湖南师大附中2013届高三第一次月考试卷理科数学试题

合集下载

湖南师大附中高三月考试卷(六)数学(理科)

湖南师大附中高三月考试卷(六)数学(理科)

炎德•英才大联考湖南师大附中高三月考试卷(六)数学(理科)本试题卷包括选择题、填空题和解答题三部分,共5页。

时量120分钟。

满分150分。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数A. —1B. 1C. —iD. i2. 给出下列四个命题:①命题“若X2= 1,则x= 1”的否命题为:“若:x2 = 1,则”;②命题“”的否定是“”;③命题"若:x=y,则”的逆否命题为真命题;④“x=—1”是“的必要不充分条件.其中真命题的个数是A. 1个B. 2个C. 3个D. 4个3. 已知抛物线顶点在原点,焦点为双曲线:=1的右焦点,则此抛物线的方程是A..B.C. D.4. 已知某几何体的三视图如图所示,若该几何体的体积为24,则正视图中a的值为A. 8B. 6C. 4D. 25. 若函数/(X)=|x|x(x-b)在区间[0,2]上是减函数,则实数b的取值范围是A.—B.C. D.6. 一个算法的程序框图如下图所示,若执行该程序输出的结果为,则判断框中应填入的条件是A. B.C. D.7. 在中,三内角A、B、C的对边分别是a、b、C,若,则角A的值为A. 30°B. 60°C. 120°D. 150°8. 已知函数对任意自然数x,y均满足:,且,则等于A. B.C. 1005D. 1004二、填空题:本大题共7小题,每小题S分,共35分,把答案填在答题卡中对应题号后的横线上.9. 已知向量a和b的夹角为120°,,且,则= ____ .10. 已知点A,B,C为同一个球面上三点,且,若球心O到平面ABC的距离为2,直线AO与平面ABC成30°角,则球O的表面积等于_____________________________.11. 若的展开式中X3的系数与常数项相等,则a=______________12. 若直线.绕其与X轴的交点逆时针旋转90°后恰与曲线M:为参数)相切,则c的值为______________.13. 若是函数的两个零点,则的值为_____________________14. 已知,且,则的最小值是_______.15. 设,其中或1(),并记.对于给定的,构造无穷数列如下:(1) 若,则=_______ (用数字作答);(2) 给定一个正整数m,若,则满足(,且)的n的最小值为_______.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16. (本小题满分12分)已知函数和.(1) 设是的一个极大值点,是的一个极小值点,求的最小值;(2) 若,求的值.17. (本小题满分12分)如图,在四边形ABCD中,对角线于O,且.沿BD将翻折成,使平面平面.点P、Q分别在BC、CD上,沿PQ将翻折,能使点C与点A1重合,点F为PQ与AC的交点.(1) 求证:直线PQ丄平面;(2)求面与面所成二面角的余弦值.18.(本小题满分12分)某工厂有120名工人,其年龄都在20〜60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A、B两项培训,培训结束后进行结业考试,已知各年龄段两项培训结业考试成绩优秀的人数如下表所示.假设两项培训是相互的,结业考试也互不影响.年龄分组A项培训成绩优秀人数B项培训成绩优秀人数[20,30) 27 16[30,40) 28 :18[40,50) 16 9[50,60] 6 4(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求各年龄段应分别抽取的人数,并估计全厂工人的平均年龄;(2)随机从年龄段[20,30)和[40,50)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望19.(本小题满分13分)如图,在一条河流的上、下游分别有甲、乙两家化工厂,其中甲厂每天向河道内排放污水2万m3,每天流过甲厂的河水流量是500万m3 (含甲厂排放的污水);乙厂每天向河道内排放污水1.4万m3,每天流过乙厂的河水流量是700万m3(含乙广排放的污水).由于两厂之间有一条支流的作用,使得甲厂排放的污水在流到乙厂时;有20¾可自然净化.假设工厂排放的污水能迅速与河水混合,且甲厂上游及支流均无污水排放.}(1) 求河流在经过乙厂后污水含量的百分比约是多少?(精确到0.01%)(2) 根据环保要求,整个河流中污水含量不能超过0.2%,为此,甲、乙两家工厂都必须各自处理一部分污水.已知甲厂处理污水的成本是1000元/万m3,乙厂处理污水的成本是800元/万m3,求甲、乙两厂每天应分别处理多少万m3污水,才能使两厂处理污水的总费用最小?最小总费用是多少元?20. (本小题满分13分)已知点P是圆上一动点,点P在y轴上的射影为Q,设满足条件(为非零常数)的点M的轨迹为曲线C.(1) 求曲线C的方程;(2) 若存在过点N()的直线l与曲线C相交于A、B两点,且(O为坐标原点),求A的取值范围.21. (本小题满分13分)已知函数,数列的首项为m(m为大于1的常数),且(1) 设,求函数的单调区间;(2) 求证:;(3) 若当^ ^时,恒成立,求m的取值范围.。

湖南师大附中2013届高三数学第一次月考试题 理(含解析)

湖南师大附中2013届高三数学第一次月考试题 理(含解析)

湖南师大附中2013届高三第一次月考数学试卷(理科)一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)空间中,异面直线a,b所成的角为α,且=()B或==.B.属基础题.3.(5分)某几何体的正视图和侧视图均为如图1所示,则在图2的四个图中可以作为该几何体的俯视图的是()4.(5分)设集合A=(﹣∞,a],B=(b,+∞),a∈N,b∈R,且A∩B∩N={2},则a+b的取x),)在,可得=可得6.(5分)函数,g(x)=3x﹣1,则不等式f[g(x)]≥0的解集①②①②,解得7.(5分)关于x的二次方程x2+()x+1=0有实根,且a≥0,b≥0,则a2+b2的取值[[(时距离最短,最短距离为[8.(5分)(2012•佛山二模)已知函数f M(x)的定义域为实数集R,满足(M是R的非空真子集),在R上有两个非空真子集A,B,且A∩B=∅,则的值域为()B,即值域为二、填空题:本大题共7小题,每小题5分,共25分.9.(5分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是[﹣3,1].,半径为,10.(5分)在△ABC中,若A>B,sinA,sinB的大小关系为sinA>sinB.中,由正弦定理得:=11.(5分)设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当x∈(﹣2,0)时,f(x)=2x,则f(2012)﹣f(2011)的值为.==12.(5分)一物体沿直线以速度v(t)=2t﹣3(t的单位为:秒,v的单位为:米/秒)的速度作变速直线运动,则该物体从时刻t=0秒至时刻t=5秒间运动的路程是.解:∵当时,时,=))=故答案为:13.(5分)已知函数,则函数g(x)=f(x)+x的零点的个数是2个.﹣﹣14.(5分)(2013•奉贤区一模)已知x>0,y>0,且,若x+2y>m2+2m恒成立,则实数m的取值范围是﹣4<m<2.))=4+≥4+215.(5分)(2013•昌平区二模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0,则称(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数,请你根据上面探究结果,解答以下问题(1)函数f(x)=x3﹣x2+3x﹣的对称中心为(,1);(2)计算+…+f()=2012.x x﹣x x﹣的对称中心为(,(x﹣,x=)×x﹣﹣的对称中心为(,x x的对称中心为(,(,三、解答题;本大题共6小题,共75分.16.(12分)已知函数f(x)=(1)求f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向左平移个单位,再将所得的图象上各点的横坐标扩大为原来的4倍,纵坐标不变,得到y=g(x)的图象,求g(x)在[﹣,]上的值域.2x+2x+,x=2sin x sin xcos2x)=≤≤,≤+])的图象向左平移x+ ]x=2sin x≤,∴﹣≤≤,∴﹣x17.(12分)(附加题﹣必做题)如图,四棱锥P﹣ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=CD,E是PC的中点.(1)证明PA∥平面BDE;(2)求二面角B﹣DE﹣C的平面角的余弦值;(3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.=,=,得;,则=•⊥,又)知=<>,,=余弦值为.)∵=•,设λ(=,+=•∈PF=PBPF=18.(12分)(2012•江西模拟)已知数列{a n},{b n}中,对任何整数n都有:(1)若数列{a n}是首项和公差都有1的等差数列,求证:数列{b n}是等比数列;(2)若{b n}=2n,试判断数列{a n}是否是等差数列?若是,请求出通项公式,若不是,请说明理由.19.(13分)某玩具生产厂家接到一生产伦敦奥运吉祥物的生产订单,据以往数据分析,若生产数量为x万件,则可获利﹣lnx+万美元,受美联货币政策影响,美元贬值,获利将因美元贬值而损失mx万美元,其中m为该时段美元的贬值指数,且m∈(0,1).(1)若美元贬值指数m=,为使得企业生产获利随x的增加而增长,该企业生产数量应在什么范围?(2)若因运输等其他方面的影响,使得企业生产x万件产品需增加生产成本万美元,已知该企业生产能力为x∈[4,10],试问美元贬值指数m在什么范围内取值才能使得该企业生产每件产品获得的平均利润不低于0.3美元?,分离参数,确定函数,则企业获得利润是lnx+时,都有+﹣+﹣,则+﹣+﹣上的最小值为20.(13分)(2013•烟台一模)已知椭圆C:的右顶点A(2,0),离心率为,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)已知P(异于点A)为椭圆C上一个动点,过O作线段AP的垂线l交椭圆C于点E,D,求的取值范围.,利用,可得时,可得的取值范围.的方程为.所以的方程为,所以,即类似可求..,则,则.的取值范围是21.(13分)已知函数f(x)=,g(x)=aln(x﹣1),其中n∈N*,a为常数.(1)当n=2时,求函数F(x)=f(x)+g(x)的极值;(2)若对任意的正整数n,当s≥2,x≥2时,f(s)+g(x)≤x﹣1.求a的取值范围.,=1+﹣)(1+lnx=1+=1+ln==≥。

湖南师大附中2013届高三数学第三次月考试卷 理(含解析)

湖南师大附中2013届高三数学第三次月考试卷 理(含解析)

2012-2013学年湖南师大附中高三第三次月考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2},B={2,4},则集合M={z|z=x•y,x∈A,y∈B}中元素的个数23.(5分)如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB=()BC=15×=4.(5分)已知等差数列{a n}中,前四项的和为60,最后四项的和为260,且S n=520,则a7=520==40n=520==5.(5分)抛物线y2=4x与直线y=x﹣8所围成图形的面积为()方程联解,得x=+8y)×8+8×8﹣×(﹣)﹣6.(5分)S是正三角形ABC所在平面外的一点,如图,SA=SB=SC,且∠ASB=∠BSC=∠CSA=,M,N分别是AB和SC的中点,则异面直线SM与BN所成角的余弦值为()a,△ABCNQ=SM=a a NB=所成角的余弦值为7.(5分)(2010•成都二模)如图,点F为椭圆=1(a>b>0)的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为()PF′=b,PF′=2b,由椭圆的定义知PF=e=,故答案选8.(5分)若函数f(x)=ax2+bx+c(a≠0)的图象和直线y=x无交点,给出下列结论:①方程f[f(x)]=x一定没有实数根;②若a<0,则必存在实数x0,使f[f(x0)]>x0;③若a+b+c=O,则不等式f[f(x)]<x对一切实数x都成立;④函数g(x)=ax2﹣bx+c的图象与直线y=﹣x也一定没有交点.二、填空题:本大题共7个小题,每小题5分,共35分.把答案填在答题卡中对应题号后的横线上.9.(5分)(2004•天津)某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n= 80 .解:n×10.(5分)已知函数f(x)=﹣x3,则不等式f(2x2﹣1)<﹣1的解集为{x|x<﹣1,或 x >1} .11.(5分)(2011•福建)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于.P=故答案为12.(5分)设正实数x,y,z满足x+2y+z=1,则的最小值为7 .把式子==7当且仅当,∴则13.(5分)如图,在△ABC中,点E为AB边的中点,点F在AC边上,且CF=2FA,BF交CE于点M,设,则x﹣y= .中,由向量的加法法则可得:,向量的共线可设:=,=解:由图及向量的加法和减法可知:与共线,可设==同理可得,则,解得故答案为14.(5分)已知实数x,y满足,则3x2+y2最小值为.,则由,此时z=,,此时z=与相切时,可得,∴z=,此时x=,不在可行域内,不满足题意<最小值为故答案为:15.(5分)形如的数阵称为n阶矩阵,有n2(n无穷大)个数以一定的规则排列,构成如下n阶矩阵:此表中,主对角线上的数依次为l,2,5,10,17,…,则主对角线上的第101个数为10001 ,数字2013在此表中共出现 4 次.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(12分)已知向量,函数f(x)=.(1)求f(x)的对称轴方程;(2)若且,求的值.(,()﹣=k.k,)﹣,解得可得(.)﹣+(+2cos sin×17.(12分)某同学参加某高校的自主招生考试(该测试只考语文、数学、英语三门课程),其中该同学语文取得优秀成绩的概率为0.5,数学和英语取得优秀成绩的概率分别为p,q (p<q),且不同课程取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布(1)求p,q的值;(2)求数学期望Eξ(AB))18.(12分)如图l,四边形ABCD中,AB=AD,AB⊥AD,DC⊥BC,将△DCB沿BD折起,使AC⊥BC,如图2.点E在DC上,AE=且AE⊥DC,若二面角A﹣BD﹣C的正弦值为.(1)求证:AE⊥BD;(2)求三棱锥D﹣ABE的体积.AE=AM===•EM•DB•AE=319.(13分)某县为落实国家农村医疗保险(简称“医保”)的政策,制定了如下实施方案:2011年底通过农民个人投保和政府财政投入,共筹资l 000万元作为全县的农村医保基金,并且从2012年起农民每年报销的医保费都为上一年年底农村医保基金余额的10%,并且每年年底县财政都向医保基金补充m(m>0)万元.(1)以2011年为第1年,求第n(n≥1)年年底该县农村医保基金有多少万元?(用m,n 表示)(2)根据该县的农村人口数量和财政状况,县政府要求每年年底农村医保基金逐年增加且不超过1 500万元,问:每年补充的医保基金m(单位:万元)应控制在什么范围?a10m=(10m=(=10m+10m+y==10m+20.(13分)(2012•辽宁模拟)如图,已知抛物线C:y2=2px和⊙M:(x﹣4)2+y2=1,过抛物线C上一点H(x0,y0)(y0≥1)作两条直线与⊙M相切于A、两点,分别交抛物线为E、F两点,圆心点M到抛物线准线的距离为.(Ⅰ)求抛物线C的方程;(Ⅱ)当∠AHB的角平分线垂直x轴时,求直线EF的斜率;(Ⅲ)若直线AB在y轴上的截距为t,求t的最小值.到抛物线准线的距离为,可得,从而可求抛物线的方程为,可得轴上的截距到抛物线准线的距离为=,∴可得的方程为联立方程组,同理可得,∴.,∵的方程为,可得轴上的截距21.(13分)已知函数f(x)=2x(e x﹣1)﹣x2(x∈R).(1)求证:函数f(x)有且只有两个零点;(2)已知函数y=g(x)的图象与函数h(x)=﹣f(﹣x)﹣x2+x的图象关于直线x=l对称.证明:当x>l时,h(x)>g(x);(3)如果一条平行x轴的直线与函数y=h(x)的图象相交于不同的两点A和B,试判断线段AB的中点C是否属于集合M={(x,y)||x|+|y|≤1},并说明理由.lnf)﹣x=ln,∴函数在(﹣∞,ln,+∞)上单)ln)<,+∞)上有一个零点﹣)﹣。

湖南师大附中2005--2006学年度高三年级月考试题数学(理)

湖南师大附中2005--2006学年度高三年级月考试题数学(理)

