踏板精馏塔附录
塔板式精馏塔设计(图文表)
塔板式精馏塔设计(图文表)(一)设计方案的确定本设计任务为乙醇-水混合物。
设计条件为塔顶常压操作,对于二元混合物的分离,应采用连续精馏流程。
酒精精馏与化工精馏过程不同点就在于它不仅是一个将酒精浓缩的过程,而且还担负着把粗酒精中50多种挥发性杂质除去的任务,所以浓缩酒精和除去杂质的过程在酒精工业中称为精馏。
物料中的杂质基本上是在发酵过程中生成的,只是很少数的杂质是在蒸煮和蒸馏过程中生成的。
本次设计的精馏塔用板式塔,内部装有塔板、降液管、各种物料的进出口及附属结构(如全凝器等)。
此外,在塔板上有时还焊有保温材料的支撑圈,为了方便检修,在塔顶还装有可转动的吊柱。
塔板是板式塔的主要构件,本设计所用的塔板为筛板塔板。
筛板塔的突出优点是结构简单造价低,合理的设计和适当的操作能使筛板塔满足要求的操作弹性,而且效率高,并且采用筛板可解决堵塞问题,还能适当控制漏液。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。
塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。
该物系属不易分离物系,最小回流比较小,采用其1.5倍。
设计中采用图解法求理论塔板数,在溢流装置选择方面选择单溢流弓形降液管。
塔釜采用间接蒸汽加热,塔顶产品经冷却后送至储罐。
(二)精馏塔的物料衡算1.原料液及塔顶、塔底产品的摩尔分率乙醇的摩尔质量 M 乙醇=46kg/kmol纯水的摩尔质量 M 水 =18kg/kmolx F =18/65.046/35.046/35.0+=0.174x D =18/1.046/9.046/9.0+=0.779x W =46/995.018/005.018/005.0+=0.0022.原料液及塔顶、塔底产品的平均摩尔质量M F =0.174×46+18×(1-0.174)= 22.872 kg/kmol M D =0.779×46+18×(1-0.779)= 39.812 kg/kmol M W =0.002×46+18×(1-0.002)= 18.056 kg/kmol3.物料衡算 D=30024812.3948000000⨯⨯=167.454 kmol/hF=D+WF ·x F =D ·x D +W ·x W解得 F=756.464 kmol/h W=589.01 kmol/h{(三)塔板数的确定1.回流比的选择由任务书提供的乙醇-水物系的气液平衡数据绘出x-y 图;由于设计中选用泡点式进料,q=1,故在图中对角线上自点a(x D,x D)作垂线,与Y轴截距oa=x D/(R min+1)=0.415 即最小回流比R min=x D/oa-1=0.877取比例系数为1.5,故操作回流比R为R=1.5×0.877=1.3162.精馏塔的气液相负荷的计算L=RD=1.316×167.454=220.369 kmol/hV=L+D=(R+1)D=2.316×167.454=387.823 kmol/h L ’=L+qF=220.369+756.464=976.833 kmol/h V ’=V+(q-1)F=V=387.823 kmol/h3.操作线方程精馏段操作线方程为 y=1+R R x+11+R x D =1316.1316.1+x+11.3161+×0.779即:y=0.568x+0.336提馏段操作线方程为y=F q D R qF RD )1()1(--++x-F q D R DF )1()1(--+-x W=1.316*167.454+1*756.464(1.316+1)*167.454x-756.464167.454(1.3161)*167.454-+×0.002 即:y=2.519x-0.0034.采用图解法求理论塔板数塔顶操作压力P D=101.3 KPa单板压降△P=0.7 kPa进料板压力P F=0.7×18+101.3=113.9 kPa塔底操作压力P W=101.3+0.7×26=119.5 kPa精馏段平均压力P m=(101.3+113.9)/2=107.6 kPa 压力P m=(113.9+119.5)/2=116.7 kPa2.操作温度计算计算全塔效率时已知塔顶温度t D=78.43 o C进料板温度 t F=83.75 o C塔底温度t W=99.53 o C精馏段平均温度t m=(t D+t F)/2=(78.43+83.75)/2=81.09 o C提馏段平均温度t m=(t W+t F)/2=(99.53+83.75)/2=91.64 o C3.平均摩尔质量计算塔顶平均摩尔质量计算由x D=y1=0.779 查上图可得x1=0.741M VDm=0.779×46+(1-0.779)×18=39.812 g/molM LDm=0.741×46+(1-0.741)×18=38.748 g/mol进料板平均摩尔质量计算 t f=83.74 o C由y F=0.518 查上图可得x F=0.183M VFm =0.518×46+(1-0.518)×18=32.504 g/mol M LFm =0.183×46+(1-0.183)×18=23.124 g/mol 精馏平均摩尔质量M Vm =( M VDm + M VFm )/2=36.158 g/molM Lm =( M LDm + M LFm )/2=30.936 g/mol4.平均密度计算气相平均密度计算由理想气体状态方程计算,即ρVm =RT PMv =)15.27309.81(314.8158.366.107+⨯⨯=1.321 kg/m 3 液相平均密度计算液相平均密度依1/ρLm =∑αi /ρi 计算 塔顶液相平均密度计算t D =78.43 o C 时 ρ乙醇=740 kg/m 3 ρ水=972.742 kg/m 3ρLDm =)742.972/1.0740/9.0(1+=758.14 kg/m 3进料板液相平均密度计算t F =83.75 o C 时 ρ乙醇=735 kg/m 3 ρ水=969.363 kg/m 3ρLFm =)363.969/636.0735/364.0(1+=868.554 kg/m 3塔底液相平均密度计算t W =99.53 o C 时 ρ乙醇=720 kg/m 3 ρ水=958.724 kg/m 3ρLWm =)724.958/995.0720/005.0(1 =957.137 kg/m 3精馏段液相平均密度计算ρLm =(ρLFm +ρLDm )/2=(758.14+868.554)/2=813.347 kg/m 3提馏段液相平均密度计算ρLm =(ρLFm +ρLWm )/2=(957.137+868.554)/2=912.846 kg/m 35.液体平均表面张力计算液体平均表面张力依σLm =∑x i σi 计算塔顶液相平均表面张力计算t D =78.43时 σ乙醇=62.866 mN/m σ水=17.8 mN/m σLDm =0.779×17.8+0.221×62.886=84.446 mN/m 进料板液相平均表面张力计算t F =83.75时 σ乙醇=61.889 mN/m σ水=17.3 mN/m σLFm =0.183×17.3+0.817×61.889=53.729 mN/m 塔底液相平均表面张力计算t W =99.53时 σ乙醇=58.947 mN/m σ水=15.9 mN/m σLWm =0.005×15.9+0.995×58.947=58.732 mN/m 精馏段液相平均表面张力计算σLm =(84.446+53.729)/2=69.088 mN/m 提馏段液相平均表面张力计算σLm =(58.732+53.729)/2=56.231 mN/m6.液体平均粘度计算液体平均粘度依lgμLm=∑x i lgμi计算塔顶液相平均粘度计算t D=78.43o C时μ乙醇=0.364mPa·s μ水=0.455 mPa·slgμLDm=0.779lg(0.455)+0.221lg(0.364)=-0.363μLDm =0.436 mPa·s进料液相平均粘度计算t F=83.75 o C时μ乙醇=0.341mPa·s μ水=0.415 mPa·slgμLFm=0.183lg(0.415)+0.817lg(0.341)=-0.452μLFm=0.353 mPa·s塔底液相平均粘度计算t W=99.53 o C时μ乙醇=0.285mPa·s μ水=0.335 mPa·slgμLWm=0.002lg(0.335)+0.998lg(0.285)=-0.544μLWm=0.285 mPa·s精馏段液相平均粘度计算μLm=(0.436+0.353)/2=0.395 mPa·s提馏段液相平均粘度计算μLm=(0.285+0.353)/2=0.319 mPa·s(五)精馏塔的塔体工艺尺寸计算1.塔径的计算精馏段的气液相体积流率为V S =ρ3600VM =2.949 m 3/s L S =ρ3600LM =0.0023 m 3/s 查史密斯关联图,横坐标为Vh Lh (vlρρ)21=949.20023.0(321.1347.813) 1/2=0.0196取板间距H T =0.45m ,板上液层高度h L =0.06m , 则H T -h L =0.39m 查图可得C 20=0.08 由C=C 20(20L σ)0.2=0.08(69.088/20)0.2=0.103u max =C (ρL -ρV )/ ρV =2.554 m/s取安全系数为0.7,则空塔气速为 u=0.7u max =1.788 m/sD=4V s /πu=788.1/14.3/949.2*4=1.39 m 按标准塔径元整后 D=1.4 m 塔截面积A T =(π/4)×1.42=1.539 ㎡ 实际空塔气速为 u=2.717/1.539=1.765 m/s 2.精馏塔有效高度的计算精馏段有效高度为Z 精=(N 精-1)H T =7.65 m 提馏段有效高度为Z 提=(N 提-1)H T =3.15 m在进料板上方开一人孔,其高度为 1m 故精馏塔的有效高度为 Z=Z 精+Z 提+1=7.65+3.15+1=11.8 m(六)塔板主要工艺尺寸的计算1.溢流装置计算因塔径D=1.4 m ,可选用单溢流弓形降液管 堰长l W =0.7×1.4=0.98 m 2.溢流强度i 的校核i=L h /l W =0.0023×3600/0.98=8.449≤100~130m 3/h ·m 故堰长符合标准 3.溢流堰高度h W平直堰堰上液层高度h ow =100084.2E (L h /l W )2/3由于L h 不大,通过液流收缩系数计算图可知E 近似可取E=1h ow =100084.2×1×(L h /l W )2/3=0.0119 mh W =h L -h ow =0.06-0.0119=0.0481 m 4.降液管尺寸计算查弓形降液管参数图,横坐标l W /D=0.7 可查得A f /A T =0.093 W d /D=0.151 故 A f =0.093A T =0.143 ㎡ W d =0.151W d =0.211 ㎡留管时间θ=3600A T H T /L H =27.64 s >5 s 符合设计要求5.降液管底隙高度h oh O =L h /3600l W u 0’=0.0023/0.98×0.08=0.03 m h W -h O =0.0481-0.03=0.0181 m >0.006 m 6.塔板布置塔板的分块 D=1400 mm >800 mm ,故塔板采用分块式。
苯氯苯板式精馏塔课程设计F1浮阀塔
苯氯苯板式精馏塔课程设计F1浮阀塔
苯氯苯板式精馏塔是提高精馏效果的重要设备,有别于传统的单塔精馏器。
