据集合相等和元素的互异性,可得0a b +=且1b =,解得1,1a b =-=, 此时集合{,,0}{1,1,0},{,,1}{1,1,0}b b a a b a=-+=- 所以0a b +=. 故答案为0.2.已知集合22{2,(1),33}A a a a =+++,且1A ∈,则实数a 的值为________. 【答案】1-或0【解析】若()211,a +=则0a =或2,a =- 当0a =时,{}2,1,3A =,符合元素的互异性; 当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去 若2a 3a 31,++=则1a =-或2,a =-当1a =-时,{}2,0,1A =,符合元素的互异性; 当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去; 故答案为:1-或0.3.已知集合{}2411A a a a =+++,,{}2|0B x x px q =++=,若1A ∈.(1)求实数a 的值;(2)如果集合A 是集合B 的列举表示法,求实数p q ,的值. 【答案】(1)4a =-;(2)23p q ==-,.【解析】解:(1)∵1A ∈,∴2411a a ++=或者11a += 得4a =-或0a =,验证当0a = 时,集合{}11A =,,集合内两个元素相同,故舍去0a = ∴4a =-(2)由上4a =-得{}13A =-,,故集合B 中,方程20x px q ++=的两根为1、-3. 由一元二次方程根与系数的关系,得[1(3)]21(3)3p q =-+-==⨯-=-,.4.已知{}20,1,1a a a ∈--,求a 的值.【答案】1a =-【解析】由已知条件得:若a =0,则集合为{0,﹣1,﹣1},不满足集合元素的互异性,∴a ≠0; 若a ﹣1=0,a =1,则集合为{1,0,0},显然a ≠1;若a 2﹣1=0则a =±1,由上面知a =1不符合条件;a =﹣1时,集合为{﹣1,﹣2,0}; ∴a =﹣1.5.含有三个实数元素的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成2{,,0}a a b +,求20172018a b +的值. 【答案】-1【解析】由题意得,,1b a a ⎧⎫⎨⎬⎩⎭与2{,,0}a a b +表示同一个集合,所以0ba=且0a ≠,1a ≠,即0b =,则有{,0,1}a 与2{,,0}a a 表示同一个集合,所以21a =,解得1a =-,所以()2017201720182018101a b +=-+=-,故答案为:1-题型四 集合的描述方法 1.给出下列说法:①集合{}3x x x ∈=N 用列举法表示为{}1,0,1-;②实数集可以表示为{|x x 为实数}或{}R ;③方程组3,1x y x y +=⎧⎨-=-⎩的解组成的集合为{}1,2x y ==.其中不正确的有______.(把所有不正确说法的序号都填上) 【答案】①②③【解析】①由3x x =,即()210x x -=,得0x =或1x =或1x =-.因为1-∉N ,所以集合{}3x xx ∈=N 用列举法表示为{}0,1.②实数集正确的表示为{|x x 为实数}或R .③方程组3,1x y x y +=⎧⎨-=-⎩的解组成的集合正确的表示应为(){}1,2或()1,,2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=⎩⎪⎪⎩⎭.故①②③均不正确. 2.定义集合运算(){}|,,AB z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合A B 所有元素之和为________【答案】18【解析】当0,2,0==∴=x y z 当1,2,6==∴=x y z 当0,3,0==∴=x y z 当1,3,12==∴=x y z 和为0+6+12=18 故答案为:183.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈- . (1)若2A ∈,试证明集合A 中有元素1-,12; (2)判断集合A 中至少有几个元素,并说明理由; (3)若集合A 中的元素个数不超过8,所有元素的和为143,且集合A 中有一个元素的平方等于所有元素的积,求集合A .【答案】(1)证明见解析;(2)至少有3个元素.理由见解析(3)112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭【解析】(1)由题意,因为2A ∈,可得1112A =-∈-. 因为1A -∈,则()11112A =-∈-.所以集合A 中有元素1-,12. (2)由题意,可知若x A ∈(1x ≠且0x ≠), 则11A x ∈-,1x A x -∈,且11x x ≠-,111x x x -≠-,1x x x-≠, 故集合A 中至少有3个元素.(3)由集合A 中的元素个数不超过8,所以由(2)知A 中有6个元素. 设1111,,,,,11x m A x m x x m m --⎧⎫=⎨⎬--⎩⎭,m x ≠,1x ≠且0x ≠,1m ≠且0m ≠, 因为集合A 中所有元素的积为1,不妨设21x =,或2111x ⎛⎫= ⎪-⎝⎭,或211x x -⎛⎫= ⎪⎝⎭.当21x =时,1x =(舍去)或1x =-;若1x =-,则1,22A ∈.∵集合A 中所有元素的和为143,∴1111421213m m m m -+-+++=-, ∴3261960m m m -++=,即()32261860m m m m ----=, 即()()23620m m m ---=,即()()()321320m m m -+-=,∴12m =-或3或23,∴112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.当2111x ⎛⎫= ⎪-⎝⎭或211x x -⎛⎫= ⎪⎝⎭时,同理可得112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 综上,112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.题型五 元素个数的求解及参数问题1.用()d A 表示集合A 中的元素个数,若集合()(){}2210A x x ax x ax =--+=,{}0,1B =,且()()1d A d B -=.设实数a 的所有可能取值构成集合M ,则()d M =( ) A .3 B .2C .1D .4【答案】A【解析】由题意,()()1d A d B -=,()2d B =,可得()d A 的值为1或3,若()1d A =,则20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,符合题意若()3d A =,若20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,不合题意,故20x ax -=有二根,一根是0,另一根是a ,所以210x ax -+=必仅有一根,所以2Δ40a =-=,解得2a =±,此时210x ax -+=的根为1或1-,符合题意,综上,实数a 的所有可能取值构成集合{0,2,2}M =-,故()3d M =. 故选:A .2.已知集合{}2,,M m m a b a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①12π+;②1162+;③122+;④2323-++A .4B .3C .2D .1【答案】C【解析】①当212a b π+=+时,可得1,a b π==,这与,a b Q ∈矛盾, ②()211623232+=+=+232a b ∴+=+ ,可得3,1a b == ,都是有理数,所以正确,③122212222-==-+,2212a b ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④()22323426-++=+=而()2222222a b a b ab +=++ ,,a b Q ∈,()22a b ∴+是无理数,2323∴-++不是集合M 中的元素,只有②③是集合M 的元素. 故选:C3.已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .30【答案】C 【解析】因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.4.选择适当的方法表示下列集合: (1)被5除余1的正整数组成的集合;(2)由直线y =-x +4上的横坐标和纵坐标都是自然数的点组成的集合; (3)方程(x 2-9)x =0的实数解组成的集合; (4)三角形的全体组成的集合.【答案】(1){x|x=5k+1,k ∈N };(2){(x ,y )|y =-x +4,x ∈N ,y ∈N };(3){-3,0,3};(4){x|x 是三角形}或{三角形}. 【解析】(1){|51,}x x k k N =+∈; (2){(,)|4,,}x y y x x N y N =-+∈∈;(3)2(9)00x x x -=⇒=或3x =±,解集为{3,0,3}-, (4){|x x 是三角形}或写成{三角形}. 5.设A 是由一些实数构成的集合,若a ∈A,则11a- ∈A ,且1∉A , (1)若3∈A ,求A .(2)证明:若a ∈A ,则11A a-∈.【答案】(1)123,,23A ⎧⎫=-⎨⎬⎩⎭;(2)证明见解析.【解析】(1)因为3∈A , 所以11132A =-∈-, 所以12131()2A =∈--, 所以13213A=∈-,所以123,,23A ⎧⎫=-⎨⎬⎩⎭.(2)因为a ∈A , 所以11A a∈-, 所以1111111a Aa aa-==-∈---.专题2 集合间的基本关系题型一 判断集合的子集(真子集)个数1.设全集{}2250,Q x x x x N =-≤∈,且P Q ⊆,则满足条件的集合P 的个数是( )A .3B .4C .7D .8【答案】D【解析】由不等式2250x x -≤,解得502x ≤≤,即{}{}2250,0,1,2Q x x x x N =-≤∈= 又由P Q ⊆,可得满足条件的集合P 的个数为328=. 故选:D2.已知集合{}220|A x mx x m =-+=仅有两个子集,则实数m 的取值构成的集合为( )A .{}1,1-B .{}1,0,1-C .{}0,1D .∅【答案】B【解析】由集合A 仅有两个子集 可知集合A 仅有一个元素.当0m =时,可得方程的解为0x =,此时集合{}0A =,满足集合A 仅有两个子集当0m ≠时,方程220mx x m -+=有两个相等的实数根,则()22240m ∆=--=,解得1m =或1m =-,代入可解得集合{}1A =或{}1A =-.满足集合A 仅有两个子集综上可知, m 的取值构成的集合为{}1,0,1- 故选:B3.非空集合P 满足下列两个条件:(1)P ⊊{1,2,3,4,5},(2)若元素a ∈P ,则6﹣a ∈P ,则集合P 个数是__. 【答案】6【解析】根据条件:若元素a ∈P ,则6﹣a ∈P ,将集合{1,2,3,4,5}的元素分成三组:3、1和5、2和4. 因为P ⊊{1,2,3,4,5}, 当P 中元素只有一个时,P ={3};当P 中元素只有二个时,P ={1,5}或{2,4}; 当P 中元素只有三个时,P ={3,1,5}或{3,2,4}; 当P 中元素只有四个时,P ={2,4,1,5};当P 中元素有五个时,P ={3,2,4,1,5}不满足题意;综上所述得:则集合P 个数是:6. 故答案为:6.4.定义集合运算:{}|,,⊗==-∈∈A B z z x y x A y B ,若集合{}0,1A =,{}2,3B =,则集合A B ⊗的真子集的个数为_____.【答案】7【解析】由题知:{}3,2,1⊗=---A B 所以集合A B ⊗的真子集个数为3217-=. 故答案为:7题型二 判断两个集合的包含关系及参数问题 1.已知集合2|10Ax x ,则下列式子表示正确的有( )①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆. A .1个 B .2个C .3个D .4个【答案】C【解析】因为2{|10}A x x =-=,{1A ∴=-,1}, 对于①,1A ∈显然正确;对于②,{1}A -∈,是集合与集合之间的关系,显然用∈不对; 对于③,A ∅⊆,根据空集是任何集合的子集知正确; 对于④,{1,1}A -⊆.根据子集的定义知正确. 故选:C .2.已知集合{2,3,1}A =-,集合2{3,}B m =.若B A ⊆,则实数m 的取值集合为( ) A .{1} B .{}3C .{1,1}-D .{3,3}【答案】C【解析】因为B A ⊆,所以21m =,得1m =±, 所以实数m 的取值集合为{1,1}-. 故选:C3.若集合A ={x |2<x <3},B ={x |(x ﹣3a )(x ﹣a )<0},且A ⊆B ,则实数a 的取值范围是( ) A .1<a <2 B .1≤a ≤2C .1<a <3D .1≤a ≤3【答案】B【解析】∵A ={x |2<x <3},B ={x |(x ﹣3a )(x ﹣a )<0},且A ⊆B , ∴a >0,则B ={x |a <x <3a },∴233a a ≤⎧⎨≥⎩,解得1≤a ≤2,故选:B.4.已知集合{}25A x x =-≤≤,{121}B x m xm =+<<-,若B A ⊆,则实数m 的取值范围是____. 【答案】3m ≤【解析】依题意得:当B =∅时,121m m +≥-,即2m ≤.当B ≠∅时,12112215m m m m +<-⎧⎪+≥-⎨⎪-≤⎩,解得23m <≤.综上,3m ≤.5.写出下列每组中集合之间的关系: (1)A ={x |-3≤x <5},B ={x |-1<x <2}.(2)A ={x |x =2n -1,n ∈N *},B ={x |x =2n +1,n ∈N *}.(3)A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是四边形},D ={x |x 是正方形}. (4)A ={x |-1≤x <3,x ∈Z },B ={x |x =y ,y ∈A }. 【答案】(1)BA ;(2)BA ;(3)DB AC ;(4)B A . 【解析】(1)将两个集合在数轴上表示出来,如图所示,显然有BA ;(2)当n ∈N *时,由x =2n -1知x =1,3,5,7,9,…. 由x =2n +1知x =3,5,7,9,….故A ={1,3,5,7,9,…},B ={3,5,7,9,…},因此B A ;(3)由图形的特点可画出Venn 图,如图所示,从而可得DB AC ;(4)依题意可得:A ={-1,0,1,2},B ={0,1,2},所以B A .6.已知集合{}13A x x =<<,集合{}21B x m x m =<<-. (1)当1m =-时,求A B ; (2)若A B ⊆,求实数m 的取值范围; (3)若A B =∅,求实数m 的取值范围.【答案】(1){}23A B x x ⋃=-<<;(2)2m ≤-;(3)0m ≥. 【解析】(1)当1m =-时,{}22B x x =-<<,则{}23A B x x ⋃=-<<;(2)由A B ⊆知122113m m m m ->⎧⎪≤⎨⎪-≥⎩,解得2m ≤-,即m 的取值范围是(],2-∞-;(3)由A B =∅得①若21m m ,即13m ≥时,B =∅符合题意;②若21m m ,即13m <时,需1311m m ⎧<⎪⎨⎪-≤⎩或1323m m ⎧<⎪⎨⎪≥⎩. 得103m ≤<或m ∈∅,即103m ≤<.综上知0m ≥题型三 两个集合相等求参数1.已知a R ∈,b R ∈,若集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( )A .2-B .1-C .1D .2【答案】B【解析】因为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,所以201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得01b a =⎧⎨=⎩或01b a =⎧⎨=-⎩,当1a =时,不满足集合元素的互异性, 故1a =-,0b =,()2019201920192019101a b +=-+=-,故选:B.2.设a 、b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=__________.【答案】2 【解析】{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,由于b a -有意义,则0a ≠,则有0a b +=,所以,1ba -=-.根据题意有10b a b ba a ⎧⎪=⎪+=⎨⎪⎪=⎩,解得11a b =-⎧⎨=⎩,因此,()112b a -=--=.故答案为2.3.已知{}2,,2,4,59∈=-+a x R A x x ,{}23,B x ax a =++,{}2(1)3,1C x a x =++-.求:(1)使2B ∈,BA 的 ,a x 的值;(2)使B C =的 ,a x 的值.【答案】(1)2x =,23a =-或=3x ,74=-a ;(2)1x =-,6=-a 或=3x ,2a =-【解析】(1)因为2B ∈,所以22++=x ax a 又因为BA ,所以259=3-+x x ,解得2x =或=3x当2x =时,422++=a a ,解得23a =-当=3x 时,932++=a a ,解得74=-a所以,2x =,23a =-或=3x ,74=-a ;(2)B C =,221(1)33x ax a x a x ⎧++=∴⎨++-=⎩,解得16x a =-⎧⎨=-⎩或32x a =⎧⎨=-⎩ 所以,1x =-,6=-a 或=3x ,2a =-. 4.由a ,ba,1组成的集合中有3个元素,该集合与由2a ,a+b ,0组成的集合是同一个集合,求20202020a b +的值. 【答案】1【解析】由题意可得集合,,1b a a ⎧⎫⎨⎬⎩⎭和集合{}2,,0a a b +为相等集合,则由集合中元素的特点和相等集合的概念可得20110b a a a ba a a ⎧=⎪⎪=+⎪⎨=⎪⎪≠⎪≠⎩联立解得:10a b =-⎧⎨=⎩,所以202020202020(1)01a b +=-+=.5.已知集合,,1b A a a ⎧⎫=⎨⎬⎩⎭,{}2,,0B a a b =+,若A B =,求20182019a b +的值.【答案】1【解析】解:因为集合,,1b A a a ⎧⎫=⎨⎬⎩⎭,{}2,,0B a a b =+,要使ba有意义,则0a ≠又A B =,由集合相等的充要条件及集合中元素的互异性可得2110a a b a ⎧⎪=⎪≠⎨⎪⎪=⎩,即10a b =-⎧⎨=⎩,即 20182019a b +=20182019(1)01-+=, 故20182019a b +=1.题型四 空集性质及应用1.已知集合{}2|320,A x ax x a =∈-+=∈R R .(1)若集合A 是空集,求a 的取值范围;(2)若集合A 中只有一个元素,求a 的值,并把这个集合A 写出来. 【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭(2)0a =,23A ⎧⎫=⎨⎬⎩⎭或98a =,43A ⎧⎫=⎨⎬⎩⎭【解析】解析(1)要使集合A 为空集,则方程2320ax x -+=无实数根, 当0a =时,得23x =不满足题意;则有0980a a ≠⎧⎨∆=-<⎩解得98a >.故a 的取值范围是9,8⎛⎫+∞ ⎪⎝⎭.(2)当0a =时,方程为320x -+=,解得23x =为一个解满足题意,此时23A ⎧⎫=⎨⎬⎩⎭; 当0a ≠时,方程为一元二次方程,此时集合A 中只有一个元素的条件是980a ∆=-=,解得98a =,此时43x =,则得43A ⎧⎫=⎨⎬⎩⎭. 综上可得:0a =时,23A ⎧⎫=⎨⎬⎩⎭;98a =时,43A ⎧⎫=⎨⎬⎩⎭.2.已知集合A ={x |ax 2+2x +1=0,a ∈R },(1)若A 只有一个元素,试求a 的值,并求出这个元素; (2)若A 是空集,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围. 