湖 南 师 大 附 中2005—2006学年度高三年级月考试题数学(理科)说明:本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考试时间120分钟,满分150分.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中有且只有一项是符合题目要求的.1.若复数i a a a a z )2()2(22--+-=的纯虚数,则( )A .12≠≠a a 或B .12≠≠a a 且C .a =0D .a =2或a =0 2.若|)|1)(1(,x x R x -+∈那么是正数的充要条件是( )A .1||<xB .1<xC .1||>xD .111<<--<x x 或3.设全集I=R ,.}0)(|{},0)(|{R Q P x g x Q x f x P ≠≠≠⊂⊂⊂>=<=φ且满足则集合}0)(0)(|{≤≥=x g x f x M 且等于( )A .C I PB .C I QC .φD .(C I P )∪(C I Q )4.已知随机变量p n D E p n B 与则且,4.2,12),,(~==ξξξ的值分别是 ( )A .15与0.8B .16与0.8C .20与0.4D .12与0.65.在等差数列{a n }中,若a 2+ a 6+ a 16为一个确定的常数,则下列各个和中也为确定的常数的是 ( ) A .S 8 B .S 10 C .S 15 D .S 176.已知实数),(,2|1|)3()1(,22y x P y x y x y x 则点满足条件++=-+-的运动轨迹是( )A .抛物线B .双曲线C .椭圆D .圆7.已知f (x )是奇函数,且当x >0时,)(,0),1()(x f x x x x f 时那么当<+=的解析式是( )A .)1(x x --B .)1(x x -C .)1(x x +-D .)1(x x +8.设函数f (x )是可导函数,并且='=∆-∆-→∆)(,2)()2(lim0000x f xx f x x f x 则( )A .21B .-2C .0D .-19.设函数)12(),()(1-==-x f y x f x f y 现将函数的反函数为的图象向左平移2个单位,再关于x 轴对称后,所对应的函数的反函数是( )A .2)(31x f y --=B .2)(31x f y ---=C .2)(31x f y -+-=D .2)(31x f y -+=10.给出下列4个命题: ①若sin2A=sin2B ,则△ABC 是等腰三角形; ②若sinA=cosB ,则△ABC 是直角三角形; ③若cosAcosBcosC<0,则△ABC 是钝角三角形;④若cos(A -B)cos(B -C)cos(C -A)=1,则△ABC 是等边三角形.其中正确的命题是( )A .①③B .③④C .①④D .②③第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分. 11.函数21)|lg(|xx x y --=的定义域为 .12.已知,)1(x e f x =+则函数)(x f 的解析式是)(x f = . 13.已知函数=-+-++≠>+=)41()21()41()21(),10(11)(f f f f a a a x f x 则且 .14.设向量||3||),sin ,(cos ),sin ,(cos a b y y b x x a =+==若,则=-)c o s (y x .15.求值:= 2222 .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 16.(12分)已知βα,为锐角,且试求,02sin 22sin 3,1sin 2sin 322=-=+βαβα)23c o s (βαπ++的值.17.(12分)已知双曲线2112222+>=-e by a x 的离心率,左、右焦点分别为F 1、F 2,左准线为l ,试推断在双曲线上的左支上是否存在点P ,使得|PF 1|是点P 到l 的距离d 与|PF 2|的等比中项?若存在,请求出点P 的坐标;若不存在,请说明理由.18.(14分)一袋中装有大小相同的8个小球,其中5个红球,3个黑球,现从中随机摸出3个球.(Ⅰ)求至少摸到一个红球的概率;(Ⅱ)求摸到黑球个数ξ的概率分布和数学期望.19.(14分)在三棱锥P —ABC 中,底面△ABC 是以B 为直角顶点的等腰直角三角形,点P 在底面ABC 上的射影H 在线段AC 上且靠近C 点,AC=4,14 PA ,PB 和底面所成角为45°.(Ⅰ)求点P 到底面ABC 的距离. (Ⅱ)求二面角P —AB —C 的正切值.20.(14分)已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x +1.(Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围.21.(14分)已知数列{a n }满足:*).(02,2,81241N n a a a a a n n n ∈=+-==++且 (Ⅰ)求数列{a n }的通项公式;(Ⅱ)求和2221224232221n n a a a a a a -++-+-- ;(Ⅲ)设n n n n b b b T N n a n b +++=∈-=21*),()12(1,若存在整数m ,使对任意n∈N*,均有32mT n >成立,求m 的最大值.高三数学(文)参考答案一、选择题:1.C2.D3.B4.A5.C6.A7.B8.D9.C 10.B 二、填空题11.(-1,0) 12.)1ln(-x 13.2 14.823 15.2 三、解答题:16.解:由⎩⎨⎧==βαβα2sin 22sin 32cos sin 32∵.02sin ,02sin ,2,20,2,0≠≠∴<<∴<<βαπβαπβα①÷② .2c o t t a nβα= 即 .2cot )2cot(βαπ=- …………6分 又∵220παπ<-<,∴.0)2cot(2cot >-=απβ∴22,22,220πβαβαππβ=+∴=-∴<<. …………10分∴.23)32cos()23cos(-=+=++ππβαπ…………12分 17.设在左支上存在P 点使|PF 1|2=|PF 2|·d ,则,||||||121PF PF d PF = ① ②又||||,||121PF e PF e dPF =∴= ① …………4分 又|PF 2|-|PF 1|=2a ②由①、②得.12||,12||21-=-=e aePF e a PF …………8分 因在△PF 1F 2中有 |PF 1|+|PF 2|≥2c ,∴c e aee a 21212≥-+- ③ …………10分 利用,ace =代入③得.2121,0122+≤≤-∴≤--e e e212111+>+≤<∴>e e e 与 矛盾.∴符合条件的点P 不存在. …………12分18.(1)至少摸到一个红球的概率 56551383505=-=C C C P …………4分 (2)ξ表示摸到黑球个数,则2815)1(;285)0(382513383503======C C C P C C C P ξξ; …………6分 561)3(;5615)2(38535381523======C C C P C C C P ξξ. …………8分 ∴摸到黑球个数ξ的概率分布为:∴E ξ=.8…………14分19.(1)∵P 在底面ABC 上的射影H 在线段AC 上,过P 作PH ⊥底面ABC ,则H 在AC上且靠近C 点,∴面PAC ⊥面ABC …………2分 在等腰Rt △ABC 中,连结BH 取AC 中点O ,连BO. 设PH=h ,由已知∠PBH=45°,则BH=h.…………4分在△OHB 中BO ⊥AC ,OB=222,221-==h OH AC 在Rt △PAH 中,PA 2=HA 2+PH 2. ∴5,14)24(222=∴=+-+h h h∴P 到底面ABC 之距离为5 ………7分(2)在H h OH h ∴=-==,12,522时是CO 中点.……9分在△ABC 中,过点H 作HM ⊥AB 于垂足为M ,连PM.则∠PMH 为二面角P —AB —C …………12分 ∵.3102235tan ,223224343==∠∴=⋅==PMH BC HM …………14分 20.(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得过))1(,1()(f P x f y 上点=的切线方程为:).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即 …………2分而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上 故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即 ∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③由①②③得 a =2,b=-4,c=5.∴.542)(23+-+=x x x x f ………………5分(2)).2)(23(443)(2+-=-+='x x x x x f 当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时 13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 …………8分 又)(,4)1(x f f ∴=在[-3,1]上最大值是13. …………9分(3)y=f (x )在[-2,1]上单调递增,又,23)(2b ax x x f ++='由①知2a +b=0. 依题意)(x f '在[-2,1]上恒有)(x f '≥0,即.032≥+-b bx x ……10分 ① ②①当6,03)1()(,16min ≥∴>+-='='≥=b b b f x f b x 时; ②当φ∈∴≥++=-'='-≤=b b b f x f b x ,0212)2()(,26min 时; ③当.60,01212)(,1622min ≤≤≥-='≤≤-b b b x f b 则时 …………13分 综上所述,参数b 的取值范围是),0[+∞ …………14分21.(1)∵n n n n n n n a a a a a a a -=-=-=+++++1121202即∴数列{a n }成等差数列. ………………2分 由n a a a d a a n 210,232,81441-=∴-=-===得公差 ……4分 (2)2221224232221n n a a a a a a -++-+--)())(())(())((212432121221243432121n n n n n n a a a a a a d a a a a a a a a a a a a ++++++-=-++++-++-=--- ).29(42)(2221n n a a n n -=+⋅= …………9分 (3)∵).111(21)1(21)12(1+-=+=-=n n n n a n b n n …………10分 ∴n n b b b T +++= 21]1113121211[21+-++-+-=n n =.)1(2)111(21+=+-n n n …………11分 ∴0)1)(2(21)111(21)211(211>++=+--+-=-+n n n n T T n n ∴{T n }是递增数列. ∴411=T 是T n 的最小值. …………13分由83241<⇒>m m ∴满足条件的最大整数m=7 …………14分。

理综卷·2013届湖南省师大附中高三第6次月考(2013.02)

理综卷·2013届湖南省师大附中高三第6次月考(2013.02)

湖南师大附中2013届第六次月考理科综合能力测试本试卷分第I卷(选择题)和第II卷(非选择题)两部分,其中第II卷第33-40为选考题,其它为必考题。

考生做答时,将答案答在答题卡上,在本试卷上答题无效。

注意事项:1.本套试题满分300分,考试时量150分钟。

2.答题前,考生务必先将自己的姓名、班次、学号填写在答题卡上。

3.请按照题号在各题的答题区域(黑色线框)内做答,超出区域书写的答案无效。

4.做选考题时,考生按照题目要求作答,并在答题卡上,写好所选题目对应的题号。

如果你对某科的选考题都做,评卷时,老师只以该科选考题的题1题评判。

可能用到的相对原子量:H:1 O:16 Na:23 S:32 Cl:35.5 Tl:204第I卷一、选择题:本题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、用含15N的尿素给水稻施肥,经过一段时间后,在水稻的组织中,会发现含有15N的物质是()A.生长素 B.酒精 C.脂肪 D.纤维素2、下列关于苹果、西瓜、葡萄的结构和生理功能的叙述正确的是()A.遗传物质的载体都是染色体,无氧呼吸的产物与人的相同B.幼嫩种子能为果实发育提供生长素,还能提供大量促进果实成熟的物质C.三种果实成熟的果肉细胞均含大液泡,其中贮存有丰富的有机物D.三者均不含中心体,细胞均有叶绿体和细胞周期3、人体内血糖含量总是维持在0.8~1.2g/L的水平,下列对血糖调节的描述,正确的一项是()A.胰岛A细胞分泌的胰岛素是惟一能够降低血糖含量的激素B.胰高血糖素可以抑制胰岛素的分泌,促使血糖含量升高,与胰岛素呈拮抗作用C.肾上腺素是肾脏分泌的,它能促进肝糖元分解为葡萄糖,使血糖含量升高D.当血糖含量升高时,下丘脑可通过有关神经的作用,使胰岛素分泌增加45、有关下列说法中,完全正确的组合是()①将某精原细胞的DNA用15N标记后,将该细胞转入含14N的培养基中培养,若进行减数分裂形成四个精子,则其中所有的DNA均含有15N②受精卵细胞中的遗传物质一半来自父方,一半来自母方③若女孩是色盲基因携带者,则该色盲基因可能来自其父亲。

湖南省师大附中高三数学上学期第一次月考试卷理(含解析)

湖南省师大附中高三数学上学期第一次月考试卷理(含解析)

