matlab蚁群算法求解TSP问题
基于蚁群算法的TSP问题求解
C= 32 l5 5 4 : 1 : : 9 9 6 1 : 4 0 1 : 4 6 1 : [ : : :4 7 3 1 0 8 7 : :0 2 1 :7 3 1 : 2 9
在运 动过 程 中, 据各 条路 径上 的信 息素 的浓度 决定转 移方 r, ) 根 N p ( 表示在 t ,
时刻 刻蚂蚁 k从送 货 点 i 移 到送 货点 J的概率 , 转 其计 算公 式为
3 2 参数 设置 : . 最大 迭代 次数 :C m x2 0 N a= 0 : 蚂蚁 个数 := 0 m3 : 信息 素重 要程 度 :lh = : Ap a l 启发 式因子 重要 程度 :ea 5 B t= ; 信 息 素蒸 发系 数 :h = . : Ro O 1 信 息 素增加 强度 系数 := 0 : Q 10 R b s 代表 最佳路 线 :- e t 代 表最 佳路线 的 长度 。 et L bs 3 3 编制 函数
1 1 1 ; 1 6 8: 1 7 l 2 7 4 2 0; 7 9 5 9 1 4: 0 7: 0 2 9 9 2 6 1 1 1 : 5 1 1 1 2 l 1 5 1 2 1
前 行 。与此 同时释 放 出与路线 长度 有关 的信 息素 。路径越 长 , 放 的激素浓 释 度 越低 。当后 来的蚂 蚁再 次碰 到这个 路 口的时 候 , 选择 激素 浓度 较高 路径 概 率 就会相 对较 大 。这样 形成 了一个 正反 馈 。最 优路 径上 的激 素浓度 越 来越 大 而 其它 的路 径上 激素 浓度 却会 随着 时 间的流 逝而 消减 。这样 , 整个 蚁群 最 终 会 找 出最 优 路 径 。
蚁群算法实现TSP
蚁群算法实现TSP蚁群算法(Ant Colony Optimization, ACO)是一种模拟蚂蚁觅食行为的算法,常被用来解决旅行商问题(Traveling Salesman Problem, TSP)。
旅行商问题是一个经典的组合优化问题,目标是找到一条最短的路径,使得旅行商能够访问所有城市并返回起始城市。
蚁群算法的基本思想是模拟蚂蚁寻找食物的行为,每只蚂蚁在过程中释放信息素,并根据信息素浓度和距离选择下一个城市。
信息素的释放和更新规则是蚁群算法的核心。
蚁群算法的实现步骤如下:1.初始化蚁群:随机放置一定数量的蚂蚁在不同城市。
2.计算路径长度:根据蚂蚁的选择规则,计算每只蚂蚁的路径长度。
3.更新信息素:根据路径长度,更新城市之间的信息素浓度。
4.更新蚂蚁的选择规则:根据信息素浓度和距离,更新蚂蚁的选择规则。
5.重复步骤2-4,直到达到指定的迭代次数或找到最优解。
在蚂蚁的选择规则中,信息素浓度和距离是两个重要的因素。
信息素浓度越高,蚂蚁越有可能选择该路径;距离越短,蚂蚁越倾向于选择该路径。
为了平衡这两个因素,通常使用一个参数来调节它们的权重。
在更新信息素时,一般采用全局信息素更新和局部信息素更新两种方式。
全局信息素更新是将所有蚂蚁路径上的信息素浓度进行更新,以加强优质路径的信息素浓度。
局部信息素更新是只更新最优路径上的信息素浓度,以加强当前最优路径的信息素浓度。
蚁群算法的优点是能够找到近似最优解,并且具有较好的鲁棒性和适应性。
然而,蚁群算法也存在一些问题,例如易陷入局部最优解、收敛速度较慢等。
针对TSP问题,蚁群算法的实现可以按照上述步骤进行。
具体来说,可以通过以下几个方面的设计来优化算法的性能:1.蚂蚁的选择规则:可以采用轮盘赌选择法,即根据信息素浓度和距离计算每个城市被选择的概率,然后根据概率选择下一个城市。
2.信息素更新:可以采用全局信息素更新和局部信息素更新相结合的方式,以平衡全局和局部的效果。
计算智能大作业--蚁群算法解决TSP问题
(计算智能大作业)应用蚁群算法求解TSP问题目录蚁群算法求解TSP问题 (3)摘要: (3)关键词: (3)一、引言 (3)二、蚁群算法原理 (4)三、蚁群算法解决TSP问题 (7)四、解决n个城市的TSP问题的算法步骤 (9)五、程序实现 (11)六、蚁群算法优缺点分析及展望 (18)七、总结 (18)采用蚁群算法解决TSP问题摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。
本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。
关键词:蚁群算法;TSP问题;matlab。
一、引言TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。
TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。
TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。
目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。
本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。
20世纪90年代,意大利学者M.Dorigo等人在新型算法研究的过程中,通过模拟自然界蚂蚁的觅食过程:即通过信息素(pheromone)的相互交流从而找到由蚁巢至食物的最短路径,提出了一种基于信息正反馈原理的新型模拟进化算法——蚁群算法(Ant Colony algorithm)。
简单蚁群算法求解TSP的源程序-matlab
蚁群算法是新兴的仿生算法,最初是由意大利学者Dorigo M于1991年首次提出,由于具有较强的鲁棒性,优良的分布式计算机制和易于与其它方法结合等优点,成为人工智能领域的一个研究热点。
本程序是实现简单的蚁群算法,TSP问题取的是att48,可从http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95获取,程序运行时间可能会比较长,在我的这台CPU 1.6G+内存256M的机器上运行时间大概是13分钟左右。
我用的语言是MATLAB 7.1。
此程序仅供学习所用,如有问题请反馈。
谢谢。
(注:程序没有计算最后一个城市回来起点城市的距离)function [y,val]=QACSticload att48 att48;MAXIT=300; % 最大循环次数NC=48; % 城市个数tao=ones(48,48);% 初始时刻各边上的信息最为1rho=0.2; % 挥发系数alpha=1;beta=2;Q=100;mant=20; % 蚂蚁数量iter=0; % 记录迭代次数for i=1:NC % 计算各城市间的距离for j=1:NCdistance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2);endendbestroute=zeros(1,48); % 用来记录最优路径routelength=inf; % 用来记录当前找到的最优路径长度% for i=1:mant % 确定各蚂蚁初始的位置% endfor ite=1:MAXITfor ka=1:mant %考查第K只蚂蚁deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零[routek,lengthk]=travel(distance,tao,alpha,beta);if lengthk<routelength % 找到一条更好的路径routelength=lengthk;bestroute=routek;endfor i=1:NC-1 % 第K只蚂蚁在路径上释放的信息量deltatao(routek(i),routek(i+1))=deltatao(routek(i),routek(i+1))+Q/lengthk; enddeltatao(routek(48),1)=deltatao(routek(48),1)+Q/lengthk;endfor i=1:NC-1for j=i+1:NCif deltatao(i,j)==0deltatao(i,j)=deltatao(j,i);endendendtao=(1-rho).*tao+deltatao;endy=bestroute;val=routelength;tocfunction [y,val]=travel(distance,tao,alpha,beta) % 某只蚂蚁找到的某条路径[m,n]=size(distance);p=fix(m*rand)+1;val=0; % 初始路径长度设为 0tabuk=[p]; % 假设该蚂蚁都是从第 p 个城市出发的for i=1:m-1np=tabuk(length(tabuk)); % 蚂蚁当前所在的城市号p_sum=0;for j=1:mif isin(j,tabuk)continue;elseada=1/distance(np,j);p_sum=p_sum+tao(np,j)^alpha*ada^beta;endendcp=zeros(1,m); % 转移概率for j=1:mif isin(j,tabuk)continue;elseada=1/distance(np,j);cp(j)=tao(np,j)^alpha*ada^beta/p_sum;endendchp=max(cp)*rand;for j=1:mif cp(j)>=chptabuk=[tabuk j];val=val+distance(np,j);break;endendendy=tabuk;function y=isin(x,A) % 判断数 x 是否在向量 A 中,如在返回 1 ,否则返回 0 y=0;for i=1:length(A)if A(i)==xy=1;break;endend。