【答案】(1)详见解析;(2)1a >;(3)0a =或1a ≥【解析】(1)若A 中只有一个元素,则方程ax 2+2x +1=0有且只有一个实根, 当a =0时,方程为一元一次方程,满足条件,此时x =-12, 当a ≠0,此时△=4-4a =0,解得:a =1,此时x =-1, (2)若A 是空集, 则方程ax 2+2x +1=0无解,此时△=4-4a <0,解得:a >1. (3)若A 中至多只有一个元素, 则A 为空集,或有且只有一个元素,由(1),(2)得满足条件的a 的取值范围是:a =0或a ≥1. 题型五 根据集合相等关系进行计算1.设,R a b ∈,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -等于( )A .1-B .1C .2-D .2【答案】D【解析】两个集合相等,则集合中的元素相同,0a ≠ ,所以0a b +=,则1ba=-,那么1b =,和1a =-, 所以2b a -=. 故选:D2.已知集合{}13A x =,,,{}21B x =-,. (1)若集合{}14M y =,,,A M =,求x y +的值; (2)是否存在实数x ,使得B A ⊆?若存在,求出x 的值;若不存在,请说明理由. 【答案】(1)19x y +=;(2)不存在实数x ,见解析 【解析】(1)由题可知4,3,x y ⎧=⎪⎨=⎪⎩所以16,3,x y =⎧⎨=⎩所以19x y +=.(2)假设存在实数x 使得B A ⊆, 则23x -=或2x x -=.若23x -=,则1x =-,此时x 没有意义,舍去. 若2x x -=,则()()222x x-=,化简得2540x x -+=,解得1x =或4x =(舍),当1x =时,不符合集合中元素的互异性,舍去. 故不存在实数x ,使得B A ⊆. 3.已知关于x 的方程322126x x a x -+-=-与2136x a x a+--=有相同的解集,求a 的值及方程的解集.【答案】1a =,方程的解集为{1} 【解析】解:方程322126x x a x -+-=-化为63(32)62x x x a --=--, 整理,得13152x a =-,解得15213ax -=.方程2136x a x a+--=化为2(2)()6x a x a +--=, 整理,得336x a =-+,解得2x a =-+. 由题意,得152213aa -=-+,解得1a =,所以1x =. 综上,1a =,方程的解集为{1}. 4.已知关于x 的方程442313a x x ++=-的解集为A ,关于x 的方程340x a --=的解集为B ,若A B =,求a 的值. 【答案】1a =-【解析】解:由方程442313a x x ++=-,解得4413a x +=+,即4413a A +⎧⎫=+⎨⎬⎩⎭, 由方程340x a --=,解得43a x +=,即43a B +⎧⎫=⎨⎬⎩⎭.又A B =,所以444133a a +++=,解得1a =-. 5.若{0,1,2}{1,||,1}a a a a -=--+,求a 的值. 【答案】1a =或1a =-.【解析】由题意知,()1当10a -=时,1a =,此时{0,1,2}{0,1,2}-=-符合题意;()2当11a -=-时,0a =,此时{0,1,0}-不符合集合中元素的互异性,(舍去); ()3当12a a -=时,1a =-,此时{0,1,2}{2,1,0}--=--,符合题意;综上可知,1a =或1a =-.专题3 集合的基本运算题型一 根据交集结果求集合或参数1.设全集U =R ,已知集合{|3A x x =<或9}x ,集合{|}B x x a =,若()U A B ⋂≠∅,则a 的取值范围为( ) A .3a > B .3a C .9a < D .9a【答案】C【解析】因为全集U =R ,集合{|3A x x =<或9}x , 所以{|39}UA x x =<,又因为()U A B ⋂≠∅,{|}B x x a =9a ∴<.故选:C2.已知集合A ={x |2<x <4},B ={x |a <x <3a }.若A ∩B ={x |3<x <4},则a 的值为_______.【答案】3【解析】由A ={x |2<x <4},A ∩B ={x |3<x <4}, 如图,可知a =3,此时B ={x |3<x <9},即a =3为所求. 答案:33.已知全集U =R ,A ={x |2≤x <7},B ={x |x 2﹣10x +9<0},C ={x |a <x <a +1}. (1)求A B ,()U A B ;(2)如果A C ⋂=∅,求实数a 的取值范围.【答案】(1){}|19A B x x =<<,(){|12U A B x x =<<或}79x ≤<;(2){|1a a ≤或}7a ≥.【解析】(1){}|27A x x =≤<,{}|19B x x =<<, 所以{}|19A B x x =<<,{|2UA x x =<或}7x ≥,(){|12UA B x x =<<或}79x ≤<。
高考数学复习考点知识与题型专题讲解训练01 集合与常用逻辑用语(含解析)
高考数学复习考点知识与题型专题讲解训练专题01集合与常用逻辑用语考点1 集合的含义与表示1.(2021·江苏高三模拟)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( ) A .9 B .10C .12D .13【答案】D【解析】由题意可知,集合A 中的元素有:()2,0-、()1,1--、()1,0-、()1,1-、()0,2-、()0,1-、()0,0、()0,1、()0,2、()1,1-、()1,0、()1,1、()2,0,共13个.故选:D.2.(2021·江西高三模拟)已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( ) A .{1} B .{0} C .{0,1,1}- D .{0,1}【答案】D【解析】①当0a =时,1{}2A =-,此时满足条件;②当0a ≠时,A 中只有一个元素的话,440a ∆=-=,解得1a =,综上,a 的取值集合为{0,1}.故选:D . 考点2 集合间的基本关系3.(2021·西安市经开第一中学高三模拟)集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦C .()[),10,-∞-⋃+∞D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭【答案】A 【解析】B A ⊆,∴①当B =∅时,即10ax +无解,此时0a =,满足题意.②当B ≠∅时,即10ax +有解,当0a >时,可得1xa-, 要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<.当0a <时,可得1xa-, 要使B A ⊆,则需要013a a <⎧⎪⎨-⎪⎩,解得103a -<,综上,实数a 的取值范围是1,13⎡⎫-⎪⎢⎣⎭.故选:A .4.(2021·四川石室中学高三一模)已知集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,则M 的子集个数是( ) A .2 B .3 C .4 D .8【答案】D【解析】因为集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,所以当,,x y z 都是正数时,4m =;当,,x y z 都是负数时,4m =-;当,,x y z 中有一个是正数,另两个是负数时,0m =, 当,,x y z 中有两个是正数,另一个是负数时,0m =,所以集合M 中的元素是3个,所以M 的子集个数是8,故选D. 考点3 集合的基本运算 角度1:交集运算5.(2021·四川高三三模(文))设集合A ={x |1≤x ≤3},B ={x |24x x --<0},则A ∩B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】A【解析】∵A ={x |1≤x ≤3},B ={x |2<x <4},∴A ∩B ={x |2<x ≤3}.故选:A .6.(2021·浙江瑞安中学高三模拟)已知集合{}31A x Z x =∈-<<,{}2,B y y x x A ==∈,则A B 的元素个数为( )A .1B .2C .3D .4【答案】B【解析】因为{}{}2,1,031A x Z x =-∈--=<<所以{}{}4,2,02,=B y y x x A =--=∈, 所以{}=2,0A B -,所以A B 的元素个数为2个.故选B. 角度2:并集运算7.(2021·陕西高三模拟)已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( )A .{}62,x x k k Z =+∈B .{}42,x x k k Z =+∈C .{}21,x x k k Z =+∈D .∅【答案】C【解析】因为集合{}21,M x x k k ==+∈Z ,集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立,所以{}21,M N x x k k ⋃==+∈Z .故选:C.8.(2021·天津高三二模)已知集合{|42}M x x =-<<,2{|60}N x x x =--=,则M N ⋂=___________.【答案】{}2-【解析】因为集合{|42}M x x =-<<,{}2{|60}2,3N x x x =--==-,所以M N ⋂= {}2-角度3:补集运算9.(2021·四川高三零模(文))设全集{}*|9U x x =∈<N ,集合{}3,4,5,6A =,则U A ( )A .{}1,2,3,8B .{}1,2,7,8C .{}0,1,2,7D .{}0,1,2,7,8【答案】B【解析】因为{}{}*91,2,3,4|,5,6,7,8U x x =∈<=N ,{}3,4,5,6A =,所以{}1,2,7,8U A =.故选:B .10.(2021·江苏省江浦高级中学高三月考)已知集合{}1U x x =>,{}2A x x =>,则UA________.【答案】{}12x x <≤【解析】{}1U x x =>,{}2A x x =>,∴12U A x x ,角度4:交、并、补混合运算11.(2021·辽宁高三二模)已知U =R ,{}2M x x =≤,{}11N x x =-≤≤,则UM N =( )A .{1x x <-或}12x <≤B .{}12x x <≤C .{1x x ≤-或}12x ≤≤D .{}12x x ≤≤【答案】A【解析】因为{1U N x x =<-或1}x >,所以{1U M C N x x ⋂=<-或12}x <≤.故选:A.12.(2021·山东烟台市·烟台二中高三三模)已知集合{}13A x x =<<,{}2B x x =<,则RAB =( )A .{}12x x <<B .{}23x x <<C .{}23x x ≤<D .{}3x x >【答案】C 【解析】{}13A x x =<<,{}2B x x =<,{}R 2B x x ∴=≥,{}R 23A B x x ∴⋂=≤<.故选:C.13.【多选】(2021·重庆高三三模)已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =【答案】CD【解析】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确; 由()U A B B =,知UA B ⊆,∴()()UU AA AB =⊆,∴A B U ⋃=,由UA B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.故选CD.14.(2021·江苏高三模拟)某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是________. 【答案】6【解析】如图所示,(a +b +c +x )表示周一开车上班的人数,(b +d +e +x )表示周二开车上班人数,(c +e +f +x )表示周三开车上班人数,x 表示三天都开车上班的人数,则有:1410820a b c x b d e x c e f x a b c d e f x +++=⎧⎪+++=⎪⎨+++=⎪⎪++++++=⎩,即22233220a b c d e f x a b c d e f x ++++++=⎧⎨++++++=⎩,即212b c e x +++=,当0b c e ===时,x 的最大值为6, 即三天都开车上班的职工人数至多是6. 角度5:利用集合的运算求参数15.(2021·江西高三模拟)已知集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B φ⋂≠,则实数m 的取值范围是_______. 【答案】{|113}m m -<<【解析】由题意,集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B ⋂=∅时,则有92m +≤-或3m ≥,解得11m ≤-或3m ≥,所以当A B ⋂≠∅时,实数m 的取值范围为{|113}m m -<<.16.(2021·山东高三模拟)集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则a =( ) A .±1 B .2± C .3± D .4±【答案】B【解析】由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =±故选:B考点4 集合中的新定义17.(2021·黑龙江哈师大附中高三三模(理))设全集{}1,2,3,4,5,6U =,且U 的子集可表示由0,1组成的6位字符串,如:{}2,4表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算{A B x x A -=∈且}x B ∉,()()A B A B B A *=-⋃-.若{}2,3,4,5A =,{}3,5,6B =,则A B *表示的6位字符串是( ) A .101010 B .011001C .010101D .000111【答案】C【解析】由题意可得若{}2,3,4,5A =,{}3,5,6B =,则{}2,4,6A B *=, 所以此集合的第2个字符为1,第4个字符为1,第6个字符为1, 其余字符均为0,即A B *表示的6位字符串是010101.故选C18.【多选】(2021·开原市第二高级中学高三三模)满足{}1234,,,M a a a a ⊆,且{}{}12312,,,Ma a a a a =的集合M 可能是( )A .{}12,a aB .{}123,,a a aC .{}124,,a a aD .{}1234,,,a a a a【答案】AC 【解析】∵{}{}12312,,,Ma a a a a =,∴集合M 一定含有元素12,a a ,一定不含有3a ,∴12{,}M a a =或124{,,}M a a a =.故选AC .19.(2021·江苏省宜兴中学高三模拟)设A 是整数集的一个非空子集,对于k A ∈,若1k A -∉且1k A +∉,则k 是A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8,9S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个. 【答案】7【解析】由集合的新定义知,没有与之相邻的元素是“孤立元”,集合S 不含“孤立元”, 则集合S 中的三个数必须连在一起,所以符合题意的集合是{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,{}7,8,9,共7个.考点5 全称量词与特称量词20.“0[2,)x ∃∈+∞,20log 1x <”的否定是( ) A .[2,)x ∀∈+∞,2log 1x ≥ B .(,2)x ∀∈-∞,2log 1x > C .0(,2)x ∃∈-∞,20log 1x ≥ D .[2,)x ∃∈+∞,2log 1x ≤【答案】A【解析】“0[2,)x ∃∈+∞,20log 1x <”是特称命题,特称命题的否定是全称命题, 所以“0[2,)x ∃∈+∞,20log 1x <”的否定是“[2,)x ∀∈+∞,2log 1x ≥”.故选:A21.(2021·黑龙江大庆中学高三期末)命题“0x ∀>,总有()11xx e +>”的否定是( )A .0x ∀>,总有()11xx e +≤ B .0x ∀≤,总有()11xx e +≤C .00x ∃≤,使得()0011xx e +≤D .00x ∃>,使得()0011xx e +≤【答案】D【解析】由全称命题的否定可知,命题“0x ∀>,总有()11xx e +>”的否定是“00x ∃>,使得()0011xx e +≤”.故选D.考点6 充分条件、必要条件的判断22.(2021·南京师范大学附属扬子中学高三模拟)设乙的充分不必要条件是甲,乙是丙的充要条件,丁是丙的必要不充分条件,那么甲是丁的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分又不必要【答案】A【解析】甲是乙的充分不必要条件,即甲⇒乙,乙⇒甲, 乙是丙的充要条件,即乙⇔丙,丁是丙的必要非充分条件,即丙⇒丁,丁⇒丙,所以甲⇒丁,丁⇒甲,即甲是丁的充分不必要条件,故选:A .23.(2021·宁波中学高三模拟)△ABC 中,“△ABC 是钝角三角形”是“AB AC BC +<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】在△ABC 中,若∠A 为锐角,如图画出平行四边形ABCD ∴AB AC AD +=易知AD BC >∴“△ABC 是钝角三角形”不一定能推出“AB AC BC +<”; 在△ABC 中,A B C ,,三点不共线, ∵AB AC BC +<∴AB AC AC AB +<-∴22AB AC AC AB +<-∴0AB AC ⋅<∴∠A 为钝角∴△ABC 为钝角三角形 ∴“AB AC BC +<”能推出“△ABC 是钝角三角形”故“△ABC 是钝角三角”是“AB AC BC +<”的必要不充分条件,故选:B. 考点7 充分条件、必要条件的应用24.(2021·内蒙古高三二模(理))设计如下图的四个电路图,则能表示“开关A 闭合”是“灯泡B 亮”的必要不充分条件的一个电路图是( )A .B .C .D .【答案】C【解析】选项A :“开关A 闭合”是“灯泡B 亮”的充分不必要条件; 选项B :“开关A 闭合”是“灯泡B 亮”的充要条件; 选项C :“开关A 闭合”是“灯泡B 亮”的必要不充分条件;选项D :“开关A 闭合”是“灯泡B 亮”的既不充分也不必要条件.故选:C.25.(2021·山东高三其他模拟)已知p :x a ≥,q :23x a +<,且p 是q 的必要不充分条件,则实数a 的取值范围是( )A .(]1-∞-,B .()1-∞-,C .[)1+∞,D .()1+∞,【答案】A【解析】因为q :23x a +<,所以:2323q a x a --<<-+, 记{}|2323A x a x a =--<<-+;:p x a ≥,记为{}|B x x a =≥.因为p 是q 的必要不充分条件,所以A B ,所以23a a ≤--,解得1a ≤-.故选:A .26.(2021·河北衡水中学高三模拟)若不等式()21x a -<成立的充分不必要条件是12x <<,则实数a 的取值范围是________. 【答案】[]1,2【解析】由()21x a -<得11a x a -<<+,因为12x <<是不等式()21x a -<成立的充分不必要条件, ∴满足1112a a -≤⎧⎨+≥⎩且等号不能同时取得,即21a a ≤⎧⎨≥⎩,解得12a ≤≤. 考点8 根据命题的真假求参数的取值范围11 / 11 27.(2021·涡阳县育萃高级中学高三月考(文))若命题“0x R ∃∈,200220x mx m +++<”为假命题,则m 的取值范围是( )A .12m -≤≤B .12m -<<C .1m ≤-或2m ≥D .1m <-或2m >【答案】A【解析】若命题“0x R ∃∈,200220x mx m +++<”为假命题, 则命题“x R ∀∈,2220x mx m +++≥”为真命题,即判别式()2=4420m m ∆-+≤,即()()210m m -+≤,解得12m -≤≤.故选:A.28.(2021·广东石门中学高三其他模拟)若“2[4,6],10x x ax ∃∈-->”为假命题,则实数a 的取值范围为___________. 【答案】356a ≥ 【解析】因为“2[4,6],10x x ax ∃∈-->”为假命题,所以[]24,6,10x x ax ∀∈--≤恒成立, 即1x a x -≤在[]4,6恒成立,所以max 1a x x ⎛⎫≥- ⎪⎝⎭且[]4,6x ∈, 又因为()1f x x x=-在[]4,6上是增函数,所以()()max 1356666f x f ==-=,所以356a ≥.。