湖南师大附中2015届高三上学期第一次月考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|x2﹣2x<0},N={x|x<a},若M⊆N,则实数a的取值范围是()A.[2,+∞)B.(2,+∞)C.(﹣∞,0)D.(﹣∞,0]2.(5分)给出下面四个命题:p1:∃x∈(0,+∞),;p2:∃x∈(0,1),,p3:∀x∈(0,+∞),;p4:∀x∈(0,),x,其中的真命题是()A.p1,p3B.p1,p4C.p2,p3D.p2,p43.(5分)在如图所示的程序框图中输入10,结果会输出()A.10 B.11 C.512 D.1 0244.(5分)将函数f(x)=sinx+cosx的图象向左平移φ(φ>0)个单位长度,所得图象关于原点对称,则φ的最小值为()A.﹣B.C.D.5.(5分)若实数x、y满足条件,则z=x+3y的最大值为()A.9 B.11 C.12 D.166.(5分)不全相等的五个数a、b、c、m、n具有关系如下:a、b、c成等比数列,a、m、b 和b、n、c都成等差数列,则+=()A.﹣2 B.0 C.2 D.不能确定7.(5分)已知边长为1的正方形ABCD位于第一象限,且顶点A、D分别在x、y的正半轴上(含原点)滑动,则的最大值是()A.1 B.C.2 D.8.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.29.(5分)若曲线C1:x2+y2﹣2x=0与曲线C2:y(y﹣mx﹣m)=0有四个不同的交点,则实数m 的取值范围是()A.(﹣,)B.(﹣,0)∪(0,)C.[﹣,] D.(﹣∞,﹣)∪(,+∞)10.(5分)已知集合A={x|x=a0+a1×3+a2×32+a3×33},其中a i∈{1,2,3}(i=0,1,2,3}且a3≠0,则A中所有元素之和等于()A.3 240 B.3 120 C.2 997 D.2 889二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上.11.(5分)在△ABC中,a=15,b=10,A=60°,则cosB=.12.(5分)如图,椭圆的长轴为A1A2,短轴为B1B2,将坐标平面沿y轴折成一个二面角,使点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,则此二面角的大小为.13.(5分)若f(x)+f(x)dx=x,则f(x)=.14.(5分)在函数f(x)=alnx+(x+1)2(x>0)的图象上任取两个不同点P(x1,y1),Q(x2,y2),总能使得f(x1)﹣f(x2)≥4(x1﹣x2),则实数a的取值范围为.15.(5分)两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a4=22,…,若按此规律继续下去,则a5=,若a n=145,则n=.三、解答题:本大题共6个小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)设函数.(1)求f(x)的最小正周期.(2)若函数y=g(x)与y=f(x)的图象关于直线x=1对称,求当时,y=g(x)的最大值.17.(12分)某电视台拟举行由选手报名参加的比赛类型的娱乐节目,选手进入正赛前需通过海选,参加海选的选手可以参加A、B、C三个测试项目,只需通过一项测试即可停止测试,通过海选.若通过海选的人数超过预定正赛参赛人数,则优先考虑参加海选测试次数少的选手进入正赛.甲选手通过项目A、B、C测试的概率为分别为、、,且通过各次测试的事件相互独立.(1)若甲选手先测试A项目,再测试B项目,后测试C项目,求他通过海选的概率;若改变测试顺序,对他通过海选的概率是否有影响?说明理由;(2)若甲选手按某种顺序参加海选测试,第一项能通过的概率为p1,第二项能通过的概率为p2,第三项能通过的概率为p3,设他通过海选时参加测试的次数为ξ,求ξ的分布列和期望(用p1、p、p3表示);并说明甲选手按怎样的测试顺序更有利于他进入正赛.18.(12分)如图,△ABC的外接圆⊙O的半径为5,CE垂直于⊙O所在的平面,BD∥CE,CE=4,BC=6,且BD=1,cos∠ADB=.(1)求证:平面AEC⊥平面BCED;(2)试问线段DE上是否存在点M,使得直线AM与平面ACE所成角的正弦值为?若存在,确定点M的位置;若不存在,请说明理由.19.(13分)等比数列a n中的前三项a1,a2,a3分别是下面数阵中第一、二、三行中的某三个数,且三个数不在同一列.(1)求此数列{a n}的通项公式;(2)若数列{b n}满足b n=3a n﹣(﹣1)n lga n,求数列{b n}的前n项和S n.20.(13分)已知圆C:(x﹣1)2+(y﹣1)2=2经过椭圆Γ:+=1(a>b>0)的右焦点F和上顶点B.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过原点O的射线l与椭圆Γ在第一象限的交点为Q,与圆C的交点为P,M为OP的中点,求•的最大值.21.(13分)已知函数f(x)=e x﹣ax﹣2x﹣1(x∈R).(1)当a=0时,求f(x)的单调区间;(2)求证:对任意实数a<0,有f(x)>.湖南师大附中2015届高三上学期第一次月考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|x2﹣2x<0},N={x|x<a},若M⊆N,则实数a的取值范围是()A.[2,+∞)B.(2,+∞)C.(﹣∞,0)D.(﹣∞,0]考点:交集及其运算.专题:集合.分析:求出M中不等式的解集确定出M,根据N以及M为N的子集,确定出a的范围即可.解答:解:由M中不等式变形得:x(x﹣2)<0,解得:0<x<2,即M=(0,2),∵N={x|x<a},且M⊆N,∴a≥2,则a的范围为[2,+∞).故选:A.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)给出下面四个命题:p1:∃x∈(0,+∞),;p2:∃x∈(0,1),,p3:∀x∈(0,+∞),;p4:∀x∈(0,),x,其中的真命题是()A.p1,p3B.p1,p4C.p2,p3D.p2,p4考点:命题的真假判断与应用.专题:探究型;数形结合.分析:分别根据全称命题和特称命题判断真假的方法去判断四个命题.p1可利用两个指数函数的图象进行判断.p2可以利用对数的图象来判断.p3可以利用对数和指数函数的图象来判断.p4:利用指数函数和对数函数的图象来判断.解答:解:对应命题p1可,分别作出函数的图象如图:由图象可知:∀x∈(0,+∞),,所以命题p1错误.p2:作出对数函数的图象,由图象知:∃x∈(0,1),使命题p2正确.p3:作出函数的图象,由图象知命题p3不正确.P4:当x∈(0,)时,,所以恒有成立,所以命题P4正确.故选D.点评:本题考查了全称命题和特称命题的真假判断,解决本题可以考虑使用数形结合的思想.3.(5分)在如图所示的程序框图中输入10,结果会输出()A.10 B.11 C.512 D.1 024考点:程序框图.专题:算法和程序框图.分析:根据框图写出每次循环s,k的取值,即可确定输出s的值.解答:解:运行程序,有s=1;k=1第1次循环:s=2,k=2第2次循环:s=4,k=3第3次循环:s=8,k=4第4次循环:s=16,k=5第5次循环:s=32,k=6第6次循环:s=64,k=7第7次循环:s=128,k=8第8次循环:s=256,k=9第9次循环:s=512,k=10第10次循环:s=1024,k=11输出s的值为1024.故答案为:D.点评:本题主要考察框图和程序算法,属于基础题.4.(5分)将函数f(x)=sinx+cosx的图象向左平移φ(φ>0)个单位长度,所得图象关于原点对称,则φ的最小值为()A.﹣B.C.D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,可得结论.解答:解:由题意可得,将函数f(x)=sinx+cosx=sin(x+)的图象向左平移φ(φ>0)个单位长度,所得函数为y=sin(x++φ)为奇函数,则φ的最小值为,故选:C.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,正弦函数的奇偶性,属于基础题.5.(5分)若实数x、y满足条件,则z=x+3y的最大值为()A.9 B.11 C.12 D.16考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义,利用利用数形结合即可得到结论.解答:解:作出不等式组对应的平面区域如图:由z=x+3y,得,平移直线,由图象可知当,经过点C时,直线截距最大,此时z最大.由得,即C(2,3),此时z=x+3y=2+3×3=11,故选:B.点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.6.(5分)不全相等的五个数a、b、c、m、n具有关系如下:a、b、c成等比数列,a、m、b 和b、n、c都成等差数列,则+=()A.﹣2 B.0 C.2 D.不能确定考点:等比数列的通项公式;等差数列的通项公式.专题:等差数列与等比数列.分析:由已知得2m=a+b,2n=b+c,b2=ac,从而+====2.解答:解:由已知得2m=a+b,2n=b+c,b2=ac,∴+==[]===2.故选:C.点评:本题考查代数和的求法,是基础题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.7.(5分)已知边长为1的正方形ABCD位于第一象限,且顶点A、D分别在x、y的正半轴上(含原点)滑动,则的最大值是()A.1 B.C.2 D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:令∠OAD=θ,由边长为1的正方形ABCD的顶点A、D分别在x轴、y轴正半轴上,可得出B,C的坐标,由此可以表示出两个向量,算出它们的内积即可.解答:解:如图令∠OAD=θ,由于AD=1,故0A=cosθ,OD=sinθ,如图∠BAx=﹣θ,AB=1,故x B=cosθ+cos(﹣θ)=cosθ+sinθ,y B=sin(﹣θ)=cosθ.故=(cosθ+sinθ,cosθ)同理可求得C(sinθ,cosθ+sinθ),即=(sinθ,cosθ+sinθ),∴•=(cosθ+sinθ,cosθ)•(sinθ,cosθ+sinθ)=1+sin2θ,•的最大值是2,故选C.点评:本题考查向量在几何中的应用,设角引入坐标是解题的关键,由于向量的运算与坐标关系密切,所以在研究此类题时应该想到设角来表示点的坐标,属于中档题.8.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.2考点:由三视图求面积、体积.专题:计算题;作图题;空间位置关系与距离.分析:由三视图想象出空间几何体,代入数据求值.解答:解:如图所示,四面体为正四面体.是由边长为1的正方体的面对角线围成.其边长为,则其表面积为4×(××)=2.故选D.点评:本题考查了学生的空间想象力,属于中档题.9.(5分)若曲线C1:x2+y2﹣2x=0与曲线C2:y(y﹣mx﹣m)=0有四个不同的交点,则实数m 的取值范围是()A.(﹣,)B.(﹣,0)∪(0,)C.[﹣,] D.(﹣∞,﹣)∪(,+∞)考点:圆的一般方程;圆方程的综合应用.专题:压轴题;数形结合.分析:由题意可知曲线C1:x2+y2﹣2x=0表示一个圆,曲线C2:y(y﹣mx﹣m)=0表示两条直线y=0和y﹣mx﹣m=0,把圆的方程化为标准方程后找出圆心与半径,由图象可知此圆与y=0有两交点,由两曲线要有4个交点可知,圆与y﹣mx﹣m=0要有2个交点,根据直线y﹣mx﹣m=0过定点,先求出直线与圆相切时m的值,然后根据图象即可写出满足题意的m的范围.解答:解:由题意可知曲线C1:x2+y2﹣2x=0表示一个圆,化为标准方程得:(x﹣1)2+y2=1,所以圆心坐标为(1,0),半径r=1;C2:y(y﹣mx﹣m)=0表示两条直线y=0和y﹣mx﹣m=0,由直线y﹣mx﹣m=0可知:此直线过定点(﹣1,0),在平面直角坐标系中画出图象如图所示:直线y=0和圆交于点(0,0)和(2,0),因此直线y﹣mx﹣m=0与圆相交即可满足条件.当直线y﹣mx﹣m=0与圆相切时,圆心到直线的距离d==r=1,化简得:m2=,解得m=±,而m=0时,直线方程为y=0,即为x轴,不合题意,则直线y﹣mx﹣m=0与圆相交时,m∈(﹣,0)∪(0,).故选B.点评:此题考查学生掌握直线与圆的位置关系,考查了数形结合的数学思想,是一道中档题.本题的突破点是理解曲线C2:y(y﹣mx﹣m)=0表示两条直线.10.(5分)已知集合A={x|x=a0+a1×3+a2×32+a3×33},其中a i∈{1,2,3}(i=0,1,2,3}且a3≠0,则A中所有元素之和等于()A.3 240 B.3 120 C.2 997 D.2 889考点:计数原理的应用;数列的求和.专题:综合题;排列组合.分析:由题意可知a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法,利用数列求和即可求得A中所有元素之和.解答:解:由题意可知,a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法(可取1,2),由分步计数原理可得共有3×3×3×2种方法,∴当a0取0,1,2时,a1,a2各有3种取法,a3有2种取法,共有3×3×2=18种方法,即集合A中含有a0项的所有数的和为(0+1+2)×18;同理可得集合A中含有a1项的所有数的和为(3×0+3×1+3×2)×18;集合A中含有a2项的所有数的和为(32×0+32×1+32×2)×18;集合A中含有a3项的所有数的和为(33×1+33×2)×27;由分类计数原理得集合A中所有元素之和:S=(0+1+2)×18+(3×0+3×1+3×2)×18+(32×0+32×1+32×2)×18+(33×1+33×2)×27 =18(3+9+27)+81×27=702+2 187=2 889.故选D.点评:本题考查数列的求和,考查分类计数原理与分步计数原理的应用,考查分类讨论与转化思想的综合应用,属于难题.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上.11.(5分)在△ABC中,a=15,b=10,A=60°,则cosB=.考点:正弦定理.专题:计算题.分析:由正弦定理可求得 sinB=,再由 b<a,可得 B为锐角,cosB=,运算求得结果.解答:解:由正弦定理可得=,∴sinB=,再由 b<a,可得 B为锐角,∴cosB==,故答案为:.点评:本题考查正弦定理的应用,同角三角函数的基本关系,求出sinB=,以及B为锐角,是解题的关键.12.(5分)如图,椭圆的长轴为A1A2,短轴为B1B2,将坐标平面沿y轴折成一个二面角,使点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,则此二面角的大小为.考点:椭圆的应用;循环结构;二面角的平面角及求法.专题:综合题;压轴题.分析:确定椭圆中的几何量,确定二面角的平面角,利用点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,可求得cos∠A2OF1=,即可求得结论.解答:解:由题意,椭圆中a=4,c=,∠A2OF1为二面角的平面角∵点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点∴在直角△A2OF1中,cos∠A2OF1=∴∠A2OF1=即二面角的大小为故答案为:点评:本题考查椭圆与立体几何的综合,考查面面角,解题的关键是确定二面角的平面角.13.(5分)若f(x)+f(x)dx=x,则f(x)=x﹣.考点:定积分.专题:导数的概念及应用.分析:利用待定系数法结合积分的基本运算即可得到结论.解答:解:因为f(x)dx是个常数,不妨设为m,所以f(x)=x﹣m,其原函数F(x)=x2﹣mx+C(C为常数),所以可得方程m=﹣m,解得m=.故f(x)=x﹣.故答案为:x﹣点评:本题主要考查函数解析式的求解,利用待定系数法是解决本题的关键.14.(5分)在函数f(x)=alnx+(x+1)2(x>0)的图象上任取两个不同点P(x1,y1),Q(x2,y2),总能使得f(x1)﹣f(x2)≥4(x1﹣x2),则实数a的取值范围为a≥.考点:导数的几何意义.专题:函数的性质及应用;导数的概念及应用.分析:不妨设x1>x2,则x1﹣x2>0,由f(x1)﹣f(x2)≥4(x1﹣x2),可得≥4,即函数f(x)=alnx+(x+1)2(x>0)的图象上任取两个不同点P(x1,y1),Q(x2,y2)连续的斜率不小于4,即导数值不小于4,由此构造关于a的不等式,可得实数a的取值范围.解答:解:不妨设x1>x2,则x1﹣x2>0,∵f(x1)﹣f(x2)≥4(x1﹣x2),∴≥4,∵f(x)=alnx+(x+1)2,(x>0)∴f′(x)=+2(x+1)∴+2(x+1)≥4,∴a≥﹣2x2+2x∵﹣2x2+2x=﹣2(x﹣)2+≤∴a≥,故答案为:a≥点评:本题考查的知识点导数的几何意义,斜率公式,其中分析出f(x1)﹣f(x2)≥4(x1﹣x2)的几何意义,是解答的关键.15.(5分)两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a4=22,…,若按此规律继续下去,则a5=35,若a n=145,则n=10.考点:归纳推理.专题:图表型;点列、递归数列与数学归纳法.分析:仔细观察法各个图形中实心点的个数,找到个数之间的通项公式,再求第5个五角星的中实心点的个数及a n=145时,n的值即可.解答:解:第一个有1个实心点,第二个有1+1×3+1=5个实心点,第三个有1+1×3+1+2×3+1=12个实心点,第四个有1+1×3+1+2×3+1+3×3+1=22个实心点,…第n个有1+1×3+1+2×3+1+3×3+1+…+3(n﹣1)+1=+n个实心点,故当n=5时,+n=+5=35个实心点.若a n=145,即+n=145,解得n=10故答案为:35,10.点评:本题考查了图形的变化类问题,解题的关键是仔细观察每个图形并从中找到通项公式.三、解答题:本大题共6个小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)设函数.(1)求f(x)的最小正周期.(2)若函数y=g(x)与y=f(x)的图象关于直线x=1对称,求当时,y=g(x)的最大值.考点:两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:(1)f(x)解析式第一项利用两角和与差的正弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出f(x)的最小正周期;(2)在y=g(x)的图象上任取一点(x,g(x)),根据f(x)与g(x)关于直线x=1对称,表示出此点的对称点,根据题意得到对称点在f(x)上,代入列出关系式,整理后根据余弦函数的定义域与值域即可确定出g(x)的最大值.解答:解:(1)f(x)=sin xcos﹣cos xsin=sin x﹣cos x=(sin x ﹣cos x)=sin(x﹣),∵ω=,∴f(x)的最小正周期为T==8;(2)在y=g(x)的图象上任取一点(x,g(x)),它关于x=1的对称点(2﹣x,g(x)),由题设条件,点(2﹣x,g(x))在y=f(x)的图象上,从而g(x)=f(2﹣x)=sin[(2﹣x)﹣]=sin[﹣x﹣]=cos(x+),当0≤x≤时,≤x+≤,则y=g(x)在区间[0,]上的最大值为g max=cos=.点评:此题考查了两角和与差的正弦函数公式,三角函数的周期性及其求法,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.17.(12分)某电视台拟举行由选手报名参加的比赛类型的娱乐节目,选手进入正赛前需通过海选,参加海选的选手可以参加A、B、C三个测试项目,只需通过一项测试即可停止测试,通过海选.若通过海选的人数超过预定正赛参赛人数,则优先考虑参加海选测试次数少的选手进入正赛.甲选手通过项目A、B、C测试的概率为分别为、、,且通过各次测试的事件相互独立.(1)若甲选手先测试A项目,再测试B项目,后测试C项目,求他通过海选的概率;若改变测试顺序,对他通过海选的概率是否有影响?说明理由;(2)若甲选手按某种顺序参加海选测试,第一项能通过的概率为p1,第二项能通过的概率为p2,第三项能通过的概率为p3,设他通过海选时参加测试的次数为ξ,求ξ的分布列和期望(用p1、p、p3表示);并说明甲选手按怎样的测试顺序更有利于他进入正赛.考点:离散型随机变量的期望与方差.专题:概率与统计.分析:(1)先求出甲选手不能通过海选的概率,再由对立事件概率计算公式能求出甲选手能通过海选的概率.(2)依题意,ξ的可能取值为1,2,3,分别求出相应的概率,由此能求出ξ的分布列和期望.解答:解:(1)依题意,甲选手不能通过海选的概率为:(1﹣)(1﹣)(1﹣)=,故甲选手能通过海选的概率为:1﹣(1﹣)(1﹣)(1﹣)=.若改变测试顺序对他通过海选的概率没有影响,因为无论按什么顺序,其不能通过的概率均为(1﹣)(1﹣)(1﹣)=,故无论按什么顺序,其能通过海选的概率都是.(2)依题意,ξ的可能取值为1,2,3,P(ξ=1)=p1,P(ξ=2)=(1﹣p1)p2,P(ξ=3)=(1﹣p1)(1﹣p2)×1,∴ξ的分布列为:ξ 1 2 3P p1(1﹣p1)p2(1﹣p1)(1﹣p2)Eξ=p1+2(1﹣p1)p2+3(1﹣p1)(1﹣p2)p3,分别计算当甲选手按C→B→A,C→A→B,B→A→C,B→C→A,A→B→C,A→C→B的顺序参加测试时,Eξ的值几时甲选手按C→B→A的顺序参加测试时,Eξ最小,因为参加测试的次数少的选手优先进入正赛,故该选手将自己的优势项目放在前面,即按C→B→A的顺序参加测试更有利用于进入正赛.点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.18.(12分)如图,△ABC的外接圆⊙O的半径为5,CE垂直于⊙O所在的平面,BD∥CE,CE=4,BC=6,且BD=1,cos∠ADB=.(1)求证:平面AEC⊥平面BCED;(2)试问线段DE上是否存在点M,使得直线AM与平面ACE所成角的正弦值为?若存在,确定点M的位置;若不存在,请说明理由.考点:平面与平面垂直的判定;直线与平面所成的角.专题:空间位置关系与距离;空间角.分析:(1)由已知得BD⊥AB,AD=,AB=10=直径,由此能证明平面AEC⊥平面BCED.(2)以C为原点,直线CA为x轴,CB为y轴,CE这z轴,建立空间直角坐标系,利用向量法能求出线段DE上存在点M,且时,使得直线AM与平面ACE所成角的正弦值为.解答:(1)证明:∵BD⊥平面ABC,∴BD⊥AB,又∵BD=1,cos,∴AD=,AB=10=直径,∴AC⊥BC,又EC⊥平面ACE,BC⊂平面BCED,∴平面AEC⊥平面BCED.(2)解:存在.如图,以C为原点,直线CA为x轴,CB为y轴,CE这z轴,建立空间直角坐标系,则A(8,0,0),B(0,6,0),D(0,6,1),E(0,0,4),=(﹣8,6,1),=(0,﹣6,3),设=λ=(0,﹣6λ,3λ),0<λ<1,故=+=(﹣8,6﹣6λ,1+3λ),由(1)得平面ACE的法向量为=(0,6,0),设直线AM与平面CE所成角为θ,则sinθ===,解得.∴线段DE上存在点M,且时,使得直线AM与平面ACE所成角的正弦值为.点评:本题考查平面与平面垂直的证明,考查直线与平面所成角的正弦值的求法,解题时要认真审题,注意向量法的合理运用.19.(13分)等比数列a n中的前三项a1,a2,a3分别是下面数阵中第一、二、三行中的某三个数,且三个数不在同一列.(1)求此数列{a n}的通项公式;(2)若数列{b n}满足b n=3a n﹣(﹣1)n lga n,求数列{b n}的前n项和S n.考点:数列的求和.专题:等差数列与等比数列.分析:(1)由已知得a1=3,a2=6,a3=12,公比q=2,由此能求出数列{a n}的通项公式.(2)由,得b n=3a n﹣(﹣1)n lga n=9×2n﹣1﹣(﹣1)n[lg3+(n﹣1)lg2],由此能求出数列{b n}的前n项和S n.解答:解:(1)经检验,当a1=5或a1=4时,不可能得到符合题意的等比数列,∴a1=3,a2=6,a3=12,公比q=2,∴.(2)由,得b n=3a n﹣(﹣1)n lga n=9×2n﹣1﹣(﹣1)n[lg3+(n﹣1)lg2],∴S n=9(1+2+…+2n﹣1)﹣[(﹣1)+(﹣1)2+…+(﹣1)n](lg3﹣lg2),n为偶数时,S n=9×+(lg3﹣lg2)﹣()lg2=9(2n﹣1)+.n为奇数时,=9(2n﹣1)+.∴S n=.点评:本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要注意分类讨论思想的合理运用.20.(13分)已知圆C:(x﹣1)2+(y﹣1)2=2经过椭圆Γ:+=1(a>b>0)的右焦点F和上顶点B.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过原点O的射线l与椭圆Γ在第一象限的交点为Q,与圆C的交点为P,M为OP的中点,求•的最大值.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)在圆(x﹣1)2+(y﹣1)2=2中,令y=0,得F(2,0),令x=0,得B(0,2),由此能求出椭圆方程.(Ⅱ)设点Q(x0,y0),x0>0,y0>0,则==x0+y0,又,设b=x0+y0,与联立,得:,由此能求出的最大值.解答:解:(Ⅰ)在圆C:(x﹣1)2+(y﹣1)2=2中,令y=0,得F(2,0),即c=2,令x=0,得B(0,2),即b=2,∴a2=b2+c2=8,∴椭圆Γ的方程为:.(Ⅱ)设点Q(x0,y0),x0>0,y0>0,则==(1,1)•(x0,y0)=x0+y0,又,设b=x0+y0,与联立,得:,令△≥0,得16b2﹣12(12b2﹣8)≥0,解得﹣2.又点Q(x0,y0)在第一象限,∴当时,取最大值2.点评:本题考查直线、圆、椭圆、平面向量、分式函数等基础知识,考查直线与圆锥曲线的位置关系,考查运算求解能力、推理论证能力,考查数形结合、化归转化及函数与方程等数学思想.21.(13分)已知函数f(x)=e x﹣ax﹣2x﹣1(x∈R).(1)当a=0时,求f(x)的单调区间;(2)求证:对任意实数a<0,有f(x)>.考点:利用导数研究函数的单调性.专题:证明题;导数的综合应用.分析:(1)求出函数f(x)的导函数f′(x),解出f′(x)>0和f′(x)<0,从而求出函数f(x)的单调区间;(2)构造新的函数,判断函数的单调性求出函数的最值,从而证明不等式.解答:解:(1)当a=0时,f(x)=e x﹣2x﹣1(x∈R),∵f′(x)=e x﹣2,且f′(x)的零点为x=ln2,∴当x∈(﹣∞,ln2)时,f′(x)<0;当x∈(ln2,+∞)时,f′(x)>0即(﹣∞,ln2)是f(x)的单调减区间,(ln2,+∞)是f(x)的单调增区间.(2)由f(x)=e x﹣ax2﹣2x﹣1(x∈R)得,f′(x)=e x﹣2ax﹣2,记g(x)=e x﹣2ax﹣2(x∈R),∵a<0,∴g′(x)=e x﹣2a>0,即f′(x)=g(x)是R上的单调递增函数,又f′(0)=﹣1<0,f′(1)=e﹣2a﹣2>0,故R上存在唯一的x0∈(0,1),使得f′(x0)=0,且当x<x0时,f′(x)<0;当x>x0时,f′(x)>0,即f(x)在(﹣∞,x0)上单调递减,在(x0,+∞)上单调递增,则f(x)min=f(x0)=ex0﹣ax0﹣1,再由f′(x0)=0得ex0=2ax0+2,将其代入前式可得,f(x)min =,又令h(x0)==﹣a,由于﹣a>0,对称轴,而x0∈(0,1),∴h(x0)>h(1)=a﹣1,又>0,∴h(x0)>,故对任意实数a<0,都在f(x )>.点评:本题是一道导数的综合题,考查了,利用导数求函数的单调区间,等价转化思想,不等式的证明.难度中等.- 21 -。