用蚁群算法解决TSP问题
用蚁群算法解决TSP 问题一、引言蚁群算法是一种受自然界生物行为启发而产生的“自然”算法,产生于对蚂蚁行为的研究。
蚁群中的蚂蚁以“信息素”为媒介,间接异步的相互联系。
蚂蚁在行动中,会在他们经过的地方留下一些化学物质,称为“信息素”。
这些物质能被同一种群众后来的蚂蚁感受到,并作为一种信号影响后者的行动,具体表现在后到的蚂蚁选择有这些物质的路径的可能性比选择没有这些物质的路径的可能性大的多。
后者留下的信息素会对原有的信息素进行加强,并循环下去。
这样,经过蚂蚁多的路径,后到蚂蚁选择这条路径的可能性就越来越大。
由于在一定的时间内,越短的路径会被越多的蚂蚁访问,因而积累的信息素就越多,在下一个时间内被其他的蚂蚁选中的可能性也越大。
这个过程会持续到所有的蚂蚁都走到最短的那一条路径为止。
二、关键技术(1) 解的表达形式在应用蚁群优化算法时,只需要建立一个虚拟的始终点,相当于蚁群的巢穴和食物所在地,这样一个所经过城市的路径的排列就构成了一个解;(2) 信息素的记忆和更新在算法开始时,由于从来没有蚂蚁去寻找过路径,因此可以认为是没有任何先验信息,即每条路上的信息相等。
客观地将,信息素应该都为0,但是由于在蚁群算法中,信息素决定了蚂蚁选择这条路径的概率,因此可以认为初始信息素矩阵为:1/(*(1))0ij N N p -⎧=⎨⎩i j i j ≠=其中N 为城市数 当算法运行过程中,每次放出m 支蚂蚁,每只蚂蚁按照信息素选择路径,将其中路径最短的记录下来,对这条最短路进行信息素的加强;而对于其他路径,因为信息素的挥发,信息素浓度将会降低,更新后的信息素矩阵为: 11(1)//(1)/k ij k ij k ij p N p p ρρρ--⎧-+⎪=⎨-⎪⎩i j i j →→经过路径不经过路径其中N 为城市数,ρ为挥发系数 (3) 蚁群的规模在一般应用中,蚁群中蚂蚁的个数m 是固定数,不超过TSP 图的节点数。
三、算法实现步骤1 设定蚁群规模m ,计算次数n ,挥发系数ρ,初始化信息素矩阵,设定变量best =+∞记录全局最优解;步骤2 若n =0,推出并输出结果;否则n=n-1,分别放出m 只蚂蚁,按照信息素概率选择路径,并找出m 条路径中的当代最优路径cubest ; 步骤3 根据当代最有路径更新信息素;步骤4 如果cubest<best ,best=cubest ,执行步骤2;否则直接执行步骤2;四、结果及分析通过五个城市节点的TSP 问题的求解,其城市间的距离矩阵为:01015621008139158020156132005291550⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭蚁群算法找到的最优路径为A C B D E →→→→,总路程为43;通过试验结果发现,对于小规模的TSP问题,蚁群算法和禁忌搜索、模拟退火算法的计算结果相似,而且耗时很短,因此该算法是合理的。
蚁群算法(ACO)解决TSP问题
蚁群算法(ACO)解决TSP问题⼀、蚁群算法1.基本原理蚁群算法(Ant Colony Optimization,ACO)是⼀种基于种群寻优的启发式搜索算法,有意⼤利学者M.Dorigo等⼈于1991年⾸先提出。
该算法受到⾃然界真实蚁群集体在觅⾷过程中⾏为的启发,利⽤真实蚁群通过个体间的信息传递、搜索从蚁⽳到⾷物间的最短路径等集体寻优特征,来解决⼀些离散系统优化中的困难问题。
经过观察发现,蚂蚁在寻找⾷物的过程中,会在它所经过的路径上留下⼀种被称为信息素的化学物质,信息素能够沉积在路径上,并且随着时间逐步挥发。
在蚂蚁的觅⾷过程中,同⼀蚁群中的其他蚂蚁能够感知到这种物质的存在及其强度,后续的蚂蚁会根据信息素浓度的⾼低来选择⾃⼰的⾏动⽅向,蚂蚁总会倾向于向信息素浓度⾼的⽅向⾏进,⽽蚂蚁在⾏进过程中留下的信息素⼜会对原有的信息素浓度予以加强,因此,经过蚂蚁越多的路径上的信息素浓度会越强,⽽后续的蚂蚁选择该路径的可能性就越⼤。
通常在单位时间内,越短的路径会被越多的蚂蚁所访问,该路径上的信息素强度也越来越强,因此,后续的蚂蚁选择该短路径的概率也就越⼤。
经过⼀段时间的搜索后,所有的蚂蚁都将选择这条最短的路径,也就是说,当蚁巢与⾷物之间存在多条路径时,整个蚁群能够通过搜索蚂蚁个体留下的信息素痕迹,寻找到蚁巢和⾷物之间的最短路径。
蚁群算法中,蚂蚁个体作为每⼀个优化问题的可⾏解。
⾸先随机⽣成初始种群,包括确定解的个数、信息素挥发系数、构造解的结构等。
然后构造蚁群算法所特有的信息素矩阵每只妈蚁执⾏蚂蚊移动算⼦后,对整个群体的蚂蚁做⼀评价,记录最优的蚂蚁。
之后算法根据信息素更新算⼦更新信息素矩阵,⾄此种群的⼀次选代过程完成。
整个蚂蚁群体执⾏⼀定次数的选代后退出循环、输出最优解。
2.术语介绍(1)蚂蚁个体。
每只蚂蚁称为⼀个单独的个体,在算法中作为⼀个问题的解。
(2)蚂蚁群体。
⼀定数量的蚂蚁个体组合在⼀起构成⼀个群体,蚂蚁是群体的基本单位。
基于自然选择策略的蚁群算法求解TSP问题
基于自然选择策略的蚁群算法求解TSP问题一、本文概述本文旨在探讨基于自然选择策略的蚁群算法在求解旅行商问题(TSP)中的应用。
旅行商问题是计算机科学和运筹学中的经典难题,其目标是在给定一系列城市和城市之间的距离后,找出一个最短的路径,使得旅行商能够访问每个城市一次并返回原点。
蚁群算法作为一种模拟自然界蚂蚁觅食行为的优化算法,具有很强的全局搜索能力和鲁棒性,因此在解决TSP问题中具有广阔的应用前景。
本文首先介绍了TSP问题的定义、特点以及求解难度,然后详细阐述了蚁群算法的基本原理和算法流程。
在此基础上,本文提出了一种基于自然选择策略的蚁群算法,该算法通过引入自然选择的思想,使得蚁群在搜索过程中能够自动适应环境变化,优化搜索策略,从而提高算法的求解效率。
本文的主要研究内容包括:分析TSP问题的数学模型和求解难点,为蚁群算法的应用奠定基础;设计并实现基于自然选择策略的蚁群算法,通过仿真实验验证算法的有效性和优越性;将算法应用于实际TSP问题中,评估其在实际应用中的性能和效果。
本文的研究不仅有助于深入理解TSP问题的求解方法和蚁群算法的优化原理,而且能够为解决其他优化问题提供新的思路和方法。
本文的研究结果也为蚁群算法在实际应用中的推广和应用提供了有力支持。
二、自然选择策略的基本原理自然选择策略,源自达尔文的进化论,是生物进化过程中的核心机制。
在自然界中,生物体通过遗传、变异和选择三个基本过程不断适应和进化。
遗传使得生物体的特征能够传递给后代,变异则引入新的遗传信息,而自然选择则决定了哪些特征在生存和繁衍中更具优势。
经过长时间的演化,适应性强的特征会得到保留和增强,而适应性弱的特征则可能逐渐消失。
将这种自然选择的思想引入算法设计,就形成了自然选择策略。
在算法中,每个解被视为一个个体,而个体的适应度则通过某种评价函数来衡量。
算法通过模拟自然选择的过程,不断迭代生成新的解,并保留适应度高的解,淘汰适应度低的解。
基于蚁群优化算法的TSP问题求解计算智能实验报告
智能计算实验报告学院:班级:学号:姓名:成绩:日期:实验名称:基于蚁群优化算法的TSP问题求解题目要求:利用蚁群优化算法对给定的TSP问题进行求解,求出一条最短路径。
蚁群优化算法简介:蚁群算法是一中求解复杂优化问题的启发式算法,该方法通过模拟蚁群对“信息素”的控制和利用进行搜索食物的过程,达到求解最优结果的目的。
它具有智能搜索、全局优化、稳健性强、易于其它方法结合等优点,适应于解决组合优化问题,包括运输路径优化问题。
TSP数据文件格式分析:本次课程设计采用的TSP文件是att48.tsp ,文件是由48组城市坐标构成的,文件共分成三列,第一列为城市编号,第二列为城市横坐标,第三列为城市纵坐标。
