解答题增分专项4
【红对勾讲与练】新课标高三物理二轮专题复习 考前增分指导2-4
能 量 守 恒 定 律
ΔE 减=ΔE 增(表 示 研 究 对 象 减 少 的 能 量 等 于 增 加 的 能 量 )
高三二轮 · 新课标 · 物理
第二部分
第三讲
系列丛书
4 ( ) 将 本 质 相 同 的 规 律 总 结 在 一 起 重 力 做 功 与 重 力 势 能 变 化 的 关 系 : WG=Ep1-Ep2, 即 重
高三二轮 · 新课标 · 物理
第二部分
第三讲
系列丛书
规律 机 械 能 守 恒 定 律
适 用 条 件 只 有 重 力 、 弹 力 做功 具 有 普 适 性 , 适 用 于 微 观 物 体 和 宏 观 物 体
表 达 式 ΔE 减=ΔE 增(表 示 研 究 对 象 减 少 的 能 量 等 于 增 加 的 能 量 )
力 做 功 等 于 重 力 势 能 的 减 少 ; 克 服 重 力 做 功 等 于 重 力 势 能 的 增 加 . 要 认 识 到 各 种 功 和 对 应 势 能 变 化 的 关 系 , 都 和 重 力 做 功与重力势能的关系相同,如分子力做功与分子势能的变 化 , 电 场 力 做 功 与 电 势 能 的 变 化 .
的 内 在 联 系 , 同 时 还 要 总 结 解 题 思 考 方 法 , 反 思 审 题 答 题 习 惯.
高三二轮 · 新课标 · 物理
第二部分
第三讲
系列丛书
1.回 顾 考 点 抓 纲 扣 本 , 按 《 考 试 大 纲 》 要 求 的 考 点 , 将 各 考 点 看 一 遍 . 自 己 要 通 过 查 课 本 , 将 其 准 确 含 义 写 在 笔 记 本 上 , 过 几 天 再 将 这 些 考 点 回 忆 一 遍 , 直 到 记 住 为 止 . 对 《 考 试 大 纲 》 考 点 中 提 到 的 物 理 概 念 最 好 能 够 背 下 来 , 或 准 确 无 误 地 理 解 后 能 用 自 己 的 话 复 述 出 来 , 而 且 不 仅 要 知 道 知 识 的 内 涵 , 还 要 知 道 其 外 延 . 这 样 求 解 考 查 概 念 的 选 择 题 时 , 就 不 会 感 觉 模 棱 两 可 . 只 有 熟 记 于 心 , 才 能 灵 活 应 用 . 考 点 的 , 应 当 把 有 限
七年级数学上册第一单元《有理数》-解答题专项知识点(答案解析)
一、解答题1.某粮库6天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库)+25,-22,-14,+35,-38,-20(1)经过这6天,仓库里的粮食是增加了还是减少了?)(2)经过这6天,仓库管理员结算时发现库里还存280吨粮,那么6天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费?解析:(1)减少了34吨;(2)314吨;(3)770元【分析】(1)求出6天的数据的和即可判断;(2)根据(1)中结果计算即可;(3)求出数据的绝对值的和,再乘5即可;【详解】解:(1)25−22−14+35−38−20=−34<0,答:经过6天,粮库里的粮食减少了34吨;(2)280+34=314(吨),答:6天前粮库里的存量314吨;(3)(25+22+14+35+38+20)×5=770(元),答:这6天要付出770元装卸费.【点睛】本题考查有理数混合运算的实际应用,正确理解题意,列出算式是解题的关键. 2.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.3.计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]解析:(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+-- =6157-+ =1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.4.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ (2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.5.计算下列各式的值:(1)1243 3.55-+-(2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--解析:(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯- =488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键. 6.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元. 【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.7.计算:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 解析:(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案; (2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.8.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】本题主要考查了有理数的混合运算,准确计算是解题的关键.9.计算(1))()()(2108243-+÷---⨯-;(2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-. 【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-, )(7176=-+÷-, 116=--, 116=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 10.计算:(1)()()30122021π--+---;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭. 解析:(1)18-;(2)-17.【分析】(1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案;(2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案.【详解】解:(1)()()30122021π--+---=1118-- =18-;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭ =115118236⎛⎫--+⨯⎪⎝⎭ =115118+1818236-⨯⨯-⨯ =1-9+6-15=-17.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.11.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.解析:数轴表示见解析,140 4.52-<-<<. 【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<. 【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.12.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.解析:(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=21 24633⎛⎫⎛⎫-⨯-+⨯-⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.13.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg).)根据记录的数据可知前三天共卖出(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售kg;(3)若脐橙按4.5元/kg出售,且小明需为买家支付运费(平均0.5元/kg),则小明本周一共赚了多少元?解析:(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg),故答案为:296;(2)(+21)-(-8)=29(kg),故答案为:29;(3)4-3-5+14-8+21-6=17(kg),17+100×7=717(kg),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.14.(1)在图所示的数轴上标出以下各数:52-,-5.5,-2,+5, 132(2)比较以上各数的大小,用“<”号连接起来;(3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9.【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案;(2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案; (3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案. 【详解】解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数: 所以按从小到大排列各数为:5.5-<52-<2-<132<+5(3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为:()13 5.5 3.5 5.599.2AB =--=+==【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键. 15.计算: (1)157(36)2612⎛⎫--⨯-⎪⎝⎭ (2)2138(2)3⎛⎫⨯-+÷- ⎪⎝⎭解析:(1)33;(2)1. 【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题. 【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33; (2)原式= -1+2=1. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 16.计算: (1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11. 【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可. 【详解】 解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-, =13-7, =6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++- =11. 【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序. 17.计算:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-. 解析:(1)36-;(2)26. 【分析】(1)利用乘法分配律进行简便运算即可; (2)先算乘方,再算乘除,最后计算加减即可. 【详解】 解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭1174848483612=-⨯+⨯-⨯16828=-+- 36=-;(2)20213281(2)(3)3---÷⨯-31(89)8=---⨯⨯127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.18.将n 个互不相同的整数置于一排,构成一个数组.在这n 个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组. (1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算; 1 2 3 4 =(2)若数组1,4,6,m 是“运算平衡”数组,则m 的值可以是多少?(3)若某“运算平衡”数组中共含有n 个整数,则这n 个整数需要具备什么样的规律? 解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0. 【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m 的方程,解方程即可; (3)根据“运算平衡”数组的定义可以得到n 个数的规律. 【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0; (2)要使数组1,4,6,m 是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况, 经计算得m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0. 【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键. 19.计算: (1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1. 【分析】(1)根据有理数的乘除混合运算法则计算即可; (2)根据有理数的混合运算法则计算即可. 【详解】解:(1)原式=6×1-3⎛⎫⎪⎝⎭ ×(-32)=3;(2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭=-2-1+4 =1. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 20.计算 (1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】(1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号. 【详解】 解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+39324=-++34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可. 21.计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2 【分析】(1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的. 【详解】解:(1)45(30)(13)+--- =4530+13- =15+13 =28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11-- =-2. 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 22.计算: (1)31113+(0.25)(4)3444---+-- (2)31(2)93--÷(3)1125100466()46311-⨯-⨯-⨯ 解析:(1)21;(2)-35;(3)-392 【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减; (3)有理数的混合运算,可以使用乘法分配律使得计算简便. 【详解】 解:(1)31113+(0.25)(4)3444---+-- =311113+434444-+ =3111(13+4)(3)4444+-=183+ =21(2)31(2)93--÷=893--⨯ =827-- =35-(3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+--- =392- 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 23.计算: (1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10 解析:(1)17;(2)1. 【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值. 【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.计算:(1)2×(-3)3-4×(-3) (2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15 【分析】(1)先算乘方、乘法,再算加减法即可; (2)先算括号和乘方,再算乘除即可. 【详解】(1)原式 =2(27)12⨯-+ =-54+12 = 42-. (2)原式 =154()68-÷⨯- =5468⨯⨯=15. 【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.25.某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少 人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 解析:(1)30;(2)B ,C ;(3)71.5元. 【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A 、B 、C 、D 站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人;故到终点下车还有30人.故答案为:30;(2)根据图表:A站人数为:16+15-3=28(人)B站人数为:28+12-4=36(人)C站人数为:36+7-10=33(人)D站人数为:33+8-11=30(人)易知B和C之间人数最多.故答案为:B;C;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元).答:该出车一次能收入71.5元.【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.26.已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|= 0请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=,(2)数轴上a,b,c所对应的点分别为A,B,C,则B,C两点间的距离为;(3)在(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动了t秒,①此时A表示的数为;此时B表示的数为;此时C表示的数为;②若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.解析:(1)-1;1;5;(2)4;(3)①-1-t;1+2t;5+5t;②BC-AB的值为2,不随着时间t的变化而改变.【分析】(1)先根据b是最小的正整数,求出b,再根据c2+|a+b|=0,即可求出a、c;(2)由(1)得B和C的值,通过数轴可得出B、C的距离;(3)①在(2)的条件下,通过运动速度和运动时间可表示出A、B、C;②先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b是最小的正整数,∴b=1.∵(c -5)2+|a +b |=0, ∴a =-1,c =5; 故答案为:-1;1;5;(2)由(1)知,b =1,c =5,b 、c 在数轴上所对应的点分别为B 、C , B 、C 两点间的距离为4;(3)①点A 以每秒1个单位长度的速度向左运动,运动了t 秒,此时A 表示的数为-1-t ; 点B 以每秒2个单位长度向右运动,运动了t 秒,此时B 表示的数为1+2t ; 点C 以5个单位长度的速度向右运动,运动了t 秒,此时C 表示的数为5+5t . ②BC -AB 的值不随着时间t 的变化而改变,其值是2,理由如下:∵点A 都以每秒1个单位的速度向左运动,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC =5+5t –(1+2t )=3t +4,AB =1+2t –(-1-t )=3t +2, ∴BC -AB =(3t +4)-(3t +2)=2. 【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 27.计算:(1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭.解析:(1)-2;(2)-19 【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可; (2)利用乘法的分配率进行计算. 【详解】(1)4222(37)2(1)-+--⨯-=16162-+- =-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21 =-19 【点睛】考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.28.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1. 【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解. 【详解】(1)()()()923126--⨯-+÷- =962-- =1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭=11891632-+-÷ =1893216-+-⨯=892-+- =-1.【点睛】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 29.计算:2334[28(2)]--⨯-÷- 解析:21-. 【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得. 【详解】解:原式[]9428(8)=--⨯-÷-,[]942(1)=--⨯--,943=--⨯, 912=--, 21=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键. 30.计算(1) ()375244128⎛⎫---⨯- ⎪⎝⎭ (2) ()212382455-+--÷-⨯解析:(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭=18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.。