湖南师范大学附属中学2024届高三上学期月考(一)数学试题

湖南师范大学附属中学2024届高三上学期月考(一)数学试题

A. an 为等差数列
B.an 为等比数列
C.Sn 为等差数列
D.Sn 为等比数列
6.为了保障交通安全,某地根据《道路交通安全法》规定:汽车驾驶员血液中的酒精
含量不得超过 0.09mg/mL.据仪器监测,某驾驶员喝了二两白酒后,血液中的酒精含量
迅速上升到 0.3mg/mL,在停止喝酒后,血液中每小时末的酒精含量都比上一个小时末
D. 1 108
二、多选题 9.下列命题为真命题的是( )
A.若 a b ,且 1 1 ,则 ab 0 ab
C.若 c a b 0 ,则 a b ca cb
B.若 a b 0 ,则 a2 ab b2 D.若 a b c 0 ,则 a a c
b bc
10.设正方体 ABCD A1B1C1D1 中,A1B1 ,BB1 ,BC 的中点分别为 E ,F ,G ,则( )
与 x 轴的交点为 E ,求VABE 的面积的最大值.
22.已知函数 f x x aex 1 ,g x ax ln x x e2 a R ,设 max ,m n 表示 m ,
n 的最大值,设 F x max f x, g x .
(1)讨论 f x 在 0, 上的零点个数;
(2)当 x 0 时 F x 0 ,求 a 的取值范围.
术人员的年人均投入始终不减少.请问是否存在这样的实数 m ,满足以上两个条件,若
存在,求出 m 的范围;若不存在,说明理由.
21.已知椭圆
C
的中心在坐标原点,两焦点
F1
,F2

x
轴上,离心率为
1 2
,点
P

C
上,
且△PF1F2 的周长为 6.
(1)求椭圆 C 的标准方程;

2024-2025学年湖南师范大学附属中学高三上学期月考(一)数学试题及答案

2024-2025学年湖南师范大学附属中学高三上学期月考(一)数学试题及答案

大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ( )A. {}32x x -≤≤∣ B. {32}xx -≤<∣C. {12}xx <≤∣ D. {12}xx <<∣2. 若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于( )A.B.54C.D.3. 已知平面向量()()5,0,2,1a b ==- ,则向量a b + 在向量b 上投影向量为( )A. ()6,3- B. ()4,2- C. ()2,1- D. ()5,04. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A. 21B. 19C. 12D. 425. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nμσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人B. 272人C. 328人D. 820人6. 已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=( )A.π6 B.π4C.π3D.2π37. 已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A. ⎛ ⎝B. ⎛ ⎝C. (D. (8. 已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( )A. ()0,1 B. ()(),00,1-∞⋃ C. [)1,+∞ D. ()()0,11,+∞ 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN10. 已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则( )A. ()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C. ()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈⎥⎝⎦11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则()A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =-=∑三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +-的展开式中2x y 的系数为______.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ==CD 的长.16. 已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.17. 已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.销售量千张经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()N n P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛..参考公式:()()()1122211ˆˆ,n ni i i ii in ni ii ix x y y x y nx ya y bxx x x nx====---==---∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ( )A. {}32x x -≤≤∣ B. {32}xx -≤<∣C. {12}xx <≤∣ D. {12}xx <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集.【详解】集合{}()32,{lg 10}{12}A x x B x x x x =-≤≤=-<=<<∣∣∣,则{12}A B xx ⋂=<<∣,故选:D .2. 若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于( )A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =-+,再由模长公式即可得出结果.【详解】依题意()1i 3i z +=-+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z -+--+-+====-+++-,所以z ==.故选:C3. 已知平面向量()()5,0,2,1a b ==- ,则向量a b +在向量b 上的投影向量为( )A. ()6,3- B. ()4,2- C. ()2,1- D. ()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=-+⋅=== 所以向量a b +在向量b 上的投影向量为()()236,3||a b b b b b +⋅==- .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A. 21 B. 19C. 12D. 42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a ==故公差76162,53d a a a a d =-=∴=-=-,()767732212S ⨯∴=⨯-+⨯=,故选:A5. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nμσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A. 136人B. 272人C. 328人D. 820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22μσ=⨯==,()()(),0.750.547p k P k X k p μσμσ=-≤≤+≈ ,()5790P X ∴≤≤()0.750.547p =≈,()()900.510.5470.2265P X ≥=⨯-=,∴该校及格人数为0.22651200272⨯≈(人),故选:B .6. 已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=( )A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⎧⋅+⋅=⎪⎪⎨⋅⎪=⋅⎪⎩,解得1cos cos 62sin sin 3αβαβ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅-⋅=-,π,0,2αβ⎛⎫∈ ⎪⎝⎭,()0,παβ∴+∈,2π,3αβ∴+=,故选:D .7. 已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A. ⎛ ⎝B. ⎛ ⎝C. (D. (【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay -=交于,A B 两点,则2F 到渐近线0bx ay -=的距离d b ==,所以AB =,因为123AB F F >,所以32c ⨯>,可得2222299a b c a b ->=+,即22224555a b c a >=-,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是⎛ ⎝.故选:B8. 已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( )A. ()0,1 B. ()(),00,1-∞⋃ C. [)1,+∞ D. ()()0,11,+∞ 【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可.【详解】令()u f x =,则()0f u =.①当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;②当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x ==,可得2x =,因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞-]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥;若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞,故选:C .二、多选题:本题共36分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN ,由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =,所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=︒,90EMG ∴∠=︒,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.故选:BD .10. 已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则( )A. ()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C. ()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x ⎛⎫+= ⎪⎝⎭求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f ⎛⎫⎛⎫=+⨯=≠⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得:3π3π5ππ228842y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,为奇函数,故B 正确;对于C ,当5π7π,88x ⎡⎤∈⎢⎥⎣⎦时,则5π5π2,3π42x ⎡⎤+∈⎢⎥⎣⎦,由余弦函数单调性知,()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x ⎛⎫+= ⎪⎝⎭ππ4x k =+或ππ,2k k +∈Z ,()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个交点的横坐标为13π4,5π13π24m ∴<≤,故D 正确.故选:BD11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =-=∑【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++-=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =-=∑,可得D 错误.【详解】由题意()()()(),f x f x g x g x -=-=-,且()()()00,21g f x g x =++-=,即()()21f x g x +-=①,用x -替换()()21f x g x ++-=中的x ,得()()21f x g x -+=②,由①+②得()()222f x f x ++-=所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++-=,可得()()()()()42,422f x f x f x f x f x ++-=+=--=-,所以()()()()82422f x f x f x f x ⎡⎤+=-+=--=⎣⎦,所以()f x 是以8为周期的周期函数,故B 正确;由①知()()21g x f x =+-,则()()()()882121g x f x f x g x +=++-=+-=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数,所以()()202400g g ==,C 正确;又因为()()42f x f x ++-=,所以()()42f x f x ++=,令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…,令8090x =,则有()()809080942f f +=,所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =-=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +-的展开式中2x y 的系数为______.【答案】180-【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅-,化简即可得到结果.【详解】在6(31)x y +-的展开式中,由()2213264C C 3(1)180x y x y ⋅⋅-=-,得2x y 的系数为180-.故答案为:180-.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,-⋃+∞【解析】【分析】根据函数奇偶性并求导可得()()f x f x ''-=,因此可得()()2f x f x '>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论.【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x -=-,两边同时求导可得()()f x f x ''--=-,即()()f x f x ''-=且()00f =,又因为当0x >时,()()2f x f x '->,所以()()2f x f x '>.构造函数()()2x f x h x =e ,则()()()22xf x f x h x '-'=e,所以当0x >时,()()0,h x h x '>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零,又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零,因为()f x 为奇函数,所以()f x 在(),1∞--上小于零,在()1,0-上大于零,综上所述,()0f x >的解集为()()1,01,-⋃+∞.故答案为:()()1,01,-⋃+∞14. 已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.【答案】⎡⎢⎣【解析】【分析】建系设点的坐标,再结合向量关系表示λμ+,最后应用三角恒等变换及三角函数值域求范围即可.【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ⎛ ⎝,其中π,0,3BOC θθ⎡⎤∠=∈⎢⎥⎣⎦,由(),R OC OA OB λμλμ=+∈,即()()1cos ,sin 1,02θθλμ⎛=+⎝,整理得1cos sin 2λμθθ+==,解得cos λμθ==,则ππcos cos ,0,33λμθθθθθ⎛⎫⎡⎤+==+=+∈ ⎪⎢⎥⎝⎭⎣⎦,ππ2ππ,,sin 3333θθ⎤⎡⎤⎛⎫+∈+∈⎥⎪⎢⎥⎣⎦⎝⎭⎦所以λμ⎡+∈⎢⎣.方法二:设k λμ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λμ=+=;当点C 运动到AB的中点时,k λμ=+==,所以λμ⎡+∈⎢⎣故答案为:⎡⎢⎣四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ==CD 的长.【答案】(1)2π3C = (2)3CD =【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解.【小问1详解】由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=,因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠,因此1cos 2C =-,所以2π3C =.【小问2详解】因为CD 是角C的平分线,AD DB ==所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==,因此sin 3sin B ADA BD==,即sin 3sin B A =,所以3b a =,又由余弦定理可得2222cos c a b ab C =+-,即222293a a a =++,解得4a =,所以12b =.又ABC ACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅,即4816CD =,所以3CD =.16. 已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.【答案】(1)1a = (2)(]()10,-∞-+∞ ,【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围.【小问1详解】()()111ln ln 1a a f x ax x x x a x xα--=='+⋅+,由1111ln 10e e e a f a -⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪⎪⎝⎭⎝⎭'⎭⎝,得1a =,当1a =时,()ln 1f x x ='+,函数()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e∞⎛⎫+ ⎪⎝⎭上单调递增,所以1ex =为函数()ln af x x x =的极小值点,所以1a =.【小问2详解】由(1)知min 11()e e f x f ⎛⎫==- ⎪⎝⎭.函数()g x 的导函数()()1exg x k x -=-'①若0k >,对()1210,,x x k ∞∀∈+∃=-,使得()()12111e 1e k g x g f x k ⎛⎫=-=-<-<-≤ ⎪⎝⎭,即()()120f x g x -≥,符合题意.②若()0,0k g x ==,取11ex =,对2x ∀∈R ,有()()120f x g x -<,不符合题意.③若0k <,当1x <时,()()0,g x g x '<在(),1∞-上单调递减;当1x >时,()()0,g x g x '>在(1,+∞)上单调递增,所以()min ()1ek g x g ==,若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x -≥,只需min min ()()g x f x ≤,即1e ek ≤-,解得1k ≤-.综上所述,k 的取值范围为(](),10,∞∞--⋃+.17. 已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析(2)F 位于棱PC 靠近P 的三等分点【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证;(2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB PE =⊂平面PAB ,所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= ,所以BD EC ⊥,因为,,PE EC E PE EC ⋂=⊂平面PEC ,所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥.【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E -,设(),,,(01)F x y z PF PC λλ=<<,所以()(),,11,2,1x y z λ-=-,所以,2,1x y z λλλ===-,即(),2,1F λλλ-.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==-=-,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⎧⋅=⎪⎨⋅=⎪⎩,,即2020a b a b c +=⎧⎨+-=⎩,,取()1,2,3m =--,设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅====整理得2620λλ-=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,即可利用韦达定理代入化简求解定点.【小问1详解】由题意得椭圆的方程:221116y x +=,所以短半轴14b =所以112242p b ==⨯=,所以抛物线1C 的方程是2y x =.设点()2,P t t ,则111222PQ PE ≥-=-=≥,所以当232ι=时,线段PQ.【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则:直线()222:b a MN y a x a b a --=--,即()21y a x a a b-=-+,即()0x a b y ab -++=.直线()21:111a DM y x a --=--,即()10x a y a -++=.由直线DMr =,即()()()2222124240r a r a r -+-+-=..同理,由直线DN 与圆相切得()()()2222124240r b r b r -+-+-=.所以,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,22224224,11r r a b ab r r --∴+==--代入方程()0x a b y ab -++=得()()222440x y r x y +++---=,220,440,x y x y ++=⎧∴⎨++=⎩解得0,1.x y =⎧⎨=-⎩∴直线MN 恒过定点()0,1-.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x -=-,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.日期t 12345678910销售量千张 1.9 1.98 2.2 2.36 2.43259 2.682.76 2.70.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑.(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式: ()()()1122211ˆˆ,n ni i i i i i n n ii i i x x y y x y nx y ay bx x x x nx ====---==---∑∑∑∑.【答案】(1)673220710001200y t =+ (2)433774n n P ⎛⎫=+⋅- ⎪⎝⎭(3)①最大值为1316,最小值为14;②证明见解析【解析】【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程;(2)由题意可知1213,(3)44n n n P P P n --=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证.【小问1详解】解:剔除第10天的数据,可得 2.2100.4 2.49y ⨯-==新,12345678959t ++++++++==新,则9922111119.73100.4114,73,38510285i i i i t y t ==⎛⎫⎛⎫=-⨯==-= ⎪ ⎪⎝⎭⎝⎭∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t ==⎛⎫- ⎪-⨯⨯⎝⎭===-⨯⎛⎫- ⎪⎝⎭∑∑新新新新新,可得6732207ˆ 2.4560001200a =-⨯=,所以6732207ˆ60001200y t =+.【小问2详解】解:由题意知1213,(3)44n n n P P P n --=+≥,其中12111313,444416P P ==⨯+=,所以11233,(3)44n n n n P P P P n ---+=+≥,又由2131331141644P P +=+⨯=,所以134n n P P -⎧⎫+⎨⎬⎩⎭是首项为1的常数列,所以131,(2)4n n P P n -+=≥所以1434(2)747n n P P n --=--≥,又因为1414974728P -=-=-,所以数列47n P ⎧⎫-⎨⎬⎩⎭是首项为928-,公比为34-的等比数列,故143)74n n P --=-,所以1934433(()2847774n n n P -=--+=+-.【小问3详解】解:①当n 为偶数时,19344334()(28477747n n n P -=--+=+⋅>单调递减,最大值为21316P =;当n 为奇数时,19344334()(28477747n n n P -=--+=-⋅<单调递增,最小值为114P =,综上可得,数列{}n P 的最大值为1316,最小值为14.②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数,当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε-=⋅-=⋅<⋅=,所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。

[理数答案]炎德英才大联考2013师大附中高三1次月考

[理数答案]炎德英才大联考2013师大附中高三1次月考

" " % ! # " & ! ! & # " ' ! " " ! ##$ " # ! ! # 0 1', ==== < # % >?@ABCD 8 & ! ============================== &< % E'4 FGH FI! # 0 1 2 # &7 & % % % ) J # ( 7 " # &7 " # ( 7 ( 7 " &" ( 7 ! # % # " # " # ) K% >FILMD & ( 7 ( 7 ($ ! ===================== *< " # " # NO*'4 >PQRSTU VWX YZ'4! [N\Y> # & # 0 1 2 # &7 4 # 0 1 2 # & >PQ % % " PQ]^_>`abc%Dde>&f gabhi YZ'4 & 4 # 0 1 2 & >PQ ) # % & % 3! " &" 8! " " 8 ! " # !=============== " #< ) & >jkD % # ( # & 12 13) lm # n# lmrst # x, D# " ) ! " * * o$ + pq, _ ,! $ * + uAvw * >0_ y - D. * >0_ 8, -%. # ============================ %< 3, -&Tt $ + - . #'Tt $ + - ================================== 8. #%Tt $ + -! (< . . / z{9 # /(. $ q_/ : /*9 : $ * 8 4 ). ). . $ . *

湖南师大附中2012-2013学年高三第一次月考数学试卷(文科)

湖南师大附中2012-2013学年高三第一次月考数学试卷(文科)

2012-2013学年湖南师大附中高三第一次月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共9小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.﹣ ﹣﹣﹣=2.(5分)(2012•北京模拟)当a=3时,下面的程序段输出的结果是( ) IF a <10 THEN y=2+a ELSE y=a*a4.(5分)设函数,且函数f (x )为偶函数,则g (﹣2)=( )解:∵6.(5分)函数,g (x )=3x﹣1,则不等式f[g (x )]≥0的解集为( )①②,解得7.(5分)点,则x 2+y 2的取值范围是( )解:约束条件==,的取值范围∠ADC=30°,则斜坡AD 的长为( )C |AC|=|AC|====|AD|=a 半;如果它是奇数,则将它乘3再加1,不断重复这样的运算,经过有限步后,一定可以得到1.如初始正整数为6,按照上述变换规则,得到一个数列:6,3,10,5,16,8,4,2,1.现在请你研究:如果对正10.(5分)(2012•湖北)设△ABC 的内角A ,B ,C ,所对的边分别是a ,b ,c .若(a+b ﹣c )(a+b+c )=ab ,则角C=.cosC==C=.故答案为:11.(5分)(2012•上海)已知y=f (x )+x 2是奇函数,且f (1)=1,若g (x )=f (x )+2,则g (﹣1)=13.(5分)已知函数f (x )=x 2+ax+b ﹣3,f (x )的图象恒过点(2,0),则a 2+b 2的最小值为 .a++,﹣,﹣时,的最小值为.故答案为:.14.(5分)(2012•黑龙江)已知向量夹角为45°,且,则= 3.解:∵,=1∴=|2|====解得3下列关于函数f (x )的命题; ①函数f (x )的值域为[1,2];②函数f (x )在[0,2]上是减函数;③如果当x ∈[﹣1,t ]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y=f (x )﹣a 有4个零点. 其中真命题为 ② (填写序号)16.(12分)已知函数f (x )=cos 2x ﹣sin 2x+2sinxcosx (1)求f (x )的最小正周期和单调递增区间; (2)求f (x )在[﹣,]上的值域.=cos2x+sin2x=sin 2x+﹣≤2x+≤+﹣≤+﹣])∵﹣,∴﹣≤2x+≤,∴≤2x+,]1111(1)证明:BC⊥AC1;(2)求直线AB与平面A1BC所成角的正弦值.AM=2,,所成角的正弦值为18.(12分)已知数列{a n}是等差数列,Sn是其前n项的和,且a3=5,S3=9(1)求首项a1和公差d;(2)若存在数列{b n},使a1b 1+a2b2+L+a n b n=5+(2n﹣3)2n+1对任意正整数n都成立,求数列{b n}的前n)由题意可得,解得==1+万件,则可获利﹣lnx+万美元,受美联货币政策影响,美元贬值,获利将因美元贬值而损失mx万美元,其中m为该时段美元的贬值指数,且m∈(0,1).(1)若美元贬值指数m=,为使得企业生产获利随x的增加而增长,该企业生产数量应在什么范围?(2)若因运输等其他方面的影响,使得企业生产x万件产品需增加生产成本万美元,已知该企业生产能力为x∈[4,10],试问美元贬值指数m在什么范围内取值才能使得该企业生产每件产品获得的平均利润m=,则企业获得利润是lnx+﹣时,都有﹣+﹣,﹣+﹣,则﹣+﹣﹣+﹣上的最小值为≤与椭圆相交于不同的两点代入椭圆,可得与椭圆相交于不同的两点﹣,= =+==x+﹣x+x+x+x+﹣+≥=,≥,∴。

