第5讲 函数的值域

合集下载

第5讲函数的概念、解析式及定义域

第5讲函数的概念、解析式及定义域

题型三 分段函数问题
(1)已知函数 f(x)=f (x+2)(x≤-1) 已知函数 2x+2 (-1<x<1) 2x-4 (x≥1), , 0 则f [f(-2008)]= ; (2) f(x)=-x+1(x<0) x-1(x≥0),则不等式 则不等式x+(x+1)f(x+1)≤1的 则不等式 的 {x|x≤ 2 -1} . 解集是
t 1 2 t 1 ) -6 +5=t2-4t+8, 得f(t)=9( 3 3
(方法三)整体代换法. 方法三)整体代换法 因为f(3x+1)=(3x+1)2-4(3x+1)+8, 因为 , 所以f(x)=x2-4x+8. 所以 (2)直接列方程组求解 直接列方程组求解. 直接列方程组求解 由2f(x)+f(-x)=3x+2,用-x代换此式中的 代换此式中的x, 用 代换此式中的 得2f(-x)+f(x)=-3x+2, 解方程组 2f(x)+f(-x)=3x+2 2f(-x)+f(x)=-3x+2, 2 得f(x)=3x+ . 3
比较两端的系数, 比较两端的系数, 得 9a=9 a=1 解得 b=-4 , 6a+3b=-6 , c=8 a+b+c=5 所以f(x)=x2-4x+8. 所以
t 1 , 令t=3x+1,则x= 则 3
(方法二 换元法 方法二)换元法 方法二 换元法.
代入f(3x+1)=9x2-6x+5中, 代入 中 所以f(x)=x2-4x+8. 所以
f(2)=log3(22-1)=1,f[f(2)]=f(1)=2e1-1=2.选C. [ ] 选 4.f(x)是反比例函数 且f(-3)=-1,则f(x)= 是反比例函数,且 是反比例函数 则

高中数学必修一第五讲 函数的表示方法

高中数学必修一第五讲 函数的表示方法

第五讲 函数的表示方法1、 能根据不同需要选择恰当的方法(如图像法、列表法、解析法)表示函数;2、 了解简单的分段函数,并能简单应用;一、函数的常用表示方法简介: 1、解析法如果函数()()y f x x A =∈中,()f x 是用代数式(或解析式)来表达的,则这种表达函数的方法叫做解析法(公式法)。

例如,s =602t ,A =π2r ,2S rl π=,2)y x =≥等等都是用解析式表示函数关系的。

特别提醒: 解析法的优点:(1)简明、全面地概括了变量间的关系;(2)可以通过解析式求出任意一个自变量的值所对应的函数值;(3)便于利用解析式研究函数的性质。

中学阶段研究的函数主要是用解析法表示的函数。

解析法的缺点:(1)并不是所有的函数都能用解析法表示;(2)不能直观地观察到函数的变化规律。

2、列表法:通过列出自变量与对应函数值的表格来表示函数关系的方法叫做列表法。

例如:初中学习过的平方表、平方根表、三角函数表。

我们生活中也经常遇到列表法,如银行里的利息表,列车时刻表,公共汽车上的票价表等等都是用列表法来表示函数关系的.特别提醒:列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值。

这种表格常常应用到实际生产和生活中。

列表法的缺点:对于自变量的有些取值,从表格中得不到相应的函数值。

3、图象法:用函数图象表示两个变量之间的函数关系的方法,叫做图像法。

例如:气象台应用自动记录器描绘温度随时间变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的。

特别提醒:图像法的优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质。

图像法的缺点:不能够精确地求出某一自变量的相应函数值。

二、函数图像:1、判断一个图像是不是函数图像的方法:要检验一个图形是否是函数的图像,其方法为:任作一条与x 轴垂直的直线,当该直线保持与x 轴垂直并左右任意移动时,若与要检验的图像相交,并且交点始终唯一的,那么这个图像就是函数图像。

暑假初升高数学衔接讲义 第5讲 函数的概念及定义域(教师版)

暑假初升高数学衔接讲义 第5讲 函数的概念及定义域(教师版)