期末综合复习专项训练(应用题)-四年级下册数学人教版
人教版数学四年级下册期末综合复习专项训练(应用题)一、解答题1.体育用品店里,一个排球售价48元,一个网球比一个排球便宜42元,买1个排球的钱可以买多少个网球?2.一个等腰三角形的底边是3厘米,周长为37厘米,它的腰长是多少厘米?3.把5个同样大小的正方体摆成下面的物体.从哪两个面看到的形状是相同的?4.学校买来足球和排球各23个,学校一共花多少钱?5.100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?6.一个等腰三角形的顶角是80度,它的一个底角是多少度?7.体育课做跳高测试,张丽跳了0.95米,李飞说:“张丽比我跳得低0.3米”,王芳说:“我比李飞跳的低0.16米”,王芳跳多少米?8.下面是小杨7~10岁的体重情况统计图。
(1)小杨从7岁到10岁,体重增加了多少千克?(2)小杨哪一年的体重增加得最多?增加了多少千克?9.王老师带3000元去书城为学校购买新书,计划购买《海底世界》和《西游记》各28本。
10.一个等腰三角形,它的的一个底角是56°,这个三角形的顶角是多少度?11.有一个团队78人去租船,他们打算最多花160元钱租船。
小明说:“可以租6条大船,3条小船。
”请你帮他检验一下,他的答案合理吗?把你的检验过程详细地写下来。
12.一次数学竞赛,试卷共有20道题,每做对一道题得5分,不做得0分,做错一道题倒扣2分,小亮做了所有的题,共得79分,做对了几道题?13.存钱罐里原有7个硬币,以后每个月向里面存10个硬币。
20个月后这个存钱罐里有多少个硬币?14.画出下面的几何体从正面、上面和左面看到的图形15.生命在于运动。
实验小学准备举行“阳光体育”运动会,丁丁、东东、晓晓、元元参加的铅球小组已经进入紧张的训练状态。
右面是最近一次训练中小组成员的成绩信息。
丁丁掷出9.32米;东东掷出10.26米;晓晓比东东少掷出0.77米;元元比晓晓多掷出0.58米。
人教三年级数学上册解决问题解答应用题练习题50专项训练带答案解析
人教三年级数学上册解决问题解答应用题练习题50专项训练带答案解析一、三年级数学上册应用题解答题1.姐姐的小红花是妹妹的5倍,如果姐姐给妹妹20朵小红花,那么两人就一样多,请问原来姐姐有多少朵小红花?解析:50朵【分析】姐姐给妹妹20朵小红花后两人一样多,则说明之前姐姐比妹妹多20×2=40朵,且之前姐姐是妹妹的5倍,那么原来妹妹有40÷(5-1)朵,原来姐姐有10×5=50(朵)。
【详解】20×2÷(5-1)=40÷4=10(朵)10×5=50(朵)答:原来姐姐有50朵小红花。
【点睛】此题是一道差倍问题,根据差÷(倍数-1)=一倍的量求解。
2.奶奶和小红爬楼梯比赛,小红的速度是奶奶的2倍,当奶奶从一楼爬到六楼时,小红爬到几楼?解析:11楼【详解】6-1=5(层) 2×5+1=11(楼)3.小红家离学校有254米,她从家出发上学,走到168米时发现数学书忘了拿,又回家拿数学书,小红从家到学校一共走了多少米?解析:590米【详解】走了168米的路程时,发现数学书忘在家了,于是他又回家拿书,拿到书后再去学校,则一去一回又多走了两个168米,全程为254米,则这次小明上学一共走了254+168+168,据此计算即可解答。
254+168+168=422+168=590(米)答:小红从家到学校一共走了590米。
【点睛】本题关键是对“走到168米”的理解,因还要返回,所以就多走了两个168米。
4.设1,3,9,27,81,243是6个给定的数,从这6个数中每次取1个,或取几个不同的数,求和(每个数只能取一次),可以得到一个新数,这样共得63个新数,如果把它们从小到大依次排列起来是1,3,4,9,10,12……那么第60个数是多少?解析:360【分析】因为共得63个新数,将这些数按照从小到大排列,那么第60个数是就是倒数第4大的数,按照题意,从最大的数开始算起,算到第4个,就是所求。
人教三年级上册数学试题解决问题解答应用题训练专项专题训练带答案解析
人教三年级上册数学试题解决问题解答应用题训练专项专题训练带答案解析一、三年级数学上册应用题解答题1.有一串24颗珠子的手串,按下面的排列方式,算一算黑珠子是白珠子的几倍。
答:黑珠子是白珠子的倍。
解析:2倍【分析】根据题意每2个白珠子和4个黑珠子为一组,则24颗珠子里有24÷6=4组,所以白珠子有2×4=8个,黑珠子有4×4=16个,再用除法计算出黑珠子是白珠子的几倍。
【详解】24(24)÷+÷=246=(组)4⨯=(个)黑珠子:4416⨯=个白珠子:248()1682÷=答:黑珠子是白珠子的2倍。
【点睛】找出几颗珠子为一组是解答本题的关键。
2.商场里的数学。
(1)书包的价格是墨水的几倍?(2)爸爸买了两件商品,付给收银员550元,找回来14元。
爸爸买了哪两件商品?解析:(1) 6倍(2)写字台和电饭煲。
【详解】(1)18÷3=6(2)550-14=536(元)328+208=536(元)爸爸买了写字台和电饭煲。
3.丽丽家和明明家与学校在同一条街上,丽丽家距学校520米,明明家距学校390米,丽丽家距明明家有多远?解析:130米或910米【分析】本题中因为明明家和丽丽家与学校在同一条街上,所以明明家和丽丽家可能在学校的同一侧,也可能分别在学校的两侧。
相对学校方向不同,距离也就不同。
因此明明家距丽丽家的距离有两种可能。
情况一:明明家和丽丽家在学校的同一侧。
如图所示:520-390=130(米)所以明明家距丽丽家130米远。
情况二:明明家和丽丽家分别在学校的两侧,如图所示:520+390=910(米)所以明明家距丽丽家910米远。
【详解】(1)明明家和丽丽家在学校的同一侧:520-390=130(米);(2)明明家和丽丽家在学校的两侧:520+390=910(米)答:明明家距离丽丽家可能是130米,也可能是910米。
【点睛】本题是多情况的题目,解决有关距离问题可以画线段图,这有助于找到解题思路。
《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项经典练习题(含答案)
一、解答题1.一项工程,甲队独做10h完成,乙队独做15h完成,丙队独做20h完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h,问甲队实际工作了几小时?解析:3【分析】设三队合作时间为x,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间.【详解】设三队合作时间为xh,乙、丙两队合作为(6)x h-,总工程量为1,由题意得:11111()()(6)1 1015201520x x++++-=,解得:3x=,答:甲队实际工作了3小时.【点睛】本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键.2.某同学在解方程21132y y a-+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y=2,试求a的值及此方程的解.解析:y=-3.【分析】根据题意得到去分母结果,把y=2代入求出a的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,解得:a=13,方程为12131 32yy+-=-,去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.解下列方程:(1)517 84a-=;(2)22146y y +--=1; (3)2131683x x x -+-= -1 解析:(1)3a =;(2)4y =-;(3)179x =. 【分析】 (1)先方程两边同乘以8去分母,再按照移项、合并同类项、系数化为1的步骤解方程即可得;(2)先方程两边同乘以12去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得;(3)先方程两边同乘以24去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】(1)方程两边同乘以8去分母,得5114a -=,移项,得5141a =+,合并同类项,得515a =,系数化为1,得3a =;(2)方程两边同乘以12去分母,得3(2)2(21)12y y +--=,去括号,得364212y y +-+=,移项,得341262y y -=--,合并同类项,得4y -=,系数化为1,得4y =-;(3)方程两边同乘以24去分母,得4(21)3(31)824x x x --+=-,去括号,得8493824x x x ---=-,移项,得8982443x x x --=-++,合并同类项,得917x -=-,系数化为1,得179x =. 【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.4.解下列方程:(1)2(x -1)=6;(2)4-x =3(2-x);(3)5(x +1)=3(3x +1)解析:(1)x =4;(2)x =1;(3)x =12【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解;(2)方程去括号,移项合并,将未知数系数化为1,即可求出解;(3)方程去括号,移项合并,将未知数系数化为1,即可求出解;【详解】(1)去括号,得2x-2=6.移项,得2x=8.系数化为1,得x=4.(2)去括号,得4-x=6-3x.移项,得-x+3x=6-4.合并同类项,得2x=2.系数化为1,得x=1.(3)去括号,得5x+5=9x+3.移项,得5x-9x=3-5.合并同类项,得-4x=-2.系数化为1,得x=1 2 .【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.5.全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?解析:原有5条船.【分析】首先设原有x条船,根据“减少一条船,那么每条船正好坐9名同学;增加一条船,那么每条船正好坐6名同学”得出等式方程,求出即可.【详解】设原有x条船,如果减少一条船,即(x-1)条,则共坐9(x-1)人.如果增加一条船,则共坐6(x+1)人,根据题意,得9(x-1)=6(x+1).去括号,得9x-9=6x+6.移项,得9x-6x=6+9.合并同类项,得3x=15.系数化为1,得x=5.答:原有5条船.【点睛】此题主要考查了一元一次方程的应用,根据题意利用全班人数列出等量关系式是完成本题的关键.6.已知数轴上的A、B两点分别对应数字a、b,且a、b满足|4a-b|+(a-4)2=0(1)a= ,b= ,并在数轴上面出A 、B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A .求点P 和点Q 运动多少秒时,P 、Q 两点之间的距离为4,并求此时点Q 对应的数.解析:(1)4,16.画图见解析;(2)83或8秒;(3)点P 和点Q 运动4或8或9或11秒时,P ,Q 两点之间的距离为4.此时点Q 表示的数为20,24,25,27.【分析】(1)根据非负数的性质求出a 、b 的值即可解决问题;(2)构建方程即可解决问题;(3)分四种情形构建方程即可解决问题.【详解】(1)∵a ,b 满足|4a-b|+(a-4)2≤0,∴a=4,b=16,故答案为4,16.点A 、B 的位置如图所示.(2)设运动时间为ts .由题意:3t=2(16-4-3t )或3t=2(4+3t-16),解得t=83或8, ∴运动时间为83或8秒时,点P 到点A 的距离是点P 到点B 的距离的2倍; (3)设运动时间为ts .由题意:12+t-3t=4或3t-(12+t )=4或12+t+4+3t=52或12+t+3t-4=52,解得t=4或8或9或11,∴点P 和点Q 运动4或8或9或11秒时,P ,Q 两点之间的距离为4.此时点Q 表示的数为20,24,25,27.【点睛】 本题考查多项式、数轴、行程问题的应用等知识,具体的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.7.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②.解析:(1)5;(2)138; 【分析】 ①方程去括号,移项合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13,解得:x=138. 【点睛】 此题考查解一元一次方程,解题关键在于掌握方程的解法.8.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?” 解析:x =60【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则65234x x x ++= 解得:x =60;∴有60个客人.【点睛】 本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元.(2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.解析:(1)134元,520元;(2)54元;(3)见解析(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减去实际付款可求节省的钱数;(3)先计算两次物品合起来一次购买实际付款,在与134+466比较即可.【详解】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品的标价超过了500元.设其标价x元,则500×0.9+(x-500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;故答案为:134元,520元;(2)134+520-134-466=54,所以省了54元;(3)两次物品合起来一次购买更节省.两次合起来一次购买支付500×0.9+(654-500)×0.8=573.2元,573.2<134+466=600,所以两次物品合起来一次购买更节省.【点睛】此题主要考查了一元一次方程的应用中实际生活中的折扣问题,关键是运用分类讨论的思想,分析清楚付款打折的两种情况.10.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?解析:(1)购买A种记录本120本,B种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.根据题意中的等量关系列出方程是解决问题的关键11.某市居民生活用水实行“阶梯水价”收费,具体收费标准见下表:例:甲用户1月份用水25吨,应缴水费1.620 2.4(2520)44⨯+⨯-= (元).(1)若乙用户1月份用水10吨,则应缴水费________元;(2)若丙用户1月份应缴水费62.6元,则用水________吨;.(3)若丁用户1、2月份共用水60吨(1月份用水量超过了2月份),设2月份用水a 吨,求丁用户1、2月份各应缴水费多少元.(用含a 的代数式表示)解析:(1)16;(2)32; (3) 1月份应缴水费(155 3.3)a -元.当2月份用水量不超过20吨时,应缴水费1.6a 元;当2月份用水量超过20吨但不超过30吨时,应缴水费(2.416)a -元.【分析】(1)根据每户每月用水量不超过20时,水费价格为1.6元/吨,可知乙用户1月份用水10吨,则应缴水费:1.6×10,计算即可;(2)由于用水30吨时应缴水费为:1.6×20+2.4×10=56<62.6,所以丙用户1月份用水超过30吨,列出方程,求解即可;(3)由丁用户1、2两个月共用水60吨,设2月份用水a 吨,则1月份用水(60-a )吨,根据1月份用水量超过了2月份,得出1月份用水量超过了2月份,得出1月份用水量大于30吨,2月份用水量小于30吨,根据三级收费求出1月份应缴水费,分两种情况求出2月份应缴水费, ①当2月份用水量不超过20吨时;②当2月份用水量超过20吨但不超过30吨时;【详解】解:(1)依题意得:1.6×10=16;故答案为:16(2) 依题意得:由于用水30吨时应缴水费为:1.6×20+2.4×10=56<62.6,所以丙用户1月份用水超过30吨,设用水为x 吨,依题意得:56(30) 3.362.6x +-⨯=解得:x=32故答案为:32;(3)因为1月份用水量超过了2月份,所以1月份用水量超过了30吨,2月份用水量少于30吨.1月份应缴水费20 1.610 2.4 3.3(6030)(155 3.3)a a ⨯+⨯+--=-元.①当2月份用水量不超过20吨时,应缴水费1.6a 元;②当2月份用水量超过20吨但不超过30吨时,应缴水费1.6202.4(20)(2.416)a a ⨯+-=-元.本题主要考查了列代数式,代数式求值,掌握列代数式,代数式求值是解题的关键. 12.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为多少?解析:180元或202.5元【分析】先根据题意判断出可能打折的情况,再分别算出可能的可能的原价.【详解】∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.【点睛】本题考查打折销售问题,关键在于分类讨论.13.已知关于x的方程:2(x﹣1)+1=x与3(x+m)=m﹣1有相同的解,求以y为未知数的方程3332my m x--=的解.解析:214y=-.【分析】根据方程可直接求出x的值,代入另一个方程可求出m,把所求m和x代入方程3,可得到关于y的一元一次方程,解答即可.【详解】解:解方程2(x﹣1)+1=x得:x=1将x=1代入3(x+m)=m﹣1得:3(1+m)=m﹣1解得:m=﹣2将x=1,m=﹣2代入33 32my m x --=得:3(2)2332y----=,解得:214y=-.