湖南省师大附中高三数学第一次月考试题 理(含解析)

湖南省师大附中高三数学第一次月考试题 理(含解析)

湖南省师大附中2015届高三数学第一次月考试题 理(含解析)【试卷综评】本试卷试题主要注重基本知识、基本能力、基本方法等当面的考察,覆盖面广,注重数学思想方法的简单应用,试题有新意,符合课改和教改方向,能有效地测评学生,有利于学生自我评价,有利于指导学生的学习,既重视双基能力培养,侧重学生自主探究能力,分析问题和解决问题的能力,突出应用,同时对观察与猜想、阅读与思考等方面的考查。

本试题卷包括选择题、填空题和解答题三部分,共6页。

时量120分钟。

满分150分。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.已知集合M ={ |x x2-2x<0},N ={ |x x<a},若M ⊆N ,则实数a 的取值范围是( )A .[2,+∞)B .(2,+∞)C .(-∞,0)D .(-∞,0] 【知识点】子集的运算.A1 【答案解析】A 解析:因为{}2M {|x 2x 0}|02x x x <=<<=-,N ={ |x x<a},M ⊆N ,所以2a ³,故选A.【思路点拨】先化简集合M ,再利用M ⊆N 即可. 【题文】2.下列四个命题p1:∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x < ⎝ ⎛⎭⎪⎫13xp2:∃x ∈(0,1),log 12x>log 13x p3:∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >log 12x p4:∀x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x<log 13x 其中的真命题是( )A .p1,p3B .p1,p4C .p2,p3D .p2,p4【知识点】命题的真假判断与应用.A2【答案解析】D 解析:对应命题p1可,分别作出函数y =⎝ ⎛⎭⎪⎫12x 与y =⎝ ⎛⎭⎪⎫13x的图象如图:由图象 可知:∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x>⎝ ⎛⎭⎪⎫13x,所以命题p1错误.p2:作出对数函数y1=12logx,y2=13logx的图象,由图象知:∃x∈(0,1),使命题p2正确.p3:作出函数y1=12logx,y2=(12)x的图象,由图象知命题p3不正确.P4:当x∈(0,13)时,13logx>1,(12)x<1,所以恒有13logx>(12)x成立,所以命题P4正确.故选D.【思路点拨】分别根据全称命题和特称命题判断真假的方法去判断四个命题.p1可利用两个指数函数的图象进行判断.p2可以利用对数的图象来判断.p3可以利用对数和指数函数的图象来判断.p4:利用指数函数和对数函数的图象来判断.【题文】3.在如右图所示的程序框图中输入10,结果会输出( )A.10 B.11 C.512 D.1 024【知识点】程序框图.L1【答案解析】D 解析:根据题意,模拟程序框图的运行过程,如下;n=3,s=1,k=1,k≤n,是,s=1×2=2;k=2,k≤n,是,s=2×2=4= 22;k=3,k≤n,是,s=4×2=8= 32;…k=11,k≤n,否,输出s= 102.故选:D .【思路点拨】由题意,模拟程序框图的运行过程,即可得出正确的答案.【题文】4.将函数f(x)=sin x +cos x 的图象向左平移φ(φ>0)个单位长度,所得图象关于原点对称,则φ的最小值为( ) A .-π4 B.π4 C.3π4 D.5π4【知识点】函数y=Asin (ωx+φ)的图象变换.C4【答案解析】C解析:化简得sin cos 4y x x x p骣琪=+=+琪桫,根据图象平移规律可得平移后函数4y x pf 骣琪++琪桫,又所得函数图象关于原点对称,∴4k p f p +=,(k ∈Z ),∴4k pf p =-(k ∈Z ), 当k=1时,f 取最小值为34p,故选C.【思路点拨】化简得sin cos 4y x x x p骣琪=+=+琪桫,根据图象平移规律可得平移后函数4y x pf 骣琪++琪桫,又所得函数图象关于原点对称解得f 取最小值为34p.【题文】5.若实数x ,y 满足条件⎩⎨⎧y≥2||x -1y≤x+1,则z =x +3y 的最大值为( )A .9B .11C .12D .16 【知识点】简单线性规划.E5【答案解析】B 解析:作出不等式组对应的平面区域如图:由z=x+3y ,得133z y x -+=,平移直线133z y x -+=,由图象可知当133z y x -+=,经过点C 时,直线截距最大,此时z最大.由 211y x y x ì=-ïí=+ïî得23x y ì=ïí=ïî,即C (2,3),此时z=x+3y=2+3×3=11, 故选:B .【思路点拨】作出不等式组对应的平面区域,利用z 的几何意义,利用利用数形结合即可得到结论.【题文】6.不全相等的五个数a 、b 、c 、m 、n 具有关系如下:a 、b 、c 成等比数列,a 、m 、b 和b 、n 、c 都成等差数列,则a m +cn =( )A .-2B .0C .2D .不能确定 【知识点】等差、等边数列.D2 D3【答案解析】C 解析:不妨令1,2,4,a b c ===则3,32m n ==,代入可得2a c m n +=,故选C.【思路点拨】不妨令1,2,4,a b c ===则3,32m n ==,代入可得结果.【题文】7.已知边长为1的正方形ABCD 位于第一象限,且顶点A 、D 分别在x 、y 的正半轴上(含原点)滑动,则OB →·OC →的最大值是( )A .1 B.22C .2 D. 5 【知识点】平面向量数量积坐标表示的应用.F3【答案解析】C 解析:如图令∠OAD=θ,由于AD=1故0A=cosθ,OD=sinθ,如图∠BAX=2p -θ,AB=1,故xB=cosθ+cos(2p-θ)=cosθ+sinθ, yB=sin (2p-θ)=cosθ,故OB →=(cosθ+sinθ,cosθ)同理可求得C (sinθ,cosθ+sinθ),即OC →=(sinθ,cosθ+sinθ),∴OB →·OC →=(cosθ+sinθ,cosθ)•(sinθ,cosθ+sinθ)=1+sin2θ,故OB →·OC →的最大值是2,故答案是 2.【思路点拨】令∠OAD=θ,由边长为1的正方形ABCD 的顶点A 、D 分别在x 轴、y 轴正半轴上,可得出B ,C 的坐标,由此可以表示出两个向量,算出它们的内积即可. 【题文】8.一个四面体的三视图如图所示,则该四面体的表面积为( ) A.34 B.32C. 3 D .2 3【知识点】三视图.G2【答案解析】D 解析:如图所示,四面体为棱长为2的正四面体,()2142sin 60232S =创?.【思路点拨】根据题意转化为正方体内的正四面体,可知其棱长再求面积即可.【题文】9.若曲线C1:x2+y2-2x =0与曲线C2:y(y -mx -m)=0有4个不同的交点,则实数m 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33C.⎣⎢⎡⎦⎥⎤-33,33 D.⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞【知识点】圆的一般方程;圆方程的综合应用.H3 H4【答案解析】B 解析:曲线C1:(x -1)2+y2=1,图象为圆心为(1,0),半径为1的圆;曲线C2:y =0,或者y -mx -m =0,直线y -mx -m =0恒过定点(-1,0),即曲线C2图象为x 轴与恒过定点(-1,0)的两条直线.作图分析:k1=tan 30°=33,k2=-tan 30°=-33,又直线l1(或直线l2)、x 轴与圆共有四个不同的交点,结合图形可知m =k∈⎝ ⎛⎭⎪⎫-33,0∪⎝ ⎛⎭⎪⎫0,33. 【思路点拨】由题意可知曲线C1:x2+y2-2x=0表示一个圆,曲线C2:y (y-mx-m )=0表示两条直线y=0和y-mx-m=0,把圆的方程化为标准方程后找出圆心与半径,由图象可知此圆与y=0有两交点,由两曲线要有4个交点可知,圆与y-mx-m=0要有2个交点,根据直线y-mx-m=0过定点,先求出直线与圆相切时m 的值,然后根据图象即可写出满足题意的m 的范围.【题文】10.已知集合A ={}x |x =a0+a1×3+a2×32+a3×33,其中ai ∈{}0,1,2()i =0,1,2,3且a3≠0,则A 中所有元素之和等于( )A .3 240B .3 120C .2 997D .2 889 【知识点】数列的求和;分类计数原理.J1 D4【答案解析】D 解析:由题意可知,a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法(可取1,2),由分步计数原理可得共有3×3×3×2种方法,∴当a0取0,1,2时,a1,a2各有3种取法,a3有2种取法,共有3×3×2=18种方法,即集合A 中含有a0项的所有数的和为(0+1+2)×18;同理可得集合A 中含有a1项的所有数的和为(3×0+3×1+3×2)×18; 集合A 中含有a2项的所有数的和为(32×0+32×1+32×2)×18; 集合A 中含有a3项的所有数的和为(33×1+33×2)×27; 由分类计数原理得集合A 中所有元素之和:S =(0+1+2)×18+(3×0+3×1+3×2)×18+(32×0+32×1+32×2)×18+(33×1+33×2)×27=18(3+9+27)+81×27=702+2 187=2 889.故选D. 【思路点拨】由题意可知a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法,利用数列求和即可求得A 中所有元素之和.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上.【题文】11.在△ABC 中,a =15,b =10,∠A=60°,则cos B =____.【知识点】正弦定理.C8【答案解析】6解析:∵在△ABC 中,a=15,b=10,A=60°,由正弦定理可得01510sin60sin B =,解得sinB=33.又因为b<a ,所以B<A ,则6cos 3B =,故答案为63. 【思路点拨】先利用正弦定理求得sinB ,再利用平方关系解得cos B 即可.【题文】12.如右图,椭圆x216+y212=1的长轴为A1A2,短轴为B1B2,将坐标平面沿y 轴折成一个二面角,使点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,则此二面角的大小为____.【知识点】椭圆的应用;与二面角有关的立体几何综合题.H5 G11【答案解析】3p解析:连接A1O ∵A1 O ⊥y 轴,A O ⊥y 轴,∴∠A1 O A2为两个面的二面角.|A1 O |=a=4,O F|=c=2,∴cos∠A1 O A2= 12c a =,∴∠A1 O A2= 3p ,故答案为3p .【思路点拨】连接A1 O 根据椭圆的性质可知A1 O ⊥y 轴,A2 O ⊥y 轴,推断出∠A1 O A2为所求的二面角,利用椭圆的方程求得a 和c ,即|A1 O |和| O F|的值,进而在Rt△A1 O A2中利用求得cos∠A1 O A2进而求得∠A1 O A2. 【题文】13.若f(x)+⎠⎛01f(x)dx =x ,则f(x)=__ _.【知识点】定积分.B13【答案解析】x -14 解析:因为⎠⎛01f(x)dx 是个常数,不妨设为m ,所以f(x)=x -m ,其原函数F(x)=12x2-mx +C(C 为常数),所以可得方程m =12-m ,解得m =14.故f(x)=x -14.【思路点拨】根据已知条件设f(x)=x -m 代入求出m 即可.【题文】14.在函数f(x)=aln x +(x +1)2()x>0的图象上任取两个不同的点P(x1,y1)、Q(x2,y2),总能使得f(x1)-f(x2)≥4(x 1-x2),则实数a 的取值范围为__. 【知识点】函数的性质及应用;导数的概念及应用.B12【答案解析】⎣⎢⎡⎭⎪⎫12,+∞ 解析:由题意f′(x)≥4对任意x>0恒成立,也就是 a≥()2x (1-x )max =12.【思路点拨】由题意f′(x)≥4对任意x>0恒成立, 由此构造关于a 的不等式,可得实数a 的取值范围.【题文】15.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,图中的实心点的个数1、5、12、22、…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a4=22,……,若按此规律继续下去,则a5=____,若an =145,则n =___.【知识点】归纳推理.M1【答案解析】35,10 解析:第一个有1个实心点, 第二个有1+1×3+1=5个实心点,第三个有1+1×3+1+2×3+1=12个实心点,第四个有1+1×3+1+2×3+1+3×3+1=22个实心点, …第n 个有1+1×3+1+2×3+1+3×3+1+…+3(n-1)+1=3(1)2n n -+n 个实心点, 故当n=5时,3(1)2n n -+n=30+5=35个实心点. 若an=145,即3(1)2n n -+n=145,解得n=10故答案为:35,10.【思路点拨】仔细观察法各个图形中实心点的个数,找到个数之间的通项公式,再求第5个五角星的中实心点的个数及an=145时,n 的值即可.三、解答题:本大题共6个小题,共75分.解答应写出文字说明、证明过程或演算步骤. 【题文】16.(本题满分12分)设f(x)=sin ⎝ ⎛⎭⎪⎫π4x -π6-2cos2π8x +1.(1)求f(x)的最小正周期;(2)若函数y =f(x)与y =g(x)的图象关于直线x =1对称,求当x∈⎣⎢⎡⎦⎥⎤0,43时y =g(x)的最大值.【知识点】两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的定义域和值域.C3 C5【答案解析】(1) 8 (2) 32解析:(1)f(x)=sinπ4xcos π6-cos π4xsin π6-cos π4x =32sin π4x -32cos π4x =3sin ⎝ ⎛⎭⎪⎫π4x -π3,故f(x)的最小正周期为T =2ππ4=8. (6分)(2)法一:在y =g(x)的图象上任取一点(x ,g(x)),它关于x =1的对称点为(2-x ,g(x)). 由题设条件,点(2-x ,g(x))在y =f(x)的图象上,从而g(x)=f(2-x)=3sin ⎣⎢⎡⎦⎥⎤π4(2-x )-π3=3sin ⎣⎢⎡⎦⎥⎤π2-π4x -π3=3cos ⎝ ⎛⎭⎪⎫π4x +π3,当0≤x≤43时,π3≤π4x +π3≤2π3 ,因此y =g(x)在区间⎣⎢⎡⎦⎥⎤0,43 上的最大值为ymax =3cos π3=32.(12分)法二: 因区间⎣⎢⎡⎦⎥⎤0,43关于x =1的对称区间为⎣⎢⎡⎦⎥⎤23,2, 且y =g(x)与y =f(x)的图象关于直线x =1对称,故y =g(x)在区间⎣⎢⎡⎦⎥⎤0,43上的最大值为y =f(x)在区间⎣⎢⎡⎦⎥⎤23,2上的最大值.由(1)知f(x)=3sin ⎝⎛⎭⎪⎫π4x -π3.当23≤x≤2时,-π6≤π4x -π3≤π6. 因此y =g(x)在区间⎣⎢⎡⎦⎥⎤0,43上的最大值为ymax =3sin π6=32.(12分)【思路点拨】(1)f (x )解析式第一项利用两角和与差的正弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出f (x )的最小正周期;(2)在y=g (x )的图象上任取一点(x ,g (x )),根据f (x )与g (x )关于直线x=1对称,表示出此点的对称点,根据题意得到对称点在f (x )上,代入列出关系式,整理后根据余弦函数的定义域与值域即可确定出g (x )的最大值. 【题文】17.(本题满分12分)某电视台拟举行由选手报名参加的比赛类型的娱乐节目,选手进入正赛前需通过海选,参加海选的选手可以参加A 、B 、C 三个测试项目,只需通过一项测试即可停止测试,通过海选.若通过海选的人数超过预定正赛参赛人数,则优先考虑参加海选测试次数少的选手进入正赛.甲选手通过项目A 、B 、C 测试的概率为分别为15、13、12, 且通过各次测试的事件相互独立.(1)若甲选手先测试A 项目,再测试B 项目,后测试C 项目,求他通过海选的概率;若改变测试顺序,对他通过海选的概率是否有影响?说明理由;(2)若甲选手按某种顺序参加海选测试,第一项能通过的概率为p1,第二项能通过的概率为p2,第三项能通过的概率为p3,设他通过海选时参加测试的次数为ξ,求ξ的分布列和期望(用p1、p2、p3表示);并说明甲选手按怎样的测试顺序更有利于他进入正赛.【知识点】离散型随机变量的期望与方差;相互独立事件的概率乘法公式;离散型随机变量及其分布列.K5 K6【答案解析】(1) 即无论按什么顺序,其能通过海选的概率均为1115 (2) 按C→B→A 的顺序参加测试更有利于进入正赛.解析:(1)依题意,甲选手不能通过海选的概率为⎝ ⎛⎭⎪⎫1-15⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫ 1-12=415, 故甲选手能通过海选的概率为1-⎝ ⎛⎭⎪⎫1-15⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫ 1-12=1115.(3分)若改变测试顺序对他通过海选的概率没有影响,因为无论按什么顺序,其不能通过的概率均为⎝ ⎛⎭⎪⎫1-15⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫ 1-12=415,即无论按什么顺序,其能通过海选的概率均为1115.(5分)(2)依题意,ξ的所有可能取值为1、2、3.P(ξ=1)=p1,P(ξ=2)=(1-p1)p2,P(ξ=3)=(1-p1)(1-p2)p3. 故ξ的分布列为(8分)Eξ=p1+2(1-p1)p2+3(1-p1)(1-p2)p3(10分)分别计算当甲选手按C→B→A,C→A→B,B→A→C,B→C→A,A→B→C,A→C→B 的顺序参加测试时,Eξ的值,得甲选手按C→B→A 的顺序参加测试时,Eξ最小,因为参加测试的次数少的选手优先进入正赛,故该选手选择将自己的优势项目放在前面,即按C→B→A 的顺序参加测试更有利于进入正赛.(12分) 【思路点拨】(1)求出甲同学不能通过海选的概率,利用对立事件的概率公式,可求甲同学能通过海选的概率;若改变测试顺序,对他通过海选的概没有影响,因为无论按什么顺序,甲同学不能通过海选的概率不变;(2)ξ的可能取值为1,2,3,求出相应概率,可得分布列与期望;利用参加海选测试次数少的选手进入正赛,可得结论. 【题文】18.(本题满分12分)如图,△ABC 的外接圆⊙O 的半径为5,CE 垂直于⊙O 所在的平面,BD∥CE,CE =4,BC =6,且BD =1,cos ∠ADB =101101. (1)求证:平面AEC⊥平面BCED ;(2)试问线段DE 上是否存在点M ,使得直线AM 与平面ACE 所成角的正弦值为22121?若存在,确定点M 的位置;若不存在,请说明理由.【知识点】直线与平面所成的角;平面与平面垂直的判定.G10【答案解析】(1)见解析 (2) 存在点M ,且DM →=13DE →时,直线AM 与平面ACE 所成角的正弦值为22121.解析:(1)证明:∵BD⊥平面ABC ∴BD⊥AB,又因为 BD =1,cos∠ADB=101101. 故AD =101,AB =10=直径长,(3分)∴AC⊥BC.又因为EC⊥平面ABC ,所以EC⊥BC.∵AC∩EC=C ,∴BC⊥平面ACE ,又BC ⊂平面BCED , ∴平面AEC⊥平面BCED.(6分)(2)法一:存在,如图,以C 为原点,直线CA 为x 轴,直线CB 为y 轴,直线CE 为z 轴建立空间直角坐标系,则有点的坐标,A(8,0,0),B(0,6,0),D(0,6,1),E(0,0,4). 则AD →=(-8,6,1),DE →=(0,-6,3),设DM →=λDE →=λ(0,-6,3)=(0,-6λ,3λ),0<λ<1 故AM →=AD →+DM →=(-8, 6-6λ,1+3λ) 由(1)易得平面ACE 的法向量为CB →=(0,6,0), 设直线AM 与平面ACE 所成角为θ,则sin θ=|AM →·CB →||AM →|·|CB →|=36-36λ64+36(1-λ)2+(1+3λ)2·6=22121,解得λ=13.(10分)所以存在点M ,且DM →=13DE →时,直线AM 与平面ACE 所成角的正弦值为22121. (12分)法二:(几何法)如图,作MN⊥CE 交CE 于N ,连接AN ,则MN⊥平面AEC ,故直线AM 与平面ACE 所成的角为∠MAN,且MN⊥AN,NC⊥AC.设MN =2x ,由直线AM 与平面ACE 所成角的正弦值为22121, 得AM =21x ,所以AN =17x.另一方面,作DK∥MN∥BC,得EN =x ,NC =4-x 而AC =8,故Rt△ANC 中,由AN2=AC2+NC2 得17x2=64+(4-x)2,∴x=2,∴MN=4,EM =2 5所以存在点M ,且EM =25时,直线AM 与平面ACE 所成角的正弦值为22121. (12分)【思路点拨】(1)由已知易得AB 是⊙O 的直径,则AC⊥BC 由线面垂直的判定定理可得CE⊥平面ABC ,再由面面垂直的判定定理可得平面AEC⊥平面BCDE ;(2)方法一:过点M 作MN⊥CE 于N ,连接AN ,作MF⊥CB 于F ,连接AF ,可得∠MAN 为MA 与平面ACE 所成的角,设MN=x ,则由直线AM 与平面ACE 所成角的正弦值为22121,我们可以构造关于x 的方程,解方程即可求出x 值,进而得到点M 的位置.方法二:建立如图所示空间直角坐标系C-xyz ,求出平面ABC 的法向量和直线AM 的方向向量(含参数λ),由直线AM 与平面ACE 所成角的正弦值为22121,根据向量夹角公式,我们可以构造关于λ的方程,解方程即可得到λ值,进而得到点M 的位置. 【题文】19.(本题满分13分)等比数列{an}中的前三项a1、a2、a3分别是下面数阵中第一、二、三行中的某三个数,且三个数不在同一列.⎝ ⎛⎭⎪⎫5436108201216(1)求此数列{an}的通项公式;(2)若数列{bn}满足bn =3an -()-1nlg an ,求数列{bn}的前n 项和Sn. 【知识点】数列的求和;等比数列的性质.D3 D4【答案解析】(1) an =3·2n-1 (2) Sn =⎩⎪⎨⎪⎧9(2n -1)-n2lg 2,n 为偶数,9(2n -1)+n -12lg 2+lg 3,n 为奇数.解析:(1)经检验,当a1=5或4时,不可能得到符合题中要求的等比数列;故有a1=3,a2=6,a3=12,等比数列公比q =2, 所以an =3·2n-1.(5分)(2)由an =3·2n -1得bn =3an -()-1nlg an =9×2n -1-(-1)n []lg 3+(n -1)lg 2.所以Sn =9(1+2+…+2n -1)-⎣⎡⎦⎤()-1+()-12+…+()-1n(lg 3-lg 2)-[]-1+2-3+…+(-1)nn lg 2(9分)n 为偶数时,Sn =9×1-2n 1-2-n 2lg 2=9(2n -1)-n2lg 2.n 为奇数时,Sn =9×1-2n 1-2+(lg 3-lg 2)-⎝ ⎛⎭⎪⎫n -12-n lg 2=9(2n -1)+n -12lg 2+lg 3.所以, Sn =⎩⎪⎨⎪⎧9(2n -1)-n2lg 2,n 为偶数,9(2n -1)+n -12lg 2+lg 3,n 为奇数.(13分)【思路点拨】(1)先检验再利用等比数列的通项公式即可;(2)分情况讨论即可.【题文】20.(本题满分13分)已知圆C :(x -1)2+(y -1)2=2经过椭圆Γ∶x2a2+y2b2=1(a>b>0)的右焦点F 和上顶点B.(1)求椭圆Γ的方程;(2)如图,过原点O 的射线l 与椭圆Γ在第一象限的交点为Q ,与圆C 的交点为P ,M 为OP 的中点, 求OM →·OQ →的最大值.【知识点】直线与圆锥曲线的综合问题.H8 【答案解析】(1) x28+y24=1. (2) 2 3.解析:(1)在C :(x -1)2+(y -1)2=2中,令y =0得F(2,0),即c =2,令x =0,得B(0,2),b =2, 由a2=b2+c2=8,∴椭圆Γ:x28+y24=1.(4分)(2)法一:依题意射线l 的斜率存在,设l :y =kx(x>0,k>0),设P(x1,kx1),Q(x2,kx2)由⎩⎪⎨⎪⎧y =kx x28+y24=1得:(1+2k2)x2=8,∴x2=221+2k2.(6分)由⎩⎪⎨⎪⎧y =kx (x -1)2+(y -1)2=2得:(1+k2)x2-(2+2k)x =0,∴x1=2+2k 1+k2,∴OM →·OQ →=⎝ ⎛⎭⎪⎫x12,kx12·(x2,kx2)=12(x1x2+k2x1x2)=221+k 1+2k2(k>0). (9分)=22(1+k )21+2k2=22k2+2k +11+2k2.设φ(k)=k2+2k +11+2k2,φ′(k)=-4k2-2k +2(1+2k2)2,令φ′(k)=-4k2-2k +2(1+2k2)2>0,得-1<k<12.又k>0,∴φ(k)在⎝ ⎛⎭⎪⎫0,12上单调递增,在⎝ ⎛⎭⎪⎫12,+∞上单调递减.∴当k =12时,φ(k)max=φ⎝ ⎛⎭⎪⎫12=32,即OM →·OQ →的最大值为2 3.(13分)法二:依题意射线l 的斜率存在,设l :y =kx(x>0,k>0),设P(x1,kx1), Q(x2,kx2) 由⎩⎪⎨⎪⎧y =kx x28+y24=1得:(1+2k2)x2=8,∴x2=221+2k2.(6分)OM →·OQ →=(OC →+CM →)·OQ →=OC →·OQ → =(1,1)·(x2,kx2)=(1+k)x2=221+k1+2k2(k>0)(9分)=22(1+k )21+2k2.设t =1+k(t>1),则(1+k )21+2k2=t22t2-4t +3=12-4⎝ ⎛⎭⎪⎫1t +3⎝ ⎛⎭⎪⎫1t 2=13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1t -232+23≤32.当且仅当1t =23时,(OM →·OQ →)max =2 3.(13分)【思路点拨】(1) 在圆(x-1)2+(y-1)2=2中,令y=0,得F (2,0),令x=0,得B (0,2),由此能求出椭圆方程. (2) 依题意射线l 的斜率存在,设l :y =kx(x>0,k>0),设P(x1,kx1),Q(x2,kx2) ,把直线与椭圆方程联立,利用根与系数的关系代入,再结合基本不等式即可.【题文】21.(本题满分13分)已知函数f(x)=ex -ax2-2x -1(x∈R). (1)当a =0时,求f(x)的单调区间;(2)求证:对任意实数a<0,有f(x)>a2-a +1a.【知识点】利用导数求函数的单调区间;利用导数结合函数的单调性证明不等式.B3 B12【答案解析】(1) (-∞,ln 2)是f(x)的单调减区间,(ln 2,+∞)是f(x)的单调增区间. (2)见解析。