数据结构如下所示:实验操作过程:1、TSP文件的读取:class chengshi {int no;double x;double y;chengshi(int no, double x, double y) {this.no = no;this.x = x;this.y = y;}private double getDistance(chengshi chengshi) {return sqrt(pow((x - chengshi.x), 2) + pow((y - chengshi.y), 2));}}try {//定义HashMap保存读取的坐标信息HashMap<Integer, chengshi> map = new HashMap<Integer,chengshi>();//读取文件BufferedReader reader = new BufferedReader(new (new )));for (String str = reader.readLine(); str != null; str = reader.readLine()) { //将读到的信息保存入HashMapif(str.matches("([0-9]+)(\\s*)([0-9]+)(.?)([0-9]*)(\\s*)([0-9]+)(.?)([0-9]*)")) {String[] data = str.split("(\\s+)");chengshi chengshi = new chengshi(Integer.parseInt(data[0]),Double.parseDouble(data[1]),Double.parseDouble(data[2]));map.put(chengshi.no, chengshi);}}//分配距离矩阵存储空间distance = new double[map.size() + 1][map.size() + 1];//分配距离倒数矩阵存储空间heuristic = new double[map.size() + 1][map.size() + 1];//分配信息素矩阵存储空间pheromone = new double[map.size() + 1][map.size() + 1];for (int i = 1; i < map.size() + 1; i++) {for (int j = 1; j < map.size() + 1; j++) {//计算城市间的距离,并存入距离矩阵distance[i][j] = map.get(i).getDistance(map.get(j));//计算距离倒数,并存入距离倒数矩阵heuristic[i][j] = 1 / distance[i][j];//初始化信息素矩阵pheromone[i][j] = 1;}}} catch (Exception exception) {System.out.println("初始化数据失败!");}}2、TSP作图处理:private void evaporatePheromone() {for (int i = 1; i < pheromone.length; i++)for (int j = 1; j < pheromone.length; j++) {pheromone[i][j] *= 1-rate;}}3、关键源代码(带简单的注释):蚂蚁类代码:class mayi {//已访问城市列表private boolean[] visited;//访问顺序表private int[] tour;//已访问城市的个数private int n;//总的距离private double total;mayi() {//给访问顺序表分配空间tour = new int[distance.length+1];//已存入城市数量为n,刚开始为0n = 0;//将起始城市1,放入访问结点顺序表第一项tour[++n] = 1;//给已访问城市结点分配空间visited = new boolean[distance.length];//第一个城市为出发城市,设置为已访问visited[tour[n]] = true;}private int choosechengshi() {//用来random的随机数double m = 0;//获得当前所在的城市号放入j,如果和j相邻的城市没有被访问,那么加入mfor (int i = 1, j = tour[n]; i < pheromone.length; i++) {if (!visited[i]) {m += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);}}//保存随机数double p = m * random();//寻找随机城市double k = 0;//保存城市int q = 0;for (int i = 1, j = tour[n]; k < p; i++) {if (!visited[i]) {k += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);q = i;}}return q;}城市选择代码:private int choosechengshi() {//用来random的随机数double m = 0;//获得当前所在的城市号放入j,如果和j相邻的城市没有被访问,那么加入mfor (int i = 1, j = tour[n]; i < pheromone.length; i++) {if (!visited[i]) {m += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);}}//保存随机数double p = m * random();//寻找随机城市double k = 0;//保存城市int q = 0;for (int i = 1, j = tour[n]; k < p; i++) {if (!visited[i]) {k += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);q = i;}}return q;}4、算法运行收敛图(即运行到第几步,求得的最优值是多少):run:本次为倒数第100次迭代,当前最优路径长度为41634.60本次为倒数第99次迭代,当前最优路径长度为41514.21本次为倒数第98次迭代,当前最优路径长度为38511.61本次为倒数第97次迭代,当前最优路径长度为38511.61本次为倒数第96次迭代,当前最优路径长度为38511.61本次为倒数第95次迭代,当前最优路径长度为38511.61本次为倒数第94次迭代,当前最优路径长度为37293.07、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、本次为倒数第6次迭代,当前最优路径长度为37293.07本次为倒数第5次迭代,当前最优路径长度为37293.07本次为倒数第4次迭代,当前最优路径长度为37293.07本次为倒数第3次迭代,当前最优路径长度为37293.07本次为倒数第2次迭代,当前最优路径长度为37293.07本次为倒数第1次迭代,当前最优路径长度为37293.07得到的最优的路径长度为: 37293.075、最终求得的最优解的TSP图像:最优路径如下:→1→9→38→31→44→18→7→28→37→19→6→30→43→27→17→36→46→33→15→12→11→23→14→25→13→20→47→21→39→32→48→5→29→2→26→4→35→45→10→42→24→34→41→16→22→3→40→8→1成功生成(总时间:3 秒)实验结果分析:本次通过JA V A语言实现蚁群优化算法,我们发现虽然我们找到了问题的最优解,但是最优解的收敛性并不乐观,并不能求得问题的精确解,并且随着参数的调节运行结果有随机性。
基于蚁群优化算法的TSP问题求解计算智能实验报告
智能计算实验报告学院:班级:学号:姓名:成绩:日期:实验名称:基于蚁群优化算法的TSP问题求解题目要求:利用蚁群优化算法对给定的TSP问题进行求解,求出一条最短路径。
蚁群优化算法简介:蚁群算法是一中求解复杂优化问题的启发式算法,该方法通过模拟蚁群对“信息素”的控制和利用进行搜索食物的过程,达到求解最优结果的目的。
它具有智能搜索、全局优化、稳健性强、易于其它方法结合等优点,适应于解决组合优化问题,包括运输路径优化问题。
TSP数据文件格式分析:本次课程设计采用的TSP文件是att48.tsp ,文件是由48组城市坐标构成的,文件共分成三列,第一列为城市编号,第二列为城市横坐标,第三列为城市纵坐标。