第五讲 函数的概念及定义域一、【知识梳理】知识点一 函数的概念1、函数的概念:设,A B 是非空的数集,如果按某个确定的对应关系f,使对于集合A 中的任意一个数x ,在集合B 中有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数。

记作:()y f x =,x A ∈。

其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,所有函数值y 的集合B 叫做函数的值域。

注:(1)定义域、值域、对应法则称函数的三要素。

两个函数相同,这三个要素必须相同,缺一不可。

(2)对应法则f ,可以是解析式,可以是图象、表格、文字描述;自变量x 只能是数。

(3)()f x 与()f a 的关系:()f x 是自变量x 的函数,()f a 表示x a =时()f x 的函数值。

2、区间与“无穷大”:设,a b 是两个实数,而且a b <,则(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[],a b ; (2)满足不等a x b <<的实数x 的集合叫做开区间,表示为(),a b ;(3)满足不等式a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别表示为[)(],,,a b a b ;(4)实数集R 也可以用区间表示为(,)-∞+∞,其中“∞”读作“无穷大”。

(5)若x a ≤,可表示为],(a -∞,x a ≥ ,可表示为[),a +∞; (6)若a x <,可表示为(,)a -∞,a x > ,可表示为(,)a +∞。

知识点二 映射的概念1、映射的概念:设,A B 是两个非空的集合,如果按照某种对应法则f ,对于集合A 中的任意一个元素,在集合B 中都有唯一的一个元素和它对应,那么这样的对应叫做集合A 到集合B 的映射,记作:f A B →2、若:f A B →,且,a Ab B ∈∈,如果元素a 和元素b 对应,那么我们把元素b 叫做元素a的象,元素a 叫做元素b 的原象。

第5讲 函数的定义域和值域

第5讲 函数的定义域和值域

纽威教育6T 教材系列函数专题 第五讲 函数的定义域和值域时间:年 月 日 陈老师 电话:66006266一、兴趣导入清朝名士纪晓岚,有一天和朋友一起上街.走在街上,看见前面有一家小店,店里的老板娘正忙着. 纪晓岚就和他的朋友打赌,"我会一句话,让老板娘笑,再一句话,让老板娘闹." 朋友们不相信,决定以一桌酒席为赌.只见纪晓岚走向小店,向店门前的看门狗鞠了一躬,叫 道"爹!", 老板娘"噗"地一声乐了.纪晓岚转过身又冲老板娘叫了一声"娘!".顿时,老板娘勃然大怒,直骂纪晓岚. 于是,纪晓岚赢得了一桌酒席........ 思考:由此你得到什么启示?二、知识梳理(一)求函数定义域的一般原则:(1)如果f (x )是整式,那么函数的定义域是实数集R .(2)如果f (x )是分式,那么函数的定义域是使分母不等于零的实数的集合 .(3)如果f (x )是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合. (4)如果f (x )是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)(5)满足实际问题有意义. (二):抽象函数的定义域求法:①函数f (x )的定义域是指x 的取值范围所组成的集合。

②函数[])(x f ϕ的定义域还是指x 的取值范围,而不是)(x ϕ的取值范围。

③已知f(x)的定义域为A ,求[])(x f ϕ的定义域:其实质是(求法):已知)(x ϕ的取值范围为A ,求出x 的取值范围;解得的x 的取值范围即是[])(x f ϕ的定义域。

④已知[])(x f ϕ的定义域为B ,求f(x)的定义域:其实质是(求法):已知[])(x f ϕ中x 的取值范围为B ,求出)(x ϕ的取值范围;解得的)(x ϕ的取值范围即是f(x)的定义域。