【点睛】本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.14.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?解析:(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱.【分析】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,根据总价=单价×数量,分别求出在甲、乙两家商店购买需要的钱数是多少;然后根据在甲商店购买需要的钱数=在乙商店购买需要的钱数,列出方程,解方程,求出当购买乒乓球多少盒时,两种优惠办法付款一样即可;(2)首先根据总价=单价×数量,分别求出在甲、乙两家商店购买球拍5副、15盒乒乓球,球拍5副、30盒乒乓球需要的钱数各是多少;然后把它们比较大小,判断出去哪家商店购买比较合算即可.【详解】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,则30×5+5(x−5)=(30×5+5x)×90%5x+125=135+4.5x5x+125−4.5x=135+4.5x−4.5x0.5x+125=1350.5x+125−125=135−1250.5x=100.5x×2=10×2x=20答:当购买乒乓球20盒时,两种优惠办法付款一样.(2)①在甲商店购买球拍5副、15盒乒乓球需要:30×5+5×(15−5)=150+50=200(元)在乙商店购买球拍5副、15盒乒乓球需要:(30×5+5×15)×90%=225×90%=202.5(元)因为200<202.5,所以我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.答:我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.②在甲商店购买球拍5副、30盒乒乓球需要:30×5+5×(30−5)=150+125=275(元)在乙商店购买球拍5副、30盒乒乓球需要:(30×5+5×30)×90%=300×90%=270(元)因为270<275,所以我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算.答:我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算.考点:1.一元一次方程的应用;2.方案型.15.为鼓励居民节约用电,某市试行每月阶梯电价收费制度,具体执行方案如下:档次每户每月用电量(度)执行电价(元/度)第一档小于或等于2000.5第二档大于200且小于或等于450时,超出200的部分0.7第三档大于450时,超出450的部分1(1)一户居民七月份用电300度,则需缴电费__________元.(2)某户居民五、六月份共用电500度,缴电费290元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于450度.①请判断该户居民五、六月份的用电量分别属于哪一个档次?并说明理由.②求该户居民五、六月份分别用电多少度?解析:(1) 170元;(2)①五月份用电量在第一档,六月份用电量在第二档. ②设五、六月份分别用电100度、400度.【分析】(1)根据阶梯电价收费制度,七月份用电300度属于第二档,所以应缴电费200×0.5+100×0.7=170(元);(2)①分情况进行讨论,从而确定五六月份的用电量分别位于哪一档;②由①的结论,设五月份用电x度,列方程求解即可.【详解】解:(1) ∵200<300小于450∴应缴电费:200×0.5+100×0.7=170(元)故答案为:170(2)①因为两个月的总用电量为500度,所以每个月用电量不可能都在第一档;假设该用户五、六月每月用电均超过200度,此时的电费共计200×0.5+200×0.5+100×0.7=270(元),而270<290,不符合题意;又因为六月份用电量大于五月份,所以五月份用电量在第一档,六月份用电量在第二档.②设五月份用电x度,则六月份用电(500-x)度,根据题意,得0.5x+200×0.5+0.7×(500-x-200)=290解得x=100,500-x=400.答:该户居民五、六月份分别用电100度、400度.【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:(1)根据收费标准列式计算;(2)分情况讨论用电量,列出关于x的一元一次方程.16.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?解析:(1)他们一共去了8个成人,4个学生;(2)按团体票购票更省钱【分析】(1)本题有两个相等关系:学生人数+成人人数=12人,成人票价+学生票价=400元,据此设未知数列方程组求解即可;(2)计算出按照团体票购买需要的钱数,然后与400元作对比即得答案.【详解】解:(1)设去了x 个成人,y 个学生,依题意得,1240400.5400x y x y +=⎧⎨+⨯=⎩,解得84x y =⎧⎨=⎩, 答:他们一共去了8个成人,4个学生;(2)若按团体票购票,共需16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.【点睛】本题主要考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.17.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★.例如:(1,2)(3,4)23142=⨯-⨯=★.根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 解析:(1)-5;(2)2;(3)k=0,-1,-2,-3.【分析】(1)原式利用规定的运算方法计算即可求出值;(2)原式利用规定的运算方法列方程求解即可;(3)原式利用规定的运算方法列方程,表示出x ,然后根据k 是整数求解即可.【详解】解:(1)根据题意得:原式=−3×3−2×(−2)=−9+4=−5;故答案为:−5;(2)根据题意得:3x+1−(−2)×(x−1)=9,整理得:5x =10,解得:x =2,故答案为:2;(3)∵等式(−3,2x−1)★(k ,x +k )=3+2k 的x 是整数,∴(2x−1)k−(−3)(x +k )=3+2k ,∴(2k +3)x =3, ∴323x k =+, ∵k 是整数, ∴2k +3=±1或±3,∴k =0,−1,−2,−3.【点睛】此题考查了新运算以及解一元一次方程,正确理解新运算是解题的关键.18.小明解方程26152x x a -++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为1x =-,试求a 的值,并正确地求出原方程的解. 解析:2a =-,8x =【分析】先根据错误的做法:“方程左边的1没有乘以10”而得到1x =-,代入错误方程,求出a 的值,再把a 的值代入原方程,求出正确的解.【详解】解:412155x x a -+=+∵1x =-为412155x x a -+=+的解∴16155a -+=-+∴2a =-;∴原方程为:262152x x --+= 去分母得:41210510x x -+=-∴45101012x x -=--+∴8x -=-∴8x =.【点睛】本题考查了解一元一次方程,本题易在去分母、去括号和移项中出现错误.由于看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.19.检验下列方程后面小括号内的数是否为相应方程的解.(1)2x+5=10x-3(x=1); (2)2(x-1)-12(x+1)=3(x+1)-13(x-1)(x=0). 解析:(1)是;(2)否.【分析】(1)先求出一元一次方程的解,然后进行判断即可;(2)先求出一元一次方程的解,然后进行判断即可;【详解】解:(1)25103x x +=-,∴88x -=-,∴1x =,∴括号内的数是方程的解;(2)112(1)(1)3(1)(1)23x x x x --+=+--, ∴77(1)(1)32x x -=+, ∴2233x x -=+,∴5x =-;∴括号内的数不是方程的解.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法和步骤. 20.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?解析:大和尚有25人,小和尚有75人【分析】设大和尚有x 人,则小和尚有(100x -)人,根据“3×大和尚人数+小和尚人数÷3=100”,即可得出关于x 的一元一次方程,此题得解.【详解】设大和尚有x 人,则小和尚有(100x -)人, 根据题意得:10031003x x -+= 解得:25x =,则10075x -=,答:大和尚有25人,小和尚有75人.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?解析:(1)(70a+2800),(56a+3360);(2)购买40只书架时,无论到哪家超市所付货款都一样;(3)第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【分析】(1)根据A、B两个超市的优惠政策即可求解;(2)由(1)和两家超市所付货款都一样可列出方程,再解即可;(3)去A超市买、去B超市买和去A超市购买20个书柜和20个书架,到B超市购买80只书架,三种情况讨论即可得出最少付款额.【详解】(1)根据题意得A超市所需的费用为:20×210+70(a﹣20)=70a+2800B超市所需的费用为:0.8×(20×210+70a)=56a+3360故答案为:(70a+2800),(56a+3360)(2)由题意得:70a+2800=56a+3360解得:a=40,答:购买40只书架时,无论到哪家超市所付货款都一样.(3)学校购买20张书柜和100只书架,即a=100时第一种方案:到A超市购买,付款为:20×210+70(100﹣20)=9800元第二种方案:到B超市购买,付款为:0.8×(20×210+70×100)=8960元第三种方案:到A超市购买20个书柜和20个书架,到B超市购买80只书架,付款为:20×210+70×(100﹣20)×0.8=8680元.因为8680<8960<9800所以第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,再列出方程.22.松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲工厂比乙工厂要多用20天在加工过程中,学校每天需付甲工厂费用80元,乙工厂费用120元.(1)这批校服共有多少件?(2)在实际加工过程中,甲、乙两个工厂按原生产效率合作一段时间后,甲工厂停工了,乙工厂每天的生产效率提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间比甲工厂工作时间的2倍还多4天,则乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲工厂单独完成;方案二:由乙工厂单独完成;方案三:按第(2)问方式完成并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种既省时又省钱的加工方案.解析:(1)960件(2)28天(3)方案三【分析】(1)由题意设这批校服共有x 件,并根据题意建立一元一次方程进行求解即可;(2)根据题意设甲工厂加工a 天,则乙工厂共加工(24)a +天,并根据题意建立一元一次方程进行求解即可;(3)根据题意分别计算三种方案所需的时间与费用,并进行比较即可得出答案.【详解】解:(1)设这批校服共有x 件. 由题意,得201624x x -=.解得960x =. 答:这批校服共有960件.(2)设甲工厂加工a 天,则乙工厂共加工(24)a +天.依题意得 (1624)24(125%)(24)960a a a ++⨯++-=.解得12a =.2424428a +=+=.答:乙工厂共加工28天.(3)①方案一:需要耗时9601660÷=(天),费用为60(1080)5400⨯+=(元); ②方案二:需要耗时9602440÷=(天),费用为40(12010)5200⨯+=(元); ③方案三:甲工厂耗时12天,乙工厂耗时28天,故需要耗时28天,费用为12(1080)28(10120)4720⨯++⨯+=(元).综上,方案三既省时又省钱.【点睛】本题考查一元一次方程的实际应用,读懂题干并依据题干条件建立一元一次方程求解是解题的关键.23.老师在黑板上写了一个等式(3)4(3)a x a +=+.王聪说4x =,刘敏说不一定,当4x ≠时,这个等式也可能成立.(1)你认为他们俩的说法正确吗?请说明理由;(2)你能求出当2a =时(3)4(3)a x a +=+中x 的值吗?解析:(1)王聪的说法不正确,见解析;(2)4x =【分析】(1)根据等式的性质进行判断即可.(2)利用代入法求解即可.【详解】(1)王聪的说法不正确.理由:两边除以(3)a +不符合等式的性质2,因为当30a +=时,x 为任意实数. 刘敏的说法正确.理由:因为当30a +=时,x 为任意实数,所以当4x ≠时,这个等式也可能成立. (2)将2a =代入,得(23)4(23)x +=+,解得4x =.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的性质、等式的性质是解题的关键. 24.李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m ,如图所示(单位:m ,卫生间的宽未定,设宽为xm ),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m ,其中卫生间可免费赠送一半的面积;方案二:整套房按原销售总金额的9.5折出售.(1)用含x 的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x =时,通过计算说明哪种方案更优惠,优惠多少元.解析:(1)该户型商品房的面积为2(482)x m +,按方案一购买一套该户型商品房的总金额为(2400005000)x +元,按方案二购买一套该户型商品房的总金额为(2280009500)x +元;(2)当2x =时,方案二更优惠,优惠3000元.【分析】(1)该户型商品房的面积=大长方形的面积-卫生间右侧的长方形,代入计算,也可以利用各间的面积和来求;方案一:(总面积-厨房的12)×单价5000;方案二:总价×0.95; (2)分别把数据代入计算即可;【详解】解:(1)该户型商品房的面积为:2473(84)2(73)(842)(482)x x m ⨯+⨯-+⨯-+--=+按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x ⎛⎫⨯+⨯+⨯+⨯⨯=+ ⎪⎝⎭元; 按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x ⨯+⨯+⨯+⨯⨯=+元.(2)当2x =时,方案一总金额为2400005000250000x +=(元);方案二总金额为2280009500247000x +=(元).方案二比方案一优惠2500002470003000-=(元).所以方案二更优惠,优惠3000元.【点睛】本题是根据实际应用列代数式,是楼房销售问题,考查了图形面积与销售总额及银行利率的知识;解题的关键是熟练掌握利用代数式表示图形的面积.25.解方程:(1)3(26)17x x +=--;(2)4(2)13(1)x x --=-;(3)4(1)5(3)11x x +--=;(4)14(1)(26)112x x --+=. 解析:(1)5x =-;(2)6x =;(3)8x =;(4)6x =【分析】(1)去括号,移项及合并同类项,系数化为1即可求解.(2)去括号,移项及合并同类项,系数化为1即可求解.(3)去括号,移项及合并同类项,系数化为1即可求解.(4)去括号,移项及合并同类项,系数化为1即可求解.【详解】(1)去括号,得61817x x +=--.移项及合并同类项,得735x =-.系数化为1,得5x =-.(2)去括号,得48133x x --=-.移项,得43381x x -=-++.合并同类项,得6x =.(3)去括号,得4451511x x +-+=.移项,得4511415x x -=--.合并同类项,得8x -=-.系数化为1,得8x =.(4)去括号,得44311x x ---=.。
长安汽车车辆问题解答题库(新增)
长安汽车车辆问题解答题库(备注要点)一、保养部分………………………………………………………………… 4-6页01.为什么要对车辆进行定期保养?02.为什么需要定期检查/更换火花塞?03.为什么空调系统的滤清器要定期更换?04.为什么要定期更换空气滤清器?05.为什么要定期检查四轮定位?06.为什么要定期进行轮胎换位?07.为什么要按照保养手册按时更换制动液?08.玻璃清洗液是否可以用水替代?二、发动机部分……………………………………………………………7-8页09.为什么我的车比别人的车(同车型、同排量)燃油消耗高?10.防冻液是否可以用水替代?11.水温高会对发动机造成哪些损坏?12.为什么刚启动时发动机转速高,几分钟后恢复正常?13.为什么驾驶室有汽油味?14.为什么发动机/变速箱表面会有油污?三、变速箱部分……………………………………………………………8-9页15.D档或N挡等红灯有什么区别?16.N档滑行下坡有什么损害? (非DCT变速箱)17.为什么开始时挂倒档时异响?四、空调部分…………………………………………………………………… 9页18.内外循环的区别?有什么使用技巧?19.为什么鼓风机工作时声音较大?(冬季)20.为什么开空调时会有异味?21.为什么空调制冷效果不好?22.为什么开空调制冷时车底部有很多水流出?(夏季)23.为什么关闭空调后,出风口仍然会有热风出来?24.为什么开启空调制冷后发动机动力性下降?25.为什么使用空调制冷后油耗增大了?五、电器部分………………………………………………………………10-12 页26.为什么雨刮器刮水不干净/有异响/有跳动?27.为什么收音机有时效果不好?28.为什么大灯/雾灯/转向灯内有水迹?29.为什么我的车经常亏电?30.为什么导航定位有时候较慢或者不定位?31.为什么只能读取部分U盘?32.为什么倒车雷达会长鸣?六、行驶系统……………………………………………………………………18页33.胎压过高、过低对车辆有哪些影响?34.轮胎鼓包是怎么造成的?七、制动系统……………………………………………………………………19页35.踩刹车时方向盘抖动是什么原因?36.为什么踩刹车时偶尔会发出噪声?37为什么停放一点时间后,刹车盘会生锈?八、车身部分……………………………………………………………………21页38.儿童锁有什么作用?怎样设置?39.为什么车身漆面会有污点?40.为什么镀铬装饰条等部件表面会有污点?九、仪表显示……………………………………………………………………22页41.行驶过程中ESP灯或亮,表示什么?42.为什么油表有时会显示不准?43.为什么仪表上会有“小扳手”闪烁?44.行驶过程中电瓶指示灯亮,表示什么?能否继续行驶?45.行驶过程中胎压报警灯亮,表示什么?46行驶过程中制动系统红灯亮,表示什么?能否继续行驶?十、新能源………………………………………………………………………24页47.为什么电动车没有故障还是无法慢充电?48.为什么电动车里程跑不到宣传的续航里程?49.为什么电动车的仪表指示灯和燃油车不同,都代表什么含义?一、保养部分01.为什么要对车辆进行定期保养?核心信息:1.定期保养能够保证车辆始终处于最佳运行状态①,提前消除故障隐患②,延长车辆使用寿命③;2.为了保证各系统正常工作,必须定期检查或更换相关部件④(如:机油、滤清器、冷却液、火花塞、正时皮带等)。
高考总复习优化设计二轮用书数学解答题专项4 概率与统计的综合问题
第二步,根据超几何分布的概率计算公式计算出随机变量取每一个值时的
概率;
第三步,用表格的形式列出分布列.