数据结构如下所示:实验操作过程:1、TSP文件的读取:class chengshi {int no;double x;double y;chengshi(int no, double x, double y) {this.no = no;this.x = x;this.y = y;}private double getDistance(chengshi chengshi) {return sqrt(pow((x - chengshi.x), 2) + pow((y - chengshi.y), 2));}}try {//定义HashMap保存读取的坐标信息HashMap<Integer, chengshi> map = new HashMap<Integer,chengshi>();//读取文件BufferedReader reader = new BufferedReader(new (new )));for (String str = reader.readLine(); str != null; str = reader.readLine()) { //将读到的信息保存入HashMapif(str.matches("([0-9]+)(\\s*)([0-9]+)(.?)([0-9]*)(\\s*)([0-9]+)(.?)([0-9]*)")) {String[] data = str.split("(\\s+)");chengshi chengshi = new chengshi(Integer.parseInt(data[0]),Double.parseDouble(data[1]),Double.parseDouble(data[2]));map.put(chengshi.no, chengshi);}}//分配距离矩阵存储空间distance = new double[map.size() + 1][map.size() + 1];//分配距离倒数矩阵存储空间heuristic = new double[map.size() + 1][map.size() + 1];//分配信息素矩阵存储空间pheromone = new double[map.size() + 1][map.size() + 1];for (int i = 1; i < map.size() + 1; i++) {for (int j = 1; j < map.size() + 1; j++) {//计算城市间的距离,并存入距离矩阵distance[i][j] = map.get(i).getDistance(map.get(j));//计算距离倒数,并存入距离倒数矩阵heuristic[i][j] = 1 / distance[i][j];//初始化信息素矩阵pheromone[i][j] = 1;}}} catch (Exception exception) {System.out.println("初始化数据失败!");}}2、TSP作图处理:private void evaporatePheromone() {for (int i = 1; i < pheromone.length; i++)for (int j = 1; j < pheromone.length; j++) {pheromone[i][j] *= 1-rate;}}3、关键源代码(带简单的注释):蚂蚁类代码:class mayi {//已访问城市列表private boolean[] visited;//访问顺序表private int[] tour;//已访问城市的个数private int n;//总的距离private double total;mayi() {//给访问顺序表分配空间tour = new int[distance.length+1];//已存入城市数量为n,刚开始为0n = 0;//将起始城市1,放入访问结点顺序表第一项tour[++n] = 1;//给已访问城市结点分配空间visited = new boolean[distance.length];//第一个城市为出发城市,设置为已访问visited[tour[n]] = true;}private int choosechengshi() {//用来random的随机数double m = 0;//获得当前所在的城市号放入j,如果和j相邻的城市没有被访问,那么加入mfor (int i = 1, j = tour[n]; i < pheromone.length; i++) {if (!visited[i]) {m += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);}}//保存随机数double p = m * random();//寻找随机城市double k = 0;//保存城市int q = 0;for (int i = 1, j = tour[n]; k < p; i++) {if (!visited[i]) {k += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);q = i;}}return q;}城市选择代码:private int choosechengshi() {//用来random的随机数double m = 0;//获得当前所在的城市号放入j,如果和j相邻的城市没有被访问,那么加入mfor (int i = 1, j = tour[n]; i < pheromone.length; i++) {if (!visited[i]) {m += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);}}//保存随机数double p = m * random();//寻找随机城市double k = 0;//保存城市int q = 0;for (int i = 1, j = tour[n]; k < p; i++) {if (!visited[i]) {k += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);q = i;}}return q;}4、算法运行收敛图(即运行到第几步,求得的最优值是多少):run:本次为倒数第100次迭代,当前最优路径长度为41634.60本次为倒数第99次迭代,当前最优路径长度为41514.21本次为倒数第98次迭代,当前最优路径长度为38511.61本次为倒数第97次迭代,当前最优路径长度为38511.61本次为倒数第96次迭代,当前最优路径长度为38511.61本次为倒数第95次迭代,当前最优路径长度为38511.61本次为倒数第94次迭代,当前最优路径长度为37293.07、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、本次为倒数第6次迭代,当前最优路径长度为37293.07本次为倒数第5次迭代,当前最优路径长度为37293.07本次为倒数第4次迭代,当前最优路径长度为37293.07本次为倒数第3次迭代,当前最优路径长度为37293.07本次为倒数第2次迭代,当前最优路径长度为37293.07本次为倒数第1次迭代,当前最优路径长度为37293.07得到的最优的路径长度为: 37293.075、最终求得的最优解的TSP图像:最优路径如下:→1→9→38→31→44→18→7→28→37→19→6→30→43→27→17→36→46→33→15→12→11→23→14→25→13→20→47→21→39→32→48→5→29→2→26→4→35→45→10→42→24→34→41→16→22→3→40→8→1成功生成(总时间:3 秒)实验结果分析:本次通过JA V A语言实现蚁群优化算法,我们发现虽然我们找到了问题的最优解,但是最优解的收敛性并不乐观,并不能求得问题的精确解,并且随着参数的调节运行结果有随机性。
蚁群算法求解TSP问题MATLAB程序