专题01 集合与常用逻辑用语-【知识手册】2021年高考数学复习之考点
2021年高考数学复习之专题突破训练《专题一:集合与常用逻辑用语》考点卡片1.元素与集合关系的判断【知识点的认识】1、元素与集合的关系:一般地,我们把研究对象称为元素,把一些元素组成的总体称为集合,简称集.元素一般用小写字母a,b,c表示,集合一般用大写字母A,B,C表示,两者之间的关系是属于与不属于关系,符号表示如:a∈A或a∉A.2、集合中元素的特征:(1)确定性:作为一个集合中的元素,必须是确定的.即一个集合一旦确定,某一个元素属于还是不属于这集合是确定的.要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合.(2)互异性:集合中的元素必须是互异的.对于一个给定的集合,他的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素.(3)无序性:集合于其中元素的排列顺序无关.这个特性通常被用来判断两个集合的关系.【命题方向】题型一:验证元素是否是集合的元素典例1:已知集合A={x|x=m2﹣n2,m∈Z,n∈Z}.求证:(1)3∈A;(2)偶数4k﹣2(k∈Z)不属于A.分析:(1)根据集合中元素的特性,判断3是否满足即可;(2)用反证法,假设属于A,再根据两偶数的积为4的倍数;两奇数的积仍为奇数得出矛盾,从而证明要证的结论.解答:解:(1)∵3=22﹣12,3∈A;(2)设4k﹣2∈A,则存在m,n∈Z,使4k﹣2=m2﹣n2=(m+n)(m﹣n)成立,1、当m,n同奇或同偶时,m﹣n,m+n均为偶数,∴(m﹣n)(m+n)为4的倍数,与4k﹣2不是4的倍数矛盾.2、当m,n一奇,一偶时,m﹣n,m+n均为奇数,∴(m﹣n)(m+n)为奇数,与4k﹣2是偶数矛盾.综上4k﹣2∉A.点评:本题考查元素与集合关系的判断.分类讨论的思想.题型二:知元素是集合的元素,根据集合的属性求出相关的参数.典例2:已知集合A={a+2,2a2+a},若3∈A,求实数a的值.分析:通过3是集合A的元素,直接利用a+2与2a2+a=3,求出a的值,验证集合A中元素不重复即可.解答:解:因为3∈A,所以a+2=3或2a2+a=3…(2分)当a+2=3时,a=1,…(5分)此时A={3,3},不合条件舍去,…(7分)当2a2+a=3时,a=1(舍去)或,…(10分)由,得,成立…(12分)故…(14分)点评:本题考查集合与元素之间的关系,考查集合中元素的特性,考查计算能力.【解题方法点拨】集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.2.集合的确定性、互异性、无序性【知识点的认识】集合中元素具有确定性、互异性、无序性三大特征.(1)确定性:集合中的元素是确定的,即任何一个对象都说明它是或者不是某个集合的元素,两种情况必居其一且仅居其一,不会模棱两可,例如“著名科学家”,“与2接近的数”等都不能组成一个集合.(2)互异性:一个给定的集合中,元素互不相同,就是在同一集合中不能出现相同的元素.例如不能写成{1,1,2},应写成{1,2}.(3)无序性:集合中的元素,不分先后,没有如何顺序.例如{1,2,3}与{3,2,1}是相同的集合,也是相等的两个集合.【解题方法点拨】解答判断型题目,注意元素必须满足三个特性;一般利用分类讨论逐一研究,转化为函数与方程的思想,解答问题,结果需要回代验证,元素不许重复.【命题方向】本部分内容属于了解性内容,但是近几年高考中基本考查选择题或填空题,试题多以集合相等,含参数的集合的讨论为主.3.子集与真子集【知识点的认识】1、子集定义:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集(subset).记作:A⊆B(或B⊇A).2、真子集是对于子集来说的.真子集定义:如果集合A⊆B,但存在元素x∈B,且元素x不属于集合A,我们称集合A是集合B的真子集.也就是说如果集合A的所有元素同时都是集合B的元素,则称A是B的子集,若B中有一个元素,而A中没有,且A是B的子集,则称A是B的真子集,注:①空集是所有集合的子集;②所有集合都是其本身的子集;③空集是任何非空集合的真子集例如:所有亚洲国家的集合是地球上所有国家的集合的真子集.所有的自然数的集合是所有整数的集合的真子集.{1,3}⊂{1,2,3,4}{1,2,3,4}⊆{1,2,3,4}3、真子集和子集的区别子集就是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等;真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等;注意集合的元素是要用大括号括起来的“{}”,如{1,2},{a,b,g};另外,{1,2}的子集有:空集,{1},{2},{1,2}.真子集有:空集,{1},{2}.一般来说,真子集是在所有子集中去掉它本身,所以对于含有n个(n不等于0)元素的集合而言,它的子集就有2n个;真子集就有2n﹣1.但空集属特殊情况,它只有一个子集,没有真子集.【解题方法点拨】注意真子集和子集的区别,不可混为一谈,A⊆B,并且B⊆A时,有A=B,但是A⊂B,并且B⊂A,是不能同时成立的;子集个数的求法,空集与自身是不可忽视的.【命题方向】本考点要求理解,高考会考中多以选择题、填空题为主,曾经考查子集个数问题,常常与集合的运算,概率,函数的基本性质结合命题.4.集合的包含关系判断及应用【知识点的认识】概念:1.如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集;A⊆B;如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B 的真子集,即A⊂B;2.如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,那么我们就说集合A等于集合B,即A=B.【解题方法点拨】1.按照子集包含元素个数从少到多排列.2.注意观察两个集合的公共元素,以及各自的特殊元素.3.可以利用集合的特征性质来判断两个集合之间的关系.4.有时借助数轴,平面直角坐标系,韦恩图等数形结合等方法.【命题方向】通常命题的方式是小题,直接求解或判断两个或两个以上的集合的关系,可以与函数的定义域,三角函数的解集,子集的个数,简易逻辑等知识相结合命题.5.集合的相等【知识点的认识】(1)若集合A与集合B的元素相同,则称集合A等于集合B.(2)对集合A和集合B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B.就是如果A⊆B,同时B⊆A,那么就说这两个集合相等,记作A=B.(3)对于两个有限数集A=B,则这两个有限数集A、B中的元素全部相同,由此可推出如下性质:①两个集合的元素个数相等;②两个集合的元素之和相等;③两个集合的元素之积相等.由此知,以上叙述实质是一致的,只是表达方式不同而已.上述概念是判断或证明两个集合相等的依据.【解题方法点拨】集合A与集合B相等,是指A的每一个元素都在B中,而且B中的每一个元素都在A 中.解题时往往只解答一个问题,忽视另一个问题;解题后注意集合满足元素的互异性.【命题方向】通常是判断两个集合是不是同一个集合;利用相等集合求出变量的值;与集合的运算相联系,也可能与函数的定义域、值域联系命题,多以小题选择题与填空题的形式出现,有时出现在大题的一小问.6.集合关系中的参数取值问题【知识点的认识】两个或两个以上的集合中,元素含有待确定的变量,需要通过集合的子集、相等、交集、并集、补集等关系求出变量的取值等问题.【解题方法点拨】求参数的取值或取值范围的关健,是转化条件得到相应参数的方程或不等式.本题根据元素与集合之间的从属关系得到参数的方程,然后通过解方程求解.求解中需注意两个方面:一是考虑集合元素的无序性,由此按分类讨论解答,二是涉及其它知识点例如函数与方程的思想,函数的零点,恒成立问题等等.【命题方向】集合中的参数取值范围问题,一般难度比较大,几乎与高中数学的所以知识相联系,特别是与函数问题结合的题目,涉及恒成立,函数的导数等知识命题,值得重视.7.并集及其运算【知识点的认识】由所有属于集合A或属于集合B的元素的组成的集合叫做A与B的并集,记作A∪B.符号语言:A∪B={x|x∈A或x∈B}.图形语言:.A∪B实际理解为:①x仅是A中元素;②x仅是B中的元素;③x是A且是B中的元素.运算形状:①A∪B=B∪A.②A∪∅=A.③A∪A=A.④A∪B⊇A,A∪B⊇B.⑤A∪B=B⇔A⊆B.⑥A ∪B=∅,两个集合都是空集.⑦A∪(∁U A)=U.⑧∁U(A∪B)=(CUA)∩(CUB).【解题方法点拨】解答并集问题,需要注意并集中:“或”与“所有”的理解.不能把“或”与“且”混用;注意并集中元素的互异性.不能重复.【命题方向】掌握并集的表示法,会求两个集合的并集,命题通常以选择题、填空题为主,也可以与函数的定义域,值域联合命题.8.交集及其运算【知识点的认识】由所有属于集合A且属于集合B的元素组成的集合叫做A与B的交集,记作A∩B.符号语言:A∩B={x|x∈A,且x∈B}.A∩B实际理解为:x是A且是B中的相同的所有元素.当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.运算形状:①A∩B=B∩A.②A∩∅=∅.③A∩A=A.④A∩B⊆A,A∩B⊆B.⑤A∩B=A⇔A⊆B.⑥A ∩B=∅,两个集合没有相同元素.⑦A∩(∁U A)=∅.⑧∁U(A∩B)=(∁U A)∪(∁U B).【解题方法点拨】解答交集问题,需要注意交集中:“且”与“所有”的理解.不能把“或”与“且”混用;求交集的方法是:①有限集找相同;②无限集用数轴、韦恩图.【命题方向】掌握交集的表示法,会求两个集合的交集.命题通常以选择题、填空题为主,也可以与函数的定义域,值域,函数的单调性、复合函数的单调性等联合命题.9.补集及其运算【知识点的认识】一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.(通常把给定的集合作为全集).对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.其图形表示如图所示的V enn图..【解题方法点拨】常用数轴以及韦恩图帮助分析解答,补集常用于对立事件,否命题,反证法.【命题方向】通常情况下以小题出现,高考中直接求解补集的选择题,有时出现在简易逻辑中,也可以与函数的定义域、值域,不等式的解集相结合命题,也可以在恒成立中出现.10.交、并、补集的混合运算【知识点的认识】集合交换律A∩B=B∩A,A∪B=B∪A.集合结合律(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C).集合分配律A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C).集合的摩根律Cu(A∩B)=CuA∪CuB,Cu(A∪B)=CuA∩CuB.集合吸收律A∪(A∩B)=A,A∩(A∪B)=A.集合求补律A∪CuA=U,A∩CuA=Φ.【解题方法点拨】直接利用交集、并集、全集、补集的定义或运算性质,借助数轴或韦恩图直接解答.【命题方向】理解交集、并集、补集的混合运算,每年高考一般都是单独命题,一道选择题或填空题,属于基础题.11.子集与交集、并集运算的转换【知识点的认识】观察两个集合之间的关系如图子集与交集、并集运算的转换的基本运算的一些结论:A∩B⊆A,A∩B⊆B,A∩A=A,A∩∅=∅,A∩B=B∩AAA∪B,BA∪B,A∪A=A,A∪∅=A,A∪B=B∪A(CUA)∪A=U,(CUA)∩A=∅若A∩B=A,则A⊆B,反之也成立.若A∪B=B,则A⊆B,反之也成立.若x∈(A∩B),则x∈A且x∈B若x∈(A∪B),则x∈A,或x∈B.【解题方法点拨】求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.【命题方向】考纲要求:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.明确子集与集合的并、交、补是集合间的基本运算.12.四种命题【知识点的认识】一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们就把这样的两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个叫做原命题的否命题.一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个叫做原命题的逆否命题.【解题方法点拨】理解四种命题的概念,能根据定义准确、正确的写出四种命题,判断命题的真假要注意与其它考点的知识、方法相结合.【命题方向】高考中一般在选择题中出现以命题的形式考察其它知识点的运用,由于本考点可与高中数学中多处的考点相结合,故考察类型多样,都是基本概念与基本方法的题.13.四种命题间的逆否关系【知识点的认识】基本概念:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们就把这样的两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个叫做原命题的否命题.一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个叫做原命题的逆否命题.四种命题的关系:【解题方法点拨】由于本处命题主要是概念型与理解型的题,准确理解概念;注意原命题与逆否命题同真假,逆命题与否命题同真假.原命题与逆否命题同真假,为解题提供逆向思维的方法,反证法的应用.【命题方向】近几年的高考主要是考察对四命题的理解以及命题之间互为逆否关系的理解,通常以小题为主.又可以与充要条件联合命题.14.四种命题的真假关系【知识点的认识】一.四种命题的间的关系:二.四种命题间的真假关系(一)两个命题互为逆否命题,它们有相同的真假性;(二)两个命题为互逆命题或互否命题,它们的真假性没有关系.【解题方法点拨】“正难则反”是数学解题中一种转化的方式,将判断一个命题的真假的问题转化为判断它的逆否命题的真假就是这种技巧的一个方面的运用,对于有些命题,转化为与其真假性相同的逆否命题来证可大大简化判断过程降低判断难度,如:“若x≠2或y≠3,则x+y≠5”这个命题的判断,正面不易判断,而其逆否命题为“若x+y=5,则x=2且y=3”,容易判断此命题是一个假命题.【命题方向】命题的真假判断是本考点中试题的考察重点,对于原命题情况较复杂,真假不易判断的命题,常常转化为判断它的逆否命题的真假,这是对四种命题真假关系考察的主要方式.15.充分条件、必要条件、充要条件【知识点的认识】1、判断:当命题“若p则q”为真时,可表示为p⇒q,称p为q的充分条件,q是p的必要条件.事实上,与“p⇒q”等价的逆否命题是“¬q⇒¬p”.它的意义是:若q不成立,则p一定不成立.这就是说,q对于p是必不可少的,所以说q是p的必要条件.例如:p:x>2;q:x>0.显然x∈p,则x∈q.等价于x∉q,则x∉p一定成立.2、充要条件:如果既有“p⇒q”,又有“q⇒p”,则称条件p是q成立的充要条件,或称条件q是p成立的充要条件,记作“p⇔q”.p与q互为充要条件.【解题方法点拨】充要条件的解题的思想方法中转化思想的依据;解题中必须涉及两个方面,充分条件与必要条件,缺一不可.证明题目需要证明充分性与必要性,实际上,充分性理解为充分条件,必要性理解为必要条件,学生答题时往往混淆二者的关系.判断题目可以常用转化思想、反例、特殊值等方法解答即可.判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.【命题方向】充要条件是学生学习知识开始,或者没有上学就能应用的,只不过没有明确定义,因而几乎年年必考内容,多以小题为主,有时也会以大题形式出现,中学阶段的知识点都相关,所以命题的范围特别广.16.逻辑联结词“或”、“且”、“非”【或】一般地,用连接词“或”把命题和命题连接起来,就得到一个新命题,记作pⅤq,读作“p或q”.规定:当p,q两个命题中有一个命题是真命题时,pⅤq是真命题;当p,q两个命题都是假命题时,pⅤq是假命题.例如:“2≤2”、“27是7或9的倍数”等命题都是pⅤq的命题.解题方法点拨:三个逻辑连接词“或”、“且”、“非”中,对于“或”的理解是难点.p或q 表示两个简单命题至少有一个成立,它包括①p真q假②q真p假③p真q真,这一点可以结合两个集合的并集来理解.类似地,p或q或r表示三个简单命题至少有一个成立,同样我们可以结合三个集合的并集来理解.“正难则反”的转化思想在解题中的效果往往好于直接解答,有时起到比繁就简的作用.正确理解“或”,特别是与日常生活中的“或”的区别.命题方向:一般与集合、函数的定义域、函数的单调性联合命题,小题为主.【且】一般地,用连接词“且”把命题p和命题q连接起来,就得到一个新命题,记作p∧q读作“p且q”.规定:当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题.“且”作为逻辑连接词,与生活用语中“既…”相同,表示两者都要满足的意思,在日常生活中经常用“和”,“与”代替.例1:将下列命题用“且”连接成新命题,并判断它们的真假:(1)p:正方形的四条边相等,q:正方形的四个角相等;(2)p:35是15的倍数,q:35是7的倍数;(3)p:三角形两条边的和大于第三边,q:三角形两条边的差小于第三边.解题方法点拨::逻辑连接词“且”,p且q表示两个简单命题两个都成立,就是p真并且q 真.一般解题中,注意两个命题必须去交集,不可以偏概全解答.命题方向:一般与集合、函数的定义域、函数的单调性联合命题,充要条件相结合,小题为主.【非】一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p的否定.规定:若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题.“非p”形式复合命题的真假与p的真假相反;“非p”形式复合命题的真假可以用下表表示:p¬p真假假真解题方法点拨:注意逻辑连接词的理解及“¬p“新命题的正确表述和应用,“非”是否定的意思,必须是只否定结论.“p或q”、“p且q”的否定分别是“非p且非q”和“非p或非q”,“都”的否定是“不都”而不是“都不”.另外还有“等于”的否定是“不等于”,“大(小)于”的否定是“不大(小)于”,“所有”的否定是“某些”,“任意”的否定是“某个”,“至多有一个”的否定是“至少有两个”等等.必须注意与否命题的区别.命题方向:理解逻辑连接词“或”“且”“非”的含义,平时学习中,同学往往把非p与否命题混为一谈,因此,高考或会考中,常常出现,但是多以小题的形式.17.复合命题及其真假【知识点的认识】含有逻辑连接词“或”“且”“非”的命题不一定是复合命题.若此命题的真假满足真值表,就是复合命题,否则就是简单命题.逻辑中的“或”“且”“非”与日常用语中的“或”“且”“非”含义不尽相同.判断复合命题的真假要根据真值表来判定.【解题方法点拨】能判断真假的、陈述句、反诘疑问句都是命题,而不能判断真假的陈述句、疑问句以及祈使句都不是命题.能判断真假的不等式、集合运算式也是命题.写命题P的否定形式,不能一概在关键词前、加“不”,而要搞清一个命题研究的对象是个体还是全体,如果研究的对象是个体,只须将“是”改成“不是”,将“不是”改成“是”即可.