它通过把多个塔当成一个整体,充分利用the相互作用的原理,能够提高提纯的效率和更加有效的把握质量。
F1浮阀塔就是苯氯苯板式精馏塔中的一种,它具有较强的稳定性和收率,受到众多行业的青睐。
一般来说,F1浮阀塔的结构是由板材和框架组成的。
板材分为上板和下板,两者之间由框架固定在一起,框架的结构是一个三角形的形状,对应的是塔的三个档位。
从上板到下板,是由多种不同类型的精馏板排列,每种精馏板的厚度和材料都不一样,以满足不同需要的精馏需求。
苯氯苯板式精馏塔中的F1浮阀塔结构是由浮阀、调节阀、联轴器和变速箱等组成的。
其中,浮阀用于调节塔内部压力,当塔内部压力上升时,浮阀就会随之自行关闭,以降低压力,稳定塔内部环境;调节阀则用于调节精馏剂进入塔内的流量,以确保塔内部环境的平衡运转;联轴器和变速箱则控制塔的转速,确保精馏过程的预期效果。
此外,F1浮阀塔的操作非常简单,只需要按照正确的步骤就可以完成。
首先,要检查塔内精馏板的安装,确保板材和框架完好无损;其次,要调节浮阀和调节阀的位置,并根据实际情况进行调整,以获得最佳效果;最后,需要检查变速箱和联轴器,以确保塔的转速正确。
总之,F1浮阀塔是一种高效的精馏设备,有着较强的稳定性和性能。
苯氯苯板式精馏塔的F1浮阀塔可以满足各种行业的不同精馏
需求,操作也比较简单。
如果正确地运用,可以大大提高精馏效率。
精馏塔说明书
精馏塔说明书一、产品介绍精馏塔是一种用于分离液体混合物的设备,广泛应用于化工、石油、食品等领域。
本说明书将详细介绍精馏塔的结构、工作原理、操作方法以及注意事项。
二、结构与工作原理精馏塔主要由塔体、进料口、出料口、塔板、冷凝器、再沸器等组成。
其工作原理是基于物质的沸点差异,通过加热和冷凝的方式实现液体混合物的分离。
具体来说,精馏塔内的液体混合物经过加热后,部分组分会蒸发并随上升蒸汽进入塔顶的冷凝器,在那里被冷却液化。
而未蒸发的组分会继续留在塔内,通过再沸器加热后再次蒸发,如此反复,直至达到所需的分离效果。
三、操作方法1、开启前检查:检查精馏塔及相关设备是否完好,管道、阀门有无泄漏,冷凝器、再沸器是否正常工作。
2、开启进料口:将待分离的液体混合物加入进料口,注意流量控制,保持稳定。
3、开启加热系统:根据需要调整再沸器的加热温度,使液体混合物在塔内蒸发并上升至冷凝器。
4、开启冷凝器:调整冷凝器的冷却水流量,使上升的蒸汽在冷凝器中被液化。
5、收集产品:将冷凝器下方收集到的液体产品通过出料口导出。
6、调整操作参数:根据实际分离效果,调整加热温度、进料流量等参数,以达到最佳分离效果。
四、注意事项1、操作过程中要保持设备密封性良好,防止泄漏。
2、严格控制加热温度,防止过热引起物料分解或设备损坏。
3、定期检查设备及相关管道,发现泄漏或其他异常情况应及时处理。
4、在操作过程中要保持安全距离,避免直接接触高温设备和液体。
5、如遇紧急情况,应立即停车并采取相应措施。
五、维护与保养1、定期检查设备及相关管道的密封性,发现泄漏应及时处理。
2、定期清理设备内部杂物及沉积物,保持设备清洁。
3、定期检查加热系统和冷却系统的工作情况,确保设备正常运行。
4、根据实际使用情况,适时调整设备的操作参数,以达到最佳分离效果。
5、在停车期间,应对设备进行全面检查和维护,确保设备良好运行。
六、常见问题及解决方案1、分离效果不佳:可能是由于加热温度、进料流量等参数调整不当所致。
化工原理精馏实验(最终版)
化工原理实验精馏实验报告班级:化工1104姓名:吕游学号: 2011011105同组人员:刘晓林,许馨予,张少林实验日期:2011.4.18一、实验目的1、了解筛板式精馏塔的结构,学习数字显示仪表的原理及使用。
2、学习筛板式精馏塔的操作方法,观察汽液两相接触状况的变化。
3、测定在全回流时精馏塔总板效率,分析汽液接触状况对总板效率的影响。
4*、测定在全回流时精馏塔的单板效率。
分析汽液接触状况对单板效率的影响。
5*、测定部分回流时的总板效率,分析气液接触状况对总板效率的影响。
6*、测定精馏塔在全回流下塔体浓度(温度)分布。
带*项为教学大纲要求之外项目。
二、实验原理:在精馏过程中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液在塔板上多次部分汽化部分冷凝,进行传热与传质,使混合液达到一定程度的分离。
回流是精馏操作的必要条件,塔顶的回流量与采出量之比称为回流比。
回流比是精馏操作的主要参数,它的大小直接影响精馏操作的分离效果和能耗。
若塔在最小回流比下操作,要完成分离任务,则需要无穷多块塔板,在工业上是不可行的。
若在全回流下操作,既无任何产品的采出,也无任何原料的加入,塔顶的冷凝液全部返回到塔中,这在生产中无任何意义。
但是,由于此时所需理论板数最少,易于达到稳定,故常在科学研究及工业装置的开停车及排除故障时采用。
通常回流比取最小回流比的1.2~2.0倍。
1.塔板效率板式精馏塔中汽液两相在各塔板上相互接触而发生传质作用,由于接触时间短暂和不够充分,并且汽相上升也有一些雾沫夹带,因此其传质效率总不会达到理论板效果。
通常用塔板效率来表示塔板上传质的完善程度。
塔板效率是体现塔板性能及操作状况的主要参数。
影响塔板效率的因素很多,大致归纳为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)塔板结构以及操作条件等,由于影响塔板效率的因素相当复杂,目前仍以实验的方法测定。
a. 总板效率(或全塔的效率):反映全塔中各层塔板的平均分离效果,常用于板式塔的设计。
精馏塔指导书.docx
第4章筛板式精f留塔过程控制实验4.1再沸器功率控制实验4. 1. 1实验目的1・了解精《留塔控制再沸器功率的工艺要求2.熟悉再沸器功率控制系统的硬件组成°3.熟悉再沸器功率控制系统中S7-300PLC程序有关手动二口动无扰动切换功能。
4.掌握用衰减振荡法整定本控制系统的P、I参数的方法。
5.理解P、I参数对本控制系统性能指标的影响。
4.1.2实验设备在SJT-O. 08/12/30乙醇一水筛板式粕餾塔实验装置中主要用到:1.PID功能块S7-300PLC程序屮N05 PID功能模块——JC-2再沸器功率调节模块,其PV (反馈)信号取fl AT14, PTD调节输出接至A0卡的A05通道。
修改设定值和P、T、D参数等通过上位计算机进行。
2.执行机构A05的4〜20mA接到SCR2的信号放人板,转换成0〜10V去控制SCR智能模块三相晶闸管的导通角,也即控制SCR2负载的Y形三根电热管的加热功率。
3.测量(反馈)信号单相功率变送器测量一根电热管的电压和电流,功率信号送至S7-300A1卡的AI14 通道,在PLC程序屮乘3倍后作为三相加热的再沸器功率送P1D模块。
4.塔釜低液位对再沸器加热的连锁为保证电热管是浸没在再沸器的液体中加热,鉴于再沸器与塔釜底部有连通管,因此测量塔釜液位可代表再沸器液位。
当塔釜液位<25% (50mm)时发出D0匸0开关量信号去停止再沸器加热。
5・再沸器功率对冷凝器进水电磁阀的连锁为防止再沸器加热产牛的酒梢蒸汽从冷凝器中逸散,当再沸器功率>20%时,口动打开冷凝辭的冷却水电磁阀VD5,使酒梢蒸汽在冷凝髀中冷凝为液体酒精。
4.1.3实验原理1.再沸器功率控制系统的方块图塔釜低液位连锁给定(25%)图4-1再沸器功率控制系统的方块图2.为何要控制再沸器的加热功率在常见的加热控制系统中,被调参数PV (控制系统反馈信号)一般都是温度。
但在再沸器的加热系统中,被调参数II是加热功率。
化工原理课程设计板式精馏塔设计
4.编写设计说明书 设计说明书应根据设计指导思想阐明设计特点,列出设计主
要技术数据,对有关工艺流程和设备选型作出技术上和经济上的 论证和评价。应按设计程序列出计算公式和计算结果;对所选用 的物性数据和使用的经验公式图表应注明来历。
设计说明书应附有带控制点工艺流程图,塔板结构简图和计算 机程序框图和原程序。
其 中 利 用 t~ x~ y 关 系 ,并 借 助 二 次 样 条 插 入 的 方 法 ,求 得
塔顶塔底的温度,进而求取全塔的平均温度,从而可以根据全
塔平均温度求取全塔平均相对挥发度。
式 中 : R ---回 流
R m in — 最 小 回 流 比
—全塔平均相对挥发度
12
3.理论板数和实际板数的确定
用双溢流型塔板。
2
平 直 堰 的 hOW 按 下 式 计 算
hOW
2 .8 4 1000
E
Lh
3
lW
式中
lW Lh
—堰 —塔
长, 内液
m; 体流
量
,
m
3
h
E — 液 流 收 缩 系 数 , 查 图 求 取 。 一 般 可 取 为 1, 误 差 不 大
(2)、提馏段气液负荷计算(同上)
2021/3/12
16
5、热量衡算
总热量衡算 QV QW QL QB QF QR
式中: QV 、QW、QL、QB、QF、QR 分别是塔顶蒸汽带出的热
量、塔底产品带出的热量、塔设备的热损失、塔釜加热量、进料带入 的热量、回流带入热量、
其中:塔设备的热损失Q L 0.1QB
( 4) 实 际 板 数 的 确 定
板效率:利用奥康奈尔的经验公式
分离苯-甲苯混合液的苯-甲苯式精馏塔工艺设计
第二章设计任务书1.设计题目:分离苯-甲苯混合液的浮阀板式精馏塔工艺设计2.工艺条件:生产能力:苯-甲苯混合液处理量80000t/a原料组成:苯含量为40%(质量百分率,下同)进料状况:热状况参数q自选分离要求:塔顶苯含量不低于99.5%,塔底苯含量不大于1.5% 3.建厂地区:大气压为760mmHg,自来水年平均温度为15℃的滨州4.塔板类型:板式精馏塔5.生产制度:年开工300天,每天三班8小时连续生产6.设计内容:1)精馏塔的物料衡算;2)塔板数的确定;3)精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5)塔板主要工艺尺寸的计算;6)塔板的流体力学验算;7)塔板负荷性能图;8)精馏塔接管尺寸计算;9)绘制生产工艺流程图;10)绘制精馏塔设计条件图;11)绘制塔板施工图(可根据实际情况选作);12)对设计过程的评述和有关问题的讨论。
第三章 设计内容3.1 设计方案的确定及工艺流程的说明本设计任务为分离苯-甲苯混合物。
对于该二元混合物的分离,应采用连续精馏过程。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。
塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。
该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。
塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。