%% 蚁群算法¨clearcloseclcn = 10; % 城市数量m = 100; % 蚂蚁数量alfa = 1.5;beta = 2.5;rho = 0.1;Q = 1000;maxgen = 50;x = [2 14 9 6 3 2 4 8 12 5]';y = [8 9 12 4 1 2 5 8 1 15]';% x =[37,49,52,20,40,21,17,31,52,51,42,31,5,12,36,52,27,17,13,57,62,42,16,8,7,27,30, 43,58,58,37,38,46,61,62,63,32,45,59,5,10,21,5,30,39,32,25,25,48,56,30]';% y =[52,49,64,26,30,47,63,62,33,21,41,32,25,42,16,41,23,33,13,58,42,57,57,52,38,68, 48,67,48,27,69,46,10,33,63,69,22,35,15,6,17,10,64,15,10,39,32,55,28,37,40]';City = [x,y]; % 城市坐标%% 城市之间的距离for i = 1:nD(i,:) = ((City(i,1) - City(:,1)).^2 + (City(i,2) - City(:,2)).^2).^0.5 + eps; endeta = 1./D; % 启发因子tau = ones(n); % 信息素矩阵path = zeros(m,n); % 记录路径for iter = 1: maxgen%% 放置蚂蚁path(:,1) = randi([1 n],m,1);for i = 2 : nfor j = 1 : mvisited = path(j,1:i-1);leftcity = setdiff(1:n,visited);%% 计算剩下城市的概率P = zeros(1,length(leftcity));for k = 1:length(leftcity)P(k) =tau(visited(end),leftcity(k))^alfa*eta(visited(end),leftcity(k))^beta;%判断是否有重复城市endP1 = sum(P);Pk = P / P1;P = cumsum(Pk);r = rand;index = find(P >= r);nextcity = leftcity(index(1));path(j,i) = nextcity;endendfor flag = 1:mif length(unique(path(flag,:))) ~= n %keyboard;endendif iter >= 2path(1,:) = Pathbest(iter-1,:);endfor i = 1 : mnode = path(i,:);d = 0;for j = 1 : n - 1d = d + D(node(j),node(j + 1));endL(i) = d;end[shortroute,antindex] = min(L);Lbest(iter) = shortroute;Pathbest(iter,:) = path(antindex,:);detatau = zeros(n);for i = 1 : mfor j = 1 : n-1detatau(path(i,j),path(i,j + 1)) = detatau(path(i,j),path(i,j + 1)) + Q/L(i);detatau(path(i,j + 1),path(i,j))=detatau(path(i,j),path(i,j + 1));enddetatau(path(i,n),path(i,1)) = detatau(path(i,n),path(i,1)) + Q/L(i);detatau(path(i,1),path(i,n))=detatau(path(i,n),path(i,1));endtau = (1 - rho)*tau + detatau;path = zeros(m,n);endindex = find(Lbest == min(Lbest));shortestpath = Pathbest(index(1),:);shortestdistance = Lbest(index(1))subplot(1,2,1)plot(x,y,'o')hold onfor i = 1 : n - 1firstcity = shortestpath(i);nextcity = shortestpath(i + 1);plot([x(firstcity),x(nextcity)],[y(firstcity),y(nextcity)],'b');endfirstcity = shortestpath(n);nextcity = shortestpath(1);plot([x(firstcity),x(nextcity)],[y(firstcity),y(nextcity)],'b');axis equalaxis([0 18 0 18])subplot(1,2,2)plot(Lbest)hold ontitle('×î¶Ì¾àÀë')。
蚁群算法求解TSP问题
HUNAN UNIVERSITY 课程作业课程题目智能优化算法学生姓名李小燕学生学号 S131020016专业班级计算机科学与技术学院名称信息科学与工程学院指导老师杨圣洪2014 年6月 8日蚁群算法求解TSP问题摘要:蚁群算法是一种分布式内在并行算法。
单个蚂蚁的搜索过程是彼此独立的,易于局部最优,通过个体间不断的信息交流和传递有利于发现较好解;并且该算法是一种正反馈算法。
路径上的信息素浓度较高,将吸引更多的蚂蚁沿这条路径运动,又使得信息素浓度增加,加快了算法的进化过程。
本文通过求解TSP问题,通过在特定情况下对路径进行逐步遍历比较来降低陷入局部最优解的可能性, 找出最优解。
关键词:蚁群算法;TSP;信息素;遍历1. 引言TSP问题又称最短路径问题,还称为旅行商问题,是一种比较经典的 NP 难题,问题描述较简单,而获得最优解却十分困难。
求解 TSP 问题不仅为其他算法提供了使用平台,而且算法的优劣性能也可通过其求得 TSP 问题的解集来验证。
旅行商问题的经典描述为:已知N 个城市及相互间的距离,旅行商从某城市出发遍历这 N 个城市后再回到原点,在旅行商每个城市都只访问一次的前提下确定一条最短路径。
蚁群算法是一种基于种群的启发式仿生进化系统。
该算法通过模拟自然界的蚂蚁觅食过程对目标进行搜索,而在搜索过程中人工蚂蚁会在其经过的路径上释放信息素,蚁群依赖于同类散发在周围环境中的特殊物质—信息素的轨迹来决定自己的去向。
当某些路径上走过的蚂蚁越来越多时,留下的信息素也会越来越多,以致后蚂蚁选择该路径的概率也越来越高,从而更增加了该路径的吸引强度,逐渐形成了一条它们自己事先并未意识到的最短路线。
蚁群算法实现TSP 过程为:将 m 只蚂蚁放入到 n 个随机选择的城市中,那么每个蚂蚁每步的行动是:根据一定的依据选择下一个它还没有访问的城市;同时在完成一步(从一个城市到达另一个城市)或者一个循环(完成对所有 n 个城市的访问)后,更新所有路径上的信息素浓度。
基于蚁群算法的TSP问题研究
基于蚁群算法的TSP问题研究TSP问题(Traveling Salesman Problem)是指给定n个城市和每对城市之间的距离,求解出访问每个城市恰好一次并回到起点的最短路径。
这个问题是一个经典的组合优化问题,同时也是NP完全问题。
在各个领域都有广泛的应用,例如物流规划、工程设计、生物信息学等领域。
蚁群算法是一种仿生算法,是指模拟蚂蚁搜索食物的行为,通过集体行为实现全局优化的算法。
蚁群算法的基本思想是将多个个体组成一个群体,通过信息交流和合作来完成任务,每个个体根据自身经验和与其他个体的交流,对整体所探索的领域进行逐步探索,最终找出最优解。
基于蚁群算法的TSP问题研究通过模拟蚂蚁在城市间寻找最短路径的过程来解决问题。
蚂蚁在寻找路径时会根据当前位置和距离信息来选择下一个城市,同时会在其路径上释放信息素,其他蚂蚁通过检测信息素来发现更优的路径,进而跟随该路径前进,最终形成一条整体最优解。
在基于蚁群算法的TSP问题研究中,主要需要考虑的问题包括信息素更新、路径选择策略、参数设置等问题。
其中,信息素更新可以是全局更新或局部更新,全局更新包括将所有路径上的信息素进行更新;局部更新则仅限于最优解路径。
路径选择策略可以考虑根据信息素浓度选择、根据距离选择等,不同的路径选择策略对结果的影响也不同。
参数设置可以根据实验数据进行调整,包括信息素浓度、信息素挥发率等。
基于蚁群算法的TSP问题研究已经有了很多成果,其优点包括收敛速度快、解决大规模问题能力强、容易实现等。
但是也存在着一些问题,例如容易陷入局部最优解、难以控制搜索精度等。
因此,在实际应用过程中需要结合具体问题进行调整和优化。
综上所述,基于蚁群算法的TSP问题研究是一个具有重要应用价值的领域,可以通过模拟蚂蚁搜索最短路径的行为来实现全局优化。
虽然该算法存在一些问题,但在实际应用中已经取得了广泛的成功,未来也有很多的研究优化方向。
基于蚁群算法的TSP问题
基于蚁群算法的TSP问题求解1引言1.1 问题描述设计求解以下两个TSP问题的蚁群优化(ACO)算法。
其中城市的坐标见附件(kroA100.tsp和kroB100.tsp)。
1.2 理论基础1.2.1 蚁群算法简介蚁群算法是由意大利学者M.Dorigo等人于20世纪90年代初提出的一种新的模拟进化算法,其真实地模拟了自然界蚂蚁群体的觅食行为。
M.Dorigo等人将其用于解决旅行商问题(traveling salesman problem, TSP),并取得了较好的实验结果。