湖南师大附中2013届高三月(三)考数学理(附答案)

湖南师大附中2013届高三月(三)考数学理(附答案)

湖南师大附中2013届高月考(三)数学(理)试题(考试范围:全部内容,除选考部分)本试题卷包括选择题、填空题和解答题三部分,时量120分钟.满分150分.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2},B={2,4},则集合M={z|z=x ·y ,x ∈A ,y ∈B}中元素的个数为( )A .1个B .2个C .3个D .4个2.复数)(22R a i a a z ∈+--=为纯虚数的充分不必要条件是( )A .0B .a=-1C .a=-1或a=2D .a=l 或a=-23. 如图,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15o ,∠BDC=30o ,CD=30,并在点C测得塔顶A 的仰角为60o ,则塔高AB= ( )A .65B .315C .25D .615 4.已知等差数列{a n }中,前四项的和为60,最后四项的和为260,且S n =520,则a 7为( )A . 20B . 40C . 60D . 805.抛物线y 2=4x 与直线y=x-8所围成图形的面积为 ( )A . 84B . 168C . 36D . 726.S 是正三角形ABC 所在平面外的一点,如图,SA=SB=SC ,且∠ASB=∠BSC=∠CSA=2π,M ,N 分别是AB 和SC 的中 点,则异面直线SM 与BN 所成角的余弦值为( ) A .510 B . 515 C .1010 D .10103 7.已知椭圆)0(12222>>=+b a by a x 的一个焦点为F ,若椭圆上存在一个P 点,满足以椭圆短轴为直径的圆与线段PF 相切于该线段的中点,则该椭圆的离心率为 ( )A .35 B .32 C .22 D .95 8.若函数)0()(2≠++=a c bx ax x f 的图象和直线y=x 无交点,给出下列结论: ①方程f[f (x )]=x 一定没有实数根;②若a <0,则必存在实数x O ,使f[f (x O )] >x O ;③若a+b+c=O ,则不等式f[f (x )]<x 对一切实数x 都成立;④函数g (x )=ax 2 -bx +c 的图象与直线y=-x 也一定没有交点.其中正确的结论个数有 ( )A .1个B .2个C .3个D .4个二、填空题:本大题共7个小题,每小题5分,共35分.把答案填在答题卡中对应题号后的横线上.9.某工厂生产A ,B ,C 三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样的方法抽出一个容量为n 的样本,样本中A 型号的产品有16件,那么此样本容量n= 。

湖南省师大附中高三数学第一次月考试题 理 湘教版

湖南省师大附中高三数学第一次月考试题 理 湘教版

2013届高三月考试卷(一)数学(理)试题一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在空间,异面直线a ,b 所成的角为α,且1sin ,cos 2αα=则= A .3 B .3- C .3或3- D .12- 2.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是A .13B .14C .15D .163.某几何体的正视图和侧视图均为如图1所示,则在图2的四个图中可以作为该几何体的俯视图的是A .(1),(3)B .(1),(3),(4)C .(1),(2),(3)D .(1),(2),(3),(4) 4.设集合(,],(,),,,{2},A a B b a N b R AB N a b =-∞=+∞∈∈=+且则的取值范围是A .(3,4)B .[3,4]C .[3,4)D .(3,4] 5.已知点(,)a b 在10x y =图象上,则下列点中不可能在此图象上的是A .1(,)a b -B .(1,10)a b -C .(1,10)a b +D .2(2,)a b 6.函数38(0)(),()31,[()]09(0)x x x x f x g x f g x e x ⎧-≥⎪==-≥⎨-<⎪⎩则不等式的解集为 A .[1,)+∞ B .[ln 3,)+∞ C .[1,ln3] D .3[log 2,)+∞7.关于x的二次方程22210,0,0,x x a b a b ++=≥≥+有实根且则的取值范围是A .[4,)+∞B .[16,)+∞ C.[,)5+∞ D .16[,)5+∞ 8.已知函数()M f x 的定义域为实数集R ,满足1,()(0,M x M f x M x M∈⎧=⎨∉⎩是R 的非空真子集),在R 上有两个非空真子集A ,B ,且()1,()()()1A B A B f x A B F x f x f x +=∅=++则的值域为 A .2(0,]3 B .{1} C .12{,,1}23 D .[1,13] 二、填空题:本大题共7小题,每小题5分,共25分。

湖南师大附中2013届高三第5次月考数学理解析版 含答案

湖南师大附中2013届高三第5次月考数学理解析版 含答案

高三年级月考数学试题(5)理 科一、选择题:(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 指数函数,0()(>=a ax f x且)1≠a 在R 上是减函数,则函数3)2()(x a x g -=在R上的单调性为( )A 。

单调递增B 。

单调递减C 。

在),0(+∞上递增,在)0,(-∞上递减D 。

在),0(+∞上递减,在)0,(-∞上递增【答案】B【解析】由已知有10<<a ,显然函数3)2()(x a x g -=在R 上单调递减。

2。

已知集合⎭⎬⎫⎩⎨⎧-=21,31A ,{}01=+=ax x B ,且A B ⊆,则a 的可取值组成的集合为( )A 。

{}2,3- B.{}2,0,3- C 。

{}2,3- D 。

{}2,0,3- 【答案】D【解析】Φ=⇒=B a 0,满足条件 0≠a 时,由311-=-a 或211=-a 得2,3-=a , 故a 的可取值组成的集合为{}2,0,3-3。

向量b a,均为单位向量,其夹角为θ,则命题“1:>-b a p ”是命题“)65,2[:ππθ∈q ”的( )条件. A 。

充分非必要条件 B 。

必要非充分条件 C.充分必要条件 D 。

非充分非必要条件 【答案】B【解析】21cos 21121)(1:222<⇒<⋅⇒>+-⇒>-⇒>-θb a b b a a b a b a p],3(ππθ∈⇒从而⇒∈)65,2[:ππθq 1:>-b a p,反之不成立。

4. 若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的母线与底面所成的角为( )A.30 B.45 C.60 D 。

75【答案】C【解析】设圆锥的母线长为l ,底面半径为r ,由已知有:22212=⇒=⋅l l ππ,1242=⇒=⋅r r ππ 则所成的角为605。

一个样本a ,3,5,7的平均数是b ,且b a ,分别是数列{}22-n 的第2和第4项,则这个样本的方差是( )A .3B .4C .5D .6 【答案】C【解析】由已知4,1==b a , 则5])47()45()43()41[(4122222=-+-+-+-=s6. 已知锐角A ,B 满足)tan(tan 2B A A +=,则B tan 的最大值为( ) A.22B. 2C.22 D 。

湖南省师大附中2013届高三第四次月考数学理试题-含答案

湖南省师大附中2013届高三第四次月考数学理试题-含答案

湖南师大附中2013届高三月考(四)数学(理)试题本试题卷包括选择题、填空题和解答题三部分,时量120分钟,满分150分。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R ,集合2{|lg(1)},U A x y x C A ==-则=A .(,1)-∞B .[-1,1]C .(1,)+∞D .(,1][1,)-∞-+∞2.对于空间任意直线l 和平面α,下列命题中成立的是 A .平面α内一定存在直线与直线l 平行 B .平面α内一定存在直线与直线l 垂直 C .平面α内一定没有直线与直线l 平行 D .平面α内可能没有直线与直线l 垂直3.设不等式组00x y x y ⎧≥⎪≥⎨⎪+≤⎩表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于1的概率是A .4π B .22π- C .44π- D .22π-4.若复数(5sin 3)(5cos 4)z i θθ=-+-是纯虚数,则tan θ的值为A .43B .34-C .34D .3344-或5.在如图的程序框图中,若输出的结果为60,则在图中空白处应填上A .3a ≥B .4a ≥C .4a ≤D .3a ≤6.已知3547110{},8,2,n a a a a a a a =-+=+=为等比数列则 A .7B .5C .—5D .—77.设函数sin (0)y x x π=≤≤的图象为曲线C ,动点(,)A x y 在曲线C 上,过A 且平行于x 轴的直线交曲线C 于另一点(,)B A B 可以重合,设线段AB 的长为()y f x =的图象可以为8.已知正数,,534,ln ln ,b a b c c a b c a c b a c c a-≤≤-≥+满足则的取值范围是A .1[,]7eB .7[,]2eC .[,7]eD .11[,]7e二、填空题:本大题共7小题,每小题5分,共35分。