对点训练3
(2023湖北十堰二模)现有4个红球和4个黄球,将其分配到甲、乙两个盒子
中,每个盒子中4个球.
(1)求甲盒子中有2个红球和2个黄球的概率.
(2)已知甲盒子中有3个红球和1个黄球,若同时从甲、乙两个盒子中取出
从而可以用线性回归模型拟合 y 与 x 的关系.
^
(2)由(1)可得 =
5
∑ -5
=1
5
2
∑ 2 -5
=
-1 537
=-153.7,
10
=1
^
^
所以 = − =1 241.2-(-153.7)×3=1 702.3,
^
所以 y 关于 x 的经验回归方程为 =-153.7x+1 702.3.
P(X=200)=
C22
C210
=
1
C12 C18
,P(X=80)=
45
C210
X
P
=
200
1
45
16
C28
,P(X=10)=
45
C210
=
28
.X
45
的分布列为
80
10
16
28
45
45
(2)甲方案,设获得购物券的金额为 Y,则 Y 可以取 200,80,10,
C23
1
C13 C19
9
C29
6
P(Y=200)= 2 = 22,P(Y=80)= 2 = 22,P(Y=10)= 2 = 11.
9
2C13 C11
人教三年级数学上册 解决问题解答应用题题专项训练专项训练带答案解析
人教三年级数学上册解决问题解答应用题题专项训练专项训练带答案解析一、三年级数学上册应用题解答题1.体重大比拼:(1)4只小狗=8只小猫,那么5只小狗等于多少只小猫的体重?(2)2只小狗=4只小猫,1只小猫=2只鸭子,那么12只小狗等于多少只鸭子的体重?(3)3只小狗=4只小兔,5只小兔=7只小鸡,那么12只小狗加4只小兔等于多少只小鸡的体重?解析:(1)10只;(2)48只;(3)28只【分析】第(1)、(2)问中利用等量代换中的倍数关系,找清楚1只小狗等于几只小猫。
第(3)问中可将12只小狗加4只小兔变为全是小兔,由此推算解答。
【详解】(1)4只狗=8只猫,则1只狗=2只猫,所以5只狗=10只猫;(2)2只狗=4只猫,则12只狗=24只猫,因为1只猫=2只鸭,则24只猫=48只鸭,所以12只狗=48只鸭;(3)3只狗=4只兔,则12只狗=16只兔,那么12只小狗加4只小兔=20只兔,5只兔=7只鸡,所以20只兔=28只鸡。
【点睛】巧用等量代换是解答此题的关键。
2.同学们布置庆六一文艺演出会场,需要搬8张桌子和16把椅子,若搬法如下图.那么一次搬完需要多少名同学?解析:24人【详解】搬椅子:16÷2=8(人)搬桌子:2×8=16(人)16+8=24(人)3.小文在计算两个数相加时,把一个加数个位上的1错误地当作7,把另一个加数十位上的8错误地当作3,所得的和是1995,原来两数相加的正确答案是多少?解析:正确答案是2039【分析】一个加数个位是7,另一个加数十位是3,相加得到1995,可以构造算式57加上1938得到1995,然后求出正确的加数,再计算正确的结果。
【详解】一个加数个位是7,另一个加数十位是3;+=5719381995正确的加数是51和1988;+=5119882039答:原来两数相加的正确答案是2039。
【点睛】个位上的1错误地当作7,多算了6,十位上的8错误地当作3,少算了50,总共少算了44,1995加上44得到正确的结果。
人教版数学4年级上册 总复习 数学广角-优化 解答题 专项训练(含答案)
人教版四年级上册数学数学广角-优化解答题专项训练1.王亮家来客人了,妈妈要他给客人沏茶。
接水1分钟,烧水10分钟,洗茶杯2分钟,拿茶叶1分钟,沏茶1分钟。
王亮合理安排以上事情让客人尽快喝茶,至少需要几分钟。
(请帮他画出流程图,并解答)2.文化体育用品店优惠大酬宾,王老师带了350元,最多可以买这种乒乓球拍多少个?还剩多少元?3.比赛:第一队最好成绩(下/分)陆莎杜小雯赵于晓陶欣然230 180 210 205第二队最好成绩(下/分)宋圆何文龙刘佳佳肖俊刚220 190 165 210(1)四局三胜:如果比赛中每人都能正常发挥,第二队有可能获胜吗?你认为该怎样对阵?(2)五局三胜:如果每队再增加一人,其中第一队增加:王晓红172下/分,第二队增加田立志152下/分。
第二队怎样对阵才有可能获胜呢?4.现有69根火柴棒,由甲、乙两人轮流从中取火柴棒,每次最少取1根,最多取4根,不许不取,谁取到最后1根就算赢。
请你制定一个甲必胜的方案。
5.24名游客乘车去游玩,如果每辆车都坐满。
小车限坐4人,大车限坐6人。
怎样安排正好坐满24人?(列出表格)6.A、B两组各3人,现在要进行百米赛跑,他们的个人成绩如下表所示,每局每班一人参赛,每人只能参赛一次,三局两胜制,要想B组获胜,阿呆需要和A组的谁进行比赛?A组姓名萱萱墨莫卡莉娅成绩15秒16秒17秒B组姓名阿呆阿瓜小高成绩15秒16秒17秒7.下面是同一种盒装面巾纸的价格。
一家宾馆要买36盒这种面巾纸,怎样买最省钱?需付多少元?(写出计算过程)8.3名同学排队打水,只有一个水龙头,甲同学需要2分钟,乙同学需要3分钟,丙同学需要5分钟,他们都打完水,等待时间的总和最少是多少分钟?9.中午,妈妈要包饺子,为了能尽快吃到饺子,安排一下在包饺子的过程中完成每件事的顺序:和面、和馅8分钟、包饺子25分钟、烧开水10分钟、煮饺子5分钟、洗碗2分钟。
则完成以上各项事务最少需要多少分钟?10.下面是希望小学四年级各班男人数统计图(1)在数轴上标出表示的人数。
专题04 利用一次函数比较大小与求范围(解析版)
专题04 利用一次函数比较大小与求范围知识对接考点一、一次函数的性质性质:k>0时,y随x的增大(或减小)而增大(或减小);k<0时,y随x的增大(或减小)而减小(或增大).直线y=kx+b(k≠0)的位置与k、b符号之间的关系.(1)k>0,b>0图像经过一、二、三象限;(2)k>0,b<0图像经过一、三、四象限;(3)k>0,b=0 图像经过一、三象限;(4)k<0,b>0图像经过一、二、四象限;(5)k<0,b<0图像经过二、三、四象限;(6)k<0,b=0图像经过二、四象限。
一次函数表达式的确定:求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.专项训练一、单选题1.已知点(﹣2,y1),(3,y2)都在直线y=﹣x﹣5上,则y1,y2的值的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定【答案】B【分析】一次函数图象上点的坐标特征,把点(-2,y1)和(3,y2)代入y=-x-5中计算出y1与y2的值,然后比较它们的大小.【详解】解:∵点(﹣2,y1)和(3,y2)都在直线y=-x-5上,∵y1=-(-2)-5=-3,y2=-3-5=-8,∵y1>y2.故选B.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.直线上任意一点的坐标都满足函数关系式y=kx+b.2.若点()1,A m y ,点()221,B m a y ++都在一次函数54y x =+的图象上,则( ) A .12y y <B .12y y =-C .12y y >D .12y y =【答案】A【分析】 由偶次方的非负性可得出20a ,进而可得出2+1m a m +>,由50k =>,利用一次函数的性质可得出y 随x 的增大而增大,进而可得出12y y <.【详解】解:20a ,210a ∴+>,21m m a ∴<++.50k =>,∵y 随x 的增大而增大,12y y ∴<.故选:A .【点睛】本题考查了不等式的性质,实数的非负数,一次函数的增减性,灵活运用不等式比较自变量的大小,根据一次函数的增减性判断是解题的关键.3.下列有关一次函数42y x =--的说法中,正确的是( )A .y 的值随着x 值的增大而增大B .函数图象与y 轴的交点坐标为()0,2C .当0x >时,2y >-D .函数图象经过第二、三、四象限【答案】D【分析】根据一次函数的性质可以判断各个选项是否正确,从而可以解答本题.【详解】解:一次函数42y x =--的函数图像如图,A 、∵k =-4<0,∵当x 值增大时,y 的值随着x 增大而减小,故选项A 不正确;B 、当x =0时,y =-2,函数图象与y 轴的交点坐标为(0,-2),故选项B 不正确;C 、当x >0时,2y <-,故选项C 不正确;D 、∵k <0,b <0,图象经过第二、三、四象限,故选项D 正确;故选D .【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答. 4.在平面直角坐标系中,点(),P x y 在第一象限内,且8x y +=,点A 的坐标为()6,0.设OPA 的面积为S ,S 与x 之间的函数关系式是( )A .()64808S x x =-+<<B .()31208S x x =-+<<C .()32408S x x =-+<<D .()18083S x x =-+<< 【答案】C【分析】表示出OA 和PB 的长,建立关于x 的三角形面积的表达式,即为一次函数表达式.【详解】解:如选图所示:由x +y =8得,y =−x +8,即点P (x ,y )在y =−x +8的函数图象上,且在第一象限,过点P 做PB ∵x 轴,垂足为B则12OPA S OA PB ∆=•=()1683242x x =⨯⨯-+=-+ ∵点P (x ,y )在第一象限内∵x >0,y =−x +8>0,∵0<x <8∵S =−3x +24(0<x <8) .故选:C .【点睛】本题主要考查一次函数的关系式,根据三角形面积公式得出函数关系式是关键. 5.若一次函数2y x b =+的图象经过点()2,3,则b 的值是( )A .1-B .1C .5D .7 【答案】A【分析】直接把点(2,3)代入一次函数y =2x +b ,求出b 的值即可.【详解】解:∵一次函数y =2x +b 的图象经过点(2,3),∵3=4+b ,解得b =-1.故选:A .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.一次函数y =kx +b 的图象经过A (﹣1,1),B (4,0)两点,若点M (2,y 1)和点N (3,y 2)恰好也是该函数图象上的两点,则y 1,y 2的关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .无法确定【答案】C【分析】先用待定系数法求出一次函数的解析式,再根据一次函数的性质即可得出结论.【详解】解:∵一次函数y =kx +b 的图象经过A (-1,1),B (4,0)两点,∵104k b k b =-+⎧⎨=+⎩, 解得1545k b ⎧=-⎪⎪⎨⎪=⎪⎩,∵一次函数的解析式为y =15-x +45, ∵k =15-<0, ∵y 随x 的增大而减小,∵2<3,∵y 1>y 2.故选C .【点睛】本题主要考查的是一次函数图象上点的坐标特点,解决本题的关键是要熟练掌握一次函数图象的性质.7.在平面直角坐标系中,无论a 取任何实数,点P (2a ,a +1),Q (m ,n )都是直线l 上的点,则(m -2n +4)2的值为( )A .1B .4C .9D .16【答案】B【分析】设直线l 的解析式为y =kx +b ,根据不管a 取何值,P 点都在l 上,即可令a =0,令a =1得到2个点的坐标,求出l 的解析式,然后求解即可.【详解】解: 设直线l 的解析式为y =kx +b∵不管a 取何值,P (2a ,a +1)点都在l 上∵令a =1时,a +1=2,令a =0时,a +1=1∵(2,2)和(0,1)均在l 上 ∵221k b b +=⎧⎨=⎩解得121k b ⎧=⎪⎨⎪=⎩ ∵直线l 的解析式为112y x =+ ∵Q (m ,n )在直线上 ∵112n m =+ ∵22m n -=- ∵()()2224244m n -+=-+=故选B.【点睛】本题主要考查了待定系数法求函数解析式和代数式求值,解题的关键在于能够熟练掌握相关知识进行求解.8.已知在一次函数y =﹣3x +2的图象上有三个点A (﹣3,y 1),B (3,y 2),C (﹣4,y 3),则下列各式中正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 3<y 2<y 1 【答案】B【分析】根据一次函数图象的增减性来比较A 、B 、C 三点的纵坐标的大小.【详解】解:∵一次函数y =﹣3x +2中的﹣3<0,∵该函数的y 随x 的增大而减小.又∵3>﹣3>﹣4,∵y 2<y 1<y 3.故选:B .【点睛】本题考查了一次函数图象上点坐标特征.解答该题的关键是熟练掌握一次函数的增减性. 9.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .无法比较【答案】A【分析】根据一次函数的增减性直接判断即可;或求出1y 、2y 的值,进行比较.【详解】解:方法一:因为一次函数21y x =-+中的比例系数20-<,所以y 随着x 的增大而减小,∵-2<1,∵12y y >;方法二:把x=-2或1分别代入21y x =-+得,15y =、21y =-, ∵12y y >;故选:A .【点睛】本题考查了一次函数的增减性,解题关键是知道一次函数的增减性由比例系数k 决定,根据k 值可直接判断.10.若直线l 经过不同的三点(),A m n ,(),B n m ,(),C m n n m --,则直线l 经过的象限是( )A .第二,四象限B .第一,二象限C .第二,三,四象限D .第一,三,四象限【答案】A【分析】由点的坐标,利用待定系数法可求出一次函数的解析式,再利用正比例函数的性质可得出该函数图象经过的象限.【详解】解:设一次函数的解析式为(0)y kx b k =+≠, 将(),A m n ,(),B n m ,(),C m n n m --代入,得:()mk b n nk b m m n k n m +=⎧⎪+=⎨⎪-=-⎩,解得10k b =-⎧⎨=⎩, ∵一次函数的解析式为y x =-,∵该函数图象经过第二、四象限.故选:A .