近年来,许多专家学者致力于蚁群算法的研究,并将其应用于交通、通信、化工、电力等领域,成功解决了许多组合优化问题,如调度问题(job–shop scheduling problem)、指派问题(quadratic assignment problem)、旅行商问题(traveling salesman problem)等。
1.2.2 蚁群算法基本思想生物学家研究发现,自然界中的蚂蚁觅食是一种群体性行为,并非单只蚂蚁自行寻找食物源。
蚂蚁在寻找食物源时,会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。
信息素浓度的大小表征路径的远近,信息素浓度越高,表示对应的路径距离越短。
通常,蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放一定量的信息素,以增强该条路径上的信息素浓度,这样会形成一个正反馈。
最终,蚂蚁能够找到一条从巢穴到食物源的最佳路径,即是最短距离。
值得一提的是,生物学家同时发现,路径上的信息素浓度会随着时间的推进而逐渐衰减。
将蚁群算法应用于解决优化问题的基本思路为:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
较短的路径上蚂蚁释放的信息素量较多,随着时间的推进,较短的路径上积累的信息素浓度逐渐增高,选择该路径的蚂蚁个数也愈来愈多。
最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。
计算智能大作业--蚁群算法解决TSP问题
(计算智能大作业)应用蚁群算法求解TSP问题目录蚁群算法求解TSP问题 (4)摘要: (4)关键词: (4)一、引言 (4)二、蚁群算法原理 (5)三、蚁群算法解决TSP问题 (7)四、解决n个城市的TSP问题的算法步骤 (9)五、程序实现 (11)六、蚁群算法优缺点分析及展望 (18)七、总结 (18)采用蚁群算法解决TSP问题摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。
本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab仿真解决一个实例问题。
关键词:蚁群算法;TSP问题;matlab。
一、引言TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。
TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。
TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。
目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。
本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。
20世纪90年代,意大利学者M.Dorigo等人在新型算法研究的过程中,通过模拟自然界蚂蚁的觅食过程:即通过信息素(pheromone)的相互交流从而找到由蚁巢至食物的最短路径,提出了一种基于信息正反馈原理的新型模拟进化算法——蚁群算法(Ant Colony algorithm)。
蚁群算法TSP问题应用matlab
function[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho ,Q)%% 主要符号说明%% C n个城市的坐标,n×2的矩阵%% NC_max 最大迭代次数%% m 蚂蚁个数%% Alpha 表征信息素重要程度的参数%% Beta 表征启发式因子重要程度的参数%% Rho 信息素蒸发系数%% Q 信息素增加强度系数%% R_best 各代最佳路线%% L_best 各代最佳路线的长度%%第一步:变量初始化n=size(C,1); %n表示问题的规模(城市个数)D=zeros(n,n); %D用来存储各个城市之间的欧式距离%%以下计算任意2个城市间的距离,存储到D中for i=1:nfor j=1:nif i~=j %若i,j不重合,即为不同城市D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; %计算欧氏距离,任意城市i与j的距离elseD(i,j)=eps;%i=j时不计算,应该为0,但后面的启发因子要取倒数,%用eps(浮点相对精度)表示eps=2.2204e-016,一个极小的数字end %if i~=jD(j,i)=D(i,j); %对称矩阵对称TSP问题end % for j=1:nend % for i=1:nEta=1./D; %Eta为能见度因子,这里设为距离的倒数Tau=ones(n,n); %Tau为信息素矩阵默认一开始为1 一个常数Tabu=zeros(m,n); %存储并记录路径的生成第m只蚂蚁访问的第n座城市是城市xNC=1; %迭代计数器,记录迭代次数R_best=zeros(NC_max,n); %各代最佳路线假定为100代,31个城市,即从1-31-1一个线路L_best=inf.*ones(NC_max,1); %各代最佳路线的长度L_ave=zeros(NC_max,1); %各代路线的平均长度while NC<=NC_max %停止条件之一:达到最大迭代次数,停止%%第二步:将m只蚂蚁放到n个城市上Randpos=[]; %建立一个随机矩阵用以将m只蚂蚁放置到n个城市上for i=1:(ceil(m/n)) %ceil() 向上取整数,去掉小数部分,整数部分+1Randpos=[Randpos,randperm(n)]; %randperm(n),随机产生1~n的序列即得到初始城市m个endTabu(:,1)=(Randpos(1,1:m))';% Tabu(:,1)所有行的第一列,Randpos(1,1:m)’第一行的1~m列,将Randpos的第一行1~m列,%共m个元素赋给矩阵Tabu的第一列,Tabu为m*n矩阵。
蚁群算法求解TSP问题
广东工业大学课程作业课程题目基于ACO算法求解城市tsp 学生姓名朱美霞学生学号2111405091专业班级计算机技术2015 年2月15日1. AOC 算法的数学模型(1)、基本参数、信息素浓度公式、择路概率设蚂蚁的数量为m ,城市的数量为n ,城市i 与城市j 之间的距离为dij ,t 时刻城市i 与城市j 之间的信息素浓度为t ij (t),初始时刻,各个城市间连接路径上的信息素浓度相同,不妨记为t ij (0)=t0。
蚂蚁k(k=1,2,..,m)根据各城市间连接路径上的信息素浓度,决定其下一个要访问的城市,设P ij k (t)表示t 时刻,蚂蚁k 从城市i 到城市j 的概率,其计算公式为如下:ij [()][()][()][()]P 0ij ij k k ij ij s allowkt t t s allow t t t s allow αβαβηη∈⎧∙∈⎪⎪∙=⎨⎪∉⎪⎩∑ 其中: ηij (t)为启发式函数,ηij (t)=1/dij ,表示蚂蚁从城市i 转移到城市j 的期望程序;allow k (k=1,2,…,m)表示蚂蚁k 待访问的城市的集合,开始时allow k 为其他n-1城市,随着时间推进,其中的元素不断减少,直至为空,表示所有城市访问完,即遍历所有城市。
α为信息素的重要程度因子,其值越大,转移中起的作用越大β为启发函数的重要程度因子,其值越大,表示启发函数在转移中的作用越大,即蚂蚁以较大的概率转移到距离短的城市。
蚂蚁释放的信息素会随时间的推进而减少,设参数ρ(0<ρ<1)表示信息素的挥发度,当所有蚂蚁完成一次循环后,各个城市间连接路径上的信息素浓度,需要实时更新。
t ij (t+1)=(1-ρ)t ij (t)+∆t ij ,∆t ij =1nkijk t =∆∑ 其中:∆t ij k 表示蚂蚁k 在城市i 与城市j 的连接路径上,释放的信息素浓度∆t ij 表示所有蚂蚁在城市i 与城市j 的连接路径上,释放的信息素浓度。
蚁群算法_matlab