3.2 全塔的物料衡算3.2.1原料液及塔顶底产品含苯的摩尔分率苯和甲苯的相对摩尔质量分别为78.11 kg/kmol 和92.14kg/kmol ,原料含苯的质量百分率为40%,塔顶苯含量不低于99.5%,塔底苯含量不大于1.5%,则:原料液含苯的摩尔分率:440.014.92/60.011.78/40.011.78/40.0=+=F x塔顶含苯的摩尔分率:996.014.92/005.011.78/995.011.78/995.0=+=D x塔底含苯的摩尔分率:0176.014.92/985.011.78/015.011.78/015.0=+=W x3.2.2原料液及塔顶底产品的平均摩尔质量由3.1.1知产品中甲苯的摩尔分率,故可计算出产品的平均摩尔质量:原料液的平均摩尔质量:M F =78.11×0.440+(1-0.440)×92.14=85.967kg/kmol塔顶液的平均摩尔质量:M D =78.11×0.996+(1-0.996)×92.14=78.166kg/kmol塔底液的平均摩尔质量:M W =78.11×0.0176+(1-0.0176)×92.14=91.893kg/kmol3.2.3料液及塔顶底产品的摩尔流率依题给条件:一年以300天,一天以24小时计,得:F ,=8000t/(300×24)h =1111.12kg/h ,全塔物料衡算:进料液: F=1111.12(kg/h )/91.893(kg/kmol )=12.091kmol/h 总物料恒算: F=D+W苯物料恒算: F×0.440=D×0.996+0.0176×12.091 联立解得: W =6.963kmol/hD =5.128kmol/h3.3 塔板数的确定理论塔板数T N 的求取苯-甲苯物系属理想物系,可用梯级图解法(M·T),求取N T ,步骤如下: 3.3.1平衡曲线的绘制根据苯-甲苯的相平衡数据,利用泡点方程和露点方程求取。
精馏塔设计说明书(最全)
引言塔设备是化学工业,石油化工,生物化工,制药等生产过程中广泛采用的传质设备。
根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。
板式塔为逐级接触式气液传质设备,塔内设置一定数量的塔板,气体以鼓泡形式或喷射形式通过塔板上的液层,正常条件下,气相为分散相,液相为连续相,气相组成呈阶梯变化,它具有结构简单,安装方便,压降低,操作弹性大,持液量小等优点,被广泛的使用。
本设计的目的是分离苯—甲苯的混合液,故选用板式塔。
设计方案的确定和流程说明1.塔板类型精馏塔的塔板类型共有三种:泡罩塔板,筛孔塔板,浮阀塔板。
浮阀塔板具有结构简单,制造方便,造价低等优点,且开孔率大,生产能力大,阀片可随气流量大小而上下浮动,故操作弹性大,气液接触时间长,因此塔板效率较高。
本设计采用浮阀塔板。
2. 加料方式加料方式共有两种:高位槽加料和泵直接加料。
采用泵直接加料,具有结构简单,安装方便等优点,而且可以引入自动控制系统来实时调节流量及流速。
故本设计采用泵直接加料。
3. 进料状况进料方式一般有两种:冷液进料及泡点进料。
对于冷液进料,当进料组成一定时,流量也一定,但受环境影响较大;而采用泡点进料,不仅较为方便,而且不受环境温度的影响,同时又能保证精馏段和提馏段塔径基本相等,制造方便。
故本设计采用泡点进料。
4. 塔顶冷凝方式苯和甲苯不反应,且容易冷凝,故塔顶采用全凝器,用水冷凝。
塔顶出来的气体温度不高,冷凝后的回流液和产品无需进一步冷却,选用全凝器符合要求。
5. 回流方式回流方式可分为重力回流和强制回流。
本设计所需塔板数较多,塔较高,为便于检修和清理,回流冷凝器不适宜塔顶安装,故采用强制回流。
6. 加热方式加热方式分为直接蒸气和间接蒸气加热。
直接蒸气加热在一定回流比条件下,塔底蒸气对回流液有稀释作用,从而会使理论塔板数增加,设备费用上升。
故本设计采用间接蒸气加热方式。
7. 操作压力苯和甲苯在常压下相对挥发度相差比较大,因此在常压下也能比较容易分离,故本设计采用常压精馏。
板式精馏塔课程设计(乙醇-水体系)
酒精连续精馏塔的设计
学 专
院 业
设 计 者 学 号
指导老师 提交日期
化工原理课程设计
目 录
第一章 设计任务书...................................................................................................................1 1.1 题目 ............................................................................................................................1 1.2 原始数据 .....................................................................................................................1 1.3 任务 ............................................................................................................................1 1.4 作业分量 .....................................................................................................................1 第二章 工艺流程说明 ...............................................................................................................2 2.1 设计方案 .....................................................................................................................2 2.1.1 塔板类型 ............................................................................................................2 2.1.2 操作压强............................................................................................................2 2.1.3 加料方式 ............................................................................................................2 2.1.4 进料状况 ............................................................................................................2 2.1.5 加热方式 ............................................................................................................2 2.1.6 塔顶冷凝方式 .....................................................................................................2 2.1.7 热能利用方式 .....................................................................................................2 2.2 工艺流程图..................................................................................................................2 第三章 工艺计算 ......................................................................................................................4 3.1 物料衡算 .....................................................................................................................4 3.1.1 摩尔分数............................................................................................................4 3.1.2 摩尔流量............................................................................................................4 3.2 回流比.........................................................................................................................4 3.3 塔板数.........................................................................................................................5 3.3.1 理论塔板数 ........................................................................................................5 3.3.2 板效率 ...............................................................................................................7 3.3.3 实际塔板数 ........................................................................................................7 3.4 主要物性参数 ..............................................................................................................7 3.4.1 操作压强............................................................................................................7 3.4.2 平均摩尔质量.....................................................................................................8 3.4.3 平均密度............................................................................................................8 3.4.4 液体表面张力.....................................................................................................9 3.4.5 蒸汽粘度.......................................................................................................... 10 3.5 气液相负荷量 ............................................................................................................ 11 3.6 小结 .......................................................................................................................... 11