【点睛】本题考查了待定系数法求一次函数解析式以及正比例函数的性质,根据点的坐标,利用待定系数法求出一次函数的解析式是解题的关键.二、填空题11.已知一次函数的图象经过点0,5,且与直线y x =平行,则一次函数的表达式为______.【答案】5y x =+【分析】根据两直线平行的条件可知1k =,再把(0,5)代入y x b =+中,可求b ,进而可得一次函数解析式.【详解】解:设一次函数的表达式为y kx b =+,y kx b =+与直线y x =平行,y x b ∴=+,把(0,5)代入y x b =+中,得5b =,∴一次函数解析式是5y x =+,故答案为:5y x =+.【点睛】本题考查了两条直线平行的问题,解题的关键是知道两条直线平行的条件是k相等.12.如图,在平面直角坐标系中,已知点A(4,0),B(0,5).将∵BOA绕点A顺时针方向旋转得∵B′O′A,若点B在B′O′的延长线上,则直线BB′的解析式为__.【答案】y=﹣940x+5【分析】首先证明OO′∵AB,求出直线OO′解析式,与直线AB解析式联立求出M坐标,确定出O′坐标,设直线B′O′解析式为y=mx+n,把B与O′坐标代入求出m与n的值,即可确定出解析式.【详解】解:连接OO′交AB于M,∵∵BOA绕点A按顺时针方向旋转得∵B′O′A,∵∵BOA∵∵B′O′A,∵AB=AB′,OA=AO′,∵点B在B′O′的延长线上,AO′∵B B′,∵BO′=B′O′=OB,∵OA=AO′,BO=BO′,∵OO′∵AB,设直线AB解析式为y=kx+b,把A与B坐标代入得:405k bb+=⎧⎨=⎩,解得:545kb⎧=-⎪⎨⎪=⎩,∵直线AB解析式为y=﹣54x+5,∵直线OO′解析式为y=45 x,联立得:55445y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得:100418041x y ⎧=⎪⎪⎨⎪=⎪⎩,即M 10080(,)4141, ∵M 为线段OO ′的中点,∵O ′200160(,)4141, 设直线B ′O ′解析式为y =mx +n ,把B 与O ′坐标代入得:20016041415m n n ⎧+=⎪⎨⎪=⎩, 解得:m =940-,n =5, 则直线BB′解析式为y =940-x +5. 故答案为:y =﹣940x +5.【点睛】此题考查坐标与图形变化-旋转、待定系数法求一次函数解析式,正确理解各直线之间的关系,确定点坐标利用待定系数法求出函数解析式是解题的关键.13.已知一次函数1y x =和()()220220x x y x x ⎧--⎪=⎨-≥⎪⎩<,当12y y >时,x 的取值范围是 _________ 【答案】12x -<<【分析】根据函数解析式列出不等式求解即可;【详解】∵当0x <,12y y >时,20x x x --⎧⎨⎩><,解得:10x -<<;∵当0x ≥时,12y y >,220x x x -⎧⎨≥⎩>,解得 02x ≤<; 综上12x -<<;故答案是:12x -<<.【点睛】本题主要考查了一次函数的性质,分类讨论,解不等式组,准确计算是解题的关键.14.已知()111,P y -,()222,P y 是一次函数y x b =-+的图像上的两点,则1y ______2y (填“>”或“<”或“=”).【答案】>【分析】先根据一次函数y x b =-+中k =-1判断出函数的增减性,再根据-1<2进行解答即可.【详解】解:∵一次函数y x b =-+中k =-1<0,∵y 随x 的增大而减小,∵-1<2,∵y 1>y 2.故答案为>.【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解答此题的关键.15.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.∵0b <;∵0ac <;∵当1x >时,ax b cx d +>+;∵a b c d +=+;∵c d >.【答案】∵∵∵【分析】仔细观察图象:∵根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断a 、b 的正负;∵根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断c 、d 的正负,即可得出结论;∵以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;∵由两个一次函数图象的交点坐标的横坐标为1可得出结论;∵由一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),可得d c ->-1,解此不等式即可作出判断. 【详解】解:∵由图象可得:一次函数y =ax +b 图象经过一、二、四象限,∵a <0,b >0,故∵错误;∵由图象可得:一次函数y =cx +d 图象经过一、二、三象限,∵c >0,d >0,∵ac <0,故∵正确;∵由图象可得:当x >1时,一次函数y =ax +b 图象在y =cx +d 的图象下方,∵ax +b <cx +d ,故∵错误;∵∵一次函数y =ax +b 与y =cx +d 的图象的交点P 的横坐标为1,∵a +b =c +d ,故∵正确;∵∵一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),且d c->-1,c >0, ∵c >d .故∵正确.故答案为:∵∵∵.【点睛】本题考查了一次函数的图象与性质、一次函数与一元一次不等式,掌握一次函数的图象与性质并利用数形结合的思想是解题的关键.三、解答题16.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(0,1)-.(1)求这个一次函数的表达式;(2)当1x >时,对于x 的每一个值,函数y x m =-+的值小于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)1y x =-;(2)1m ≤【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(0,-1)代入y x b =+可得b 值即可求出解析式; (2)由题意可得临界值为当1x =时,两条直线都过点(1,0),即可得出当1x >时,y x m=-+都小于1y x =-,根据1x >,可得m 可取值1,可得出m 的取值范围.【详解】解:(1)∵一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,∵1k =.∵一次函数y x b =+的图象过点(01)-,, ∵1b =-.∵这个一次函数的表达式为1y x =-.(2)由(1)得y=x -1,解不等式-x+m <x -1得12m x +>由题意得11,2m +≤ 故m 的取值范围1m ≤【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键. 17.已知一次函数()()30y k x k =-≠.(1)求证:点()3,0在该函数图象上.(2)若该函数图象向上平移2个单位后过点()4,2-,求k 的值.(3)若0k <,点()11,A x y ,()22,B x y 在函数图象上,且12y y <,判断120x x -<是否成立?请说明理由.【答案】(1)见解析;(2)-4;(3)不成立,理由见解析【分析】(1)令x =3,得y =0即可得证;(2)一次函数y =k (x -3)图象向上平移2个单位得y =k (x -3)+2,将(4,-2)代入可得k ; (3)由y 1<y 2列出x 1、x 2的不等式,根据k <0可得答案.【详解】解:(1)在y =k (x -3)中令x =3,得y =0,∵点(3,0)在y =k (x -3)图象上;(2)一次函数y =k (x -3)图象向上平移2个单位得y =k (x -3)+2,将(4,-2)代入得:-2=k (4-3)+2,解得k =-4;(3)x 1-x 2<0不成立,理由如下:∵点A (x 1,y 1),B (x 2,y 2)在y =k (x -3)图象上,∵y 1=k (x 1-3),y 2=k (x 2-3),∵y 1-y 2=k (x 1-x 2),∵y 1<y 2,∵y 1-y 2<0,即k (x 1-x 2)<0,而k <0,∵x1-x2>0,∵x1-x2<0不成立.【点睛】本题考查一次函数图象上的点,解题的关键是将点坐标代入变形.18.已知一次函数的图象经过点(﹣1,2)和点(3,﹣2).(1)求这个一次函数的解析式;(2)若点A(x1,y1),B(x2,y2)在此函数图象上,且x1≤x2,请比较y1,y2的大小,并说明理由.【答案】(1)y=﹣x+1;(2)y1≥y2,理由见解析【分析】(1)根据待定系数法即可求得;(2)根据一次函数y=﹣x+1的性质即可判断.【详解】解:(1)根据题意,设一次函数解析式为:y=kx+b(0)k≠,将(﹣1,2)和(3,﹣2)代入得:232k bk b⎧-+=⎨+=-⎩,解得:11kb=-⎧⎨=⎩,∵一次函数解析式为:y=﹣x+1;(2)∵k=﹣1<0,∵y随x的增大而减小,∵当x1≤x2时,y1≥y2.【点睛】本题主要考查了一次函数的性质;待定系数法求一次函数解析式,解题的关键是熟练掌握待定系数法求一次函数解析式的过程,根据一次函数的性质比较函数值的大小.19.已知一次函数图象经过(0,-1)和(2,3)两点.(1)求此一次函数的解析式;(2)若点(m,-3)在函数图象上,求m的值.【答案】(1)y=2x-1;(2)-1【分析】(1)设一次函数解析式为y=kx+b(k≠0),再把点(0,-1)和(2,3)代入即可求出k,b的值,进而得出一次函数的解析式;(2)把点(m,-3)代入一次函数的解析式,求出m的值即可.【详解】解:(1)设一次函数的解析式为y =kx +b ,则有123b k b =-⎧⎨+=⎩, 解得:21k b =⎧⎨=-⎩, ∵一次函数的解析式为y =2x -1;(2)∵点(m ,-3)在一次函数y =2x -1图象上,∵2m -1=-3,∵m =-1.【点睛】本题考查的是用待定系数法求一次函数的解析式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.20.已知一次函数y kx b =+,当2x =时,5y =;当2x =-时,11y =-.求k 和b 的值.【答案】43k b =⎧⎨=-⎩ 【分析】根据题意列出关系k 、b 的二元一次方程组,求解即可.【详解】解:由题意,得25211k b k b +=⎧⎨-+=-⎩解得43k b =⎧⎨=-⎩∵k 和b 的值分别为4和-3.【点睛】本题主要考查了利用待定系数法求一次函数解析式,解题的关键在于能够熟练掌握相关知识进行求解.21.在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象经过点()0,1A -,点()10B ,. (1)求一次函数解析式;(2)当1x >时,对于x 的每一个值,函数2y x n =+的值大于一次函数y kx b =+的值,直接写出n 的取值范围.【答案】(1)1y x =-(2)2n ≥【分析】(1)通过待定系数法将点()0,1A -,点()10B ,代入解析式求解; (2)根据题意得出21x n x +->,求出x 得取值范围,结合1x >即可得出n 的取值范围.【详解】解:(1)∵一次函数()0y kx b k =+≠的图象经过点()0,1A -,点()10B ,, ∵10b k b-=⎧⎨=+⎩, 解得:11k b =⎧⎨=-⎩, ∵一次函数的解析式为:1y x =-,(2)由(1)得:1y x =-,根据题意:21x n x +->,解得:1x n -->,由题意得:11n --≤,即2n ≥.【点睛】本题考查了待定系数法求一次函数解析式,一次函数与一元一次不等式,根据数形结合的思想解题是关键.22.已知:y 与x +2成正比例,且x =﹣4时,y =﹣2;(1)求y 与x 之间的函数表达式;(2)点P 1(m ,y 1),P 2(m ﹣2,y 2)在(1)中所得函数图像上,比较y 1与y 2的大小.【答案】(1)2y x =+;(2)12y y >【分析】(1)根据待定系数法求解即可;(2)根据一次函数的增减性解答即可.【详解】解:(1)∵y +与x +2成正比例,设y =k (x +2),把x =﹣4,y =﹣2代入得:﹣2=k (﹣4+2),解得:k =1,∵y =x +2;(2)∵k =1>0,∵y 随x 的增大而增大,又∵m >m -2,∵y 1>y 2.【点睛】本题考查了利用待定系数法求一次函数的解析式和一次函数的性质,属于基本题型,熟练掌握一次函数的基本知识是解题关键.23.如图,直线1l 的解析表达式为:33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A 、B ,直线1l ,2l 交于点C .(1)求点D 的坐标.(2)求直线2l 的解析表达式.(3)求ADC 的面积.(4)在直线2l 上存在异于点C 的另—点P ,使得ADP △与ADC 的面积相等,请直接写出点P 的坐标.【答案】(1)(1,0)D ;(2)362y x =-;(3)92;(4)(6,3)P 【分析】(1)已知1l 的解析式,令0y =求出x 的值即可;(2)设2l 的解析式为y kx b =+,由图联立方程组求出k ,b 的值;(3)联立方程组,求出交点C 的坐标,继而可求出ADC S ∆; (4)ADP ∆与ADC ∆底边都是AD ,面积相等所以高相等,ADC ∆高就是点C 到AD 的距离. 【详解】解:(1)由33y x =-+,令0y =,得330x -+=,1x ∴=,(1,0)D ∴;(2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-,代入表达式y kx b =+, ∴40332k b k b +=⎧⎪⎨+=-⎪⎩, ∴326k b ⎧=⎪⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-; (3)由33362y x y x =-+⎧⎪⎨=-⎪⎩,解得23x y =⎧⎨=-⎩, (2,3)C ∴-,3AD =,193|3|22ADC S ∆∴=⨯⨯-=; (4)ADP ∆与ADC ∆底边都是AD ,面积相等所以高相等,ADC ∆高就是点C 到直线AD 的距离,即C 纵坐标的绝对值|3|3=-=,则P 到AD 距离3=,P ∴纵坐标的绝对值3=,点P 不是点C ,∴点P 纵坐标是3,1.56y x =-,3y =,1.563x ∴-=6x =,所以(6,3)P .【点睛】本题考查的是一次函数的性质,三角形面积的计算等有关知识,解题的关键是利用数形结合的思想进行解答.。