如果命题研究的对象不是一个个体,就不能简单地将“是”改成“不是”,将“不是”改成“是”,而要分清命题是全称命题还是存在性命题(所谓全称命题是指含有“所有”“全部”“任意”这一类全称量诃的命题;所谓存在性命题是指含有“某些”“某个”“至少有一个”这一类存在性量词的命题,全称命题的否定形式是存在性命题,存在性命题的否定形式是全称命题.因此,在表述一个命题的否定形式的时候,不仅“是”与“不是”要发生变化,有关命题的关键词也应发生相应的变化,常见关键词及其否定形式附表如下:关键词等于(=)大于(>)小于(<)是能都是没有至多有一个至少有一个至少有n个至多有n个任意的任两个P且QP或Q否定词不等于(≠)不大于(≤)不小于(≥)不是不能不都是至少有一个至少有两个一个都没有至多有n﹣1个至少有n+1个某个某两个¬P或¬Q¬P且¬Q若原命题P为真,则¬P必定为假,但否命题可真可假,与原命题的真假无关,否命题与逆命题是等价命题,同真同假.18.全称量词和全称命题【全称量词】:短语“对所有的”“对任意一个”在逻辑中通常叫做全称量词.符号:∀应熟练掌握全称命题与特称命题的判定方法1.全称量词与存在量词(1)全称量词:对应日常语言中的“一切”、“任意的”、“所有的”、“凡是”、“任给”、“对每一个”等词,用符号“∀”表示.(2)存在量词:对应日常语言中的“存在一个”、“至少有一个”、“有个”、“某个”、“有些”、“有的”等词,用符号“∃”表示.【全称命题】含有全称量词的命题.“对xM,有p(x)成立”简记成“xM,p(x)”.同一个全称命题、特称命题,由于自然语言的不同,可以有不同的表述方法,现列表如下命题全称命题xM,p(x)特称命题xM,p(x)表述方法①所有的xM,使p(x)成立①存在xM,使p(x)成立②对一切xM,使p(x)成立②至少有一个xM,使p(x)成立③对每一个xM,使p(x)成立③对有些xM,使p(x)成立④任给一个xM,使p(x)成立④对某个xM,使p(x)成立⑤若xM,则p(x)成立⑤有一个xM,使p(x)成立解题方法点拨:该部分内容是《课程标准》新增加的内容,要求我们会判断含有一个量词的全称命题和一个量词的特称命题的真假;正确理解含有一个量词的全称命题的否定是特称命题和含有一个量词的特称命题的否定是全称命题,并能利用数学符号加以表示.应熟练掌握全称命题与特称命题的判定方法.命题方向:该部分内容是《课程标准》新增加的内容,几乎年年都考,涉及知识点多而且全,多以小题形式出现.19.存在量词和特称命题【存在量词】:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词.符号:∃特称命题:含有存在量词的命题.符号:“∃”.存在量词:对应日常语言中的“存在一个”、“至少有一个”、“有个”、“某个”、“有些”、“有的”等词,用符号“∃”表示.【特称命题】含有存在量词的命题.“∃x0∈M,有p(x0)成立”简记成“∃x0∈M,p(x0)”.“存在一个”,“至少有一个”叫做存在量词.命题全称命题x∈M,p(x)特称命题x0∈M,p(x0)表述方法①所有的x∈M,使p(x)成立①存在∃x0∈M,使p(x0)成立②对一切x∈M,使p(x)成立②至少有一个x0∈M,使p(x0)成立③对每一个x∈M,使p(x)成立③某些x∈M,使p(x)成立④对任给一个x∈M,使p(x)成立④存在某一个x0∈M,使p(x0)成立⑤若x∈M,则p(x)成立⑤有一个x0∈M,使p(x0)成立解题方法点拨:由于全称量词的否定是存在量词,而存在量词的否定又是全称量词;因此,全称命题的否定一定是特称命题;特称命题的否定一定是全称命题.命题的“否定”与一个命题的“否命题”是两个不同的概念,对命题的否定是否定命题所作的判断,而否命题是对“若p则q”形式的命题而言,既要否定条件,也要否定结论.常见词语的否定如下表所示:词语是一定是都是大于小于词语的否定不是一定不是不都是小于或等于大于或等于词语且必有一个至少有n个至多有一个所有x成立词语的否定或一个也没有至多有n﹣1个至少有两个存在一个x不成立命题方向:本考点通常与全称命题的否定,多以小题出现在填空题,选择题中.20.命题的否定【知识点的认识】。
2021年高考数学大二轮复习专题一集合、常用逻辑用语、不等式、平面向量、算法、复数、推理与证明1.1
1.1 集合与常用逻辑用语【课时作业】1.(2021·全国卷Ⅰ)集合A ={x |x 2-x -2>0},那么∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}解析: ∵x 2-x -2>0,∴(x -2)(x +1)>0,∴x >2或x <-1,即A ={x |x >2或x <-1}.在数轴上表示出集合A ,如下图.由图可得∁R A ={}x |-1≤x ≤2. 应选B. 答案: B2.(2021·天津卷)设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R |-1≤x <2},那么(A ∪B )∩C =( )A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}解析: ∵A ={1,2,3,4},B ={-1,0,2,3}, ∴A ∪B ={-1,0,1,2,3,4}. 又C ={x ∈R |-1≤x <2}, ∴(A ∪B )∩C ={-1,0,1}. 答案: C3.(2021·安徽皖南八校3月联考)集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },那么A ∩B 的真子集个数为( )A .1B .3C .5D .7解析: 由⎩⎪⎨⎪⎧x 2=4y ,y =x 得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =4,y =4,即A ∩B ={(0,0),(4,4)},∴A ∩B的真子集个数为22-1=3.应选B.答案: B4.f (x )=3sin x -πx ,命题p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )<0,那么( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0C .p 是真命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )>0 解析: 因为f ′(x )=3cos x -π,所以当x ∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.又全称命题的否认是特称命题,所以綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0.答案: C5.(2021·北京卷)设a ,b ,c ,d 是非零实数,那么“ad =bc 〞是“a ,b ,c ,d 成等比数列〞的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析: a ,b ,c ,d 是非零实数,假设a <0,d <0,b >0,c >0,且ad =bc ,那么a ,b ,c ,d 不成等比数列(可以假设a =-2,d =-3,b =2,c =3).假设a ,b ,c ,d 成等比数列,那么由等比数列的性质可知ad =bc .所以“ad =bc 〞是“a ,b ,c ,d 成等比数列〞的必要而不充分条件.应选B. 答案: B6.(2021·洛阳市第一统考)设全集U =R ,集合A ={x |log 2x ≤1},B ={x |x 2+x -2≥0},那么A ∩∁U B =( )A .(0,1]B .(-2,2]C .(0,1)D .[-2,2]解析: 不等式log 2x ≤1即log 2x ≤log 22,由y =log 2x 在(0,+∞)上单调递增,得不等式的解集为(0,2],即A =(0,2].由x 2+x -2≥0,得(x +2)(x -1)≥0,得B ={x |x ≤-2或x ≥1},所以∁U B =(-2,1),从而A ∩∁U B =(0,1).应选C.答案: C7.设全集U 是自然数集N ,集合A ={x |x 2>9,x ∈N },B ={0,2,4},那么图中阴影局部所表示的集合是( )A .{x |x >2,x ∈N }B .{x |x ≤2,x ∈N }C .{0,2}D .{1,2}解析: 由题图可知,图中阴影局部所表示的集合是B ∩(∁U A ),∁U A ={x |x 2≤9,x ∈N }={x |-3≤x ≤3,x ∈N }={0,1,2,3},因为B ={0,2,4},所以B ∩(∁U A )={0,2}.答案: C8.以下结论错误的选项是( )A .命题“假设x 2-3x -4=0,那么x =4〞的逆否命题为“假设x ≠4,那么x 2-3x -4≠0〞B .命题“x =4〞是“x 2-3x -4=0〞的充分条件C .命题“假设m >0,那么方程x 2+x -m =0有实根〞的逆命题为真命题D .命题“假设m 2+n 2=0,那么m =0且n =0〞的否命题是“假设m 2+n 2≠0,那么m ≠0或n ≠0〞解析: C 项命题的逆命题为“假设方程x 2+x -m =0有实根,那么m >0〞.假设方程有实根,那么Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,应选C.答案: C9.(2021·陕西省质量检测(一))命题p :对任意的x ∈R ,总有2x>0;q :“x >1〞是“x >2〞的充分不必要条件,那么以下命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q解析: 由指数函数的性质知命题p 为真命题.易知x >1是x >2的必要不充分条件,所以命题q 是假命题.由复合命题真值表可知p ∧綈q 是真命题,应选D.答案: D10.(2021·辽宁省五校协作体联考)命题“∃x 0∈R,4x 20+(a -2)x 0+14≤0〞是假命题,那么实数a 的取值范围为( )A .(-∞,0)B .[0,4]C .[4,+∞)D .(0,4)解析: 因为命题“∃x 0∈R,4x 20+(a -2)x 0+14≤0〞是假命题,所以其否认“∀x ∈R,4x 2+(a -2)x +14>0〞是真命题,那么Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4,应选D.答案: D11.(2021·山东泰安3月联考)以下命题正确的选项是( )A .命题“∃x 0∈[0,1],使x 20-1≥0〞的否认为“∀x ∈[0,1],都有x 2-1≤0〞 B .假设命题p 为假命题,命题q 是真命题,那么(綈p )∨(綈q )为假命题 C .命题“假设a 与b 的夹角为锐角,那么a·b >0〞及它的逆命题均为真命题 D .命题“假设x 2+x =0,那么x =0或x =-1〞的逆否命题为“假设x ≠0且x ≠-1,那么x 2+x ≠0〞解析: 对于选项A ,命题“∃x 0∈[0,1],使x 20-1≥0〞的否认为“∀x ∈[0,1],都有x 2-1<0〞,故A 项错误;对于选项B ,p 为假命题,那么綈p 为真命题,q 为真命题,那么綈q 为假命题,所以(綈p )∨(綈q )为真命题,故B 项错误;对于选项C ,原命题为真命题,假设a·b >0,那么a 与b 的夹角可能为锐角或零角,所以原命题的逆命题为假命题,故C 项错误;对于选项D ,命题“假设x 2+x =0,那么x =0或x =-1〞的逆否命题为“假设x ≠0且x ≠-1,那么x 2+x ≠0〞,应选项D 正确.因此选D.答案: D12.(2021·广东汕头一模)命题p :关于x 的方程x 2+ax +1=0没有实根;命题q :∀x >0,2x-a >0.假设“綈p 〞和“p ∧q 〞都是假命题,那么实数a 的取值范围是( )A .(-∞,-2)∪(1,+∞)B .(-2,1]C .(1,2)D .(1,+∞)解析: 方程x 2+ax +1=0无实根等价于Δ=a 2-4<0,即-2<a <2.∀x >0,2x-a >0等价于a <2x在(0,+∞)上恒成立,即a ≤1.因“綈p 〞是假命题,那么p 是真命题,又因“p ∧q 〞是假命题,那么q 是假命题,∴⎩⎪⎨⎪⎧-2<a <2,a >1,得1<a <2,所以实数a 的取值范围是(1,2),应选C.答案: C13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,那么綈p :____________________.解析: 全称命题的否认为特称命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案: ∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点14.假设⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,那么a 2 017+b 2 017的值为________.解析: 因为⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,所以⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },所以⎩⎪⎨⎪⎧b a=0,a 2=1或⎩⎪⎨⎪⎧b a =0,a +b =1,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去),那么a2 017+b2017=-1. 答案: -115.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪y -3x -2=1,P ={(x ,y )|y ≠x +1},那么∁U (M ∪P )=________.解析: 集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 那么∁U (M ∪P )={(2,3)}. 答案: {(2,3)}16.a ,b ,c 为三个人,命题A :“如果b 的年龄不是最大,那么a 的年龄最小〞和命题B :“如果c 不是年龄最小,那么a 的年龄最大〞都是真命题,那么a ,b ,c 的年龄由小到大依次是________.解析: 显然命题A 和B 的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A 可知,当b 不是最大时,那么a 是最小,所以c 最大,即c >b >a ;而它的逆否命题也为真,即“假设a 的年龄不是最小,那么b 的年龄是最大〞为真,即b >a >c .同理,由命题B 为真可得a >c >b 或b >a >c .故由A 与B 均为真可知b >a >c ,所以a ,b ,c 三人的年龄大小顺序是:b 最大,a 次之,c 最小.答案: c ,a ,b。
2021-2022年高考数学二轮专题复习 专题突破篇 专题一 集合、常用逻辑用语、不等式、函数与导数
2021年高考数学二轮专题复习 专题突破篇 专题一 集合、常用逻辑用语、不等式、函数与导数专题限时训练2 文一、选择题(每小题5分,共25分)1.(xx·豫东、豫北十校联考)下列函数既是奇函数,又在区间[-1,1]上单调递减的是( )A .f (x )=sin xB .f (x )=ln 2-x2+xC .f (x )=-|x +1|D .f (x )=12(e x -e -x )答案:B解析:对于A ,y =sin x 是奇函数,但它在[-1,1]上为增函数;对于B ,由(2-x )(2+x )>0,得-2<x <2,所以f (x )=ln 2-x 2+x的定义域是(-2,2),关于原点对称,因为f (-x )=ln2+x 2-x =-ln 2-x 2+x =-f (x ),所以f (x )=ln 2-x 2+x 是奇函数.又t =2-x2+x=-1+42+x 在区间[-1,1]上单调递减,故由复合函数的单调性可知函数f (x )=ln 2-x 2+x 在区间[-1,1]上单调递减;对于C ,f (x )=-|x +1|为非奇非偶函数;对于D ,f (x )=12(e x-e-x)是奇函数,但它在[-1,1]上为增函数,故选B.2.(xx·陕西卷)下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3x答案:D解析:根据各选项知,选项C ,D 中的指数函数满足f (x +y )=f (x )f (y ).又f (x )=3x 是增函数,所以D 正确.3.(xx·山西太原模拟)函数f (x )=xx 2+a的图象不可能是( )答案:D解析:当a =0时,f (x )=xx 2+a =1x,C 选项有可能.当a ≠0时,f (0)=xx 2+a=0,所以D 选项不可能,故选D.4.设f (x )是定义在实数集R 上的函数,满足条件y =f (x +1)是偶函数,且当x ≥1时,f (x )=⎝ ⎛⎭⎪⎫12x -1,则f ⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫13的大小关系是( )A .f ⎝ ⎛⎭⎪⎫23>f ⎝ ⎛⎭⎪⎫32>f ⎝ ⎛⎭⎪⎫13B .f ⎝ ⎛⎭⎪⎫23>f ⎝ ⎛⎭⎪⎫13>f ⎝ ⎛⎭⎪⎫32C .f ⎝ ⎛⎭⎪⎫32>f ⎝ ⎛⎭⎪⎫23>f ⎝ ⎛⎭⎪⎫13D .f ⎝ ⎛⎭⎪⎫13>f ⎝ ⎛⎭⎪⎫32>f ⎝ ⎛⎭⎪⎫23答案:A解析:函数y =f (x +1)是偶函数,所以f (-x +1)=f (x +1),即函数关于x =1对称.所以f ⎝ ⎛⎭⎪⎫23=f ⎝ ⎛⎭⎪⎫43,f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫53,当x ≥1时,f (x )=⎝ ⎛⎭⎪⎫12x-1单调递减,所以由43<32<53,可得f ⎝ ⎛⎭⎪⎫43>f ⎝ ⎛⎭⎪⎫23>f ⎝ ⎛⎭⎪⎫53, 即f ⎝ ⎛⎭⎪⎫23>f ⎝ ⎛⎭⎪⎫32>f ⎝ ⎛⎭⎪⎫13,故选A.5.若定义在[-2 015,2 015]上的函数f (x )满足:对任意x 1,x 2∈[-2 015,2 015]有f (x 1+x 2)=f (x 1)+f (x 2)-2 014,且x >0时,f (x )>2 014,记f (x )在[-2 015,2 015]上的最大值和最小值为M ,N ,则M +N 的值为( )A .2 015B .2 016C .4 027D .4 028答案:D解析:令x 1=x 2=0,得f (0)=2 014. 设-2 015<x 1<x 2<2 015,且x 2=x 1+h (h >0), 则f (h )>2 014.所以f (x 2)=f (x 1+h )=f (x 1)+f (h )-2 014>f (x 1). 可知f (x )在[-2 015,2 015]上是增函数.故M +N =f (2 015)+f (-2 015)=f (2 015-2 015)+2 014=f (0)+2 014=4 028. 二、填空题(每小题5分,共15分)6.(xx·山西太原模拟)已知定义在R 上的奇函数f (x )满足f ⎝ ⎛⎭⎪⎫32-x =f (x ),f (-2)=-3,数列{a n }的前n 项和为S n ,且a 1=-1,S n =2a n +n (n ∈N *),则f (a 5)+f (a 6)=________.答案:3解析:∵奇函数f (x )满足f ⎝ ⎛⎭⎪⎫32-x =f (x ),∴f ⎝ ⎛⎭⎪⎫32-x =-f (x ),∴f (x )=-f ⎝ ⎛⎭⎪⎫x +32=f (x +3),∴f (x )是以3为周期的周期函数, ∵S n =2a n +n ,① ∴S n +1=2a n +1+n +1,② ②-①可得a n +1=2a n -1,结合a 1=-1,可得a 5=-31,a 6=-63, ∴f (a 5)=f (-31)=f (2)=-f (-2)=3,f (a 6)=f (-63)=f (0)=0,∴f (a 5)+f (a 6)=3.7.(xx·浙江温州模拟)已知奇函数f (x )满足f (x +2)=-f (x ),且当x ∈(0,1)时,f (x )=2x ,则f ⎝ ⎛⎭⎪⎫72=________.答案:-2解析:由f (x +2)=-f (x ),得f (x +4)=f (x ), 所以f (x )是周期为4的周期函数.所以f ⎝ ⎛⎭⎪⎫72-f ⎝ ⎛⎭⎪⎫72-4=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12,又当x ∈(0,1)时,f (x )=2x ,所以f ⎝ ⎛⎭⎪⎫12=212=2,所以f ⎝ ⎛⎭⎪⎫72=- 2.8.