1.6板式精馏塔高度及其辅助设备
1.6 板式精馏塔高度及其辅助设备塔设备的总体结构如图1-24所示,包括塔体、塔体支座、除沫器、接管、手孔、人孔、塔内件等。
塔体是塔设备的外壳。
常见塔体由等直径,等壁厚的圆筒及椭圆形封头的顶盖和底盖构成。
随着化工装置的大型化,为了节约原材料,有用不同直径、不同壁厚的塔体。
塔体的厚度除应满足工艺条件下的强度外,还应校核风力、地震、偏心载荷所引起的强度和刚度,同时要考虑水压实验、吊装、运输、开停工的情况。
塔体支座是塔体安放到基础上的连接部分,一般采用裙座,其高度由工艺条件的附属设备(如再沸器、泵)及管道布置决定。
它承受各种情况下的全塔重量,以及风力、地震等载荷,为此,它应具有足够的强度和刚度。
除沫器用于捕集在气流中的液滴。
使用高效的除沫器,对于提高分离效率,改善塔后设备的操作状况,回收昂贵的物料以及减少对环境的污染都是非常重要的。
常用的有丝网除沫器和折板除沫器。
接管是用以连接工艺管路,使之与相关设备连成系统。
有进液管、出液管、回流管、进气管、出气管、侧线抽出管、取样管、液面计接管及仪表接管等。
手孔、人孔和视孔是为了安装、检查的需要而设置的。
吊柱设置在塔顶,用于安装和检修时运送塔内件。
1.6.1 塔高塔高由下式计算B D P P F F T P F H H H N H N H N N N H ++++---=)1( (1-53)式中 H ——塔高(不包括封头、裙座)m ;N ——实际塔板数;N F ——进料板数;N P ——人孔数;H T ——塔板间距,m ;H F ——进料板处板间距,m ;H P ——设人孔处板间距,m ;H D ——塔顶空间(不包括头盖部分),m ;H B ——塔底空间(不包括底盖部分),m 。
塔顶空间H D 的作用是安装塔板和除沫装置的需要,起减少雾沫夹带量的作用,一般H D =1.0~2.0m ,塔径大时可适当增大。
人孔数N P 是根据物料的清洁程度塔板安装的方便而定;对于易结焦、结垢的物料,每隔4—6块板开一人孔;对于清洁物料,每隔8—10块板开一人孔;若塔板上下都可拆,可隔15块板开一人孔。
化工原理_课程设计_精馏塔_(详细版)
化工原理课程设计任务书学院:化工学院班级:姓名:学好:指导教师:设计时间:12.26~1.6一.设计题目: 4.0万吨/年乙醇连续精馏塔设计二.目的与意义:乙醇是重要的化工原料,对乙醇连续精馏塔的设计可以使学生充分利用化学工程原理课程中所学习到的知识来解决工业实际问题,同时训练学生一定的工程绘图能力。
三.要求(包括原始数据,技术参数,设计要求,图纸量,工作量要求等)设计条件:1. 原料液组成:乙醇50%;水50%(质量分率);2. 塔顶的乙醇含量不得低于90.0%;残液中乙醇含量不得高于1.0%;3. 操作条件 1) 塔顶压力0.5kpa(表压)2)进料热状态自选3)回流比自选4)加热蒸汽压力0.3~0.5Mpa(表压)5)单板压降≤0.5kpa 4.踏板类型:筛板塔5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。
6.操作回流比R自选。
设计要求:1. 设计方案的确定及流程说明;2.塔的工艺计算;3.塔和塔板的工艺尺寸设计(1)塔高,塔经及塔板结构尺寸的确定;(2)踏板的流体力学演算;(3)塔板的负荷性能图;4.涉及一览表5. 辅助设备选型与计算;6.主要接管尺寸计算7.对本设计的评述或有关问题的分析讨论8.编制设计说明书图纸要求:1.踏板布置图;2.工艺流程图摘要本设计是以乙醇――水物系为设计物系,以筛板塔为精馏设备分离乙醇和水。
筛板塔是化工生产中主要的气液传质设备,此设计针对二元物系乙醇--水的精馏问题进行分析,选取,计算,核算,绘图等,是较完整的精馏设计过程。
通过逐板计算得出理论板数为9块,回流比为1.32,算出塔效率为0.51,实际板数为18块,进料位置为第7块,在板式塔主要工艺尺寸的设计计算中得出塔径为1.4米,有效塔高5.95米,筛孔数5868。
通过筛板塔的流体力学验算,证明各指标数据均符合标准。
本次设计过程正常,操作合适。
关键词:乙醇、水、二元精馏、筛板连续精馏精馏塔、精馏段第1章1.1精馏原理及其在化工生产上的应用实际生产中,在精馏柱及精馏塔中精馏时,上述部分气化和部分冷凝是同时进行的。
筛板塔精馏实验
筛板塔精馏实验实验五筛板塔精馏实验一、实验目的1.了解筛板精馏塔的结构及精馏流程;2.熟悉筛板精馏塔的操作方法;3.掌握精馏塔效率的测定方法。
二、实验基本原理1.全塔效率板式塔是使用量大、运用范围广的重要气(汽)液传质设备,评价塔板好坏一般根据处理量、板效率、阻力降、操作弹性和结构等因素。
目前出现的多种塔板中鼓泡式塔板(筛板、浮阀板)和喷射式塔板(舌形、斜孔、网孔)在工业上使用较多,板式塔作为气、液传质设备,既可用于吸收,也可用于精馏,用得多的是精馏操作。
在精馏装置中,塔板是汽、液两相的接触场所。
在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,汽液两相在塔板上层接触,实现传质、传热过程,从而达到分离目的。
如果在某层塔板上,上升的蒸汽与下降的液体处于平衡状态,则该塔板称为理论板。
然而在实际操作中,由于塔板上的汽、液两相接触时间有限及板间返混等因素影响,使汽、液两相尚未达到平衡即离开塔板,一块实际塔板的分离效果达不到一块理论板的作用,因此精馏塔所需的实际板数比理论板数多,若实际板数为NP ,理论板数为NT,则全塔效率ET:ET= (NT /NP )╳100%2.操作因素对塔效率的影响(1)回流比的影响从塔顶回流入塔的液体量与塔顶产品量之比称为回流比。
回流比是精馏操作的一个重要控制参数,回流比数值的大小影响着精馏操作的分离效果与能耗。
回流比可分为全回流、最小回流比和实际操作回流比。
全回流是一种极限情况,此时精馏塔不加料也不出产品,塔顶冷凝量全部从塔顶回到塔内,这在生产上没有意义,但是这种操作容易达到稳定,故在装置开工和科学研究中常常采用。
全回流时由于回流比为无穷大,当分离要求相同时比其它回流比所需理论板要少,故称全回流时所需的理论板为最少理论板数。
通常计算最少理论板数用芬斯克方程。
对于一定的分离要求,减少回流比,所需的理论塔板数增加,当减到某一回流比时,需要无穷多个理论板才能达到分离要求,这一回流比称为最小回流比Rm。
精馏实验操作参考步骤
精馏实验操作参考步骤一、操作步骤实验前准备工作将阿贝折光仪配套的超级恒温水浴调整运行到所需的温度(30C),并记下这个温度。
配制一定浓度的乙醇/正丙醇混合液(乙醇质量百分数20%),然后加到原料罐中。
在精馏塔釜中加入其容积2/3 的乙醇/正丙醇混合液。
1.根据任务要求计算出回流比(30分钟)。
2.开车准备,检查水、电、仪、阀、泵、储罐内液体是否处于正常状态。
(20 分钟左右)①开启总电源、仪表盘电源,查看电压表、温度显示、实时监控仪;打开计算机电源,启动计算机并进入计算机DCS控制系统。
(DCS控制系统操作另有说明)②打开冷却水上水阀,检查有无供水,关上水阀,或开启冷却风机是否正常并关闭。
③确定个阀门正常位置后(塔釜放气阀打开),启动进料泵向塔内加料至指定位置。
3.全回流操作(40 分钟左右)①开全凝器给水阀,调节流量至适宜(或开启冷却风机为正常操作)。
②打开电加热器,调节塔釜加热电压(手动、自动都可以调节)。
③观察、记录塔内温度、塔压降;进行全回流操作。
④判断出全回流达到稳定后,在塔顶和塔釜分别取样,用阿贝折光仪测量样品浓度。
阿贝折光仪的使用方法见本实验附录,记录实验数据。
⑤全回流实验结束后,老师检查后开始部分回流实验。
4-完成实验任务进行部分回流操作(部分回流操作规定时间40分钟)①确定进料位置后开启进料阀、启动进料泵,以指定进料量进料。
②调节塔釜加热电压,调节回流比控制器(手动、自动都可以调节)。
③通过塔温度、压降判断塔内稳定。
④部分回流操作稳定后,隔10分钟取样分析一次,共2次。
⑤当规定时间到达时,告知老师,老师检查塔顶出料体积和浓度后方可结束实验。
5.正常停车(10分钟左右)①关闭进料泵及相应管线上阀门。
②关闭再沸器电加热。
③关闭回流比控制器。
④待精馏塔内没有上升蒸汽时,关闭冷却水上水阀或关闭风冷器风扇。
⑤各阀门恢复初始开车前的状态。
⑥关仪表电源和总电源。
6.实验结束后,一切复原,并打扫实验室卫生,将实验室水电切断后,方能离开实验室。
化工原理课程设计—板式精馏塔的设计
板式精馏塔的设计1.1 概述塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。
根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。
板式塔内设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。
填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。
工业上对塔设备的主要要求是:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。
此外,还要求不易堵塞、耐腐蚀等。
板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。
工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。
(一)泡罩塔泡罩塔是最早使用的板式塔,是Celler于1813年提出的,其主要构件是泡罩、升气管及降液管。
泡罩的种类很多,国内应用较多的是圆形泡罩。
泡罩塔的主要优点是:因升气管高出液层,不易发生漏液现象,操作弹性较大,液气比范围大,适用多种介质,操作稳定可靠,塔板不易堵塞,适于处理各种物料;但其结构复杂,造价高、安装维修不便,板上液层厚,气体流径曲折,塔板压降大,因雾沫夹带现象较严重,限制了起诉的提高。
现虽已为其他新型塔板代替,但鉴于其某些优点,仍有沿用。
(a b)图1 泡罩塔(二)浮阀塔浮阀塔广泛用于精馏、吸收和解吸等过程。
其主要特点是在塔板的开孔上装有可浮动的浮阀,气流从浮阀周边以稳定的速度水平地进入塔板上液层进行两相接触。
浮阀可根据气体流量的大小而上下浮动,自行调节。
浮阀有盘式、条式等多种,国内多用盘式浮阀,此型又分为F-1型(V-1型)、V-4型、十字架型、和A型,其中F-1型浮阀结构较简单、节省材料,制造方便,性能良好,故在化工及炼油生产中普遍应用,已列入部颁标准(JB-1118-81)。
化工原理课程设计苯甲苯板式精馏塔