三年级上册数学应用题解答问题训练经典题目(及答案)(4)
三年级上册数学应用题解答问题训练经典题目(及答案)(4)一、三年级数学上册应用题解答题1.小剧场共有500个座位.一年级248人二年级247人先算一下小剧场的座位够不够坐.如果够坐,空多少个座位?如果不够坐,还差多少个座位? 2.丽丽准备买一些橡皮,她所带的钱买2盒还剩36元,买3盒还差12元,已知每盒装8块橡皮,你知道丽丽带了多少元钱吗?3.聪聪和妈妈一起做了一个大蛋糕,聪聪吃了整个蛋糕的,妈妈吃了整个蛋糕的,他们两人吃了整个蛋糕的几分之几?4.粗心的明明在做一道加法算式时,错把24写成了42,结果算出来的结果是68,你能帮他改正,求出正确的结果吗?A+=中字母A、B所代表的数字。
5.求算式6B3210186.书店、超市和学校在解放街的一旁。
书店距学校370米,超市距学校260米。
书店距超市多少米?7.把两根60厘米长的竹板钉在一起,钉完后的竹板长116厘米,钉在一起的部分是多少厘米?8.小茜在做一道减法题时,错把被减数十位上的2看作7,减数个位上的5看作8,结果得到的是592.你知道正确的差是多少?9.弟弟有卡片27张,如果哥哥给弟弟13张他们就一样多,哥哥有多少张卡片?10.小明家、小红家和书店都在振兴路上,小明家离书店420米,小红家离书店170米。
小明家可能距小红家多少米?11.游乐场上午有游客643人,中午有384人离去。
下午又来了524人,这时游乐场内有多少游客?全天游乐场内来了多少游客?12.小文在计算两个数相加时,把一个加数个位上的1错误地当作7,把另一个加数十位上的8错误地当作3,结果和为1955.原来两数相加的正确答案是多少?13.小明家、小红家和学校在同一条笔直公路上。
小明家到学校是2500米,小红家到学校是500米。
小明家和小红家之间的路程可能是多少千米?14.我们知道与之间不只有一个分数,下面有一种方法是求大于而小于的分子是2的分数,这个分母刚好是2+3=5,那么这个分数为,且<<。
小升初数学解答题专项经典习题(专题培优)(4)
考试范围:xxx;满分:***分;考试时间:100分钟;命题人:xxx 学校:__________ 姓名:__________ 班级:__________ 考号:__________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、解答题(共36题,总计0分)1.暑假开展“读一本好书”活动,小红读了一本《格林童话》,第一天读了全书的,第二天读了全书的,第三天读了30页,把这本书读完,这本书一共有多少页?2.一堆圆锥形的小麦,底面的半径是6m,高6m。
每立方米小麦大约重720kg,这堆小麦大约重多少吨?(得数保留整数)3.前进小学六(1)班学生上学方式分为接送、乘车、骑车三种情况。
下图是反映各种情况的人数的条形统计图(部分)和扇形统计图,请根据统计图回答以下问题。
(1)六(1)班学生上学接送的有多少?并在图中画出来。
(2)六(1)班学生上学骑车的比乘车的少百分之几?4.小雪和小丽都喜欢集邮,共集邮390张。
小丽集的张数的和小雪的相等。
小雪和小丽各集了多少张?(列方程解答)5.为做好国庆安保工作,某单位派人乘坐汽车到某地执行任务。
上午9时出发到12时共行180km。
照这样的速度,下午4时可到达目的地,到达目的地共行了多少千米?(列比例解答)6.一个圆锥形小麦堆,测得它的底面周长是25. 12m,高是3m.如果每立方米小麦重750kg,这堆小麦重多少千克?7.某商场冰箱五月份销售量是80台,后来举行了促销活动,六月份的销售量是110台。
六月份比五月份增长了百分之几?8.李强在市民图书馆借了一本历史故事书,如果每天看16页,15天能全部看完。
如果要在规定期限内准时归还,而不必交延时服务费,李强每天至少要看几页?9.一个圆锥形的沙堆,底面积是28. 26平方米,高是2.5米,用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?10.下面是某处海域平面示意图,一艘轮船距离灯塔800米。
红对勾讲与练系列高三文科数学二轮复习考前增分方略保分大题不失分
高三二轮 ·新课标版 ·数学(文)
进入导航
第二部分 专题一 第三讲 第1课时
系列丛书
当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a,
联立方程组ab2=+2ba2-ab=4
,解得a=2
3
3,b=4 3
3 .
所以△ABC的面积S=12absinC=2 3
3 .
高三二轮 ·新课标版 ·数学(文)
高三二轮 ·新课标版 ·数学(文)
进入导航
第二部分 专题一 第三讲 第1课时
系列丛书
tan(x1+x2)=tan4π+π6
=1-tantaπ4n+π4×tantaπ6nπ6=11-+
3 33=2+ 3
3.
高三二轮 ·新课标版 ·数学(文)
进入导航
第二部分 专题一 第三讲 第1课时
系列丛书
1.(2014·福建卷)已知函数f(x)=cosx(sinx+cosx)-12. (1)若0<α<π2,且sinα= 22,求f(α)的值; (2)求函数f(x)的最小正周期及单调递增区间.
6 4.
(2)在△ABD中,由sAinDB=sin∠BDBAD得3
3
=BD, 66
84
高三二轮 ·新课标版 ·数学(文)
进入导航
第二部分 专题一 第三讲 第1课时
系列丛书
解得BD=2. 故DC=2,从而在△ADC中,由AC2=AD2+DC2- 2AD·DC·cos∠ADC=32+22-2×3×2×(-14)=16,得AC=4.
进入导航
第二部分 专题一 第三讲 第1课时
系列丛书
【解】 (1)∵m=(sinB,1-cosB),n=(2,0), ∴m·n=2sinB, 又|m|= sin2B+1-cosB2= 2-2cosB=2sinB2, ∵0<B<π, ∴0<B2<π2, ∴sinB2>0,
四年级数学解决问题解答应用题练习题50专项训练带答案解析(1)
四年级数学解决问题解答应用题练习题50专项训练带答案解析(1)一、四年级数学上册应用题解答题1.新学期红星小学准备买50个篮球,其中有三家文体超市篮球的价格都是50元,但三家超市的优惠办法各不相同。
A店:买10个篮球免费赠送1个,不足10个不赠送。
B店:每个篮球优惠5元。
C店:购物每满200元,返还现金20元。
为了节省费用,红星小学应到哪家超市购买篮球?请计算说明。
2.王老师带800元钱去商店买体育用品,买足球用去320元,剩下的钱用来买排球。
可以买多少个排球?3.每棵树苗16元,元旦搞活动,买3棵送1棵,192元最多可以买多少棵?4.要给参加国庆文艺会演的小演员们买表演服装。
900元最多能买多少件这样的衣服?5.一个长200米、宽50米的长方形果园.如果长与宽都扩大到原来的2倍,那么果园的面积增加了多少公顷?6.猫妈妈带着小花猫去河边钓鱼,共钓了16条。
猫妈妈见小花猫钓的少,怕它心情不好,就给小花猫2条,这时猫妈妈的条数正好是小花猫的3倍,问猫妈妈和小花猫各钓了多少条鱼?7.向阳小学要为三、四年级的学生每人买一本价格为12元的作文辅导书。
已知三年级有145人,四年级有155人,两个年级一共需要多少元?8.9.有一堆黄沙,先运走18吨,剩下的用7辆车运完,每车运6吨,这堆黄沙共有多少吨?10.某车间原加工2400个零件需8小时,技改后在同样的时间里可加工同种零件5600个,技改后每小时可比技改前多加工零件多少个(用两种方法解)11.今年植树节,阳光小学140名少先队员参加了植树活动。
这些少先队员平均分成4队,每队分成5个小组。
平均每个小组有多少名少先队员?12.某游乐园的门票是每张80元,如果去的人多,购买团体票比较合算,四年级有45人去游玩,购买团体票共付了3240元,这样每人便宜了多少元?13.大淘和小淘的家距离学校1000米,哥俩放学后各自回家,弟弟小淘以每分钟40米的速度步行回家,5分钟后,哥哥大淘以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?14.六一儿童节老师给同学们去购买饮料,同一种饮料有两种包装。
基础化学习题解答(第四章)
思考与习题一、填空题:1.可逆反应 2A(g) + B(g)2C(g) ;Δr H m θ< 0 。
反应达到平衡时,容器体积不变,增加B 的分压,则C 的分压 ___增大_______,A 的分压 ___减小________ ;减小容器的体积,B 的分压 _____减小______, K θ___不变________。
2.由N 2和H 2合成NH 3的反应中,Δr H m θ < 0,当达到平衡后,再适当降低温度则正反应速率将________减小 _____,逆反应速率将___减小__________,平衡将向___右 _____方向移动。
3.一定温度下,反应 PCl 5(g)PCl 3(g) + Cl 2 (g) 达到平衡后,维持温度和体积不变,向容器中加入一定量的惰性气体,反应将____不 _______ 移动。
4. 基元反应 2NO + Cl 2 → 2NOCl 是_3 _分子反应,是 3_级反应,其速率方程为__)Cl (·)NO ( 2c c k ⋅=υ____。
5.在密闭容器中进行N 2(g)+3H 2(g)→2NH 3(g)的反应,若压力增大到原来的2倍,反应速率增大 __16___ 倍。
6.可逆反应: I 2+H 22HI 在713K 时K θ=51,若将上式改写为 :21I 2 +21H 2HI 则其K θ为 __51 ____ 。
7.已知下列反应的平衡常数: H 2(g) + S(s) H 2S(g) K θ1S(s) + O 2(g)SO 2(g) K θ2则反应 H 2(g) + SO 2(g)O 2(g) + H 2S(g)的K θ为( θ1K /θ2K )。
8.反应:2Cl 2 (g) + 2H 2O (g) 4HCl (g) + O 2 (g) Δr H m θ>0 ,达到平衡后进行下述变化,对指明的项目有何影响?① 加入一定量的O 2,会使n (H 2O ,g) 增大 ,n (HCl) 减小 ; ② 增大反应器体积,n (H 2O ,g) 减小 ; ③ 减小反应器体积,n (Cl 2) 增大 ;④ 升高温度,K θ 增大 ,n (HCl) 增大 ;⑤ 加入催化剂,n (HCl) 减小 。
小学五年级数学下册期末专项训练题(847)
小学五年级数学下册期末专项训练题(847)好的,以下是一份针对小学五年级数学下册期末专项训练题的内容:一、选择题1. 以下哪个分数不能被化简?A. \(\frac{2}{4}\)B. \(\frac{3}{6}\)C. \(\frac{5}{10}\)D. \(\frac{7}{8}\)2. 一个长方体的长、宽、高分别是10厘米、8厘米和5厘米,那么它的体积是多少立方厘米?A. 400B. 300C. 200D. 5003. 如果一个数除以4余1,那么这个数除以8的余数是多少?A. 1B. 2C. 3D. 4二、填空题4. 一个数的3倍是48,这个数是______。
5. 一个长方体的体积是120立方厘米,如果高减少2厘米,体积变为90立方厘米,那么原来的高是______厘米。
6. 一个分数的分子是分母的一半,如果分子增加4,分母增加8,新的分数与原分数相等,原分数是______。
三、解答题7. 一个班级有45名学生,男生人数是女生人数的1.5倍,请问这个班级有多少名男生和女生?8. 一个长方体的长、宽、高分别是12厘米、9厘米和7厘米,求这个长方体的表面积。
9. 一个数乘以3后再加上4等于22,求这个数。
四、应用题10. 小华有120元,他想买3本同样的书,每本书的价格是x元。
如果小华买了书后还剩下20元,那么每本书的价格是多少?11. 一个游泳池的长是25米,宽是10米,深是2米。
如果每立方米水的重量是1吨,那么这个游泳池装满水后总重量是多少吨?12. 一个工厂生产一批零件,原计划每天生产80个,需要15天完成。
现在工厂改进了生产效率,每天可以生产100个零件,那么完成这批零件需要多少天?请注意,这些题目需要根据学生的具体学习情况和教学大纲进行适当调整。
希望这些题目能够帮助学生更好地复习和准备期末考试。
2023年中考数学 解答题专项训练——二次函数