⑤同在对应法则f 下的范围相同:即[][])(,)(),(x h f x f t f ϕ三个函数中)(),(,x h x t ϕ的范围相同。

第5讲 函数及其性质之3-函数单调性及值域

第5讲  函数及其性质之3-函数单调性及值域

变式训练 3
函数 f(x)的定义域为(0,+∞),且对一切 x>0,y>0 都有 =f(x)-f(y),当 x>1 时,有 f(x)>0. (1)求 f(1)的值; (2)判断 f(x)的单调性并加以证明. (3)若 f(4)=2,求 f(x)在[1,16]上的值域.
x fy
函数的单调性与不等式
[难点正本
疑点清源]
1.函数的单调性是局部性质 函数的单调性,从定义上看,是指函数在定义域的某个 子区间上的单调性, 是局部的特征. 在某个区间上单调, 在整个定义域上不一定单调. 2.函数的单调区间的求法 函数的单调区间是函数定义域的子区间,所以求解函数 的单调区间,必须先求出函数的定义域.对于基本初等 函数的单调区间可以直接利用已知结论求解,如二次函 数、对数函数、指数函数等;
(14 分)函数 f(x)对任意的 m、n∈R,都有 f(m+n)=f(m)+ f(n)-1,并且 x>0 时,恒有 f(x)>1. (1)求证:f(x)在 R 上是增函数; (2)若 f(3)=4,解不等式 f(a2+a-5)<2.
一、抽象函数的单调性与最值
例1. 已知定义在R上的函数y=f(x)满足, f(0)≠0 , 且当 x>0时,f(x)>1,且对任意的a,b∈R, f(a+b)= f(a) · f(b). (1)求f(0)的值; (2)判断f(x)的单调性.
图象 描述
下降的 自左向右看图象是 上升的 自左向右看图象是
要点梳理
(2)单调区间的定义
忆一忆知识要点
若函数 f(x)在区间 I 上是 增函数或 减函数,则称函数 f(x) 在这一区间具有(严格的)单调性,区间 I 叫做 y=f(x)的单 调区间.