化工原理课程设计——苯-甲苯连续精馏筛板塔的设计学院:生命科学学院专业年级:姓名:指导老师:目录一、序言 (2)二、设计任务 (2)三、设计条件 (2)四、设计方案 (2)五、工艺计算 (3)1、设计方案的选定及基础数据的搜集 (5)2、精馏塔的物料衡算 (6)3、精馏塔的工艺条件及有关物性数据的计算 (10)4、精馏塔的塔体工艺尺寸计算 (15)5、塔板主要工艺尺寸的计算 (16)6、筛板的流体力学验算 (19)7、塔板负荷性能图 (22)六、设计结果一览表 (27)七、参考书目 (28)八、心得体会 (28)九、附录 (29)一、序言化工原理课程设计是综合运用化工原理课程和有关先修课程物理化学,化工制图等所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用;通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等;精馏是分离液体混合物含可液化的气体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用;精馏过程在能量剂驱动下有时加质量剂,使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离;根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离;本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离;二、设计任务1原料液中苯含量:质量分率=75%质量,其余为甲苯;2塔顶产品中苯含量不得低于98%质量;3残液中苯含量不得高于%质量;4生产能力:90000 t/y苯产品,年开工310天;三、设计条件1精馏塔顶压强:表压2进料热状态:自选3回流比:自选;4单板压降压:≯四、设计方案1设计方案的确定及流程说明2塔的工艺计算3塔和塔板主要工艺尺寸的设计4塔高、塔径以及塔板结构尺寸的确定;塔板的流体力学验算;5编制设计结果概要或设计一览表6辅助设备选型与计算7绘制塔设备结构图五、工艺计算1、设计方案的选定及基础数据的搜集本设计任务为分离苯一甲苯混合物;由于对物料没有特殊的要求,可以在常压下操作;对于二元混合物的分离,应采用连续精馏流程;设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内;塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐;该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的倍;塔底设置再沸器采用间接蒸汽加热,塔底产品经冷却后送至储罐;其中由于蒸馏过程的原理是多次进行部分汽化和冷凝,热效率比较低,但塔顶冷凝器放出的热量很多,但其能量品位较低,不能直接用于塔釜的热源,在本次设计中设计把其热量作为低温热源产生低压蒸汽作为原料预热器的热源之一,充分利用了能量;塔板的类型为筛板塔精馏,筛板塔塔板上开有许多均布的筛孔,孔径一般为3~8mm,筛孔在塔板上作正三角形排列;筛板塔也是传质过程常用的塔设备,它的主要优点有:1结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右;2处理能力大,比同塔径的泡罩塔可增加10~15%;3塔板效率高,比泡罩塔高15%左右;4压降较低,每板压力比泡罩塔约低30%左右;筛板塔的缺点是:1塔板安装的水平度要求较高,否则气液接触不匀;2操作弹性较小约2~3;3小孔筛板容易堵塞;下图是板式塔的简略图:82、精馏塔的物料衡算1 原料液及塔顶、塔底产品的摩尔分率 苯的摩尔质量甲苯的摩尔质量 kmol kg M B /13.92=780.013.92/25.011.78/75.011.78/75.0x F =+= 2原料液及塔顶、塔底产品的平均摩尔质量)/(kg 0.2813.192)780.01(11.78780.0kmol M F =⨯-+⨯=3物料衡算原料处理量)/(1049.12431020.81900000002h kmol F ⨯=⨯⨯= 总物料衡算 21094.1W D ⨯=+苯物料衡算 W D F 099.0983.0780.0+=联立解得式中 F------原料液流量 D------塔顶产品量 W------塔底产品量 塔板数的确定1理论板层数NT 的求取苯一甲苯属理想物系,可采逐板计算求理论板层数;①求最小回流比及操作回流比; 采用恩特伍德方程求最小回流比; 解得,最小回流比73.0=m R 取操作回流比为②求精馏塔的气、液相负荷 )/(89.15511931.1h kmol RD L =⨯==)/(89.27411931.2)1()1('h kmol F q D R V =⨯=--+= 泡点进料:q=1③求操作线方程 精馏段操作线方程为 提馏段操作线方程为 2逐板法求理论板又根据min (1)1[]11d D F fx x R x x α-=-α-- 可解得 α=相平衡方程 2.4751(1)1 1.475x xy x xαα==+-+解得 x x y 47.1147.2+=变形得y y x 47.147.2-=用精馏段操作线和相平衡方程进行逐板计算1D y x = = , 1111111(1) 2.475(1)y y x y y y y ==+α-+-=970.0426.0567.012=+=x y ,959.047.147.22=-=y yx953.0426.0567.023=+=x y ,891.047.147.233=-=y yx931.0426.0567.034=+=x y ,845.047.147.244=-=y yx905.0426.0567.045=+=x y ,795.047.147.255=-=y yx 877.0426.0567.056=+=x y ,742.047.147.266=-=y yx因为,故精馏段理论板 n=5,用提留段操作线和相平衡方程继续逐板计算811.0426.0567.067=+=x y ,635.047.147.277=-=y yx693.0426.0567.078=+=x y ,478.047.147.288=-=y yx519.0426.0567.089=+=x y ,304.047.147.299=-=y yx326.0426.0567.0910=+=x y ,164.047.147.21010=-=y yx 171.0426.0567.01011=+=x y ,077.047.147.21111=-=y yx因为,所以提留段理论板 n=5不包括塔釜 3全塔效率的计算查温度组成图得到,塔顶温度TD=℃,塔釜温度TW=105℃,全塔平均温度Tm =℃; 分别查得苯、甲苯在平均温度下的粘度)(272.0s mPa A ⋅=μ,)(279.0s mPa B ⋅=μ 平均粘度由公式,得 全塔效率E T 4求实际板数 精馏段实际板层数 提馏段实际板层数 进料板在第11块板;3、精馏塔的工艺条件及有关物性数据的计算1操作压力计算 塔顶操作压力P =4+ kPa每层塔板压降 △P = kPa 进料板压力F P =+×10= kPa塔底操作压力w P = kPa精馏段平均压力 P m1 =+/2= kPa 提馏段平均压力P m2 =+/2 = kPa 2操作温度计算依据操作压力,由泡点方程通过试差法计算出泡点温度,其中苯、甲苯的饱和蒸气压由 安托尼方程计算,计算过程略;计算结果如下: 塔顶温度0.980t =D ℃ 进料板温度F t =℃塔底温度w t =℃精馏段平均温度m t = .+/2 = ℃提馏段平均温度m t =+/2 =℃ 3平均摩尔质量计算 塔顶平均摩尔质量计算由x D=y 1=,代入相平衡方程得x 1= 进料板平均摩尔质量计算由上面理论板的算法,得F y =, F x =)/(73.8113.92)742.01(11.78742.0m ,kmol kg M F L =⨯-+⨯=塔底平均摩尔质量计算由xw=,由相平衡方程,得yw=)/(05.9113.92)077.01(11.78077.0m ,kmol kg M W L =⨯-+⨯=精馏段平均摩尔质量提馏段平均摩尔质量 (4)平均密度计算(5)①气相平均密度计算 由理想气体状态方程计算,精馏段的平均气相密度即)/(90.2)15.27324.83(314.809.798.1083m kg RT PV m M Vm =+⨯⨯==ρ提馏段的平均气相密度 ②液相平均密度计算 液相平均密度依下式计算,即塔顶液相平均密度的计算 由t D =℃,查手册得)/(1.809);/(0.81433m kg m kg B A ==ρρ 塔顶液相的质量分率98.0=a a 求得)(得3m ,m,/kg 9.813;1.80902.00.81498.01m D L D L =+=ρρ进料板液相平均密度的计算 由t F =℃,查手册得)/(36.804);/(6.80833m kg m kg B A ==ρρ进料板液相的质量分率 71.013.92)742.01(11.78742.011.78742.0=⨯-+⨯⨯=A α塔底液相平均密度的计算 由t w =℃,查手册得)/(3.785);/(4.78633m kg m kg B A ==ρρ 塔底液相的质量分率066.013.92)077.01(11.78077.011.78077.0=⨯-+⨯⨯=A a)(得3m ,m,/kg 9.784;3.785934.04.786066.01m W L W L =+=ρρ精馏段液相平均密度为6.81024.8079.813=+=Lm ρ提馏段液相平均密度为)(3/kg 15.79629.7844.807m Lm =+=ρ5 液体平均表面张力计算液相平均表面张力依下式计算,即塔顶液相平均表面张力的计算由 t D =℃,查手册得 )/(59.21);/(25.21m mN m mN B A ==σσ 进料板液相平均表面张力的计算由t F=℃,查手册得 )/(72.2008.21258.060.20742.0)/(08.21);/(60.21,m mN m mN m mN Fm L B A =⨯+⨯===σσσ塔底液相平均表面张力的计算 由 t W =℃,查手册得)/(50.2118.19923.026.18077.0)/(18.19);/(26.18,m mN m mN m mN Wm L B A =⨯+⨯===σσσ精馏段液相平均表面张力为)/(99.20272.2026.21m mN Lm =+=σ提馏段液相平均表面张力为)/(11.21272.2050.21m mN Lm =+=σ6 液体平均粘度计算液相平均粘度依下式计算,即 μLm=Σxi μi塔顶液相平均粘度的计算由 t D=℃,查手册得 )(311.0309.0017.0305.0983.0)(309.0);(305.0,s mPa s mPa s mPa DmL B A ⋅=⨯+⨯=⋅=⋅=μμμ进料板液相平均粘度的计算由t F=℃,查手册得 )(294.0297.0258.0292.0742.0)(297.0);(292.0,s mPa s mPa s mPa DmL B A ⋅=⨯+⨯=⋅=⋅=μμμ塔底液相平均粘度的计算由tw =℃,查手册得 )(258.0259.0923.0244.0077.0)(259.0);(244.0,s mPa s mPa s mPa DmL B A ⋅=⨯+⨯=⋅=⋅=μμμ精馏段液相平均粘度为)(303.02294.0311.0,s mPa m L ⋅=+=μ提馏段液相平均粘度为7气液负荷计算 精馏段: 提馏段:4 精馏塔的塔体工艺尺寸计算1 塔径的计算塔板间距H T 的选定很重要,它与塔高、塔径、物系性质、分离效率、塔的操作弹性,以及塔的安装、检修等都有关;可参照下表所示经验关系选取;表7 板间距与塔径关系塔径D T ,m ~ ~ ~ ~ ~ 板间距H T ,mm 200~300 250~350 300~450 350~600 400~600对精馏段:初选板间距0.40T H m =,取板上液层高度m h L 06.0=, 故0.400.060.34T L H h m -=-=;查史密斯关联图 得C 20=;依式2.02020⎪⎭⎫⎝⎛=σC C校正物系表面张力为)/m (99.20m N 时2020.980.0720.07132020C C σ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭可取安全系数为,则安全系数—,故按标准,塔径圆整为,则空塔气速s; 对提馏段:初选板间距0.40T H m =,取板上液层高度m h L 06.0=,故0.400.060.34T L H h m -=-=;11220.0075783.40.0901.372.90S Lm S vm L V ρρ⎛⎫⎛⎫⎛⎫=⨯= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭查2:165P 图3—8得C 20=;依式2.02020⎪⎭⎫⎝⎛=σC C =校正物系表面张力为19.58/mN m 时 按标准,塔径圆整为,则空塔气速s;将精馏段和提溜段相比较可以知道二者的塔径不一致,根据塔径的选择规定,对于相差不大的二塔径取二者中较大的,因此在设计塔的时候塔径取;5、塔板主要工艺尺寸的计算(1) 溢流装置计算 精馏段因塔径D =,可选用单溢流弓形降液管,采用平行受液盘;对精馏段各项计算如下: a 溢流堰长w l :单溢流去l W =~D,取堰长w l 为=×= b 出口堰高W h :OW L W h h h -= 故)(044.0016.006.0h m w =-=c 降液管的宽度d W 与降液管的面积f A :由66.0/=D l w 查2:170P 图3—13得124.0/=D W d ,0722.0/=T f A A故0.1240.124 1.60.198d W D m ==⨯=,2223.140.07220.0722 1.60.145244f A D m π=⨯=⨯⨯= 利用2:170P 式3—10计算液体在降液管中停留时间以检验降液管面积, 即0.14520.4015.700.0037f T sA H s L τ⨯===大于5s,符合要求d 降液管底隙高度o h :取液体通过降液管底隙的流速'0.08/o m s μ=依2:171P 式3—11:'0.00370.0351.060.09s o w o L h m l μ===⨯⨯符合00.006w h h =- e 受液盘采用平行形受液盘,不设进堰口,深度为60mm 同理可以算出提溜段相关数据如下:a 溢流堰长w l :单溢流去l W =~D,取堰长w l 为=×=b 出口堰高W h :OW L W h h h -=由/0.8W l D = 2.5/23.34h W L l m =查知E=,依式232.841000h ow w L h E l ⎛⎫=⎪⎝⎭可得232.840.0261000h OW W L h E m l ⎛⎫== ⎪⎝⎭故0.060.0260.034w h m =-=c 降液管的宽度d W 与降液管的面积f A : 由60.0/=D l W查图得, 052.0,100.0==T f dA A D w 故计算液体在降液管中停留时间以检验降液管面积, 即11.6f T sA H s L τ==大于5s,符合要求d 降液管底隙高度o h :取液体通过降液管底隙的流速'0.08/o m s μ=s '0.032so w oL h m l μ==⨯m 符合00.006w h h =- 2 塔板布置精馏段①塔板的分块因D ≥800mm,故塔板采用分块式;塔极分为4块;对精馏段: a)取边缘区宽度 安定区宽度b ⎥⎦⎤⎢⎣⎡+-=-R x R x R x A a 1222sin 1802π计算开空区面积 )(96.004.012m w D R c =-=-=,)(73.0)07.02.0(1)(2m w w Dx s d =--=+-=解得,c 筛孔数n 与开孔率ϕ:取筛空的孔径0d 为mm 5,正三角形排列,一般碳的板厚为mm 3,取0.3/0=d t ,故孔中心距t 0.1550.3=⨯=5×5= 筛孔数则每层板上的开孔面积0A 为 气体通过筛孔的气速为6、筛板的流体力学验算塔板的流体力学计算,目的在于验算预选的塔板参数是否能维持塔的正常操作,以便决定对有关塔板参数进行必要的调整,最后还要作出塔板负荷性能图; 1 气体通过筛板压强相当的液柱高度计算 精馏段:a)干板压降相当的液柱高度c h :依67.13/5/0==σd ,查干筛孔的流量系数图得,C 0=由式 b 气体穿过板上液层压降相当的液柱高度l h :()()s m fT s A A V a /70.014.3052.0108.2===⨯--μ,19.190.27.0=⨯==v a a e u F由o ε与a F 关联图查得板上液层充气系数o ε=,依式()()0396.0016.0044.066.000=+⨯=+==ow w L l h h h h εεc 克服液体表面张力压降相当的液柱高度σh : 依式00211.01099.2043-40=⨯⨯==∂gd e l h σ, 故0744.00327.00396.000211.0=++=p h则单板压强:()()p p g e h p l p p 7000.5918.965.8100744.0≤=⨯⨯==∆(2) 液面落差(3) 对于筛板塔,液面落差很小,且本例的塔径和液流量均不大,故可忽略液面落差的影响;3 雾沫夹带()()水液水液kg kg kg kg e fT a h H u v /1.0/1032.732.306.05.24.07.01099.20107.52.3107.5366≤⨯=⨯==-⨯-⨯⨯-⨯---σ故在设计负荷下不会发生过量雾沫夹带;4 漏液由式()()σμh h e e c L v l oow -+=13.00056.0/4.4筛板的稳定性系数5.171.157.624.110>===OW U U K ,故在设计负荷下不会产生过量漏液;5 液泛为防止降液管液泛的发生,应使降液管中清液层高度()w T d h H H +≤φ依式d l p d h h h H ++=, 而32201052.1036.02.10043.0153.0153.0-⨯=⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛•⨯=h L L h W S d取5.0=φ,则()()785.017.14.05.0=+⨯=+Φw T h H故()w T d h H H +<φ在设计负荷下不会发生液泛;根据以上塔板的各项液体力学验算,可认为精馏段塔径及各项工艺尺寸是适合的; 同精馏段公式计算,提溜段各参数计算如下:1 气体通过筛板压强相当的液柱高度计算 a)干板压降相当的液柱高度:b 气体穿过板上液层压降相当的液柱高度:679.0163.014.302.2=-=-'='f T S aA A V u , 22.121.3679.0=⨯=''=V aa u F ρ由o ε与a F 关联图查得板上液层充气系数o ε=,依式039.006.065.01=⨯='h c 克服液体表面张力压降相当的液柱高度:()m gd h L 00216.01058.94.7961011.2144330=⨯⨯⨯⨯⨯=='--ρσσ, 故)(0758.000216.0039.00346.0m h p =++='则单板压降:)(7.0591.08.94.7960758.0kPa p <=⨯⨯='∆ 2液面落差对于筛板塔,液面落差很小,且本例的塔径和液流量均不大,故可忽略液面落差的影响;3 液沫夹带故在设计负荷下不会发生过量雾沫夹带; 4 漏液查得:84.00=c ()()5.69.26.8100021.006.013.00056.084.4.4/13.00056.04.40=÷⨯-⨯+⨯⨯=-+='o h hL c u vL owρρσ筛板的稳定性系数5.171.157.624.11>===ow o u u K ,故在设计负荷下不会产生过量漏液;5 液泛为防止降液管液泛的发生,应使降液管中清液层高度()w T d h H H +≤φ依式d l p d h h h H ++=, 而32201052.1036.02.10043.0153.0153.0-⨯=⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛•⨯=h L L h W S d取5.0=φ,则()()785.017.14.05.0=+⨯=+Φw T h H故()w T d h H H +<φ在设计负荷下不会发生液泛;根据以上塔板的各项液体力学验算,可认为提馏段塔径及各项工艺尺寸是适合的;7、塔板负荷性能图精馏段: 1 雾沫夹带线雾沫夹带量2.36107.5⎪⎪⎭⎫⎝⎛-⨯=-f Tav hH u e σ取气)液kg kg e v /(1.0=,前面求得m mN m /99.20,=精σ,代入2.36107.5⎪⎪⎭⎫⎝⎛-⨯=-f Tav hH u e σ,整理得:s s L V 3205.2911.5-=在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-19;表8由上表数据即可作出雾沫夹带线; 2 液泛线 由E=,l W =得:已算出)(1011.23m h -⨯=σ,3322311011.2405.0029.010555.7--⨯+++⨯=++=ssc p L V h h h h σm H T 4.0=,m h w 044.0=,5.0=Φ代入()dow w p w T h h h h h H +++=+Φ,整理得:2432210085.1878.134443.19s ssL L V ⨯--=在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-20; 表10由上表数据即可作出液泛线2; 3 液相负荷上限线以θ=4s 作为液体在降液管中停留时间的下限,)/(0163.04163.04.03m ax ,s m A H L fT s =⨯==τ据此可作出与气体流量无关的垂直液相负荷上限线m 3/s; 4 漏液线由32614.0044.0sow w L L h h h +=+=和0min ,A V u s ow =,代入()VLL ow h h C U ρρσ-+=13.00056.04.40得:整理得:32min ,314.22574.2684.0ss LV +⨯=在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-21; 表11由上表数据即可作出液泛线4; 5 液相负荷下限线对于平直堰,取堰上液层高度h OW =作为最小液体负荷标准;E=sm L s /10167.334min ,-⨯=据此可作出与气体流量无关的垂直液相负荷下限线5;sm A H L fT s /013.05163.04.03max ,=⨯==τ根据以上各线方程,可作出筛板塔的负荷性能图,如图所示;图1 精馏段筛板负荷性能图在负荷性能图上,作出操作点P,连接OP,即作出操作线;由图可看出,该筛板的操作上限为液泛控制,下限为漏液控制; 同精馏段,得出提馏段的各曲线为:(1) 雾沫夹带线2.36107.5e ⎪⎪⎭⎫⎝⎛+⨯=-f TaLv hH u σ整理得:3207.1352.5ss L V -=(2) 液泛线()dow w p w T h h h h h H +++=+Φ已知E= lw=,同理精馏段得: 