2022-2023学年数学 中考解答题专项训练——二次函数一、解答题1. 在同一坐标系内,画出函数y=2x 2和y=2(x-1)2+1的图象,并说出它们的相同点和不同点. 2.写出抛物线y =﹣x 2+4x 的开口方向、对称轴、顶点坐标和最大值.3.若二次函数y=x 2+bx+c 的图象经过点(0,1)和(1,﹣2)两点,求此二次函数的表达式. 4.求下列二次函数图象的对称轴和顶点坐标: 221221y x x =++ . 5.求抛物线y =12x 2﹣x +1在﹣2≤x≤2的最大值与最小值. 6.如图,二次函数 223y x x =-++ 的图象与x 轴交于A 、B 两点,与y 轴交于点C ,顶点为D ,求 BCD 的面积.7.已知关于x 的一元二次方程x 2+2x+12k -=0有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数y=x 2+2x+12k -的图象向下平移9个单位,求平移后的图象的表达式;(3)在(2)的条件下,平移后的二次函数的图象与x 轴交于点A ,B (点A 在点B 左侧),直线y=kx+b (k >0)过点B ,且与抛物线的另一个交点为C ,直线BC 上方的抛物线与线段BC 组成新的图象,当此新图象的最小值大于﹣5时,求k 的取值范围.8.若抛物线的顶点坐标为(12)-,,且过点(12)-,,求抛物线的解析式. 9.用配方法把二次函数y=﹣2x 2+6x+4化为y=a (x+m )2+k 的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.10.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x 倍,则预计今年年销售量将比去年年销售量增加x 倍(本题中0<x≤1).(1)用含x 的代数式表示,今年生产的这种玩具每件的成本为多少元,今年生产的这种玩具每件的出厂价为多少元.(2)求今年这种玩具的每件利润y 元与x 之间的函数关系式.(3)设今年这种玩具的年销售利润为w 万元,求当x 为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.11.如果二次函数y=x 2﹣x+c 的图象过点(1,2),求这个二次函数的解析式,并求出该函数图象的顶点坐标.12.已知二次函数图象的顶点坐标是(1,-4),且与y 轴交于点(0,-3),求此二次函数的解析式 13.已知一条抛物线分别过点 (3,2)- 和 (0,1) ,且它的对称轴为直线 2x = ,试求这条抛物线的解析式.14.如图,直线y=﹣x+3与x 轴交于点C ,与y 轴交于点A ,点B 的坐标为(2,3)抛物线y=﹣x 2+bx+c 经过A 、C 两点.(1)求抛物线的解析式,并验证点B 是否在抛物线上;(2)作BD⊥OC ,垂足为D ,连接AB ,E 为y 轴左侧抛物线点,当⊥EAB 与⊥EBD 的面积相等时,求点E 的坐标;(3)点P 在直线AC 上,点Q 在抛物线y=﹣x 2+bx+c 上,是否存在P 、Q ,使以A 、B 、P 、Q 为顶点的四边形为平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.15.如图1,在平面直角坐标系中,二次函数y=﹣427x 2+12的图象与y 轴交于点A ,与x 轴交于B ,C 两点(点B 在点C 的左侧),连接AB ,AC .(1)点B的坐标为,点C的坐标为;(2)过点C作射线CD⊥AB,点M是线段AB上的动点,点P是线段AC上的动点,且始终满足BM=AP(点M不与点A,点B重合),过点M作MN⊥BC分别交AC于点Q,交射线CD于点N (点Q不与点P重合),连接PM,PN,设线段AP的长为n.①如图2,当n<12AC时,求证:⊥PAM⊥⊥NCP;②直接用含n的代数式表示线段PQ的长;③若PM97y=﹣427x2+12的图象经过平移同时过点P和点N时,请直接写出此时的二次函数表达式.答案解析部分1.【答案】解:如图,相同点:开口方向和开口大小相同;不同点:函数y=2(x-1)2+1的图象是由函数y=2x 2的图象向上平移1个单位长度, 再向右平移1个单位长度所得到的,位置不同.2.【答案】解: ()22424y x x x =-+=--+ ;∴抛物线的开口向下,对称轴是直线x=2,顶点坐标是(2,4),最大值是4.3.【答案】解:∵二次函数y=x 2+bx+c 的图象经过(0,1)和(1,-2)两点,∴1,21.c b c =⎧⎨-=++⎩解得 4,1.b c =-⎧⎨=⎩∴二次函数的表达式为y=x 2-4x+1.4.【答案】解: 221221y x x =++()2269921x x =++-+ ()2231821x =+-+ ()2233x =++∴对称轴为直线 3x =- ,顶点坐标为( 3- ,3).5.【答案】解:抛物线 y =12x 2﹣x +1, ∴ 抛物线的对称轴方程为:111222b x a -=-=-=⨯,102a =>, 则函数图象的开口向上,当1x =时,111122y =-+=最小值, 当2x =-时,()142152y =⨯--+=, 当2x =时,142112y =⨯-+=,而1152<<,所以抛物线y =12x 2﹣x +1在﹣2≤x≤2的最大值为5,最小值为1.26.【答案】解:延长DC 交x 轴于E ,依题意,可得y =−x 2+2x +3=−(x−1)2+4, ∴顶点D (1,4),令y =0,可得x =3或x =−1, ∴B (3,0), 令x =0,可得y =3, ∴C (0,3), ∴OC =3,∴直线DC 的解析式为y =x +3, 令y =0,可得x =-3, ∴E (-3,0), BE =6,∴S ⊥BCD =S ⊥BED −S ⊥BCE = 11646322⨯⨯-⨯⨯ =12-9=3. ∴⊥BCD 的面积为3.7.【答案】解:(1)∵关于x 的一元二次方程x 2+2x+12k -=0有实数根, ∴⊥=b 2﹣4ac=4﹣4×12k -≥0, ∴k ﹣1≤2, ∴k≤3,∵k为正整数,∴k的值是1,2,3;(2)∵方程有两个非零的整数根,当k=1时,x2+2x=0,不合题意,舍去,当k=2时,x2+2x+12=0,方程的根不是整数,不合题意,舍去,当k=3时,x2+2x+1=0,解得:x1=x2=﹣1,符合题意,∴k=3,∴y=x2+2x+1,∴平移后的图象的表达式y=x2+2x+1﹣9=x2+2x﹣8;(3)令y=0,x2+2x﹣8=0,∴x1=﹣4,x2=2,∵与x轴交于点A,B(点A在点B左侧),∴A(﹣4,0),B(2,0),∵直线l:y=kx+b(k>0)经过点B,∴函数新图象如图所示,当点C在抛物线对称轴左侧时,新函数的最小值有可能大于﹣5,令y=﹣5,即x2+2x﹣8=﹣5,解得:x1=﹣3,x2=1,(不合题意,舍去),∴抛物线经过点(﹣3,﹣5),当直线y=kx+b(k>0)经过点(﹣3,﹣5),(2,0)时,可求得k=1,由图象可知,当0<k<1时新函数的最小值大于﹣5.8.【答案】解:设抛物线解析式为2(1)2y a x =++,(12)-,代入得2(11)22a ⨯++=-,44a =-解得1a =-,即抛物线解析式为2(1)2y x =-++.9.【答案】解: 2264y x x =-++ ,= 29923442x x ⎛⎫--+++ ⎪⎝⎭ , = 22317317222222x x ⎡⎤⎛⎫⎛⎫--+=-+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,开口向下,对称轴为直线 32x =,顶点 317,22⎛⎫ ⎪⎝⎭. 10.【答案】解:(1)10+7x ;12+6x ;(2)y=(12+6x )﹣(10+7x ), ∴y=2﹣x (0<x≤1); (3)∵w=2(1+x )•y =2(1+x )(2﹣x ) =﹣2x 2+2x+4,∴w=﹣2(x ﹣0.5)2+4.5 ∵﹣2<0,0<x≤1, ∴w 有最大值,∴当x=0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.11.【答案】解:将x=1,y=2代入y=x 2﹣x+c 得:2=1﹣1+c ,即c=2,则二次函数解析式为y=x 2﹣x+2;∵y=x 2﹣x+2=(x ﹣12 )2+ 74 , ∴抛物线顶点坐标为( 12 , 74)12.【答案】解:设二次函数为y=a(x-1)2-4(a≠0),代入(0,-3)得-3= a(0-1)2-4 解得a=1∴二次函数为y= (x-1)2-4.13.【答案】解:∵抛物线的对称轴为 2x = ,∴可设抛物线的解析式为 2(2)y a x b =-+把 (3,2)- , (0,1) 代入解析式得 ()()2232=202=1a b a b ⎧-+-⎪⎨-+⎪⎩ , 解得 1a = , 3b =- ,∴所求抛物线的解析式为 2(2)3y x =--14.【答案】解:(1)在y=﹣x+3中,令x=0,得y=3;令y=0,得x=3, ∴A (0,3),C (3,0).∵抛物线y=﹣x 2+bx+c 经过A 、C 两点,∴3930c b c =⎧⎨-++=⎩, 解得23b c =⎧⎨=⎩,∴抛物线的解析式为y=﹣x 2+2x+3, 当x=2时,y=﹣22+2×2+3=3,∴点B(2,3)在抛物线上;(2)∵A(0,3),B(2,3),∴AO=BD=3,∵AO⊥OC,BD⊥OC,∴AO⊥BD,∴四边形AODB是平行四边形,∵⊥AOD=90°,∴平行四边形AODB是矩形,∴AB⊥AO.设E(x,﹣x2+2x+3),则S⊥EAB=12AB•[3﹣(﹣x2+2x+3)]=x2﹣2x,S⊥EBD=12BD•(2﹣x)=32(2﹣x),∵S⊥EAB=S⊥EBD,∴x2﹣2x=32(2﹣x),解得x1=﹣32,x2=2(舍去),∴点E的坐标为(﹣32,﹣94);(3)存在P、Q,使以A、B、P、Q为顶点的四边形为平行四边形.理由如下:设点P的坐标为(x,﹣x+3),分两种情况:①当AB为边时;⊥)如果四边形BAPQ为平行四边形,那么PQ⊥AB⊥x轴,且PQ=AB=2,∴Q点坐标为(x+2,﹣x+3),∵Q点在抛物线y=﹣x2+2x+3上,∴﹣x+3=﹣(x+2)2+2(x+2)+3,整理得x2+x=0,解得x1=﹣1,x2=0(舍去),∴点P的坐标为(﹣1,4);⊥)如果四边形BAQP为平行四边形,那么PQ⊥AB⊥x轴,且PQ=AB=2,∴Q点坐标为(x﹣2,﹣x+3),∵Q点在抛物线y=﹣x2+2x+3上,∴﹣x+3=﹣(x﹣2)2+2(x﹣2)+3,整理得x2﹣7x+8=0,解得x1717+x2717-,∴点P的坐标为(7172+,﹣7172+)或(7172,7172);②当AB为对角线时,则AB与PQ互相平分,∵A(0,3),B(2,3),∴AB中点坐标为(1,3),∵点P的坐标为(x,﹣x+3),∴点Q的坐标为(2﹣x,x+3),∵Q点在抛物线y=﹣x2+2x+3上,∴x+3=﹣(2﹣x)2+2(2﹣x)+3,整理得x2﹣x=0,解得x1=1,x2=0(舍去),∴点P的坐标为(1,2);综上所述,符合条件的点P坐标为(﹣1,4)或(7172+,﹣7172+)或(7172,717-)或(1,2).15.【答案】(1)答:(﹣9,0),(9,0).解:B、C为抛物线与x轴的交点,故代入y=0,得y=﹣427x2+12=0,解得x=﹣9或x=9,即B(﹣9,0),C(9,0).(2)①证明:∵AB⊥CN,∴⊥MAP=⊥PCN,∵MN⊥BC,∴四边形MBCN为平行四边形,∴BM=CN,∵AP=BM,∴AP=CN,∵BO=OC,OA⊥BC,∴OA垂直平分BC,∴AB=AC,∴AM=AB﹣BM=AC﹣AP=CP.在⊥PAM和⊥NCP中,,∴⊥PAM⊥⊥NCP(SAS).②解:1.当n<12AC时,如图1,,∵四边形MBCN为平行四边形,∴⊥MBC=⊥QNC,∵AB=AC,MN⊥BC,∴⊥MBC=⊥QCB=⊥NQC,∴⊥NQC=⊥QNC,∴CN=CQ,∵⊥MAP⊥⊥PCN,∴AP=CN=CQ,∵AP=n,22AO OC+22129+=15,∴PQ=AC﹣AP﹣QC=15﹣2n.2.当n=12AC时,显然P、Q重合,不符合题意.3.当n>12AC时,如图2,∵四边形MBCN 为平行四边形, ∴⊥MBC=⊥QNC ,BM=CN ∵AB=AC ,MN⊥BC , ∴⊥MBC=⊥QCB=⊥NQC , ∴⊥NQC=⊥QNC , ∴BM=CN=CQ , ∵AP=BM , ∴AP=CQ , ∵AP=n ,AC=15,∴PQ=AP+QC ﹣AC=2n ﹣15.综上所述,当n <12AC 时,PQ=15﹣2n ;当n >12AC 时,PQ=2n ﹣15. ③y=24164279x x -++或243212279x x -+-. 分析如下: 1.当n <12AC 时,如图3,过点P 作x 轴的垂线,交MN 于E ,交BC 于F . 此时⊥PEQ⊥⊥PFC⊥⊥AOC ,PQ=15﹣2n .∵PM=PN , ∴ME=EN=12MN=12BC=9, ∴22PM ME -9781-,∵OC :OA :AC=3:4:5,⊥PEQ⊥⊥PFC⊥⊥AOC , ∴PQ=5, ∴15﹣2n=5, ∴AP=n=5, ∴PC=10, ∴FC=6,PF=8,∵OF=OC ﹣FC=9﹣6=3,EN=9,EF=PF ﹣PE=8﹣4=4, ∴P (3,8),N (12,4). 设二次函数y=﹣427x 2+12平移后的解析式为y=﹣427(x+k )2+12+h , ∴()()22483122744121227k h k h ⎧=-+++⎪⎪⎨⎪=-+++⎪⎩,解得 683k h =-⎧⎪⎨=-⎪⎩,∴y=﹣427(x ﹣6)2+12﹣83=﹣427x 2+169x+4. 2.当n >12AC 时,如图4,过点P 作x 轴的垂线,交MN 于E ,交BC 于F .此时⊥PEQ⊥⊥PFC⊥⊥AOC ,PQ=2n ﹣15.∵PM=PN , ∴ME=EN=12MN=12BC=9, ∴22PM ME -9781-,∵OC :OA :AC=3:4:5,⊥PEQ⊥⊥PFC⊥⊥AOC , ∴PQ=5,∴2n ﹣15=5, ∴AP=n=10, ∴PC=5, ∴FC=3,PF=4,∵OF=OC ﹣FC=9﹣3=6,EN=9,EF=PF+PE=4+4=8, ∴P (6,4),N (15,8). 设二次函数y=﹣427x 2+12平移后的解析式为y=﹣427(x+k )2+12+h , ∴()()22446122748151227k h k h ⎧=-+++⎪⎪⎨⎪=-+++⎪⎩,解得 1283k h =-⎧⎪⎨=-⎪⎩,∴y=﹣427(x ﹣12)2+12﹣83=﹣427x 2+329x+4.。
20XX人教版版四年级数学解决问题解答应用题练习专项专题训练带答案解析
20XX人教版版四年级数学解决问题解答应用题练习专项专题训练带答案解析一、四年级数学上册应用题解答题1.四年级师生去看儿童剧,去了108名学生和2位老师。
学生票每人12元,成人票每人18元,他们买票共需要多少钱?2.王老师带800元钱去商店买体育用品,买足球用去320元,剩下的钱用来买排球。