(xx·河北保定模拟)已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象上的一条对称轴; ③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8. 则所有正确命题的序号为________. 答案:①②④解析:令x =-2,得f (2)=f (-2)+f (2), 又函数f (x )是偶函数,故f (2)=0;根据f (x +4)=f (x )+f (2)可得f (x +4)=f (x ), 可得函数f (x )的周期是4, 由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )图象的一条对称轴;根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确; 由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8.故正确命题的序号为①②④.三、解答题(9题12分,10题、11题每题14分,共40分)9.(xx·山东阶段测试)已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ). (1)若函数f (x )的图象过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[-1,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解:(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a . 因为方程f (x )=0有且只有一个根, 所以Δ=b 2-4a =0.所以4a 2-4a =0,所以a =1,所以b =2. 所以f (x )=(x +1)2.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1=⎝⎛⎭⎪⎫x -k -222+1-k -224.由g (x )的图象知,要满足题意,则k -22≥2或k -22≤-1,即k ≥6或k ≤0,∴所求实数k 的取值范围为(-∞,0]∪[6,+∞).10.(xx·潍坊模拟)已知函数f (x )=-x +log 21-x1+x.(1)求f ⎝⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫-12 015的值;(2)当x ∈(-a ,a ],其中a ∈(0,1),a 是常数,函数f (x )是否存在最小值?若存在,求出f (x )的最小值;若不存在,请说明理由.解:(1)由1-x1+x >0,得(x +1)(x -1)<0,解得-1<x <1.所以函数f (x )的定义域为(-1,1).又因为f (-x )=x +log 21+x 1-x =x -log 21-x1+x =-f (x ),所以函数f (x )为奇函数,即f (-x )+f (x )=0,所以f ⎝⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫-12 015=0.(2)存在最小值,任取x 1,x 2∈(-1,1)且设x 1<x 2, 则f (x 2)-f (x 1)=(x 1-x 2)+log 21-x 21+x 2-log 21-x 11+x 1,易知f (x 2)-f (x 1)<0,所以函数f (x )为(-1,1)上的减函数, 又x ∈(-a ,a ]且a ∈(0,1), 所以f (x )min =f (a )=-a +log 21-a1+a.11.设f (x )=a x +b 同时满足条件f (0)=2和对任意x ∈R 都有f (x +1)=2f (x )-1成立.(1)求f (x )的解析式;(2)设函数g (x )的定义域为[-2,2],且在定义域内g (x )=f (x ),且函数h (x )的图象与g (x )的图象关于直线y =x 对称,求h (x )的解析式,并标注出定义域;(3)求函数y =g (x )+h (x )的值域. 解:(1)由f (0)=2,得b =1,由f (x +1)=2f (x )-1,得a x (a -2)=0, 由a x>0,得a =2, 所以f (x )=2x +1.(2)由题意知,当x ∈[-2,2]时,g (x )=f (x )=2x +1.设点P (x ,y )是函数h (x )的图象上任意一点,它关于直线y =x 对称的点为P ′(y ,x ),依题意点P ′(y ,x )在函数g (x )的图象上,即x =2y+1, 所以y =log 2(x -1),即h (x )=log 2(x -1)⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤54,5.(3)由已知,得y =log 2(x -1)+2x +1,且两个函数的公共定义域是⎣⎢⎡⎦⎥⎤54,2,所以函数y =g (x )+h (x )=log 2(x -1)+2x+1⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤54,2. 由于函数g (x )=2x+1与h (x )=log 2(x -1)在区间⎣⎢⎡⎦⎥⎤54,2上均为增函数,当x =54时,y =242-1,当x =2时,y =5,所以函数y =g (x )+h (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤54,2的值域为[242-1,5].。
高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理
第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合的补集运算·T2本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合中元素个数问题·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3) D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos 〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.答案:D快审题看到充分与必要条件的判断,想到定条件,找推式(即判定命题“条件⇒结论”和“结论⇒条件”的真假),下结论(若“条件⇒结论”为真,且“结论⇒条件”为假,则为充分不必要条件).用妙法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1”或y≠1的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.避误区“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[练通——即学即用]1.(2018·胶州模拟)设x,y是两个实数,命题“x,y中至少有一个数大于1”成立的充分不必要条件是( )A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1解析:当⎩⎪⎨⎪⎧x≤1y≤1时,有x+y≤2,但反之不成立,例如当x=3,y=-10时,满足x+y≤2,但不满足⎩⎪⎨⎪⎧x≤1y≤1,所以⎩⎪⎨⎪⎧x≤1y≤1是x+y≤2的充分不必要条件.所以“x+y>2”是“x,y中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即綈q是綈p的充分不必要条件,即命题“若綈q, 则綈p”为真,逆命题为假,故逆否命题“若p,则q”为真,否命题“若q,则p”为假,即p是q的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.答案:B2.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤3解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。
高考数学二轮专题复习:集合与常用逻辑用语
集合与常用逻辑用语【考纲解读】1.通过实例了解集合的含义,体会元素与集合的从属关系,知道常用数集及其记号,了解集合中元素的确定性,互异性,无序性.会用集合语言表示有关数学对象.2.掌握集合的表示方法----列举法和描述法,并能进行自然语言与集合语言的相互转换,了解有限集与无限集的概念.3.了解集合间包含关系的意义,理解子集、真子集的概念和意义,会判断简单集合的相等关系.4.理解并集、交集的概念和意义,掌握有关集合并集、交集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.掌握并集、交集的求法.5.了解全集的意义,理解补集的概念.掌握全集与补集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.掌握补集的求法.6.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析种命题的相互关系;理解必要条件、充分条件与充要条件的意义.7.了解逻辑联结词“或”、“且”、“非”的含义.8.理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.【考点预测】3.注意弄清元素与集合、集合与集合之间的包含关系.4.能根据Venn图表达的集合关系进行相关的运算.5.注意区分否命题与命题的否定,前者是同时否定条件和结论,而后者只否定结论.6.原命题与其逆否命题等价,当直接判定命题条件的充要性有困难时,可等价地转化为对该命题的逆否命题进行判断.7.全称命题的否定是存在性命题,存在性命题的否定是全称命题.【考点在线】考点一集合的概念例1.已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},则M∩N=()A.(0,1),(1,2) B.{(0,1),(1,2)}C.{y|y=1,或y=2} D.{y|y≥1}从而选B的错误,这是由于在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是点,因此M、N是数集而不是点集.②集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x2+1,x∈R},这三个集合是不同的.这类题目主要考察不等式的性质成立的条件,以及条件与结论的充要关系.【备考提示】:正确理解集合中的代表元素是解答好本题的关键.练习1:若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于()A.P B.Q C. D.不知道【答案】B【解析】事实上,P、Q中的代表元素都是y,它们分别表示函数y=x2,y= x2+1的值域,由P={y|y≥0},Q={y|y≥1},知QP,即P∩Q=Q.∴应选B.考点二集合元素的互异性集合元素的互异性,是集合的重要属性,教学实践告诉我们,集合中元素的互异性常常被学生在解题中忽略,从而导致解题的失败,下面再结合例题进一步讲解以期强化对集合元素互异性的认识.(a2-3a-8), a3+例2.若A={2,4, a3-2a2-a+7},B={1, a+1, a2-2a+2,-12a2+3a+7},且A∩B={2,5},则实数a的值是________.【答案】2【解析】∵A∩B={2,5},∴a3-2a2-a+7=5,由此求得a=2或a=±1. A={2,4,5}.当a=1时,a2-2a+2=1,与元素的互异性相违背,故应舍去a=1.当a=-1时,B={1,0,5,2,4},与A∩B={2,5}相矛盾,故又舍去a=-1.当a=2时,A={2,4,5},B={1,3,2,5,25},此时A∩B={2,5},满足题设.故a=2为所求.【解析】分两种情况进行讨论.(1)若a+b=a c且a+2b=a c2,消去b得:a+a c2-2a c=0,a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.(2)若a+b=a c2且a+2b=a c,消去b得:2a c2-a c-a=0,.∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-12考点三集合间的关系例3.设集合A={a|a=3n+2,n∈Z},集合B={b|b=3k-1,k∈Z},则集合A、B的关系是________.【答案】A=B【解析】任设a∈A,则a=3n+2=3(n+1)-1(n∈Z),∴ n∈Z,∴n+1∈Z.∴ a∈B,故A B⊆.①又任设b∈B,则 b=3k-1=3(k-1)+2(k∈Z),∵ k∈Z,∴k-1∈Z.∴ b∈A,故B A⊆②由①、②知A=B.【名师点睛】这里说明a∈B或b∈A的过程中,关键是先要变(或凑)出形式,然后再推理.【备考提示】:集合与集合之间的关系问题,是我们解答数学问题过程中经常遇到,并且必须解决的问题,因此应予以重视.反映集合与集合关系的一系列概念,都是用元素与集合的关系来定义的.因此,在证明(判断)两集合的关系时,应回到元素与集合的关系中去.考点四要注意利用数形结合思想解决集合问题集合问题大都比较抽象,解题时要尽可能借助文氏图、数轴或直角坐标系等工具将抽象问题直观化、形象化、明朗化,然后利用数形结合的思想方法使问题灵活直观地获解.例4.设全集U={x|0<x<10,x∈N*},若A∩B={3},A∩C U B={1,5,7},C U A∩C U B={9},则集合A、B是________.【答案】A={1,3,5,7},B={2,3,4,6,8}.【解析】由题意,画出图如下:由图可知: A={1,3,5,7},B={2,3,4,6,8}.【名师点睛】本题用推理的方法求解不如先画出文氏图,用填图的方法来得简捷,由图不难看出.【备考提示】:熟练数形结合的思想是解答好本题的关键.练习4.集合A={x|x2+5x-6≤0},B={x|x2+3x>0},求A∪B和A∩B.【答案】A∪B=R,A∩B={x|-6≤x<-3或0<x≤1}.【解析】本题采用数轴表示法,根据数轴表示的范围,可直观、准确的写出问题的结果.∵ A={x|x2-5x-6≤0}={x|-6≤x≤1},B={x|x2+3x>0}={x|x<-3,或x>0}.如图所示,∴ A∪B={x|-6≤x≤1}∪{x|x<-3,或x>0}=R.A∩B={x|-6≤x≤1}∩{x|x<-3,或x>0}={x|-6≤x<-3,或0<x≤1}.【易错专区】问题1:空集例1.已知集合A={x|x2-3x+2=0},B={x|x2-a x+a-1=0},且A∪B=A,则a的值为______.解:∵ A∪B=A,,∴⊆B A∵ A={1,2},∴ B=∅或B={1}或B={2}或B={1,2}.若B=∅,则令△<0得a∈∅;若B={1},则令△=0得a=2,此时1是方程的根;若B={2},则令△=0得a=2,此时2不是方程的根,∴a∈∅;若B={1,2}则令△>0得a∈R且a≠2,把x=1代入方程得a∈R,把x=2代入方程得a=3.1.(2011年高考山东卷文科1)设集合 M ={x|(x+3)(x-2)<0},N ={x|1≤x ≤3},则M ∩N =( )(A )[1,2) (B)[1,2] (C)( 2,3] (D)[2,3]【答案】A【解析】因为{}|32M x x =-<<,所以{}|12M N x x ⋂=≤<,故选A.2. (2011年高考海南卷文科1)已知集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =⋂,则P 的子集共有( )A.2个B.4个C.6个D.8个【答案】B【解析】因为{}1,3M N ⋂=中有两个元素,所以其子集个数为224=个,选B. 3.(2011年高考安徽卷文科2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则()U S C T 等于( )(A )}{,,,1456 (B) }{,15 (C) }{4 (D) }{,,,,12345 【答案】B【解析】{}1,5,6U T =,所以(){}1,6U S T =.故选B.4.(2011年高考广东卷文科2)已知集合(){,|A x y x y =、为实数,且}221x y +=,5. (2011年高考江西卷文科2)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( )A.M N ⋃B.M N ⋂C.()()U U C M C N ⋃D.()()U U C M C N ⋂【答案】D【解析】{}4,3,2,1=⋃N M ,Φ=⋂N M ,()(){}6,5,4,3,2,1=⋃N C M C U U ,()(){}6,5=⋂N C M C U U .6.(2011年高考福建卷文科1)若集合M={-1,0,1},N={0,1,2},则M∩N 等于A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}【答案】A【解析】因为{}{}{}1,0,10,1,20,1M N ⋂=-⋂=,故选A.7.(2011年高考湖南卷文科1)设全集{1,2,3,4,5},{2,4},U U M N M C N ===则N =( )A .{1,2,3}B .{1,3,5} C.{1,4,5} D.{2,3,4}答案:B解析:画出韦恩图,可知N ={1,3,5}。
2021届高考数学二轮专题冲破 专题一 第1讲 集合与经常使用逻辑用语 文(1)