由此可作出精馏段液泛线2;3 漏液线 32628.00325.0h sow w L l h h +=+= 整理得:3225.2090.1688.0V min ,s s l += 据此可作出漏液线3; 4 液相负荷上限线以θ=5s 作为液体在降液管中停留时间的下限,)/(013.05163.04.0L 3max ,s m A H fT s =⨯==τ据此可作出与气体流量元关的垂直液相负荷上限线; 5 液相负荷下限线以h ow =5s 作为液体在降液管中停留时间的下限,32min ,2.1360006.1100084.2⎪⎪⎭⎫ ⎝⎛⨯⨯⨯=s ow L h 整理得:)/(1073.934min ,s m L s -⨯=由此可作出液相负荷下限线5; 根据以上各线方程,可作出筛板塔的负荷性能图,如图所示;六、设计结果一览表七、设计心得体会本次课程设计通过给定的生产操作工艺条件自行设计一套苯-甲苯物系的分离的塔板式连续精馏塔设备;通过近两周的团队努力,反经过复杂的计算和优化,我们三人组终于设计出一套较为完善的塔板式连续精馏塔设备;其各项操作性能指标均能符合工艺生产技术要求,而且操作弹性大,生产能力强,达到了预期的目的;通过这次课程设计我经历并学到了很多知识,熟悉了大量课程内容,懂得了许多做事方法,可谓是我从中受益匪浅,我想这也许就是这门课程的最初本意;从接到课题并完成分组的那一刻起我们就立志要尽最大努力把它做全做好;首先,我们去图书馆借阅了大量有关书籍,并从设计书上了解熟悉了设计的流程和方法;通过查阅资料我们从对设计一无所知变得初晓门路,而进一步的学习和讨论使我们使我们具备了完成设计的知识和方法,这使我们对设计有了极大的信心,我们确定了设计方案和具体流程及设计时间表,然后就进入了正是的设计工作当中;八、参考文献1 张浩勤,陆美娟.化工原理第二版上下册. 北京:化学工业出版社,2006.2 路秀林,王者相. 化工设备设计全书塔设备M. 北京:化学工业出版社,2004.3 姚玉英.天津大学出版社上下册,2003.4 王志魁. 化工原理第四版M. 北京:化学工业出版社,2010.5 王为国. 化工原理课程设计M. 北京:化学工业出版社,2010.6 马沛生. 化工数据. 北京:中国石化出版社,2003.。
精馏塔及一系列附属设备设计说明书
精馏塔设计说明书院(部)系化学与化学工程学院所学专业化学工程与工艺年级、班级08级本科一班完成人 ***指导教师***前言工程设计既是工程建设的灵魂,又是科研成果转化为现实生产力的桥梁和纽带,决定着工业现代化的水平。
本设计方案要求设计以精馏塔为核心,根据要求合理和完整的设计一个精馏流程,具体设计任务如下:一、设计任务以精馏塔为核心,要求能根据分离要求合理和完整的设计一个精馏流程,包括储罐,管道,离心泵,换热器,精馏塔等。
还要求能用合适的形式表达设计方案。
包括工艺流程图带控制点的工艺流程图、设备图等。
具体任务为:某工厂生产乙酸丁酯时产生一股物流,含有乙酸乙酯30%(质量分数,下同),乙酸丁酯70%,设计一座常压精馏塔,对上述混合物进行分离,要求塔顶流出液中乙酸乙酯回收率为95%,釜残液中乙酸丁酯的回收率为97%,年处理量7200吨,产品均须冷却到40°C。
塔釜采用外置再沸器,冷公用工程水为循环水(20-30°C),热公用工程为饱和水蒸气,环境温度为20°C。
二、工艺操作条件操作压力:常压进料热状况:冷夜进料,进料温度为60°C回流比:R=6.8塔釜加热蒸汽:0.4MPa(表压)塔板类型:筛板工作日:每年300天,每天24小时连续运行。
三、设计内容:1、计算馏出液和釜残液的流量和组成。
2、采用图解法求出理论板数并确定进料位置。
3、进行筛板式精馏塔的工艺设计,确定塔高、塔径、进料位置等。
4、如果采用填料塔,确定填料层高度(填料类型自选)。
5、设计一合理的工艺流程,并绘制带有主要参数控制点的工艺流程图。
6、计算所设计流程的冷热公用工程用量,并对工艺流程中的任一台换热器进行设计计算,要求采用列管式换热器,计算其主要工艺参数,包括管长、管子规格壳程直径、管程数、壳程数、管子数目等,画出换热器简图,表明接管尺寸。
目录1 板式塔的设计 (1)1.1精馏塔的物料衡算 (1)1.1.1原料液及其摩尔分率 (1)1.1.2物料衡算 (1)1.2进料热状况参数q (1)1.3塔板数的确定 (3)1.3.1理论板层数的求取 (3)1.3.2全塔效率的求取 (3)1.3.3实际板层数的求取 (4)1.4精馏塔的工艺条件及有关物性参数的计算 (4)1.5 精馏塔的塔体工艺尺寸计算 (6)1.5.1 塔径的计算 (6)1.5.2精馏塔有效高度的计算 (7)1.5.3 塔板主要工艺尺寸的计算 (7)1.5.4塔板布置 (8)1.5.5筛板的流体力学验算 (9)1.5.6 塔板负荷性能图 (11)2 辅助设备的选型及计算 (16)2.1塔顶全凝器的设计计算 (16)2.1.1总传热系数的计算 (16)2.1.2传热面积的计算 (17)2.2 工艺结构尺寸 (17)2.3 换热器核算: (19)2.4 填料塔的设计 (21)3 塔设计的评述 (22)参考文献 (26)符号及其意义 (27)1 板式塔的设计1.1精馏塔的物料衡算1.1.1原料液及其摩尔分率乙酸乙酯的摩尔质量kmo Kg M A /11.88= 乙酸丁酯的摩尔质量kmo Kg M B /16.116= 进料组成36.016.1167.011.883.011.883.0=+=Fx 原料液的平均摩尔质量 km kg M m /026.10616.11664.011.8836.0=⨯+⨯= 原料液的流量 F=026.106243001072003⨯⨯⨯=9.43kmol/h1.1.2物料衡算塔顶馏出液乙酸乙酯的回收率:95.0=FD FxDx釜残液中乙酸丁酯的回收率:)1()1(F W x F x W --=0.97总物料衡算:F=D+W乙酸乙酯物料衡算:WD F Wx Dx Fx += 由以上各式解得 D=3.41kmol/h W=6.02kmol/h 95.0=D x 028.0=W x1.2进料热状况参数q根据常压下乙酸乙酯-乙酸丁酯溶液的平衡数据绘出t-x-y 图,如图1。
精馏塔装置流程说明
精馏塔装置流程说明英文回答:Distillation tower is a common equipment used in chemical and petrochemical industries for separating and purifying liquid mixtures. The process involves heating the mixture to create vapor, then condensing the vapor backinto liquid form. This separation is based on the differences in boiling points of the components in the mixture.In a distillation tower, there are typically two main sections: the distillation column and the reboiler. The distillation column is where the separation takes place, with trays or packing material to facilitate the contact between the rising vapor and the descending liquid. The reboiler is responsible for heating the liquid feed at the bottom of the column to create vapor.The process starts with feeding the liquid mixture intothe distillation tower. As the mixture is heated, the component with the lower boiling point vaporizes first and rises up the column. It then condenses on the trays or packing material and collects as a liquid in the lower part of the column. The higher boiling point component remains in liquid form and flows down the column.Through this process of vaporization and condensation, the components in the mixture are separated based on their boiling points. The separated components can then be collected at different points along the column or in separate condensers.One common example of distillation tower application is in the production of ethanol. Ethanol has a lower boiling point than water, so when a mixture of ethanol and water is heated in a distillation tower, the ethanol vaporizes first and can be collected as a purer product.Overall, distillation towers are versatile equipment that can be used for various separation processes in different industries, from refining crude oil to producingchemicals and pharmaceuticals.中文回答:精馏塔是化工和石化行业常用的设备,用于分离和纯化液体混合物。
精馏塔装置流程说明
精馏塔装置流程说明Distillation tower is an essential component in the refining process of crude oil. 精馏塔是原油精炼过程中必不可少的组件。
It plays a crucial role in separating the different components of crude oil based on their boiling points. 它在基于油品的沸点分离不同成分上起着至关重要的作用。
The process of distillation involves heating the crude oil to vaporize it, then condensing the vapors into liquid form. 精馏过程涉及加热原油以将其蒸发,然后将蒸气凝结成液体形式。