湖南省师大附中—高三第一次月考数学(理科)试题

湖南省师大附中—高三第一次月考数学(理科)试题

湖南省师大附中2007—2008学年高三第一次月考数学试题(理科)时量:120分钟 满分:150分参考公式:如果事件A 、B 互斥,那么 P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(球的体积公式334R V π=球,球的表面积公式24R S π=,其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简2007321i i i i +++++ 的结果是( ) A .1 B .i C .0 D .-i 2.下列对应是从M 到N 的函数是( )A .M={0,1,2},N={0,1,3,4},2:x y x f =→B .M={0,1,2},N={0,1,21},xy x f 1:=→C .M=[-1,1],N=[-1,1],21:x y x f -±=→D .M={矩形},N={圆},f :作矩形的内切圆3.给出如下三个命题:①四个非零实数a 、b 、c 、d 依次成等比数列的充要条件是ad=bc ; ②设11 .0,><≠∈abb a ab R b a ,则若,则; ③若|)(|2log )(2x f x x f x ,则==是偶函数. 其中不正确命题的序号是( )A .①②③B .①②C .②③D .①③4.设)1(l o g )()(21+=-x x f x f是函数的反函数,若8)](1)][(1[11=++--b f a f ,则)(b a f +的值为( )A .1B .2C .3D .3log 25.曲线),4(221e e y x 在点=处的切线与坐标轴所围三角形的面积为( )A .229e B .42eC .22eD .2e6.已知对任意实数x ,有0)(0)(0)()(),()(>'>'>=--=-x g x f x x g x g x f x f ,时,,且,则0<x 时( )A .0)(0)(>'>'x g x f ,B .0)(0)(<'>'x g x f ,C .0)(0)(>'<'x g x f ,D .0)(0)(<'<'x g x f ,7.已知)(x f 是定义在R 上的周期函数,其最小正周期为2,且当||)()1,1[x x f x =-∈时,,则函数y=)(x f 的图象与函数x y 4log =的图象的交点个数为 ( )A .3B .4C .6D .8 8.命题“若1112<<-<x x ,则”的逆否命题是( )A .若1112-≤≥≥x x x 或,则 B .若1112<<<-x x ,则C .若1112>-<>x x x ,则或 D .若1112≥-≤≥x x x ,则或 9.已知定义域为R 的函数),8()(+∞在x f 上为减函数,且函数)8(+=x f y 为偶函数,则( )A .)7()6(f f >B .)9()6(f f >C .)9()7(f f >D .)10()7(f f >10.已知)(x f 是定义在R 上的增函数,点A (-1,1)和点B (1,3)在它的图象上,)(1x f-是它的反函数,那么不等式1|)(log |21<-x f的解集是( )A .(2,8)B .(1,3)C .(-1,1)D .(2,3)二、填空题:本大题共5小题,每小题5人,共25分,把答案填写在题中的横线上. 11.已知关于x a x x lg 2)lg(=-的方程的有实根,则实数a 的取值范围是 12.已知复数)()2()232(22R m i m m m m z ∈-++-+=,为纯虚数,则m=13.函数⎪⎩⎪⎨⎧>≤-=-)0()0( 12)(21x xx x f x ,若001)(x x f 则>的取值范围是14.将函数ax y +=3的图象向左平移一个单位得曲线C ,若曲线C 关于原点对称,则a = 15.已知)(x f 是定义在R 上的函数,给出下列两个命题:p :若4))(()(212121=+≠=x x x x x f x f ,则; q :若0)()()](2,(,21212121>--≠-∞∈x x x f x f x x x x ,则,则使命题“p 且q ”为真命题的函数)(x f 可以是 三、解题答题:本大题共6个小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 16.(本题满分12分)已知函数)2)((log )2(log )(,22log )(222>-+-=-+=p x p x x g x x x f (1)求使得)(),(x g x f 同时有意义的实数x 的取值范围; (2)求)()()(x g x f x F +=的值域. 17.(本题满分12分)已知三个集合,,}01|{}023|{22=-+-==+-=a ax x x B x x x A }02|{2=+-=bx x x C ,问同时满足A C A A B =⋃⊂≠,的实数a ,b 是否存在?若存在,求出a ,b ;若不存在,请说明理由.18.(本小题满分12分)设定义在R 上的函数1)(0)(>>x f x x f 时,,满足当,且对任意的R y x ∈,,有 2)1()()()(=⋅=+f y f x f y x f ,.(1)求证:对任意0)(,>∈x f R x 都有;(2)解不等式:4)3(2>-x x f ; (3)解方程:1)2()3(21)]([2+=++f x f x f19.(本小题满分13分)已知函数e a e x x f ax ,其中0)(2≤⋅=为自然对数的底数, (1)讨论函数)(x f 的单调性;(2)求函数)(x f 在区间[0,1]上的最大值.20.(本小题满分题13分)某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a 元(53≤≤a )的管理费,预计当每件产品的售价为)119(≤≤x x 元时,一年的销售量为2)12(x -万件. (Ⅰ)求分公司一年利润L (万元)与每件产品的售价x 的函数关系式; (Ⅱ)当每件产品的售价为多少元时,分公司一年的利润L 最大,并求出L 的最大值Q (a ). 21.(本小题满分14分) 已知二次函数c bx ax x f ++=2)(.(1)对于)]()([21)()()(,21212121x f x f x f x f x f x x R x x +=≠<∈,求证:方程,,且有两个不等的实根,且必有一个实根在),(21x x 内;(2)若方程),()]()([21)(2121x x x f x f x f 在+=内的根为m ,且21,21,x m x -成等差数列,设)(0x f x x 是=的对称轴方程,求证:.20m x <湖南省师大附中2007—2008学年高三第一次月考数学试题(理科)参考答案一、选择题1—5 CABBD 6—10 BADDA 二、填空题 11.]41,(-∞ 12.2113.),1()1,(+∞⋃--∞ 14.-1 15.只须满足2)(=x x f 的图象关于直线对称,且在]2,(-∞上为增函数即可. 如m x x f m x x f +--=+--=|2|)()2()(2或等.16.(本题满分12分)解:(1)由22022-<>⇒>-+x x x x 或 又由p x p x p x <<⇒⎩⎨⎧>>->-2)2( 002∴使得)(),(x g x f 同时有意义的x 的取值范围是(2,p ) (2))2)()(2(log )()()(2p x x p x x g x f x F <<-+=+=令4)2()22())(2()(22++---=-+=p p x x p x x u ∵p>2 ∴22->p p 抛物线u (x )的对称轴为x =22-p ①当p>6时,x =22-p 4)2()(0 ),2(2+≤<∴∈p x u p ∴)2)2(log 2,()(2-+-∞p x F 的值域为②当22262≤-=≤<p x p 时,, ∴),2()(p x u 在上单调递减 ∴)2(4)(0-<<p x u ∴)2(log 2)2(4log )(22-+=-<p p x F∴))2(log 2,()(2-+-∞p x F 的值域为 17.(本题满分12分)解:∵}0)1)(1(|{},2,1{}023|{2=+--===+-=a x x x B x x x A , 又∵A B ≠⊂ ∴211==-a a 即∵A C A C A ⊆∴=⋃, 则C 中的元素有以下三种情况:(1)若C=φ时,即方程022=+-bx x 无实根. ∴.2222082<<-∴<-=∆b b ,(2)若C={1}或C={2},即方程022=+-bx x 有两个相等的实根. ∴.22082±=∴=-=∆b b ,此时C={2}或C={-2},不合题意,舍去.(3)若C={1,2}时,则b=1+2=3,而两根之积恰好等于2. 故同时满足A C A A B =⋃⊂≠,的实数a ,b 存在,且为a=2,-22<b<22或a=2,b=3. 18.(本小题满分12分)解:(1)0)]2([)22()(2≥=+=xf x x f x f 假设存在某个,00)(00>=∈x x f R x ,则对任意的,使得 有0)()(])[()(0000=⋅-=+-=x f x x f x x x f x f 与已知矛盾 ∴.0)(>∈x f R x 均满足(Ⅱ)任取,,,则,且1)(0,12122121>-∴>-<∈x x f x x x x R x x∴)(])[()()(111212x f x x x f x f x f -+-=-0)(]1)([)()()(1121112>⋅--=-⋅-=x f x x f x f x f x x f∴)(x f R x ,∈为单调增函数.∵4)1()1()2(2)1(=⋅=∴=f f f f ,∴21,23)2(4)3(22<<∴>-∴=>-x x x f x x f , ∴不等式的解集为(1,2).(3)8)2()1()21()3(=⋅=+=f f f f 方程5)3()(21)]([1)2()3(21)]([22=⋅⋅++=++f x f x f f x f x f 可化为 即)(5)(1)(05)(4)]([2舍去或,解得,-===-+x f x f x f x f 令)1()0()10(1,0f f f y x ⋅=+==时,,∵R x f f f 在,又,)(1)0(2)1( =∴=上是单调函数,∴x =0 故原方程的解为x =0.19.(本小题满分13分)解:(1))0( )2()(≠⋅+='a e ax ax x f ax ①当a=0时,令00)(=='x x f ,则当,0)(00)(0<'<>'>x f x x f x 时,,当时,∴),0()(+∞在x f 上单调递增,在(-∞,0)上单调递减. ②当a<0时,令0)2(0)(=+='ax x x f ,则 ∴ax x 20-==或 由a x x f 200)(-<<>'得;由a x x x f 200)(-><<'或得 ∴),2(),0,()(+∞--∞a x f 在上单调递减,在(0,-a2)上单调递增(2)①当a =0时,]1,0[)(在x f 单调递增,1)1()]([max ==∴f x f②当a e f x f x f a a ==∴>-<<-)1()]([]1,0[)(1202max 上单调递增,在,时,③当2-≤a 时,]2,0[)(12a x f a -≤-在,单调递增,在[-a 2,1]单调递减,∴2max )2()2()]([aea f x f =-=, 综上分析,⎪⎩⎪⎨⎧-≤≤<-=)2( )2()02( )]([2maxa aea e x f a 20.(本小题满分13分)解:(1)分公司一年的利润L (万元)与售价x 的函数关系式为:]11,9[,)12)(3(2∈---=x x a x L(2)).3218)(12()12)(3(2)12(2x a x x a x x L -+-=-----='令123260=+=='x a x L 或得(不合题意,舍去). ∵.328326853≤+≤∴≤≤a a ,在a x 326+=两侧L ′的值由正变负,所以(1)当]11,9[29393268在时,即L a a <≤<+≤上是减函数.∴).6(9)912)(39()9(2max a a L L -=---== (2)当a x L a a 326]11,9[,5293283269+=≤≤≤+≤上于在时即处取最大值. 即:32max)313(4)]326(12)[3326()326(a a a a a L L -=+---+=+=所以⎪⎪⎩⎪⎪⎨⎧≤≤-<≤-=529 ,)313(4293 ),6(9)(3a a a a a Q答:若293≤≤a ,则当每件售价为9元时,分公司一年的利润L 最大,最大值 Q (a )=9(6-a )(万元);若529≤≤a ,则当每件售价为)326(a +元时,分公司一年的利润L 最大,最大值Q (a )=4(3-a 31)3(万元).21.(本小题满分13分)证明:(1)由,得)(212221212c bx ax c bx ax c bx ax +++++=++ 0)()(222122212=+-+-+x x b x x a bx ax由0≠a ,故此方程的判别式,0)(2)2(2 ]()([24)2(22212122212>∆∴>+++=+-+-⋅-=∆b ax b ax x x b x x a a b∴方程)]()([21)(21x f x f x f +=有两个不等的实根. 令)()],()([21)()(21x g x f x f x f x g +-=是二次函数,)]()([41)]}()([21)({)]}()([21)({)()(22121221121≤--=+-⋅+-=⋅x f x f x f x f x f x f x f x f x g x g∵0)()()()(2121<⋅∴≠x g x g x f x f ,∴0)(=x g 的根必有一个实根在),(21x x 内. (2)由题设,得)()()(221x f x f m f +=,即有0)2()2(2122212=--+--x x m b x x m a∵21,21x m x -,成等差数列, ∴12122121=---=+x x m m x x 即 ∴)2(22212x x m a b ---=,故222222212222120x x m x x m a b x +-=--=-= ∵21x x <,∴20222102m x x x <>+,故.。

高三数学月考试题及答案-师大附中2013届高考适应性月考卷(八)(理)

高三数学月考试题及答案-师大附中2013届高考适应性月考卷(八)(理)