第1讲集合与经常使用逻辑用语【高考考情解读】 1.本讲在高考中要紧考查集合的运算、充要条件的判定、含有一个量词的命题的真假判定与否定,常与函数、不等式、三角函数、立体几何、解析几何、数列等知识综合在一路考查.2.试题以填空题方式呈现,考查的基础知识和大体技术,题目难度中等偏下.1.集合的概念、关系与运算(1)集合中元素的特性:确信性、互异性、无序性,求解含参数的集合问题时要依照互异性进行查验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2.(3)集合的运算:∁U(A∪B)=(∁U A)∩(∁U B),∁U(A∩B)=(∁U A)∪(∁U B),∁U(∁U A)=A.2.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,碰到复杂问题正面解决困难的,采纳转化为反面情形处置.3.充分条件与必要条件若p⇒q,那么p是q的充分条件,q是p的必要条件;假设p⇔q,那么p,q互为充要条件.4.简单的逻辑联结词用逻辑联结词“且”把命题p和命题q联结起来,就取得一个新命题,记作“p∧q”;用逻辑联结词“或”把命题p和命题q联结起来,就取得一个新命题,记作“p∨q”;对一个命题p通盘否定,就取得一个新命题,记作“綈p”.5.全称量词与存在量词“∀x∈M,p(x)”的否定为“∃x0∈M,綈p(x0)”;“∃x0∈M,p(x0)”的否定为“∀x∈M,綈p(x)”.考点一集合间的关系及运算例1(1)(2021·课标全国改编)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},那么B中所含元素的个数为________.(2)设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},那么图中阴影部份表示的集合为________.弄清“集合的代表元素”是解决集合问题的关键.答案(1)10 (2)(-∞,-1]∪(0,1)解析(1)∵B={(x,y)|x∈A,y∈A,x-y∈A},A={1,2,3,4,5},∴x=2,y=1;x=3,y=1,2;x=4,y=1,2,3;x=5,y=1,2,3,4.∴B={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)},∴B中所含元素的个数为10.(2)因为A={x|y=f(x)}={x|1-x2>0}={x|-1<x<1},那么u=1-x2∈(0,1],因此B={y|y=f(x)}={y|y≤0},A∪B=(-∞,1),A∩B=(-1,0],故图中阴影部份表示的集合为(-∞,-1]∪(0,1).(1)关于集合问题,抓住元素的特点是求解的关键,要注意集合中元素的三个特点的应用,要注意查验结果.(2)关于给出已知集合,进行交集、并集与补集运算时,能够直接依照它们的概念求解,也能够借助数轴、韦恩(Venn)图等图形工具,运用分类讨论、数形结合等思想方式,直观求解.(1)(2021·山东改编)已知集合A={0,1,2},那么集合B={x-y|x∈A,y∈A}中元素的个数是________.(2)设全集U=R,集合P={x|y=ln(1+x)},集合Q={y|y=x},那么右图中的阴影部份表示的集合为________.答案(1)5 (2){x|-1<x<0,x∈R}-2,-1,0,1,2,即B中元素有5个.解析(1)x-y∈{}(2)由1+x>0得x>-1,即P={x|x>-1};Q={y|y≥0},因此结合题意得,题中的阴影部份表示的集合是P∩(∁R Q)={x|-1<x<0,x∈R}.考点二四种命题与充要条件例2(1)已知a,b,c∈R,命题“假设a+b+c=3,那么a2+b2+c2≥3”的否命题是________________.(2)(2021·青岛模拟)设x,y∈R,那么“x2+y2≥9”是“x>3且y≥3”的________条件.(填“充要、充分没必要要、必要不充分、既不充分也没必要要”)(1)从“否命题”的形式入手,但要注意“否命题”与“命题的否定”的区别.(2)结合图形与性质,从充要条件的判定方式入手.答案(1)假设a+b+c≠3,那么a2+b2+c2<3(2)必要不充分解析 (1)命题的否命题是原命题的条件与结论别离否定后组成的命题,因此应填“a +b +c ≠3,那么a 2+b 2+c 2<3”.(2)如图:x 2+y 2≥9表示以原点为圆心,3为半径的圆上及圆外的点,当x 2+y 2≥9时,x >3且y ≥3并非必然成立,当x =2,y =3时,x 2+y 2≥9,但x >3且y ≥3不成立;而x >3且y ≥3时,x 2+y 2≥9必然成立,应填必要不充分条件.一个命题的否命题、逆命题、逆否命题是依照原命题适当变更条件和结论后取得的形式上的命题,解这种试题时要注意关于一些关键词的否定,如此题中等于的否定是不等于,而不是单纯的大于、也不是单纯的小于.进行充要条件判定事实上确实是判定两个命题的真假,那个地址要注意判定一个命题为真需要进行证明,判定一个命题为假只要举一个反例即可.(1)设x ∈R ,那么“x >12”是“2x 2+x -1>0”的________条件. (2)给出以下三个命题:①假设ab ≤0,那么a ≤0或b ≤0;②在△ABC 中,假设sin A =sin B ,那么A =B ;③在一元二次方程ax 2+bx +c =0中,假设b 2-4ac <0,那么方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是________.(填序号)答案 (1)充分没必要要 (2)②解析 (1)不等式2x 2+x -1>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >12或x <-1,故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12,故填充分没必要要条件. (2)在△ABC 中,由正弦定理得sin A =sin B ⇔a =b ⇔A =B .故填②.考点三 逻辑联结词、全称量词和存在量词例3 (1)命题“存在一个无理数,它的平方是有理数”的否定是________________.(2)假设命题“∃x ∈R ,使x 2+(a -1)x +1<0”是假命题,那么实数a 的取值范围是________.答案 (1)任意一个无理数,它的平方不是有理数(2)[-1,3]解析(1)通过否定原命题得出结论.原命题的否定是“任意一个无理数,它的平方不是有理数”.(2)方式一令f(x)=x2+(a-1)x+1,假设命题“∃x∈R,使得x2+(a-1)x+1<0”是真命题,那么由x2+(a-1)x+1<0有解可得Δ=(a-1)2-4=a2-2a-3>0,解得a∈(-∞,-1)∪(3,+∞),故所求实数a的取值范围为-1≤a≤3.方式二也可转化为:∀x∈R,x2+(a-1)x+1≥0恒成立,从而Δ≥0,解得-1≤a≤3.(1)全称命题(存在性命题)的否定是其全称量词改成存在量词(或存在量词改成全称量词),并把结论否定,而命题的否定那么直接否定结论.(2)假设利用某些条件直接判定或探求有困难时,往往能够将条件进行等价转化.假设是由命题的真假求某个参数的取值范围,还能够考虑从集合的角度来试探,将问题转化为集合间的运算.(1)以下命题中,真命题是________.(填序号)①∃m∈R,使函数f(x)=x2+mx(x∈R)是偶函数;②∃m∈R,使函数f(x)=x2+mx(x∈R)是奇函数;③∀m∈R,使函数f(x)=x2+mx(x∈R)都是偶函数;④∀m∈R,使函数f(x)=x2+mx(x∈R)都是奇函数.(2)已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x0∈R,x20+2ax0+2-a=0”.假设命题p、q均是真命题,那么实数a的取值范围是________.答案(1)①(2)a≤-2或a=1解析(1)关于①,当m=0时,f(x)=x2是偶函数,故①正确.当m=1时,f(x)=x2+x是非奇非偶函数,故③④错误;又y=x2是偶函数,那么f(x)=x2+mx不可能是奇函数,故②错误.(2)命题p为真时a≤1;“∃x0∈R,x20+2ax0+2-a=0”为真,即方程x2+2ax+2-a=0有实根,故Δ=4a2-4(2-a)≥0,解得a≥1或a≤-2.假设p、q均为真命题,那么a≤-2或a=1.1.解答有关集合问题,第一正确明白得集合的意义,准确地化简集合是关键;第二关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和韦恩图加以解决.2. 判定充要条件的方式,一是结合充要条件的概念;二是依照充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,依照集合之间的包括关系进行判定,在以否定形式给出的充要条件判定中能够利用命题的等价转化方式.3. 含有逻辑联结词的命题的真假是由其中的大体命题决定的,这种试题第一把其中的大体命题的真假判定准确,再依照逻辑联结词的含义进行判定.4. 一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与那个命题的否定是相互对立的、一真一假的.1. 已知集合A ={z ∈C |z =1-2a i ,a ∈R },B ={z ∈C ||z |=2},那么A ∩B =________.答案 {1+3i,1-3i} 解析 A ∩B 中的元素同时具有A ,B 的特点,问题等价于|1-2a i|=2,a ∈R ,解得a =±32. 故A ∩B ={1+3i,1-3i}.2. 以下命题中,正确命题的个数是________.①假设命题p 为真命题,命题q 为假命题,那么命题“p ∧q ”为真命题;②“sin α=12”是“α=π6”的充分没必要要条件; ③l 为直线,α,β为两个不同的平面,假设l ⊥β,α⊥β,那么l ∥α;④命题“∀x ∈R,2x >0”的否定是“∃x 0∈R,2x 0≤0”.答案 1解析 对①,只有当p ,q 满是真命题时,p ∧q 为真;对②,sin α=12⇒α=2k π+π6或2k π+5π6,k ∈Z ,故“sin α=12”是“α=π6”的必要不充分条件;对③,l ⊥β,α⊥β⇒l ∥α或l ⊂α;对④,全称命题的否定是存在性命题.3. 已知函数f (x )=4sin 2⎝ ⎛⎭⎪⎫π4+x -23cos 2x -1,且给定条件p :x <π4或x >π2,x ∈R .假设条件q :-2<f (x )-m <2.且綈p 是q 的充分条件,求实数m 的取值范围.解 由条件q 可得⎩⎪⎨⎪⎧m >f x -2,m <f x +2.∵綈p 是q 的充分条件, ∴在π4≤x ≤π2的条件下,⎩⎪⎨⎪⎧ m >f x -2,m <f x +2恒成立.又f (x )=2⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫π2+2x -23cos 2x -1 =2sin 2x -23cos 2x +1 =4sin ⎝⎛⎭⎪⎫2x -π3+1. 由π4≤x ≤π2,知π6≤2x -π3≤2π3, ∴3≤4sin ⎝⎛⎭⎪⎫2x -π3+1≤5, 故当x =5π12时,f (x )max =5, 当x =π4时,f (x )min =3. ∴只需⎩⎪⎨⎪⎧m >5-2,m <3+2成立,即3<m <5. ∴m 的取值范围是3<m <5.(推荐时刻:40分钟)1. (2021·课标全国Ⅰ改编)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },那么A ∩B =________.答案 {1,4}解析 ∵x =n 2,n ∈A ,∴x =1,4,9,16.∴B ={1,4,9,16}.∴A ∩B ={1,4}.2. (2021·安徽改编)命题“存在实数x ,使x >1”的否定..是________. 答案 对任意实数x ,都有x ≤1解析 利用存在性命题的否定是全称命题求解.“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”.3. (2021·福建改编)已知集合A ={1,a },B ={1,2,3},那么“a =3”是“A ⊆B ”的________条件.答案 充分没必要要解析 a =3时A ={1,3},显然A ⊆B .但A ⊆B 时,a =2或3.4. (2021·湖北改编)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |12x ≤1,B ={}x |x 2-6x +8≤0,那么A ∩∁R B =________. 答案 {x |0≤x <2或x >4}解析 A ={x |x ≥0},B ={x |2≤x ≤4},∴A ∩∁R B ={x |x ≥0}∩{x |x >4或x <2}={x |0≤x <2或x >4}. 5. 设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},假设∁U A ={1,2},那么实数m =________.答案 -3解析 ∵∁U A ={1,2},∴A ={0,3},∴0,3是方程x 2+mx =0的两根,∴m =-3.6. (2021·天津)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),那么m=________,n =________.答案 -1 1解析 A ={x |-5<x <1},因为A ∩B ={x |-1<x <n },B ={x |(x -m )(x -2)<0},因此m =-1,n =1.7. 已知R 是实数集,M ={x |2x <1},N ={y |y =x -1+1},那么N ∩(∁R M )=________.答案 [1,2]解析 M ={x |2x<1}={x |x <0或x >2}, N ={y |y =x -1+1}={y |y ≥1},∁R M ={x |0≤x ≤2},∴N ∩(∁R M )={x |1≤x ≤2}=[1,2].8.设p:xx-2<0,q:0<x<m,假设p是q成立的充分没必要要条件,那么m的取值范围是__________.答案(2,+∞)解析p:0<x<2,假设p是q成立的充分没必要要条件,那么m>2.9.设A是整数集的一个非空子集,关于k∈A,若是k-1A,且k+1A,那么称k是A的一个“孤立元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素组成的所有集合中,不含“孤立元”的集合共有________个.答案6解析所求不含“孤立元”的集合中的元素必是持续三个整数,故有{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.10.(2021·陕西改编)设a,b为向量,那么“|a·b|=|a||b|”是“a∥b”的________条件.答案充要解析由|a||b||cos〈a,b〉|=|a||b|,那么有cos〈a,b〉=±1.即〈a,b〉=0或π,因此a∥b.由a∥b,得向量a与b同向或反向,因此〈a,b〉=0或π,因此|a·b|=|a||b|.11.已知集合A={1,2,3,4},B={2,4,6,8},概念集合A×B={(x,y)|x∈A,y∈B},那么集合A×B中属于集合{(x,y)|log x y∈N}的元素个数是________.答案4解析由给出的概念得A×B={(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8)}.其中log22=1,log24=2,log28=3,log44=1,因此一共有4个元素.12.已知p:∃x∈R,mx2+2≤0,q:∀x∈R,x2-2mx+1>0,假设p∨q为假命题,那么实数m的取值范围是________.答案[1,+∞)解析∵p∨q为假命题,∴p和q都是假命题.由p:∃x∈R,mx2+2≤0为假命题,得綈p:∀x∈R,mx2+2>0为真命题,∴m≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题,得綈q :∃x ∈R ,x 2-2mx +1≤0为真命题,∴Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.② 由①和②得m ≥1.13.给出以下命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立;②假设log 2x +log x 2≥2,那么x >1;③“假设a >b >0且c <0,那么c a >c b”的逆否命题; ④假设p 且q 为假命题,那么p ,q 均为假命题.其中真命题是________.(填序号)答案 ①②③解析 ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变成log 2x +1log 2x ≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,因此原命题是真命题,那么它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一个为假,④不正确.14.给出以下四个命题:①命题“假设α=β,那么cos α=cos β”的逆否命题;②“∃x 0∈R ,使得x 20-x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分没必要要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题.其中真命题的序号是________.(填写所有真命题的序号)答案 ①④解析 对①,因为命题“假设α=β,那么cos α=cos β”为真命题,因此其逆否命题亦为真命题,①正确;对②,命题“∃x 0∈R ,使得x 20-x 0>0”的否定应是:“∀x ∈R ,均有x 2-x ≤0”,故②错;对③,因为由“x 2=4”得“x =±2”,由“x =-2”得“x 2=4”,因此“x 2=4”是“x =-2”的必要不充分条件,故③错;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④正确.15.关于集合M 、N ,概念:M -N ={x |x ∈M 且xD ∈/N },M N =(M -N )∪(N -M ).设A ={y |y =x 2-3x ,x ∈R },B ={x |y =log 2(-x )},那么A B =________.答案 (-∞,-94)∪[0,+∞) 解析 A ={y |y ≥-94},B ={x |x <0},A -B ={x |x ≥0},B -A ={x |x <-94}, 则A B =(A -B )∪(B -A )=(-∞,-94)∪[0,+∞). 16.设平面点集A =⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪ y -x ⎝ ⎛⎭⎪⎫y -1x ≥0,B ={(x ,y )|(x -1)2+(y -1)2≤1},那么A ∩B 所表示的平面图形的面积为________.答案 π2 解析 由题意知A ∩B 所表示的平面图形为图中阴影部份,曲线y =1x与直线y =x 将圆(x -1)2+(y -1)2=1分成S 1,S 2,S 3, S 4四部份.∵圆(x -1)2+(y -1)2=1与y =1x的图象都关于直线y =x 对称, 从而S 1=S 2,S 3=S 4,而S 1+S 2+S 3+S 4=π,∴S 阴影=S 2+S 4=π2.。
2021高考数学(理)二轮复习疯狂专练《1 集合与常用逻辑用语》含答案
1,若
p
是
q
的充分不必要条件,则实数
k
的取值范围是(
)
A.[2, )
B. (2, )
C.[1, )
D. (, 1)
6.已知集合 A {x x 2 1} ,且 A B ,则集合 B 可能是( )
A. {2, 5}
B.{x x2 1}
C. (1, 2)
D. (, 1)
7.不等式 x2 2x m 0 在 R 上恒成立的必要不充分条件是( )
p2 : x0 (0,1) , log 1 x0 log1 x0
2
3
p3
: x (0, )
,
(
1 2
)
x
log 1
2
x
p4
:
x
(0,
1) 3
,
(1)x 2
log 1
3
x
其中真命题是( )
A. p1 , p3
B. p1 , p4
C.[ 3 ,) 4
C. p2 , p3
D. (1, ) D. p2 , p4
解集为 A B ,则 a b ( )
A. 3
B.1
C. 1
D. 3
10.已知命题 p : x0 R , x0 2 lg x0 ,命题 q : x R , ex 1 ,则( )
A.命题 p q 是假命题
B.命题 p q 是真命题
C.命题 p (q) 是真命题
D.命题 p (q) 是假命题
6.【答案】D
【解析】集合 A [1, 3] ,由 A B ,得 B (, 1) (3, ) ,应选 D.
7.【答案】C
【解析】当不等式 x2 2x m 0 在 R 上恒成立时, Δ 4 4m 0 ,解得 m 1, 故 m 1是不等式恒成立的充要条件; m 2 是不等式成立的充分不必要条件;
2021年高考数学三轮冲刺训练 集合与常用逻辑用语
C.{−2,−1,0,3}D.{−2,−1,0,2,3}
【答案】A
【解析】由题意可得 ,则 .
故选A
3、已知集合 , ,则 中元素的个数为
A.2B.3ຫໍສະໝຸດ C.4D.6【答案】C【解析】由题意, 中的元素满足 ,且 ,
由 ,得 ,
所以满足 的有 ,
故 中元素的个数为4.
据此可知: 是 的充分不必要条件.
故选A.
7、设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=
A.{x|2<x≤3}B.{x|2≤x≤3}
C.{x|1≤x<4}D.{x|1<x<4}
【答案】C
【解析】 .
故选C
8、已知集合P= ,Q= ,则P Q=
A. B.
C. D.
【答案】B
【解析】】 .
(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁UA,即∁UA={x|x∈U,且x∉A}.
2、集合的运算性质
(1)A∩A=A,A∩∅=∅,A∩B=B∩A。
(2)A∪A=A,A∪∅=A,A∪B=B∪A。A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB
(3)A∩(∁UA)=∅,A∪(∁UA)=U,∁U(∁UA)=A。
(4)∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB)。
3、相关结论:
(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个。
(2)不含任何元素的集合.空集是任何集合A的子集,是任何非空集合B的真子集.记作∅.
综上所述,“ ”是“ ”的充分不必要条件.