可以买多少个排球?3.一辆汽车从甲地到乙地,前3 小时行了150千米,以后每小时速度提高了10千米,又用了2小时到达乙地.甲、乙两地相距多少千米.4.有一条宽6米的人行道,占地面积是720平方米.为了行走方便,道路的宽度要增加到18米,长不变.问扩宽后这条人行道的面积是多少?5.有8盒茶叶,如果从每盒中取出120克,那么8盒中剩下的茶叶正好和原来7盒茶叶的质量相等。
原来一共有茶叶多少克?6.关爱老人活动,李叔叔给敬老院送20箱苹果,每箱8千克,每千克18元。
李叔叔买这些苹果花了多少元?7.“六一”前夕,老师要买13支钢笔作奖品,商场正好有一种钢笔在促销,买五支送一支。
这种钢笔每支15元。
老师买13支这样的钢笔要花多少钱?8.丽丽家的厨房铺地砖,有两种方案。
方案一:铺边长是3分米的正方形地砖,需要100块。
方案二:铺长3分米、宽2分米的长方形地砖。
(1)丽丽家厨房的面积是多少平方分米?合多少平方米?(2)若采用第二种方案,则需要多少块长方形地砖?(3)哪种方案比较便宜?9.汽车从A城开往B城,每小时行驶80千米,要3小时才能到达。
返回时,只需2小时就能到达。
返回时汽车每小时行驶多少千米?10.一辆洒水车,每分钟行驶250米,洒水的宽度是8米。
洒水车行驶13分钟,能给多大的地面洒上水?11.一辆洒水车,它的洒水宽度是14米,每分钟行驶200米。
一条路长3500米,宽14米,如果两辆这种洒水车同时工作,10分钟后能给这条路的表面都散上水吗?12.小宇、小萍两人同时从A、B两地相向而行,24分钟后两人相遇。
如果小宇每分钟行75米,小萍每分钟行50米,则A、B两地相距多少米?13.下图中长方形花圃的长增加到54米,宽不变,扩建后的面积是多少平方米?①你认为谁的想法是正确的,请在她名字后面的括号里打√②你喜欢谁的想法,说说她解决问题的思路。
解方分式方程及增根问题专项训练(30题)(学生版)
解方分式方程及增根问题专项训练(30题)一、解答题1.解分式方程:2−x x−3+13−x=12.解方程:2x2−1+1=x x−1.3.解分式方程:x x−3−2=4x−34.解方程:1x−1=2x.5.解答下面两题:(1)解方程:x−3x−2+52−x=3(2)化简:(x−3x x+1)÷x−2x2+2x+1 6.x2−2x+3+6x+182−x2=−17.解分式方程:x x−1−31−x=8.解方程:52x+4−12−x=x2x2−4−19.解方程:2x2x−5−22x+5=1.10.解方程:x x−5=22x−10−1 11.解方程:6x−3−2x+184x−12=1.12.解方程:x+2x−2−16x2−4=1x+2.14.解分式方程:x x−3﹣1=18x2−9.15.解分式方程:2−x x−3+4=13−x.16.解方程:3+x x−4+1=14−x.18.解方程:2x−2+3=1−x2−x.19.解方程:102x−1+51−2x=2 20.解分式方程x+1x+2+x+6x+7=x+2x+3+x+5x+621.若关于x的方程m x2−9+2x+3=1x−3有增根,则增根是多少?并求方程产生增根时m的值.22.m为何值时,关于x的方程2x−2+mx x2−4=3x+2会产生增根?23.当m为何值时,关于x的方程2x-3x-2=m+4x-2会产生增根?24.当a为何值时,关于x的方程2x−2+ax x2−4=3x+2会产生增根?25.计算:当m为何值时,关于x的方程2x+1+51−x=m x2−1会产生增根?26.若关于x的方程2x−1+51−x=m x2−1有增根,求增根和m的值.27.当k为何值时,分式方程6x−1=x+2k x(x−1)−5x有增根?28.试问:当k为何值时,方程x x−2−2x x+2=x+k x2−4有增根?29.当m为何值时,解方程2x−2+mx x2−4=0会产生增根?30.当a为何值时,关于x的方程x x+3=2+a x+3会产生增根?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-12-
3.从解题方法上说,由于线线平行(垂直)、线面平行(垂直)、面面 平行(垂直)之间可以相互转化,因此整个解题过程始终沿着线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)的转化途径进行.
专项四
题型一 题型二 题型三
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-3-
题型一线线、线面平行或垂直的判定与性质 1.在解决线线平行、线面平行问题时,若题目中已出现了中点,可 考虑在图形中再取中点,构成中位线进行证明. 2.要证线面平行,先在平面内找一条直线与已知直线平行,或找一 个经过已知直线与已知平面相交的平面,找出交线,证明二线平行. 3.要证线线平行,可考虑公理4或转化为线面平行. 4.要证线面垂直可转化为证明线线垂直,应用线面垂直的判定定 理与性质定理进行转化.
高考中的立体几何
考情分析 典例剖析 专题总结
-13-
例2如图,在正三棱柱ABC-A1B1C1中,F,F1分别是AC,A1C1的中点.
求证:(1)平面AB1F1∥平面C1BF. (2)平面AB1F1⊥平面ACC1A1.
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-14-
证明:(1)在正三棱柱ABC-A1B1C1中,∵F,F1分别是AC,A1C1的中点, ∴B1F1∥BF,AF1∥C1F. ∴B1F1∥平面BFC1,AF1∥平面BFC1, 又∵B1F1与AF1是两相交直线, ∴平面AB1F1∥平面C1BF. (2)在正三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1, ∴B1F1⊥AA1.又B1F1⊥A1C1,A1C1∩AA1=A1, ∴B1F1⊥平面ACC1A1.而B1F1⫋平面AB1F1, ∴平面AB1F1⊥平面ACC1A1.
1
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-18-
题型三平行、垂直关系及体积中的探索性问题 1.对命题条件探索的三种途径: (1)先猜后证,即先观察与尝试给出条件再证明; (2)先通过命题成立的必要条件探索出命题成立的条件,再证明充 分性; (3)将几何问题转化为代数问题,探索出命题成立的条件. 2.对命题结论的探索方法. 从条件出发,探索出要求的结论是什么,对于探索结论是否存在, 求解时常假设结论存在,再寻找与条件相容或者矛盾的结论.
3 S= . 4 1 3 3 12
所以四面体 F-BCD 的体积为 VF-BCD= S· FC= .
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-21-
(3)解:线段AC上存在点M,且M为AC中点时,有EA∥平面FDM. 证明如下:
连接CE,与DF交于点N,取AC的中点M,连接MN.如图所示, 因为CDEF为正方形,所以N为CE中点.所以EA∥MN. 因为MN⫋平面FDM,EA⊈平面FDM,所以EA∥平面FDM. 所以线段AC上存在点M,使得EA∥平面FDM成立.
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-16-
证明:(1)∵四边形 ABB1A1 为正方形,
∴A1A=AB=AC=1,A1A⊥AB.∴A1B= 2. ∵A1C=A1B,∴A1C= 2.∴∠A1AC=90°, ∴A1A⊥AC.∵AB∩AC=A,∴A1A⊥平面 ABC. 又∵A1A⫋平面 A1AC,∴平面 A1AC⊥平面 ABC.
1 AM= BE1. 2 1 2
所以 PQ∥AM,且 PQ=AM. 所以四边形 APQM 为平行四边形. 所以 MQ∥AP,MQ=AP. 因为四边形 ABCD 为梯形,P 为 BC 的中点,BC=2AD, 所以 AD∥PC,AD=PC.
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-10-
(2)证明:如图,过点M作MN∥BC,且交AB于点N,连接NF,
������������ 1 = , ������������ 3 ������������ ������������ 所以 = ������������ ������������
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-19-
例3
在如图所示的几何体中,四边形CDEF为正方形,四边形ABCD为 等腰梯形,AB∥CD, AC= 3 ,AB=2BC=2,AC⊥FB. (1)求证:AC⊥平面FBC. (2)求四面体F-BCD的体积. (3)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-11-
题型二面面平行或垂直的判定与性质 1.判定面面平行的四个方法: (1)利用定义:判断两个平面没有公共点. (2)利用面面平行的判定定理. (3)利用垂直于同一条直线的两平面平行. (4)利用平面平行的传递性,即两个平面同时平行于第三个平面, 则这两个平面平行. 2.面面垂直的证明方法: (1)用面面垂直的判定定理,即先证明其中一个平面经过另一个平 面的一条垂线. (2)用面面垂直的定义,即证明两个平面所成的二面角是直二面角.
考情分析 典例剖析 专题总结
-8-
对点训练1 (2015北京西城区高三一模) 如图,在五面体ABCDEF中,四边形ABCD为正方形,EF∥AD,平面 ADEF⊥平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.
(1)证明:AG⊥CD; ������������ 1 (2)若点M在线段AC上,且 ������������ = 3 ,求证:GM∥平面ABF; (3)已知空间中有一点O到A,B,C,D,G五点的距离相等,请指出点O 的位置.(只需写出结论)
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-5-
(1)证明:因为四边形ABE1F1为矩形,所以BE1⊥AB. 因为平面ABCD⊥平面ABE1F1,且平面ABCD∩平面 ABE1F1=AB,BE1⫋平面ABE1F1, 所以BE1⊥平面ABCD. 因为DC⫋平面ABCD,所以BE1⊥DC. (2)证明:因为四边形ABE1F1为矩形,所以AM∥BE1. 因为AD∥BC,AD∩AM=A,BC∩BE1=B, 所以平面ADM∥平面BCE1. 因为DM⫋平面ADM,所以DM∥平面BCE1.
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-9-
(1)证明:因为AE=AF,点G是EF的中点,所以AG⊥EF. 又因为EF∥AD,所以AG⊥AD. 因为平面ADEF⊥平面ABCD, 且平面ADEF∩平面ABCD=AD,AG⫋平面ADEF, 所以AG⊥平面ABCD. 因为CD⫋平面ABCD,所以AG⊥CD.
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-6-
(3)解:直线 CD 与 ME1 相交,理由如下:取 BC 的中点 P,CE1 的中 点 Q,连接 AP,PQ,QM. 所以 PQ∥BE1,且 PQ= BE1. 在矩形 ABE1F1 中,M 为 AF1 的中点, 所以 AM∥BE1,且
高考中的立体几何
考情分析 典例剖析 专题总结
-17-
∵B1C1∥BC,B1C1=2BC, ∴B1C1∥BE,B1C1=BE. ∴四边形 BB1C1E 为平行四边形. ∴B1B∥C1E,且 B1B=C1E. 又∵四边形 ABB1A1 是正方形, ∴A1A∥C1E,且 A1A=C1E. ∴四边形 AEC1A1 为平行四边形, ∴AE∥A1C1. ∵A1C1⫋平面 A1C1C,AE⊈平面 A1C1C, ∴AE∥平面 A1C1C. ∵AE∩B1E=E,∴平面 B1AE∥平面 A1C1C. ∵AB1⫋平面 B1AE,∴AB1∥平面 A1C1C.
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-15-
对点训练2 如图所示,在多面体ABC-A1B1C1中,四边形ABB1A1是 正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1= 1BC .
2
求证:(1)平面A1AC⊥平面ABC; (2)AB1∥平面A1C1C.
-7-
所以四边形ADCP为平行四边形. 所以CD∥AP,且CD=AP. 所以CD∥MQ且CD=MQ. 所以CDMQ是平行四边形. 所以DM∥CQ,即DM∥CE1.因为DM≠CE1, 所以四边形DME1C是以DM,CE1为底边的梯形. 所以直线CD与ME1相交.
专项四
题型一 题型二 题型三
高考中的立体几何
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-4-
例1如图①,在梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD,四边形 ABEF是矩形.将矩形ABEF沿AB折起到四边形ABE1F1的位置,使平 面ABE1F1⊥平面ABCD,M为AF1的中点,如图②.
图① 图② (1)求证:BE1⊥DC; (2)求证:DM∥平面BCE1; (3)判断直线CD与ME1的位置关系,并说明理由.
专项四
题型一 题型二 题型三
高考中的立体几何
考情分析 典例剖析 专题总结
-20-
(1)证明:在△ABC 中, 因为 AC= 3,AB=2,BC=1,所以 AC⊥BC. 又因为 AC⊥FB,BC∩FB=B, 所以 AC⊥平面 FBC. (2)解:因为 AC⊥平面 FBC,所以 AC⊥FC. 因为 CD⊥FC,AC∩CD=C, 所以 FC⊥平面 ABCD. 在等腰梯形 ABCD 中,可得 CB=DC=1, 所以 FC=1.所以△BCD 的面积为