%蚁群算法求解中国TSP问题(48个城市)%%清空环境变量clear allclc%%导入数据load distance_48.txtcitys=distance_48;%%计算城市间互相距离n=size(citys,1);D=zeros(n,n);for i=1:nfor j=1:nif i~=jD(i,j)=sqrt(sum((citys(i,:)-citys(j,:)).^2));elseD(i,j)=1e-4;endendend%%初始化参数ticm=30;%蚂蚁数量alpha=1;%信息素重要程度因子beta=5;%启发函数重要程度因子rho=0.1;%信息素挥发因子Q=1;%常系数Eta=1./D;%启发函数Tau=ones(n,n);%信息素矩阵Table=zeros(m,n);%路径记录表iter=1;%迭代次数初值iter_max=200;%最大迭代次数Route_best=zeros(iter_max,n);%各代最佳路径Length_best=zeros(iter_max,1);%各代最佳路径的长度Length_ave=zeros(iter_max,1);%各代路径的平均长度%%迭代寻找最佳路径while iter<=iter_max%随机产生各个蚂蚁的起点城市start=zeros(m,1);for i=1:mtemp=randperm(n);%随机产生1到n的一个打乱序列start(i)=temp(1);endTable(:,1)=start;%构建解空间citys_index=1:n;%逐个蚂蚁路径选择for i=1:m%逐个城市路径选择for j=2:ntabu=Table(i,1:(j-1));%已访问城市集合(禁忌表)allow_index=~ismember(citys_index,tabu);%除去已访问的城市集合 allow=citys_index(allow_index);%待访问的城市集合P=allow;%计算城市间的转移概率for k=1:length(allow)P(k)=Tau(tabu(end),allow(k))^alpha*Eta(tabu(end),allow(k))^beta;endP=P/sum(P);%轮盘赌法选择下一个访问城市Pc=cumsum(P);target_index=find(Pc>=rand);target=allow(target_index(1));Table(i,j)=target;%确定下一个访问的城市endend%计算各个蚂蚁的路径距离Length=zeros(m,1);for i=1:mRoute=Table(i,:);%第i只蚂蚁的路径for j=1:(n-1)Length(i)=Length(i)+D(Route(j),Route(j+1));endLength(i)=Length(i)+D(Route(n),Route(1));%最后还要回到最初的城市end%计算最短路径距离及平均距离if iter==1[min_Length,min_index]=min(Length);Length_best(iter)=min_Length;Length_ave(iter)=mean(Length);Route_best(iter,:)=Table(min_index,:);else[min_Length,min_index]=min(Length);Length_best(iter)=min(Length_best(iter-1),min_Length);%iter次的最短路径距离等于当前迭代的最短路径距离与上一次迭代最短路径距离中的最小值Length_ave(iter)=mean(Length);if Length_best(iter)==min_LengthRoute_best(iter,:)=Table(min_index,:);elseRoute_best(iter,:)=Route_best((iter-1),:);endend%更新信息素Delta_Tau=zeros(n,n);%逐个蚂蚁计算for i=1:m%逐个城市计算for j=1:(n-1)Delta_Tau(Table(i,j),Table(i,j+1))=Delta_Tau(Table(i,j),Table(i,j+1))+Q /Length(i);endDelta_Tau(Table(i,n),Table(i,1))=Delta_Tau(Table(i,n),Table(i,1))+Q/Len gth(i);endTau=(1-rho)*Tau+Delta_Tau;%迭代次数加1,清空路径记录表iter=iter+1;Table=zeros(m,n);end%%结果显示[Shortest_Length,index]=min(Length_best);Shortest_Route=Route_best(index,:);disp(['最短距离:' num2str(Shortest_Length)]);disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);%%绘图figure(1)plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],[citys(Shorte st_Route,2);citys(Shortest_Route(1),2)],'o-');grid onfor i=1:size(citys,1)text(citys(i,1),citys(i,2),[' ' num2str(i)]);endtext(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点'); text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点');xlabel('城市位置横坐标')ylabel('城市位置纵坐标')title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])figure(2)plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r')legend('最短距离','平均距离')xlabel('迭代次数')ylabel('距离')title('各代最短距离与平均距离对比')toc。
蚁群算法求解TSP问题的MATLAB程序(较好的算例)
蚁群算法求解TSP问题的MATLAB程序(较好的算例) %蚁群算法求解TSP问题的matlab程序clear allclose allclc%初始化蚁群m=31;%蚁群中蚂蚁的数量,当m接近或等于城市个数n时,本算法可以在最少的迭代次数内找到最优解C=[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;3238 1229;4196 1004;4312 790;4386 570;3007 1970;2562 1756;2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2367;3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;2370 2975];%城市的坐标矩阵Nc_max=200;%最大循环次数,即算法迭代的次数,亦即蚂蚁出动的拨数(每拨蚂蚁的数量当然都是m)alpha=1;%蚂蚁在运动过程中所积累信息(即信息素)在蚂蚁选择路径时的相对重要程度,alpha过大时,算法迭代到一定代数后将出现停滞现象beta=5;%启发式因子在蚂蚁选择路径时的相对重要程度rho=0.5;%0<rho<1,表示路径上信息素的衰减系数(亦称挥发系数、蒸发系数),1-rho表示信息素的持久性系数Q=100;%蚂蚁释放的信息素量,对本算法的性能影响不大%变量初始化n=size(C,1);%表示TSP问题的规模,亦即城市的数量D=ones(n,n);%表示城市完全地图的赋权邻接矩阵,记录城市之间的距离 for i=1:nfor j=1:nif i<jD(i,j)=sqrt((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2);endD(j,i)=D(i,j);endendeta=1./D;%启发式因子,这里设为城市之间距离的倒数pheromone=ones(n,n);%信息素矩阵,这里假设任何两个城市之间路径上的初始信息素都为1 tabu_list=zeros(m,n);%禁忌表,记录蚂蚁已经走过的城市,蚂蚁在本次循环中不能再经过这些城市。
蚁群算法解决TSP问题图形化软件设计
t + n 时 刻 ,路 径 ( i , ) 上 的信 息量调 整规 则 如式 ( 4 ) 、 ( 5 )
所示 。
f ( f + ) =( 1 一 ) ・ f ( , ) +Ar ( f )
f 4 )
2 基 本原 理
2 . 1 基本 蚁群算 法描述
…
…
I l 胁G E P R O C E S S I N G&啊U L T I 啊印 u T ^ C H N O L O G Y … …… … … …… …… … … …… … …… … …… … …… …
蚁群 算法解 决 T S P问题 图形化软件设计
扈 华 ,王冬 青
( 内蒙古农业大学计算机与信息工程学 院,呼和浩特 0 1 0 0 1 8 )
度上影 响算 法 的收敛 速度 ; 表示蚂蚁 k完成本 次城市遍 历 所走路径 的总长度 。
2 . 2 实 现 流 程