2021届高考数学二轮复习 专题:集合与常用逻辑用语 考点梳理与训练学案
2021数学二轮复习集合与常用逻辑用语练习一、考纲要求1.集合(1)集合的含义与表示①了解集合的含义,体会元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.2.常用逻辑用语(1)理解命题的概念.(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的含义.(4)了解逻辑联结词“或”“且”“非”的含义.(5)理解全称量词和存在量词的意义.(6)能正确地对含一个量词的命题进行否定二、习题训练与方法归纳1.1集合及其运算1.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A .9B .8C .5D .42.设全集U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合为( )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}3.四书五经”是中国传统文化瑰宝,是儒家思想的核心载体,其中“四书”指《大学》《中庸》《论语》《孟子》.某大学为了解本校学生阅读“四书”的情况,随机调查200位学生,其中阅读过《大学》的有60位,阅读过《论语》的有160位,阅读过《大学》或《论语》的有180位,阅读过《大学》且阅读过《论语》及《中庸》的有20位.则该校阅读过《大学》及《论语》但未阅读过《中庸》的学生人数与该校学生总数比值的估计值是( )A .0.1B .0.2C .0.3D .0.44.已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b ,0},则a 2 021+b 2 021=________. 5.设集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =3x },则A ∩B 的子集的个数是________.6.若集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2;②b =2;③c ≠0有且只有一个是正确的,则100a +10b +c 等于________.方法总结:1.首先要弄清构成集合的元素是什么,如是数集还是点集,要明了集合{x |y =f (x )},{y |y =f (x )},{(x ,y )|y =f (x )}三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助韦恩(Venn)图实施;对连续的数集间的运算,常利用数轴进行;对点集间的运算,则往往通过坐标平面内的图形求解.这些在本质上都是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何集合的子集.5.五个关系式A ⊆B ,A ∩B =A ,A ∪B =B ,∁U B ⊆∁U A 以及A ∩(∁U B )=∅是两两等价的.对这五个式子的等价转换,常使较复杂的集合运算变得简单.6.正难则反原则对于一些比较复杂,比较抽象,条件和结论不明确,难以从正面入手的涉及集合的数学问题,在解题时要调整思路,考虑问题的反面,探求已知与未知的关系,化难为易,化隐为显,从而解决问题.例如:已知A ={x |x 2+x +a ≤0},B ={x |x 2-x +2a -1<0},C ={x |a ≤x ≤4a -9},且A ,B ,C 中至少有一个不是空集,求a 的取值范围.这个问题的反面即是三个集合全为空集,即⎩⎪⎨⎪⎧1-4a <0,1-4(2a -1)≤0,a >4a -9,解得58≤a <3,从而所求a 的取值范围为⎩⎨⎧⎭⎬⎫a|a <58或a ≥3. 1.2命题及其关系、充分条件与必要条件1.a >0,b >0,则“a +b ≤4”是 “ab ≤4”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.列四个命题中,其中所有假命题的序号是( )①命题“若m +n >2t ,则m >t 且n >t ”的逆命题;②命题“相似三角形的面积相等”的否命题; ③命题“末位数字不为零的整数能被3整除”的逆否命题;④命题“若c >1,则方程x 2-2x +c =0没有实数根”的否命题.A .②③B .①④C .①②D .③④3.等比数列{a n }中,a 1>0,则“a 1<a 4”是“a 3<a 5”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要而不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12B.⎝⎛⎭⎫0,12 C .(-∞,0]∪⎣⎡⎭⎫12,+∞ D .(-∞,0)∪⎝⎛⎭⎫12,+∞ 5.已知集合A =⎩⎨⎧⎭⎬⎫x ∈R|12<2x <8,B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是( )A .{m |m ≥2}B .{m |m ≤2}C .{m |m >2}D .{m |-2<m <2}6.“0<m <2”是“方程x 2m +y 22-m=1表示椭圆”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件7.命题“f(x),g(x)是定义在R上的函数,h(x)=f(x)·g(x),若f(x),g(x)均为奇函数,则h(x)为偶函数”的逆命题、否命题、逆否命题中真命题的个数是( )A.0 B.1 C.2 D.38.设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件方法总结:1.命题及其真假判断(1)判断一个语句是否为命题,就是要看它是否具备“是陈述句”和“可以判断真假”这两个条件.只有这两个条件都具备的语句才是命题.(2)判断一个命题的真假,首先要分清命题的条件和结论.对涉及数学概念的命题真假的判断,要以数学定义、定理为依据(数学定义、定理都是命题,且都是真命题),从概念的本身入手进行判断.2.四种命题间的相互关系及应用(1)在判断四种命题之间的关系时,首先要注意分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地有了它的“逆命题”“否命题”“逆否命题”.(2)当一个命题有大前提而要写其他三种命题时,必须保留大前提,也就是大前提不动;对于由多个并列条件组成的命题,在写其他三种命题时,应把其中一个(或几个)作为大前提.(3)判断命题的真假,如果不易直接判断,可正难则反,应用互为逆否命题的等价性来判断.3.“否命题”与“命题的否定”的区别“否命题”与“命题的否定”是两个不同的概念,“否命题”是对原命题既否定其条件,又否定其结论,而“命题的否定”只否定命题的结论.4.充要条件的三种判断方法(1)定义法:分三步进行,第一步,分清条件与结论;第二步,判断p⇒q及q⇒p的真假;第三步,下结论.(2)等价转化法:将命题转化为另一个等价且容易判断真假的命题.一般地,这类问题由几个充分必要条件混杂在一起,可以画出关系图,运用逻辑推理判断真假.(3)集合法:写出集合A ={x |p (x )}及B ={x |q (x )},利用集合之间的包含关系加以判断:①若A ⊆B ,则p 是q 的充分条件;②若A B ,则p 是q 的充分不必要条件;③若B ⊆A ,则p 是q 的必要条件;④若B A ,则p 是q 的必要不充分条件;⑤若A =B ,则p 是q 的充要条件;⑥若A B 且B A ,则p 是q 的既不充分也不必要条件.1.3简单的逻辑联结词、全称量词与存在量词1.若“∀x ∈⎣⎡⎦⎤0,π6,2sin x ≤m ”是真命题,则实数m 的最小值为________. 2.命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( )A .p ∨qB .p ∧qC .qD .p3.给定下列命题:p 1:函数y =a x +x (a >0,且a ≠1)在R 上为增函数;p 2:∃a ,b ∈R ,a 2-ab +b 2<0;p 3:cos α=cos β成立的一个充分不必要条件是α=2k π+β(k ∈Z ).则下列命题中的真命题为( )A .p 1∨p 2B .p 2∧p 3C .p 1∨(p 3)D .(p 2)∧p 34.已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若“p 或q ”是真命题,“p 且q ”是假命题,则实数a 的取值范围是( )A .(-12,-4]∪[4,+∞)B .[-12,-4]∪[4,+∞)C .(-∞,-12)∪(-4,4)D .[-12,+∞)5.命题“∀x ∈R ,f (x )·g (x )≠0”的否定是( )A .∀x ∈R ,f (x )=0且g (x )=0B .∀x ∈R ,f (x )=0或g (x )=0C .∃x 0∈R ,f (x 0)=0且g (x 0)=0D .∃x 0∈R ,f (x 0)=0或g (x 0)=06.已知命题p :∃x 0∈(0,+∞),x 0>x 20;命题q :∀x ∈⎝⎛⎭⎫12,+∞,2x +21-x >2 2.则下列命题中为真命题的是( )A .qB .p ∧(q )C .p ∧qD .(p )∨(q )7.下列命题中的假命题是( )A .∀x ∈R ,x 2+x +1>0B .存在四边相等的四边形不是正方形C .“存在实数x ,使x >1”的否定是“不存在实数x ,使x ≤1”D .若x ,y ∈R 且x +y >2,则x ,y 中至少有一个大于18.已知f (x )=ln(x 2+1),g(x )=⎝⎛⎭⎫12x-m ,若∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g(x 2),则实数m 的取值范围是________.方法总结:1.含有逻辑联结词命题真假的判断判断一个含有逻辑联结词命题的真假,应先对该命题进行分解,判断出构成它的简单命题的真假,再根据真值表进行判断.2.全称命题与特称命题真假的判断(1)要判断全称命题是真命题,需要对集合M 中每个元素x ,证明p (x )成立;如果在集合M 中找到一个元素x 0,使得p (x 0)不成立,那么这个全称命题就是假命题.(2)要判定一个特称命题是真命题,只要在限定的集合M 中,至少能找一个x =x 0,使p (x 0)成立即可;否则,这一特称命题就是假命题.3.在有些命题中,逻辑联结词“或”“且”“非”是以另一种形式出现的.如“x =±1”中含逻辑联结词“或”,“≥”表示“大于或等于”;“ ”表示“平行且等于”,“并且”的含义为“且”;“∉”表示“不属于”,“不是”的含义为“非”等.4.一些常用的正面叙述的词语及它们的否定词语表否定词语 至少有两个 一个也没有 某个 某些 不一定答案1.11.解法一:集合A ={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)},共9个元素.解法二:A 表示由圆x 2+y 2=3内部及边界上所有整数点构成的集合.如图,则圆内部共有9个满足题意的点.故选A.2.由韦恩图知阴影部分表示的是A ∩(∁U B ).因为A ={x |x 2-x -2<0}={x |-1<x <2},B ={x |y =ln (1-x )}={x |x <1},所以∁U B ={x |x ≥1},所以A ∩(∁U B )={x |1≤x <2}.所以阴影部分对应的集合是{x |1≤x <2}.故选B.3.如图,阅读过《大学》且阅读过《论语》的人数是160+60-180=40,40-20=20,故由样本估计总体,可得所求为20200=0.1.故选A. 4.由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,解得a =1或a =-1.根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2021+b 2 021=(-1)2 021+02 021=-1.故填-1.5.因为指数函数y =3x 的图象与圆x 2+y 2=1有两个交点,则A ∩B 中含有2个元素,所以A ∩B 有22=4个子集.故填4.6.可分下列三种情形:若只有①正确,则a ≠2,b ≠2,c =0,所以a =b =1,这与集合中元素的互异性矛盾,所以只有①正确是不可能的;若只有②正确,则b =2,a =2,c =0,这与集合中元素的互异性矛盾,所以只有②正确是不可能的;若只有③正确,则c ≠0,a =2,b ≠2,所以b =0,c =1,所以100a +10b +c =100×2+10×0+1=201.故填201 1.21.当a >0, b >0时,a +b ≥2ab ,则当a +b ≤4时,有2ab ≤a +b ≤4,解得ab ≤4,充分性成立; 当a =1, b =4时,满足ab ≤4,但此时a +b =5>4,必要性不成立.综上所述,“a +b ≤4”是“ab ≤4”的充分不必要条件.故选A.2.因为①中所给命题的逆命题“若m >t 且n >t ,则m +n >2t ”成立,所以①为真命题。
2021届高考数学二轮专题复习:集合与常用逻辑用语精品课件(73张PPT)
• 1.集合运算中的常用方法 • (1)数轴法:若已知的集合是不等式的解集,用数轴法求解. • (2)图象法:若已知的集合是点集,用图象法求解. • (3)Venn图法:若已知的集合是抽象集合,用Venn图法求解.
2021届高考数学二轮专题复习第2讲: 集合与常用逻辑用语课件(共73张PPT )
2021届高考数学二轮专题复习第2讲: 集合与常用逻辑用语课件(共73张PPT )
• 1.(2020·青海省玉树州高三联考)已知集合M={-1,0,1},N=
{x|x=2a,a∈M},则集合M∪N=
()
• A.{-1,0,1}
B.∀x∈(2,+∞),x2-2x≤0
C.∃x0∈(2,+∞),x20-2x0≤0
D.∀x∈(-∞,2],x2-2x>0 【解析】 依题意,“∀x∈(2,+∞),x2-2x>0”的否定是:∃x0
∈(2,+∞),x20-2x0≤0,选 C.
• 2.(2020·吉林省重点中学联考)关于“a+b=4,则a,b至少有
为(4,0);命题 q:曲线 x2-4y2=1 的离心率为 25;则下列为真命题的是
( B)
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)
【解析】 命题 p 中,曲线方程可化为 y2=116x,其焦点坐标为(614, 0),所以 p 为假命题,¬p 为真命题;命题 q 中,曲线方程可化为 x2-y12=
a-2≤1, a+2≥3,
专题01 集合与常用逻辑用语(解析版)-2021年新高考数学最新模拟题分项汇编(第二期·2月)
专题01 集合与常用逻辑用语1.(海南省2021届高三第二次模拟)已知集合2{|670}A x x x =-->,则A =R( )A .{|17}x x -≤≤B .{|17}x x ≤≤C .{|1x x <-或7}x >D . {|1x x <或7}x >【答案】A【解析】因为集合{}2670{1A x x x xx =-->=<-∣或7}x >, 所以A =R{|17}x x -≤≤.故选:A2.(湖北省2021年高三联合测评)设集合{}220A x x x =--<, {|1}B x x =≤, 则A B =( )A .{|11}x x -<<B .{|11}x x -<≤C .{|11}x x -≤<D .{|11}x x -≤≤【答案】B【解析】{}()(){}{}22021012A x x x x x x x x =--<=-+<=-<<,{}{|1}11B x x x x =≤=-≤≤.所以A B ={|11}x x -<≤.故选:B3.(湖北省黄冈市2021届高三联考)已知集合{}ln(1)M x y x ==-,{}220N x x x =->,则M N ⋂=( ) A .(0,)+∞ B .(2,)+∞C .(0,1)D .(1,2)【答案】D【解析】(1,)M =+∞,(0,2)N =,(1,2)MN ∴=,故选:D4.(湖北省荆州市2021届高三质检)设函数2()log f x x x m =+-,则“函数()f x 在1,22⎛⎫⎪⎝⎭上存在零点”是“(1,4)m ∈-”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由题得f (12)f (2)1()(3)02m m =---<,解得132m -<<,设1(,3)2A =-,(1,4)B =-, 显然AB ,5.(湖北省荆州市2021届高三质检)设全集{7}U x Nx =∈<∣,集合{1,4,6}A =,集合{2,3,4,5}B =,则集合()U A B ⋂=( ) A .{}3 B .{}1,6 C .{}2,4,5 D .()1,3,6【答案】B【解析】由题意{0,1,2,3,4,5,6}U =,所以{0,1,6}UB =,{1,6}UAB =.故选:B .6.(湖南省永州市2021届高三联考)已知集合{|lg(1)}A x y x ==+,2{|40}B x x x =+≤,则AB =( ) A .[4,)-+∞ B .[4,1)--C .(1,0]-D .[4,0)-【答案】C【解析】由240x x +≤得40x -≤≤,[]4,0B =-, 又因为(1,)A =-+∞,所以(1,0]A B =-.故选:C.7.(湖南省长沙市一中2021届高三模拟)已知全集U =R 集合A xy⎧==⎨⎩∣,{1}B yy ==∣,那么()UA B =( )A .∅B .()0,1C .(),0-∞D .(),1-∞【答案】C【解析】因为全集U =R ,集合{0}A xx =<∣,{1}B y y =≥∣, 所以{1}UB y y =<∣,所以()(,0)UA B =-∞.故选:C8.(江苏省常州市2021届四校联考)已知集合{}2,1,0,1,2A =--,{}21,B y y x x A ==+∈,则AB =( ) A .∅ B .{}1,2C .2,0,2D .{}2,1,1,2--【答案】D【解析】因为集合{}2,1,0,1,2A =--, 所以{}5,2,1,1,2,5B =---, 所以A B ={}2,1,1,2--故选:D9.(江苏省南京市二十九中2021届高三模拟)已知集合{}12M x x =-≤≤,{}2xN y y ==,则M N =( ) A .()0,2 B .(]0,2C .[]0,2D .[)2,+∞【答案】B【解析】{}12M x x =-≤≤[1,2]=-,{}2xN y y ==(0,)=+∞,MN =(]0,2.故选:B10.(江苏省宿迁中学2021届高三模拟){}{}22(,)1,(,),A x y x y B x y x y a A B =+≤=+≤⊆∣,则a 的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .[1,)+∞C .)+∞D .[2,)+∞【答案】C【解析】集合A 为圆221x y +=内部或圆周 上的点集,B 为直线x y a +=,x y a -=,x y a -+=,x a y +=-围成的正方形,画出图象,如图所示,当直线AB 与圆O 相切时,设切点为C ,连接OC ,AOB 为等腰直角三角形,OA OB =,90AOB ∠=︒,OC AB ⊥,OC ∴为Rt AOB △斜边上的中线,12OC AB ∴=,即22AB OC ==, 22OA OB AB ∴===, 此时2a =,因为圆在正方形内,所以2a ≥,故答案为:[2,)+∞11.(2021届江苏省新海高级中学高三模拟)在ABC 中,“A B >”是“sin sin A B >”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】A【解析】因为A B >a b ⇒>,再由正弦定理可知:sin sin A B >,所以sin sin A B A B >⇒>; 因为sin sin A B >,根据正弦定理可知a b >,又a b A B >⇒>,所以sin sin A A B B >⇒>, 所以“A B >”是“sin sin A B >”的充要条件,故选A 。
2021高考数学考点突破——集合与常用逻辑用语集合学案