云南师大附中2013届高考适应性月考卷(八)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式: 样本数据12,,,n x x x 的标准差s =其中x 为样本平均数 柱体体积公式VSh =其中S 为底面面积,h 为高锥体体积公式13V Sh =其中S 为底面面积,h 为高球的表面积,体积公式24R S π=,334R V π=其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数211i i -⎛⎫ ⎪+⎝⎭(i是虚数单位)化简的结果是A .1B .1-C .iD .i -2.已知集合101x A xx ⎧-⎫=≥⎨⎬+⎩⎭,{}2|log (2)B x y x ==+,则A B = A .()2,1-- B .()[)2,11,--+∞C .[)1,+∞D .()()2,11,---+∞3.已知两条直线,m n 和平面α,且m 在α内,n 在α外,则“n ∥α”是“m ∥n ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知等差数列{}n a 中,39159a a a ++=,则数列{}n a 的前17项和17S =A .102B .36C .48D .51 5.阅读如图1所示的程序框图,则输出的S 的值是A .20132015 B .20132014 C .20122013D .201120126.已知随机变量130,6B ξ⎛⎫ ⎪⎝⎭,则随机变量ξ的方差()D ξ=A .56 B .5 C .256D .257.某四面体的三视图如图2所示,该四面体的六条棱长中,长度最大的是ABCD .8.设变量,x y 满足约束条件0,1,21,x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩目标函数222z x x y =++,则z 的取值范围是A .8,39⎡⎤⎢⎥⎣⎦B .17,49⎡⎤⎢⎥⎣⎦C .2⎤⎥⎣⎦D .2⎤⎥⎣⎦9.定义在R 上的偶函数()f x 满足2(1)()f x f x +=-(()0)f x ≠,且在区间()2013,2014上单调递增,已知,αβ是锐角三角形的两个内角,比较(sin )f α,(cos )f β的大小的结果是A .(sin )(cos )f f αβ<B .(sin )(cos )f f αβ>C .(sin )(cos )f f αβ=D .以上情况均有可能10.已知方程ln (2)20x a x e ---=(a 为实常数)有两个不等实根,则实数a 的取值范围是A .1,e ⎛⎫+∞ ⎪⎝⎭B .()0,eC .[]1,eD .10,e ⎛⎫ ⎪⎝⎭11.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y ,22(,)B x y 间的“折线距离”,在此定义下,给出下列命题:①到原点的“折线距离”为1的点的集合是一个正方形; ②到原点的“折线距离”为1的点的集合是一个圆;③到(1,0)M -,(1,0)N 两点的“折线距离”相等的点的轨迹方程是0x =. 其中,正确的命题有正视图 侧视图俯视图1 1 1A .3个B .2个C .1个D .0个12.已知点P 在圆22:(3)1C x y +-=上,点Q 在双曲线22152x y -=的右支上,F 是双曲线的左焦点,则||||PQ QF +的最小值为A.1B.3+C.4+D.5+第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.已知1sin 3α=-,且,02πα⎛⎫∈- ⎪⎝⎭,则sin 2α= . 14.已知向量AB 与AC 的夹角为30°,且||6AB =,则||AB AC -的最小值是 .15.已知函数*(1)()log (2)()m f m m m N +=+∈,令(1)(2)()f f f m k ⋅⋅⋅=,当[]1,2013m ∈,且*k N ∈时,满足条件的所有k 的值的和为 .16.以AB 为直径的圆有一内接梯形ABCD ,且AB ∥CD .以A 、B 为焦点的椭圆恰好过C 、D 两点,当梯形ABCD 的周长最大时,此椭圆的离心率为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,点(,)n n a S 在直线34y x =+上. (1)求数列{}n a 的通项a ;(2)令*()n n b na n N =∈,试求数列{}n b 的前n 项和n T .18.(本小题满分12分)如图3,在直三棱柱111ABC A B C -中,△ABC 为等腰直角三角形,90BAC ∠=,且1AB AA =,E 、F 分别为BC 、1CC 的中点.(1)求证:1B E ⊥平面AEF ;(2)当2AB =时,求点E 到平面1B AF 的距离.ABEF B 1C 1 A 119.(本小题满分12分)近年空气质量逐渐恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染会引起多种心肺疾病.空气质量指数(AQI )是国际上常用来衡量空气质量的一种指标,空气质量指数在(0,50)为优良,在(50,100)为中等,在(100,150)为轻度污染,在(150,200)为中度污染,…….某城市2012年度的空气质量指数为110(全年平均值),对市民的身心健康产生了极大影响,该市政府为了改善空气质量,组织环保等有关部门经过大量调研,准备采用两种方案中的一种治理大气污染,以提高空气质量.根据发达国家以往的经验,若实施方案一,预计第一年度可使空气质量指数降为原来的0.8,0.7,0.6的概率分别为0.5,0.3,0.2,第二年度使空气质量指数降为上一年度的0.7,0.6的概率分别为0.6,0.4;若实施方案二,预计第一年度可使空气质量指数降为原来的0.8,0.7,0.5的概率分别为0.6,0.3,0.1,第二年度使空气质量指数降为上一年度的0.7,0.6的概率分别为0.5,0.5.实施每种方案,第一年与第二年相互独立,设i ξ(1,2i =)表示方案i 实施两年后该市的空气质量指数(AQI ).(1)分别写出1ξ,2ξ的分布列(要有计算过程);(2)实施哪种方案,两年后该市的空气质量达到优良的概率更大?20.(本小题满分12分)已知抛物线的顶点在原点,准线方程为1x =,F 是焦点.过点(2,0)A -的直线与抛物线交于11(,)P x y ,22(,)Q x y 两点,直线PF ,QF 分别交抛物线于点M ,N .(1)求抛物线的方程及12y y 的值;(2)记直线PQ ,MN 的斜率分别为1k ,2k ,证明:12k k 为定值. 21.(本小题满分12分)已知函数2()416mx f x x =+,||1()2x m g x -⎛⎫= ⎪⎝⎭,其中m R ∈且0m ≠.(1)判断函数()f x 的单调性;(2)当2m <-时,求函数()()()F x f x g x =+在区间[]2,2-上的最值;(3)设函数(),2,()(),2,f x x h xg x x ≥⎧=⎨<⎩当2m ≥时,若对于任意的[)12,x ∈+∞,总存在唯一的()2,2x ∈-∞,使得12()()h x h x =成立,试求m 的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号. 22.(本小题满分10分)【选修4-1:几何选讲】 如图4,已知,AB CD 是圆O 的两条平行弦,过点A 引圆O点P ,F 为CD 上的一点,弦,FA FB 分别与CD 交于点,G H (1)求证:GP GH GC GD ⋅=⋅;(2)若39AB AF GH ===,6DH =,求PA 的长. 23.(本小题满分10分)【选修4-4:坐标系与参数方程】 已知椭圆C 的极坐标方程为222123cos 4sin ρθθ=+,点1F ,2F 为其左右焦点.以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为2,,2x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数,t R ∈).(1)求直线l 的普通方程和椭圆C 的直角坐标方程; (2)求点1F ,2F 到直线l 的距离之和.24.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()2()log |1||5|1f x x x =-+--. (1)当5a =时,求函数()f x 的定义域;(2)若函数()f x 的值域为R ,求实数a 的取值范围.参考答案第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 【解析】 4.11717917()172a a S a +==,3915939a a a a ++==,93a =∴.故选D .5.依题意,知11,2,0,12i n S ===+⨯ 112,3,,1223i n S ===+⨯⨯ 1113,4,,122334i n S ===++⨯⨯⨯ ……1111120132013,2014,11223342013201420142014i n S ===++++=-=⨯⨯⨯⨯. 故选B . 6.随机变量ξ服从二项分布,所以方差1125()(1)301666D np p ξ⎛⎫=-=⨯⨯-= ⎪⎝⎭.故选C .7.由题图可知,几何体为如图1所示的三棱锥P ABC -, 其中1,,PA ACPA AC PA AB ==⊥⊥,由俯视图可知,AB BC = PB =D .8.2222+2(1)1z x x y x y =+=++-,用线性规划,可求得22(1)x y ++的范围是17,49⎡⎤⎢⎥⎣⎦,所以8,39z ⎡⎤∈⎢⎥⎣⎦.故选A . 9.22(2)()2(1)()f x f x f x f x +=-=-=+-,周期2T =,因为()f x 在区间(2013,2014)上单调递增,所以()f x 在区间(1,0)-上单调递增,又()f x 在R 上是偶函数,所以()f x 在区间(0,1)上单调递减.因为,αβ是锐角三角形的两个内角,有π2αβ+>,即ππ022βα<-<<,πsin sin cos 2αββ⎛⎫>-= ⎪⎝⎭,从而,(sin )(cos )f f αβ<.故选A . 10.ln (2)2=0ln =(2)+2x a x e x a x e ---⇔-,令12ln ,(2)2y x y a x e ==-+,直线2(2)2y a x e =-+过定点(2,2)e ,设直线2(2)2y a x e =-+与1y 的切点为00(,ln )x x ,由于11y x'=, 所以,切线斜率0000000ln 211,ln 32,,2x a x x x e x e a x x e e-==-=-==-∴, 当1,a e ⎛⎫∈+∞ ⎪⎝⎭时,直线2(2)2y a x e =-+与1y 的图象有2个交点.11.设到原点的“折线距离”为1的点为(,)xy ,则||||1x y +=,其轨迹为如图2所示的正方形,所以①正确,②错误; 设到(1,0),(1,0)M N -两点的“折线距离”相等的点为(,)x y ,图1图2则|1||||1|||,|1||1|x y x y x x ++=-++=-, 从而0x =,所以③正确.故选B .12.设双曲线22152x y -=的右焦点为F ',则(0),0)F F ',由双曲线定义知||||QF QF '=+||||||||QF PQ QF PQ '+=++ 当,,,C P Q F '共线时,min (||||)3QF PQ '+=,min (||||)3QF PQ +=+∴B .第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)【解析】 14.如图3所示,点C 的轨迹为射线AC '(不含端点A ),当BC AC ⊥时,min min ||||3AB AC CB -==.15.234(1)(1)(2)()log 3log 4log 5log (2)m f f f m m +=+……2log (2)m k =+=,22k m =-,[1,2013],m k ∈∈*N ∵,101121024,22013=>,所以,k 值组成的集合为{2,3,4,5,6,7,8,9,10},2391054++++=…. 16.不妨设||2AB =,圆心为O ,π0,2BOC θθ⎛⎫⎛⎫∠=∈ ⎪ ⎪⎝⎭⎝⎭,则||2cos ,||CD BC θ=,梯形ABCD 的周长为22cos L θ=++22212sin 4sin 22θθ⎛⎫=+-+ ⎪⎝⎭214sin 522θ⎛⎫=--+ ⎪⎝⎭,当1πsin,223θθ==时,梯形ABCD 的周长最大,此时,||1,||AD BD == 椭圆的离心率2||12||||c AB e a DB DA ====+. 三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤)图317.(本小题满分12分)解:(Ⅰ)因为点(,)n n a S 在直线34y x =+上,所以34n n S a =+,1134n n S a ++=+, 11133n n n n n a S S a a +++=-=-,化简得123n n a a +=,所以数列{}n a 为等比数列,公比32q =,由11134S a a ==+得12a =-, 故11132()2n n n a a qn --⎛⎫==-∈ ⎪⎝⎭*N .……………………………………………(6分)(Ⅱ)因为 ()n n b na n =∈*N , 所以12341n n n T b b b b b b -=++++++23213333321234(1)22222n n n n --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+⨯+⨯+⨯++-⨯+⨯⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,① 234133333332234(1)2222222n nn T n n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯=-+⨯+⨯+⨯++-⨯+⨯⎢⎥ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,② ①-②得23113333321+222222n nn T n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-⨯=-++++-⨯⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦, ………(8分)2313333341+22222n n n T n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++-⨯⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦31332444(2)8()32212nn nn n n ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=⨯-⨯=--∈ ⎪ ⎪⎝⎭⎝⎭-*N . ……………………(12分)18.(本小题满分12分)(Ⅰ)证明:在直三棱柱111ABC A B C -中,不妨设1||||=AB AA a =, ABC ∵△为等腰直角三角形,90BAC ∠=︒,11||BC B C =∴,∵E 、F 分别为BC 、1CC 的中点,222222113||||||22B E BE BB a a ⎫=+=+=⎪⎪⎝⎭∴,22222213||||||44EF EC CF a a⎫=+=+=⎪⎪⎝⎭, 222222111119||||||244B F B C C F a a a =+=+=,有22222211339||||||244B E EF a a a B F +=+==,1B E EF ⊥∴,又1,AE BC B B ⊥⊥∵平面ABC ,1B E AE ⊥∴,AE EF E =,1B E ⊥∴平面AEF .……………………………………………………………(6分)(Ⅱ)解:由条件知,1||||||||AE B E EF AF ,11||||3AB B F ==,………………………………………………………(8分)AE EF ⊥∵,11||||22AEF S AE EF =⋅==△∴ 在1AFB △中,11cos sin B AF B AF ∠==∠=11111||||sin 322AB F S AB AF B AF =∠=⨯=△∴, ………………(10分)设点E 到平面1B AF 的距离为d , 则11||AB F AEF d S B E S ⋅=⋅△△,所以213d ==,即点E 到平面1B AF 的距离为1. ………………………………………………(12分)19.(本小题满分12分)解:(Ⅰ)依题意,1ξ的可能取值为:39.6,46.2,52.8,53.9,61.6; …………(1分)因为第一年与第二年相互独立,所以1(39.6)0.20.40.08P ξ==⨯=,1(46.2)0.20.60.30.40.24P ξ==⨯+⨯=, 1(52.8)0.50.40.20P ξ==⨯=,1(53.9)0.30.60.18P ξ==⨯=, 1(61.6)0.50.60.30P ξ==⨯=.…………………………………………………(3分)所以,1ξ的分布列为:………………………………………………………………………(4分)2ξ的可能取值为:33,38.5,46.2,52.8,53.9,61.6;…………………………(5分)2(33)0.10.50.05P ξ==⨯=,2(38.5)0.10.50.05P ξ==⨯= , 2(46.2)0.30.50.15P ξ==⨯=,2(52.8)0.60.50.30P ξ==⨯= ,2(53.9)0.30.50.15P ξ==⨯=,2(61.6)0.60.50.30P ξ==⨯=, …………………(7分)所以,2ξ的分布列为:…………………………………………………………………………(8分)(Ⅱ)由(Ⅰ)知,1(50)0.080.240.32P ξ=+=≤, 2(50)0.050.050.150.25P ξ=++=≤, 12(50)(50)P P ξξ>≤≤,所以,实施方案一,两年后该市的空气质量达到优良的概率更大. …………(12分)20.(本小题满分12分)(Ⅰ)解:依题意,设抛物线方程为22(0)y px p =->, 由准线12px ==,得2p =, 所以抛物线方程为24y x =-.………………………………………………(2分)设直线PQ 的方程为2x my =-,代入24y x =-, 消去x ,整理得2480y my +-=, 从而128y y =-.………………………………………………………………(6分)(Ⅱ)证明:设3344(,),(,)M x y N x y ,则223434341121222122123434124444y y x x y y k y y y y y y k x x y y y y y y --+----=⨯=⨯=---+---. …………………(8分)设直线PM 的方程为1x ny =-,代入24y x =-, 消去x ,整理得2440y ny +-=, 所以134y y =-, 同理244y y =-.………………………………………………………………(10分)故3411221212124444182y y k y y k y y y y y y --++--=====++-,为定值. …………………………(12分)21.(本小题满分12分)解:(Ⅰ)依题意,22222(4)(2)(2)()4(4)4(4)m x m x x f x x x --+'==++,当0m >时,()022,()02f x x f x x ''>⇒-<<<⇒<-或2x >, 所以()f x 在(2,2)-上单调递增;在(,2),(2,)-∞-+∞上单调递减. 当0m <时,()022,()02f x x f x x ''<⇒-<<>⇒<-或2x >,所以()f x 在(2,2)-上单调递减;在(,2),(2,)-∞-+∞上单调递增. …………(4分) (Ⅱ)当2,22m x <--≤≤时, ||111()2222x m x mxmg x --⎛⎫⎛⎫⎛⎫===⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭在[2,2]-上单调递减.由(Ⅰ)知,()f x 在(2,2)-上单调递减,所以21()()()24162xm mx F x f x g x x ⎛⎫=+=+ ⎪+⎝⎭在(2,2)-上单调递减. 2max ()(2)4221616m m m mF x F +=-=⨯-=-∴; 2min ()(2)216m m F x F -==+. ………………………………………………………(8分)(Ⅲ)当2m ≥,1[2,)x ∈+∞时,11121()()416mx h x f x x ==+,由(Ⅰ)知1()h x 在[2,)+∞上单调递减,从而1()(0,(2)]h x f ∈,即1()0,16m h x ⎛⎤∈ ⎥⎝⎦; ……………………………………(9分) 当2m ≥,22x <时,222||22111()()2222x m m x mx h x g x --⎛⎫⎛⎫⎛⎫====⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,在(,2)-∞上单调递增,从而2()(0,(2))h x g ∈,即221()0,2m h x -⎛⎫⎛⎫∈ ⎪ ⎪ ⎪⎝⎭⎝⎭.……………………………(10分)对于任意的1[2,)x ∈+∞,总存在唯一的2(,2)x ∈-∞,使得12()()h x h x =成立, 只需21162m m -⎛⎫< ⎪⎝⎭,即210162m m -⎛⎫-< ⎪⎝⎭成立即可.记函数21()162m m H m -⎛⎫=- ⎪⎝⎭,易知21()162m m H m -⎛⎫=- ⎪⎝⎭在[2,)+∞上单调递增,且(4)0H =,所以m 的取值范围为[2,4). …………………………………………………(12分)22.(本小题满分10分)【选修4−1:几何证明选讲】(Ⅰ)证明:∵PE 与圆O 切于点A , ∴EAB BFA ∠=∠, ∵//AB CD , ∴EAB APD ∠=∠.在HGF △和AGP △中,,,HFG APG HGF AGP ∠=∠⎧⎨∠=∠⎩∴HGF △∽AGP △, ………………………………………………………………(2分)∴GH GP GF GA =.又∵GC GD GF GA =, ∴GP GH GC GD =. ……………………………………………………………(5分)(Ⅱ)解:∵AB AF =, ∴ABF AFB APH ∠=∠=∠. 又∵//AB CD ,∴四边形ABHP 为平行四边形, ………………………………………………(7分)∴9AB PH ==,∴6GP PH GH =-=, ∴6329GP GH GC GD ⨯===, ∴4PC =.∵PA 是⊙O 的切线,∴2PA PC PD =,PA =.………………………………………………(10分)23.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(Ⅰ)由l 的参数方程消去t ,得2y x =-, 故直线l 的普通方程为20x y --=. …………………………………………(2分)由22222123(cos )4(sin )123cos 4sin ρρθρθθθ=⇒+=+, 而cos ,sin ,x y ρθρθ=⎧⎨=⎩所以223412x y +=,即22143x y +=,故椭圆C 的直角坐标方程为22143x y +=.……………………………………(6分)(Ⅱ)由(Ⅰ)知,12(1,0),(1,0)F F -,点1(1,0)F -到直线l 的距离1d ==点2(1,0)F 到直线l 的距离2d ==,12d d +=12,F F 到直线l 的距离之和为 …………………(10分)24.(本小题满分10分)【选修4−5:不等式选讲】解:(Ⅰ) 当5a =时,要使函数2()log (|1||5|)f x x x a =-+--有意义, 需|1||5|50x x -+-->恒成立.1,15,5,|1||5|50210102110x x x x x x x <<⎧⎧⎧-+-->⇔⎨⎨⎨-+>->->⎩⎩⎩≤≥或或11122x x ⇒<>或,所以函数()f x 的定义域为111,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭.……………………………(5分)(Ⅱ)函数()f x 的值域为R ,需要()|1||5|g x x x a =-+--能取到所有正数, 即min ()0g x ≤.由62,1,|1||5|4,15,26,5,x x x x x x x -<⎧⎪-+-=⎨⎪->⎩≤≤ 易知|1||5|4x x -+-≥,故min ()40g x a =-≤,得4a ≥,所以实数a 的取值范围为4a ≥. ……………(10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南师大附中2013届高三第一次月考试卷
数学(理)试题
一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符
合题目要求的。

1.在空间,异面直线a ,b 所成的角为α,且1sin ,cos 2
αα=
则=
A .2
B .2
-C 2
或2
-
D .12
-
2.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是
A .
13
B .
14
C .
15
D .
16
3.某几何体的正视图和侧视图均为如图1所示,则在图2的四个图中可以作为该几何体的俯视图的

A .(1),(3)
B .(1),(3),(4)
C .(1),(2),(3)
D .(1),(2),(3),(4)
4.设集合(,],(,),,,{2},A a B b a N b R A B N a b =-∞=+∞∈∈=+ 且则的取值范围是
A .(3,4)
B .[3,4]
C .[3,4)
D .(3,4]
5.已知点(,)a b 在10x
y =图象上,则下列点中不可能在此图象上的是 A .1
(,)a b
-
B .(1,10)a b -
C .(1,10)a b +
D .2
(2,)a b
6.函数38(0)(),()31,[()]09(0)
x
x
x x f x g x f g x e x ⎧-≥⎪==-≥⎨-<⎪⎩则不等式的解集为 A .[1,)+∞ B .[ln 3,)+∞ C .[1,ln 3]
D .3[log 2,)+∞
7.关于x
的二次方程22210,0,0,x x a b a b ++=≥≥+有实根且则的取值范围是
A .[4,)+∞
B .[16,)+∞ C
.)5
+∞ D .16[,)5
+∞
8.已知函数()M f x 的定义域为实数集R ,满足1,()(0,M x M f x M x M
∈⎧=⎨
∉⎩是R 的非空真子集)
,在R 上有两个非空真子集A ,B ,且()1,()()()1
A B A B f x A B F x f x f x +=∅=
++ 则的值域为
A .2(0,]3
B .{1}
C .12{,
,1}23
D .[1
,13
]
二、填空题:本大题共7小题,每小题5分,共25分。

9.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是 。

10.在△ABC 中,若,sin ,sin A B A B >则的大小关系为 。

11.设函数()f x 是定义在R 上的奇函数,且对()(2),(2,0),x R f x f x x ∈=-+∈-都有当时
()2,(2012)(2011)x
f x f f =-则的值为 。

12.一物体沿直线以()23(v t t t =-的单位:秒,v 的单位:米/秒)的速度做变速直线运动,则该物
体从时刻t=0到5秒运动的路程s 为 米。

13.已知函数22,0
(),()()1
1,02
x x f x g x f x x x x x ->⎧⎪
==+⎨-++≤⎪⎩则函数的零点的个数是 个。

14.已知2
210,0,1,22x y x y m m x
y
>>+
=+>+且
若恒成立,则实数m 的取值范围是 。

15.对于三次函数32
()(0),:()()f x ax bx cx d a f x y f x '=+++≠=给出定义设是函数的导数,
()()f x f x '''是的导数,若方程()0f x ''=有实数解000,(,())x x f x 则称点为函数()y f x =的
“拐点”,某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称
中心,且“拐点”就是对称中心给定函数3
2
115()33
2
12
f x x x x =-
+-
,请你根据上面探究结
果,解答以下问题: (1)函数3
2
115()332
12f x x x x =-
+-的对称中心为 ;
(2)计算12
3
2012(
)(
)(
)(
)2003
20132013
2013
f f f f ++++ = 。

三、解答题;本大题共6小题,共75分。

16.(本小题满分12分)
已知函数2
2
()cos )2sin cos .f x x x x x =
--
(1)求()f x 的最小正周期和单调递增区间; (2)将函数()3
y f x π
=的图象向左平移
个单位,再将所得的图象上各点的横坐标扩大为原来
的4倍,纵坐标不变,得到()y g x =的图象,求3()[,]32
g x ππ
-在上的值域。

17.(本小题满分12分)
如图,四棱锥P —ABCD 的底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点。

(1)证明:PA//平面BDE ;
(2)在棱PB 上是否存在点F ,使PB ⊥平面DEF ?证明你的结论。

18.(本小题满分12分)
已知数列{},{}n n a b 中,对任何整数n 都有:
1
121321212
2.n n n n n n a b a b a b a b a b n +---+++++=--
(1)若数列{}n a 是首项和公差都有1的等差数列,求证:数列{}n b 是等比数列;
(2)若2n n b =,试判断数列{}n a 是否是等差数列?若是,请求出通项公式,若不是,请说明理
由。

19.(本小题满分13分)
某玩具生产厂家接到一生产伦敦奥运吉祥物的生产订单,据以往数据分析,若生产数量为x
万件,则可获利2
ln 10
x
x -+
万美元,受美联货币政策影响,美元贬值,获利将因美元贬值而损
失mx 万美元,其中m 为该时段美元的贬值指数,且(0,1).m ∈ (1)若美元贬值指数110
m =
,为使得企业生产获利随x 的增加而增长,该企业生产数量应在什
么范围?
(2)若因运输等其他方面的影响,使得企业生产x 万件产品需增加生产成本
10
x 万美元,已知该
企业生产能力为[10,20]x ∈,试问美元贬值指数m 在什么范围内取值才能使得该企业不亏损?
20.(本小题满分13分)
已知椭圆C :222
2
1(0)x y a b a
b
+
=>>的右顶点为A (2,0),离心率2
e =
,O 为坐标原
点。

(如图)
(1)求椭圆C 的方程;
(2)已知P (异于点A )为椭圆C 上一个动点。

过O 作线段AP 的垂线l 交椭圆C 于点E ,D ,

||||
D E AP 的取值范围。

21.(本小题满分13分) 已知函数*
1(),()ln(1),,(1)
n
f x
g x a x n N a x =
=-∈-其中为常数。

(1)当n=2时,求函数()()()F x f x g x =+的极值;
(2)若对任意的正整数n ,当2,2,()() 1.s x f s g x x ≥≥+≤-时有求a 的取值范围。

参考答案

·11·。

相关文档
最新文档