信息量 r ( o ) = c o r t s t [ 6 1 。
r ) 决定 了蚂蚁 k ( k = l , 2 , …, m ) 在城市之 间的移 动方式 。禁 忌表 t a b u 中记 录了蚂蚁 在城市 遍历过 程 中已走过 的城市 。
摘 要 :研 究蚁群 算法的原理和应用 ,必然要对其进行程序 实现 ,仅对原理进行非可视化的 实现 ,只能获得数值序
列的结果输 出,不利 于直观反映 算法运行 的效率。利 用 MF C结合 多线程技 术设计 ,并实现 了蚁群算法解决 T S P问
题的 图形化软件 。软件 能以图形化方式直观显示算法运行的 实时效果 ,并 可以同样方式直观显示算法所得最短路径 和T S P L I B库中最短路径 的差别 ,对蚁群算法的研 究具有积极的辅助与促 进作 用。 关键 词 :蚁群 算法 ;T S P问题 ;图形化软件 ;MF C技 术;T S P L I B文件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Tabu=zeros(m,n); %存储并记录路径的生成
NC=1; %迭代计数器,记录迭代次数
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))'; %此句不太理解?
%% 蚁群算法MATLAB程序第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
31都市坐标为:
1304 2312
3639 1315
4177 2244
3712 1399
3488 1535
3326 1556
3238 1229
4196 1004
4312 790
4386 570
3007 1970
2562 1756
2788 1491
hold on %保持图形
plot(L_ave,'r')
title('平均距离和最短距离') %标题
% 蚁群算法MATLAB程序子函数
function DrawRoute(C,R)
%%=========================================================================
%此次循环在路径(i,j)上的信息素增量
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
%此次循环在整个路径上的信息素增量
end
Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素
hold on
for ii=2:N
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'g')
hold on
end
title('旅行商问题优化结果 ')
%%蚁群算法MATLAB程序各项参数初始化如下:
%m=31;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100;
%% 蚁群算法MATLAB程序第六步:禁忌表清零
Tabu=zeros(m,n); %%直到最大迭代次数
end
%% 蚁群算法MATLAB程序第七步:输出结果
Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)
J=zeros(1,(n-j+1)); %待访问的城市
P=J; %待访问城市的选择概率分布
Jc=1;
%% 主要符号说明
%% C n个城市的坐标,n×2的矩阵
%% NC_max 蚁群算法MATLAB程序最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Q 表示蚁群算法MATLAB程序信息素增加强度系数
end
D(j,i)=D(i,j); %对称矩阵
end
end
Eta=1./D; %Eta为启发因子,这里设为距离的倒数
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%% 蚁群算法MATLAB程序第四步:记录本次迭代最佳路线
L=zeros(m,1); %开始距离为0,m*1的列向量
%% 按概率原则选取下一个城市
Pcum=cumsum(P); %cumsum,元素累加即求和
Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1)); %原距离加上第j个城市到第j+1个城市的距离
end
L(i)=L(i)+D(R(1),R(n)); %一轮下来后走过的距离
R_best=zeros(NC_max,n); %各代最佳路线
L_best=inf.*ones(NC_max,1); %各代最佳路线的长度
L_ave=zeros(NC_max,1); %各代路线的平均长度
while NC<=NC_max %停止条件之一:达到最大迭代次数,停止
%% 蚁群算法MATLAB程序第二步:将m只蚂蚁放到n个城市上
Randpos=[]; %随即存取
2381 1676
1332 695
3715 1678
3918 2179
4061 2370
3780 2212
3676 2578
4029 2838
4263 2931
3429 1908
3507 2367
3394 2643
3439 3201
2935 3240
end
L_best(NC)=min(L); %最佳距离取最小
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线
D=zeros(n,n);%D表示完全图的赋权邻接矩阵
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps; % i = j 时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示
for k=1:n
if length(find(visited==k))==0 %开始时置0
J(Jc)=k;
Jc=Jc+1; %访问的城市个数自加1
%%=========================================================================
N=length(R);
scatter(C(:,1),C(:,2));
hold on
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'g')
L_ave(NC)=mean(L); %此轮迭代后的平均距离
NC=NC+1 %迭代继续
%% 蚁群算法MATLAB程序第五步:更新信息素
DrawRoute(C,Shortest_Route) %画路线图的子函数
subplot(1,2,2) %绘制第二个子图形
plot(L_best)
for j=2:n %所在城市不计算
for i=1:m
visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问
%% DrawRoute.m
%% 画路线图的子函数
%%-------------------------------------------------------------------------
%% C Coordinate 节点坐标,由一个N×2的矩阵存储
%% R Route 路线
% 蚁群算法MATLAB程序
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%=========================================================================
Delta_Tau=zeros(n,n); %开始时信息素为n*n的0矩阵
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
end
%% 下面计算蚁群算法MATLAB程序待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径
Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离
subplot(1,2,1) %绘制第一个子图形
3140 3550
2545 2357
2778 2826
2370 2975
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%%=========================================================================
%% 蚁群算法MATLAB程序第一步:变量初始化
n=size(C,1);%n表示问题的规模(城市个数)