2021高考数学考点突破——集合与常用逻辑用语集合学案【考点梳理】1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、Venn图法.2.集合间的差不多关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,但集合B中至少有一个元素不属于集合A,则A⊂≠B或B⊃≠A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的差不多运算并集交集补集图形表示符号表示A∪B A∩B ∁U A意义{x|x∈A或x∈B} {x|x∈A且x∈B}{x|x∈U且x∉A} 4.(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).【考点突破】考点一、集合的差不多概念【例1】(1)已知集合M={1,2},N={3,4,5},P={x|x=a+b,a∈M,b∈N},则集合P 的元素个数为( )A.3 B.4C.5 D.6(2)若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=( )A .92B .98C .0D .0或98[答案] (1) B (2) D[解析] (1) 因为a ∈M ,b ∈N ,因此a =1或2,b =3或4或5.当a =1时,若b =3,则x =4;若b =4,则x =5;若b =5,则x =6.同理,当a =2时,若b =3,则x =5;若b =4,则x =6;若b =5,则x =7,由集合中元素的特性知P ={4,5,6,7},则P 中的元素共有4个.(2)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根. 当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,因此a 的取值为0或98.【类题通法】与集合中的元素有关的解题策略(1)确定集合中的代表元素是什么,即集合是数集依旧点集. (2)看这些元素满足什么限制条件.(3)依照限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.【对点训练】1. 已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0[答案] B[解析] 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,因此A ∩B 中元素的个数为2.2. 已知集合A ={x ∈R|ax 2+3x -2=0},若A =∅,则实数a 的取值范畴为________. [答案] ⎝⎛⎭⎪⎫-∞,-98[解析] ∵A =∅,∴方程ax 2+3x -2=0无实根,当a =0时,x =23不合题意;当a ≠0时,Δ=9+8a <0,∴a <-98,故实数a 的取值范畴为⎝⎛⎭⎪⎫-∞,-98. 考点二、集合间的差不多关系【例2】(1) 已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N},则( ) A .B ⊆A B .A =B C .A ⊂≠BD .B ⊂≠A(2) 已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范畴为________. [答案] (1) C (2) (-∞,1][解析] (1) 由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},比较A ,B 中的元素可知A ⊂≠B ,故选C.(2)当m ≤0时,B =∅,明显B ⊆A . 当m >0时,∵A ={x |-1<x <3}.当B ⊆A 时,在数轴上标出两集合,如图,∴⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .,∴0<m ≤1.综上所述,m 的取值范畴为(-∞,1]. 【类题通法】1. 判定集合间关系的3种方法 列举法依照题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.结构法从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判定.数轴法在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.化简要分类若参数在元素的性质特点之中,多以一次不等式或二次不等式的形式显现,现在要对其进行合理分类,分类的要紧依据确实是参数对该不等式的对应方程的解的阻碍.分类的要紧层次为:①最高次幂系数是否为0;②方程是否有解;③解之间的大小关系.关系要分类已知两个集合之间的关系求参数的取值,要注意对集合是否为空集进行分类讨论,因为∅是任意一个集合的子集.“端点”要取舍利用集合之间的子集关系确定参数所满足的条件,实际上确实是比较两个区间端点值的大小关系,因此集合对应区间的端点的取舍对两个集合之间的关系有制约作用,这也是区分子集与真子集的关键.如已知A=(1,3],B=[a,b](a<b),若B⊆A,则⎩⎪⎨⎪⎧a>1,b≤3;若A⊆B,则⎩⎪⎨⎪⎧a≤1,b≥31.设集合A={x|-x2-x+2<0},B={x|2x-5>0},则集合A与B的关系是( )A.B⊆A B.B⊇AC.B∈A D.A∈B[答案] A[解析] 因为A={x|-x2-x+2<0}={x|x>1或x<-2},B={x|2x-5>0}=⎩⎨⎧⎭⎬⎫x⎪⎪⎪x>52.在数轴上标出集合A与集合B,如图所示,可知,B⊆A.2.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,则实数m的取值范畴是________.[答案] (-∞,4][解析] 当B=∅时,有m+1≥2m-1,则m≤2.当B≠∅时,若B⊆A,如图.则⎩⎪⎨⎪⎧m+1≥-2,2m-1≤7,m+1<2m-1,解得2<m≤4.综上,m的取值范畴为(-∞,4].考点三、集合的差不多运算【例3】(1)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为( ) A.1 B.2C.3 D.4(2)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=( )A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}(3) 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}(4)已知全集U=R,集合A={x|x2-3x-4>0},B={x|-2≤x≤2},则如图所示阴影部分所表示的集合为( )A.{x|-2≤x<4} B.{x|x≤2或x≥4}C.{x|-2≤x≤-1} D.{x|-1≤x≤2}[答案] (1) B (2) C (3) D (4) D[解析] (1)A,B两集合中有两个公共元素2,4,故选B.(2)因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},因此A∪B={0,1,2,3},故选C.(3) ∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},在数轴上表示如图.∴∁U(A∪B)={x|0<x<1},故选D.(4)依题意得A={x|x<-1或x>4},因此∁R A={x|-1≤x≤4},题中的阴影部分所表示的集合为(∁R A)∩B={x|-1≤x≤2},故选D.【类题通法】1.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.2.集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.【对点训练】3.(1) 设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( )A.{1,3} B.{3,5}C.{5,7} D.{1,7}(2) 设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( )A.(-1,1) B.(0,1)C.(-1,+∞) D.(0,+∞)(3) 设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=( )A.{2,6} B.{3,6}C.{1,3,4,5} D.{1,2,4,6}(4) 集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},则图中阴影部分所表示的集合是( )A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤1}[答案] (1) B (2) C (3) A (4) B[解析] (1)因为A={1,3,5,7},而3,5∈A且3,5∈B,因此A∩B={3,5}.(2) 由y=2x,x∈R,知y>0,则A=(0,+∞).又B={x|x2-1<0}=(-1,1).因此A∪B=(-1,+∞).(3) ∵A={1,3,5},B={3,4,5},∴A∪B={1,3,4,5},又全集U={1,2,3,4,5,6},因此∁U(A∪B)={2,6}.(4) 易知A=(-1,2),B=(-∞,1),∴∁U B=[1,+∞),A∩(∁U B)=[1,2).因此阴影部分表示的集合为A∩(∁U B)={x|1≤x<2}.。
2021届高考数学二轮复习专题讲义全程跟踪 专题一 集合与常用逻辑用语
专题一集合与常用逻辑用语(一) 知识体系的构建 (二) 考点解读(三) 核心知识整合 考点1:集合的概念及运算 1. 集合的运算性质及重要结论(1)集合元素的特性:确定性、互异性、无序性. (2)集合与集合之间的关系:A ⊆B ,B ⊆C ⇒A ⊆C . (3)空集是任何集合的子集.(4)含有n 个元素的集合的子集有2n个,真子集有21n-个,非空真子集有22n-个.(5)a .,,A A A A A A B B A ∅⋃=⋃=⋃=⋃; b .,,A A A A A B B A ∅∅⋂=⋂=⋂=⋂; c .()(),U U A C A A C A U ∅⋂=⋃=;d .,A B A A B A B A B A ⋂=⇔⊆⋃=⇔⊆. 2.集合运算中的常用方法(1)数轴法:若已知的集合是不等式的解集,用数轴法求解. (2)图象法:若已知的集合是点集,用图象法求解. (3)V enn 图法:若已知的集合是抽象集合,用Venn 图法求解. [典型例题]1.已知全集U =R ,集合A ={x |x <-2或x >2},则∁U A =( ) A .(-2,2) B .(-∞,-2)∪(2,+∞) C .[-2,2] D .(-∞,-2]∪[2,+∞)[答案]:C[解析] ∵A ={x |x <-2或x >2},全集U =R ,∴∁U A ={x |-2≤x ≤2},故选C . 2.已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( ) A .1B .2C .3D .4[答案]:B[解析] A ∩B ={1,2,3,4}∩{2,4,6,8}={2,4},∴A ∩B 中共有2个元素,故选B . 3.已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3B .2C .1D .0[答案]:B[解析] 集合A 表示以原点O 为圆心,半径为1的圆上的所有点的集合,集合B 表示直线y =x 上的所有点的集合.结合图形可知,直线与圆有两个交点,所以A ∩B 中元素的个数为2.故选B . 『规律总结』先正确理解各个集合的含义,弄清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解,一般的策略为: ①若给定的集合是不等式的解集,用数轴求解. ②若给定的集合是点集,用图象法求解. ③若给定的集合是抽象集合,常用Venn 图求解.提醒:莫忽视集合的讨论,若遇到A ⊆B ,A ∩B =A 时,要考虑A 为空集的可能性. [跟踪训练]1.已知集合U =R ,A ={x |x ≤1},B ={x |x ≥2},则集合∁U (A ∪B )=( ) A .{x |1<x <2} B .{x |1≤x ≤2}C .{x |x ≤2}D .{x |x ≥1} [答案]:A[解析] A ∪B ={x |x ≤1}∪{x |x ≥2}={x |x ≤1或x ≥2},所以∁U (A ∪B )={x |1<x <2}.故选A . 2.设集合{}(2),21x x U A x -==<R ,{ln(1)}B x y x ==-,则图中阴影部分表示的集合为()A.{1}x xB.{12}x x <C.{01}x x <{}D.1x x[答案]:B[解析]易知{}(2)21{(2)0}{02}x x A x x x x x x -=<=-<=<<∣∣∣,{ln(1)}{0}{1}B x y x x x x x ==-=->=<∣1∣,则{1}U C B x x =≥∣,阴影部分表示的集合是(){12}U A C B xx ⋂=≤<∣.故选B . 3.已知M ={a ||a |≥2},A ={a |(a -2)(a 2-3)=0,a ∈M },则集合A 的子集共有( ) A .1个 B .2个C .4个 D .8个[答案]:B[解析] |a |≥2⇒a ≥2或a ≤-2.又a ∈M ,(a -2)(a 2-3)=0⇒a =2或a =±(舍),即A 中只有一个元素2,故A 的子集只有2个.故选B . 考点2:命题及逻辑联结词 1.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 2.含逻辑联结词的命题的真假判断(1)命题“p q ∨”有真则真,其余为假;(2)命题“p q ∧”有假则假,其余为真; (3)¬p 和p 为真假对立的命题. 3.全(特)称命题及其否定(1)全称命题p :∀x ∈M ,p (x ).它的否定¬p :∃x 0∈M ,¬p (x 0); (2)特称命题p :∃x 0∈M ,p (x ).它的否定¬p :∀x ∈M ,¬p (x ); (3)命题p ∨q 的否定是(¬p )∧(¬q );命题p ∧q 的否定是(¬p )∨(¬q ). [典型例题] 1.给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >cb ”的逆否命题;④若p 且q 为假命题,则p ,q 均为假命题. 其中真命题的是( )A .①②③B .①②④C .①③④D .②③④ [答案]:A[解析]①中不等式可表示为(x -1)2+2>0恒成立;②中不等式可变为log 2x +21log x≥2,得x >1;③中由a >b >0,得1a <1b ,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p且q 为假只能得出p ,q 中至少有一个为假,④不正确.2.已知命题p :∀x >0,ln (x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( ) A .p ∧q B .p ∧(¬q )C .(¬p )∧q D .(¬p )∧(¬q ) [答案]:B[解析]∵x >0,∴x +1>1,∴ln (x +1)>ln 1=0.∴命题p 为真命题,∴¬p 为假命题.∵a >b ,取a =1,b =-2,而12=1,(-2)2=4,此时a 2<b 2,∴命题q 为假命题,∴¬q 为真命题.∴p ∧q 为假命题,p ∧(¬q )为真命题,(¬p )∧q 为假命题,(¬p )∧(¬q )为假命题.故选B . 3.若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为__________ [答案]:1[解析]若“∀x ∈⎣⎡⎦⎤0,π4,tanx ≤m ”是真命题,则m ≥f (x )max ,其中f (x )=tanx ,x ∈⎣⎡⎦⎤0,π4.∵函数f (x )=tanx ,x ∈⎣⎡⎦⎤0,π4的最大值为1,∴m ≥1,即m 的最小值为1. 『规律总结』(1)一般命题p 的真假由涉及的相关知识辨别.(2)四种命题真假的判断依据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无关.(3)形如p ∨q ,p ∧q ,¬p 命题的真假根据真值表判定. (4)全称命题与特称(存在性)命题真假的判定:①全称命题:要判定一个全称命题的真命题,必须对限定集合M 中的每一个元素x 验证p (x )成立,要判定其为假命题时,只需举出一个反例即可;②特称(存在性)命题:要判定一个特称(存在性)命题为真命题,只要在限定集合M 中至少能找到一个元素x 0,使得p (x 0)成立即可,否则,这一特称(存在性)命题就是假命题. 提醒:含有量词的命题的否定,需从两方面进行:一-是改写量词或量词符号;二是否定命题的结论,两者缺一不可. [跟踪训练]1.已知命题:0,1x p x e ∀≥≥或sin 1x ≤,则p ⌝为() A .0,1x x e ∃<<且sin 1x > B .0,1x x e ∃<≥或sin 1x ≤ C .0,1x x e ∃≥<且sin 1x > D .0,1x x e ∃≥<或sin 1x >[答案]:C[解析]命题为全称命题,则命题:0,1x p x e ∀≥≥或sin 1x ≤,则p ⌝为:0,1x x e ∃≥<且sin 1x >,故选C.2.已知命题:p “[]0,1,x x a e ∀∈≥”;命题:q “2,40x R x x a ∃∈++=”.若命题“p q ∧”是假命题,则实数a 的取值范围是() A.(4],-∞ B.(),1,)4(-∞⋃+∞ C.(),,()4e -∞⋃+∞ D.(1,)+∞[答案]:C[解析]当p 为真命题时,a e ≥;当q 为真命题时,240x x a +=+有解,则1640a ∆=-≥,4a ∴≤.∴“p q ∧”为真命题时,4e a ≤≤.“p q ∧”为假命题时,a e <或4a >,故选C.3.已知命题:,30x p x R ∀∈>,则p ⌝为()A.,30x x R ∃∈≤B.,30x x R ∀∈≤C.,30x x R ∃∈<D.,30x x R ∀∈<[答案]:A[解析]全称量词命题的否定是存在量词命题,所以:,30x p x R ⌝∃∈≤,故选A. 考点3:充分与必要条件的判断若p 、q 中所涉及的问题与变量有关,p 、q 中相应变量的取值集合分别记为A ,B , 那么有以下结论:[典型例题] 1.设θ∈R ,则“|θ-π12|<π12”是“sin θ<12”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 [答案]:A[解析]∵|θ-π12|<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A .2.设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件[解析]设数列的首项为a 1,则a 2n -1+a 2n =a 1q 2n -2+a 1q 2n -1=a 1q 2n -2(1+q )<0,即q <-1,故q <0是q <-1的必要而不充分条件.故选C .3.已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( )A .[2,+∞)B .[1,+∞)C .(2,+∞)D .(-∞,-1][答案]:A[解析]由3x +1<1,可得3x +1-1=-x +2x +1<0,所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2.故选A . 『规律总结』判定充分条件与必要条件的3种方法(1)定义法:正、反方向推,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q ,且q ⇒/ p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件):若A =B ,则是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.提醒:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ,而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A . [跟踪训练]1.设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件[答案]:B[解析]由3a >3b >3,知a >b >1,所以log 3a >log 3b>0,所以1log3a <1log3b,即log a 3<log b 3,所以“3a >3b >3”是“log a 3<log b 3”的充分条件;但是取a =13,b =3也满足log a 3<log b 3,不符合a>b>1.所以“3a >3b >3”是“log a 3<log b 3”的充分不必要条件.故选B . 2.设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件[解析]取a =-b ≠0,则|a |=|b |≠0,|a +b |=|0|=0,|a -b |=|2a |≠0,所以|a +b |≠|a -b|,故由|a|=|b|推不出|a +b |=|a -b|.由|a +b|=|a -b |,得|a +b |2=|a -b |2,整理得a ·b =0,所以a ⊥b ,不一定能得出|a |=|b |,故由|a +b |=|a -b |推不出|a |=|b |.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.故选D .3.已知2()3()p x m x m ->-:是2:340q x x +-<的必要不充分条件,则实数m 的取值范围为()[答案]:17m m -或[解析]p 对应的集合{}m 3A x x x m =<>+或,q 对应的集合{41}B xx =-<<∣,由p 是q 的必要不充分条件可知B A ≠⊂,134m m ∴+-或,17m m -即或.。
2021年高考数学一轮复习 专题突破训练 集合与常用逻辑用语 文
2021年高考数学一轮复习 专题突破训练 集合与常用逻辑用语 文一、集合1、(xx 年高考)设全集.若集合,,则 .2、(xx 年高考)已知互异的复数满足,集合,则( )(A) (B) (C) (D)3、(xx 年高考)设常数a ∈R ,集合A=,B=.若A ∪B=R ,则a 的取值范围为( B )(A )(-∞,2) (B )(-∞,2] (C )(2,+∞) (D )[2,+∞)4、(虹口区xx 届高三二模){}23,0,12,2x U R A x B x x x ⎧+⎫==>=-<⎨⎬-⎩⎭设全集已知(A ) (B ) (C ) (D )5、(黄浦区xx 届高三二模)已知集合{}{}2|160,R ,|3,R A x x x B x x a x =-≤∈=-≤∈,若,则正实数的取值范围是6、(普陀区xx 届高三一模)若集合A={x|lgx <1},B={y|y=sinx ,x ∈R},则A∩B= (0,1] .7、(徐汇、松江、金山区xx 届高三二模)已知集合,集合,则 .8、(长宁、嘉定区xx 届高三二模)已知集合,,则________9、已知全集,集合,则_____________.10、已知集合,若,则实数的值是____.二、常用逻辑用语1、(xx 年高考)设、,则“、均为实数”是“是实数”的( ).A. 充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件2、(xx 年高考)设,则“”是“且”的( )(A) 充分非必要条件(B) 必要非充分条件 (C) 充分必要条件 (D) 既非充分又非必要条件 3、(xx 年高考)钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的( A )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件4、(奉贤区xx 届高三二模)已知为各项都大于零的数列,则“”是“不是等比数列”的( )A.充分且必要条件 B.充分但非必要条件C.必要但非充分条件 D.既不充分也不必要条件5、(虹口区xx届高三二模)设则是“函数上单调递增”的 ( )(A)充要条件(B)既不充分也不必要条件(C)充分不必要条件(D)必要不充分条件6、(黄浦区xx届高三二模)设实数均不为0,则“成立”是“关于的不等式与的解集相同”的[答] ( ).A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件7、(浦东新区xx届高三二模)已知都是实数,那么“”是“”的( A )充分不必要条件必要不充分条件充分必要条件既不充分也不必要条件8、(普陀区xx届高三一模)“点M在曲线y2=4x上”是“点M的坐标满足方程2+y=0“的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件9、(徐汇、松江、金山区xx届高三二模)“”是“”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件10、(闸北区xx届高三一模)“a≠2”是“关于x,y的二元一次方程组有唯一解”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件11、(长宁、嘉定区xx届高三二模)在△中,“”是“”的……………………………………()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件参考答案一、集合1、【答案】【解析】因为,所以或,又因为,所以.2、解答:⑴若则(舍);⑵若则,那么(舍)或(舍)或或综合上述,.选D3、【答案】 B【解析】方法:代值法,排除法。