As the vapors rise through the distillation tower, the components with lower boiling points rise to the top, while the ones with higher boiling points remain at the bottom. 随着蒸气通过精馏塔上升,具有较低沸点的成分上升到顶部,而沸点较高的成分留在底部。
The distillation tower is divided into various trays or plates, which help to facilitate the separation process. 精馏塔被分成各种托盘或板,有助于促进分离过程。
Each tray allows the vapor to come into contact with a liquid, promoting the condensation of certain components. 每个托盘让蒸气与液体接触,促进某些成分的凝结。
踏板精馏实验报告
一、实验目的1. 了解精馏的基本原理和操作过程;2. 掌握踏板精馏塔的结构和操作方法;3. 研究不同回流比对精馏过程的影响;4. 分析精馏过程中的热量传递和物质传递;5. 计算精馏塔的理论塔板数和实际塔板数,并分析其影响因素。
二、实验原理精馏是一种将混合物中的组分分离的方法,利用组分之间挥发度的差异,通过加热使混合物沸腾,然后冷凝分离。
在精馏过程中,混合物中的轻组分(挥发度大的组分)会先汽化,进入塔顶冷凝成液态,而重组分(挥发度小的组分)则留在塔底。
踏板精馏塔是一种常用的精馏设备,其主要特点是塔内设有多个水平的踏板,踏板之间形成多个塔段,每个塔段都具有一定的理论塔板数。
在精馏过程中,汽液两相在塔内逆流接触,实现组分分离。
三、实验仪器与材料1. 踏板精馏塔;2. 加热器;3. 冷凝器;4. 温度计;5. 压力计;6. 液位计;7. 乙醇-水混合液;8. 计算器。
四、实验步骤1. 将踏板精馏塔安装好,并连接好加热器、冷凝器、温度计、压力计和液位计等设备;2. 将乙醇-水混合液加入塔顶,调整加热器,使混合液沸腾;3. 观察塔内汽液两相流动情况,记录塔顶温度、塔底温度、液位等数据;4. 改变回流比,观察精馏效果的变化;5. 记录不同回流比下的塔顶温度、塔底温度、液位等数据;6. 分析精馏过程中的热量传递和物质传递;7. 计算精馏塔的理论塔板数和实际塔板数。
五、实验结果与分析1. 不同回流比对精馏过程的影响实验结果表明,随着回流比的增大,塔顶温度逐渐降低,塔底温度逐渐升高,液位逐渐升高。
这说明回流比的增加有利于提高精馏效果。
2. 热量传递和物质传递在精馏过程中,热量传递和物质传递是相互关联的。
加热器提供的热量使混合液沸腾,产生汽液两相,热量传递到塔顶,使轻组分汽化;冷凝器将塔顶的蒸汽冷凝成液态,热量传递到塔底,使重组分液化。
3. 理论塔板数和实际塔板数根据实验数据,计算精馏塔的理论塔板数和实际塔板数。
理论塔板数是指实现组分完全分离所需的塔板数,实际塔板数是指实际精馏过程中所使用的塔板数。
资料:T0104 丁二烯精馏塔
丁二烯精馏塔校核计算单位尚川计算条件塔型板式设计压力MPa 0.5容器分段数(不包括裙座)1压力试验类型液压压力试验计入液柱高度H mm 64530试验压力(立试)MPa 0.625试验压力(卧试)MPa 1.258封头上封头下封头材料名称Q345R Q345R名义厚度mm 1016腐蚀裕量mm 22焊接接头系数11封头形状椭圆形椭圆形圆筒1 2 3 4 5 设计温度℃55圆筒长度mm 63800圆筒名义厚度mm 16圆筒内径mm 2600材料名称(即钢号)Q345R腐蚀裕量mm 2纵向焊接接头系数1环向焊接接头系数1圆筒外压计算长度mm 06 7 8 9 10 设计温度℃圆筒长度mm圆筒名义厚度mm圆筒内径mm材料名称(即钢号)腐蚀裕量mm纵向焊接接头系数环向焊接接头系数圆筒外压计算长度mm内件及偏心载荷介质密度kg/m3450塔釜液面离焊接接头的高度mm 1200塔板分段数 1 2 3 4 5 塔板型式浮阀塔板层数101每层塔板上积液厚度mm 60最高一层塔板高度mm 63000最低一层塔板高度mm 4500填料分段数 1 2 3 4 5 填料顶部高度mm填料底部高度mm填料密度kg/m3集中载荷数 1 2 3 4 5 集中载荷kg 505050集中载荷高度mm 600003000010000集中载荷中心至容器中mm 150015001500心线距离塔器附件及基础塔器附件质量计算系数 1.2基本风压N/m2450基础高度mm 400塔器保温层厚度mm 50保温层密度kg/m3150裙座防火层厚度mm 0防火层密度kg/m30管线保温层厚度mm 30最大管线外径mm 1200笼式扶梯与最大管线的相对90位置场地土类型I场地土粗糙度类别B地震烈度低于7度地震远近参数近震塔器上平台总个数2平台宽度mm 1200塔器上最高平台高度mm 60000塔器上最低平台高度mm 5000裙座裙座结构形式圆筒形裙座底部截面内径mm 2600裙座与壳体连接形式对接裙座高度mm 4000裙座材料名称Q245R裙座设计温度℃30裙座腐蚀裕量mm 2裙座名义厚度mm 30裙座材料许用应力MPa 163裙座上同一高度处较大孔个数2裙座较大孔中心高度mm 1200裙座上较大孔引出管内径(或宽度)mm 600裙座上较大孔引出管厚度mm 10裙座上较大孔引出管长度mm 800地脚螺栓及地脚螺栓座地脚螺栓材料名称Q245R地脚螺栓材料许用应力MPa 170注:以下设计参数均参照JB4710-92 表5-6 并计算确定地脚螺栓个数28地脚螺栓公称直径mm 76全部筋板块数56相邻筋板最大外侧间距mm 141.481筋板内侧间距mm 135筋板厚度mm 24筋板宽度mm 190盖板类型分块盖板上地脚螺栓孔直径mm 100盖板厚度mm 71盖板宽度mm 250垫板有垫板上地脚螺栓孔直径mm 79垫板厚度mm 26垫板宽度mm 140基础环板外径mm 2892基础环板内径mm 2312基础环板名义厚度mm 27计算结果容器壳体强度计算元件名称压力设计名义厚度(mm) 直立容器校核取用厚度(mm)许用内压(MPa) 许用外压(MPa)下封头 16 16 1.974 第1 段圆筒16 16 1.821 第1 段变径段第2 段圆筒第2 段变径段第3 段圆筒第3 段变径段第4 段圆筒第4 段变径段第5 段圆筒第5 段变径段第6 段圆筒第6 段变径段第7 段圆筒第7 段变径段第8 段圆筒第8 段变径段第9 段圆筒第9 段变径段第10 段圆筒上封头10 10 1.129裙座名义厚度(mm) 取用厚度(mm)30 30风载及地震载荷0-0 A-A 1-1(筒体) 1-1(下封头) 2-2 3-3 4-4 操作质量160733 157913 150167 150167最小质量109590 106770 99023.9 99023.9液压试验时质量486092 483272 131484 131484风弯矩9.09287e+09 8.83897e+098.25234e+098.25234e+09地震弯矩0 0 0 0偏心弯矩 2.20725e+06 2.20725e+062.20725e+062.20725e+06最大弯矩9.09507e+09 8.84118e+098.25455e+098.25455e+09垂直地震力0 0 0 0应力计算σ110.00 0.00 23.21 23.21 σ12 6.97 6.93 12.88 12.88 σ1362.52 41.25 111.05 111.05 σ22 6.97 6.93 8.49 8.49 σ310.00 0.00 29.02 29.02 σ3221.08 21.21 11.28 11.28 σ3318.77 12.38 33.34 33.34 [σ]t163.00 163.00 170.00 170.00 B 162.02 162.02 131.29 131.29组合应力校核σA1121.38 121.38 许用值204.00 204.00 σA269.49 48.18 119.55 119.55 许用值194.43 194.43 157.55 157.55 σA351.07 51.07 许用值372.60 372.60σA439.84 33.59 44.62 44.62许用值194.43 194.43 157.55 157.55σ116.78 116.78许用值310.50 310.50校核结果合格合格合格合格注1: σi j中i 和j 的意义如下i=1 操作工况j=1 设计压力或试验压力下引起的轴向应力(拉)i=2 检修工况j=2 重力及垂直地震力引起的轴向应力(压)i=3 液压试验工况j=3 弯矩引起的轴向应力(拉或压)[σ]t设计温度下材料许用应力 B 设计温度下轴向稳定的应力许用值注2:σA1: 操作工况下轴向最大组合拉应力σA2: 操作工况下轴向最大组合压应力σA3: 液压试验时轴向最大组合拉应力σA4: 液压试验时轴向最大组合压应力σ: 试验压力引起的周向应力注3: 单位如下质量: kg 力:N 弯矩: N mm 应力: MPa计算结果地脚螺栓及地脚螺栓座基础环板抗弯断面模数mm3 1.40466e+09 基础环板面积mm2 2.37058e+06基础环板计算力矩N∙mm 16588.9 基础环板需要厚度mm 27.00 基础环板厚度厚度校核结果合格混凝土地基上最大压应力MPa 7.14地脚螺栓受风载时最大拉应力MPa 6.02 地脚螺栓受地震载荷时最大拉应力MPa 0.95地脚螺栓需要的螺纹小径mm 64.7914 地脚螺栓实际的螺纹小径mm 69.505 地脚螺栓校核结果合格筋板压应力MPa 81.70 筋板许用应力MPa 90.59 筋板校核结果合格盖板最大应力MPa 139.06 盖板许用应力MPa 140盖板校核结果¦合格裙座与壳体的焊接接头校核焊接接头截面上的塔器操作质量kg150167 焊接接头截面上的最大弯矩N∙mm8.25455e+09对接接头校核搭接接头校核对接接头横截面mm2226245 搭接接头横截面mm2对接接头抗弯断面模数mm3 1.45475e+08 搭接接头抗剪断面模数mm3对接焊接接头在操作工况下最大拉应力MPa50.23 搭接焊接接头在操作工况下最大剪应力MPa对接焊接接头拉应力许可值MPa117.36 搭接焊接接头在操作工况下的剪应力许可值MPa对接接头拉应力校核结果合格搭接焊接接头在试验工况下最大剪应力MPa搭接焊接接头在试验工况下的剪应力许可值MPa搭接接头拉应力校核结果主要尺寸设计及总体参数计算结果裙座设计名义厚度mm 30壳体和裙座质量kg 75132.3 附件质量kg 15026.5 内件质量kg 40574.6 保温层质量kg 4007.67 平台及扶梯质量kg 7158.98 操作时物料质量kg 18683.3 直立容器的操作质量kg 160733 直立容器的最小质量kg 109590 直立容器的最大质量kg 486092 液压试验时液体质量kg 344042 吊装时空塔质量kg 98273.6直立容器自振周期s 2.57 空塔重心至基础mm 32422.7 环板底截面上风弯矩N∙mm 9.09287e+09 环板底截面距离环板底截面上地震弯矩N∙mm 0 环板底截面上垂直地震力N 0操作时基础环板底截面的最大计算弯矩N∙mm 9.09507e+09风载对直立容器总的横推力N 212197 地震载荷对直立容器总的横推力N 0操作工况下容器顶部最大挠度mm 250.342 容器许用外压MPa容器总容积mm3 3.44042e+11 直立容器总高mm 68540 第二振型自振周期s 0.41 第三振型自振周期s 0.15 注:内件质量指塔板质量,填料质量计入物料质量。