第05讲 指数与指数函数(原卷版)备战2023年高考数学一轮复习精讲精练

第05讲 指数与指数函数(原卷版)备战2023年高考数学一轮复习精讲精练

第05讲指数与指数函数 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:指数与指数幂的运算高频考点二:指数函数的概念高频考点三:指数函数的图象①判断指数型函数的图象;②根据指数型函数图象求参数③指数型函数图象过定点问题;④指数函数图象应用高频考点四:指数(型)函数定义域高频考点五:指数(型)函数的值域m n上的值域;②指数型复合函数值域①指数函数在区间[,]③根据指数函数值域(最值)求参数高频考点六:指数函数单调性①判断指数函数单调性;②由指数(型)函数单调性求参数③判断指数型复合函数单调性;④比较大小⑤根据指数函数单调性解不等式高频考点七:指数函数的最值①求已知指数型函数的值域②根据指数函数最值求参数③含参指数(型)函数最值第四部分:高考真题感悟第五部分:第05讲指数与指数函数(精练)1、根式的概念及性质(1)概念:叫做根式,其中n 叫做根指数,a 叫做被开方数. (2)性质:①n a =(n N *∈且1n >);②当n a =;当n ,0||,0a a a a a ≥⎧==⎨-<⎩ 2、分数指数幂①正数的正分数指数幂的意义是mna =0a >,,m n N *∈,且1n >);②正数的负分数指数幂的意义是m na-=(0a >,,m n N *∈,且1n >);③0的正分数指数幂等于0;0的负分数指数幂没有意义.3、指数幂的运算性质①(0,,)rsr sa a aa r s +=>∈R ;②()(0,,)r s rsa a a r s =>∈R ; ③()(0,0,)rr rab a b a b r =>>∈R .4、指数函数及其性质(1)指数函数的概念函数()xf x a =(0a >,且1a ≠)叫做指数函数,其中指数x 是自变量,函数的定义域是R .(2)指数函数()xf x a =的图象和性质定义域为R ,值域为(0,)+∞一、判断题1.(2021·江西·贵溪市实验中学高二阶段练习)函数()11x f x a -=+(0a >且1a ≠)的图象必过定点()1,2( )2.(2021·江西·贵溪市实验中学高二阶段练习)11121321a ba( ) 二、单选题1.(2022·宁夏·银川一中高二期末(文))函数()e 1x f x =+在[1,1]-的最大值是( ) A .eB .e 1-+C .e 1+D .e 1-2.(2022·江苏南通·高一期末)已知指数函数()x f x a -=(0a >,且1a ≠),且()()23f f ->-,则a 的取值范围( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0∞-3.(2022·北京·高三专题练习)若函数()11x f x a -=-(0a >且1a ≠)的图像经过定点P ,则点P 的坐标是( ) A .(1,1)-B .(1,0)C .(0,0)D .(0,1)-4.(2022·河北廊坊·高一期末)指数函数()()1xf x a =-在R 上单调递减,则实数a 的取值范围是( ) A .()2,1--B .()2,+∞C .(),2-∞-D .()1,25.(2022·北京·高三专题练习)若函数()21x y m m m =--⋅是指数函数,则m 等于( )A .1-或2B .1-C .2D .12高频考点一:指数与指数幂的运算1.(2022·广东肇庆·高一期末)设62m =,63n =,则222m n mn ++=( ) A .12B .1C .2D .32.(2022·上海杨浦·高一期末)设0a >,下列计算中正确的是( ) A .4334a a a ⋅= B .4334a a a ÷= C .4334a a ⎛⎫= ⎪⎝⎭D .4 334a a -⎛⎫= ⎪⎝⎭3.(2022·广东深圳·高一期末)下列根式与分数指数幂的互化正确的是( ) A .()12x -B .)340xx ->C 13y =D .()31420x x ⎤=<4.(2022·全国·高三专题练习)化简2112333324()3a b a b --⋅÷-的结果为( )A .-23ab B .-8a bC .-6a bD .-6ab高频考点二:指数函数的概念1.(2022·浙江·高三专题练习)函数()(0x f x a a =>,且a ≠1)的图象经过点13,27P ⎛⎫⎪⎝⎭,则f (-2)= ( )A .19B C .13D .92.(2022·黑龙江·嫩江市第一中学校高一期末)已知指数函数()2()253xf x a a a =-+在R 上单调递增,则a的值为( ) A .3B .2C .12D .323.(2022·全国·高一课时练习)函数()2xy a a =-是指数函数,则( ) A .1a =或3a =B .1a =C .3a =D .0a >且1a ≠4.(2022·浙江·高三专题练习)若指数函数x y a =在[-1,1]上的最大值与最小值的差是1,则底数a 等于A B CD 高频考点三:指数函数的图象①判断指数型函数的图象1.(2022·上海市复兴高级中学高一阶段练习)函数3x y -=的大致图像是( )A .B .C .D .2.(2022·上海市进才中学高二阶段练习)函数(01)||xxa y a x =<<的图像的大致形状是( ) A . B .C .D .3.(2022·全国·高三专题练习)已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( ).A .B .C .D .4.(2022·全国·高三专题练习(文))函数(0,1)x y a a a a =->≠的图象可能是 ( )A .B .C .D .②根据指数型函数图象求参数1.(2022·全国·高三专题练习)函数()b x f x a -=的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b <D .01a <<,0b >2.(2022·全国·高三专题练习)函数(0,1)x y a a a =>≠与b y x =的图象如图,则下列不等式一定成立的是( )A .0a b >B .0a b +>C .log 2a b >D .1b a >3.(2021·全国·高一专题练习)函数()x b f x a -=的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b >D .01a <<,0b <4.(2021·全国·高一专题练习)若函数()x f x a b =-的图象如图所示,则( )A .1a >,1b >B .1a >,01b <<C .01a <<,1b >D .01a <<,01b <<③指数型函数图象过定点问题1.(2022·吉林·长春市第二中学高一期末)函数()21(0x f x a a +=->且1)a ≠的图象恒过定点( )A .(-2,0)B .(-1,0)C .(0,-1)D .(-1,-2)2.(2022·全国·高三专题练习)若函数12x y a -=+过定点P ,以P 为顶点且过原点的二次函数()f x 的解析式为( )A .()236f x x x =-+ B .()224f x x x =-+ C .()236f x x x =-D .()224f x x x =-3.(2022·河南焦作·高一期末)已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-4.(2022·全国·高三专题练习)已知函数5()4x f x a +=+(0a >,1a ≠)恒过定点(,)M m n ,则函数()x g x m n =+的图像不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限④指数函数图象应用1.(2021·重庆市涪陵第二中学校高一阶段练习)函数1()(0,1)x f x a a a a=->≠的图象可能是( )A .B .C .D .2.(2021·全国·高一课时练习)函数()(0x f x a a =>,且1a ≠)与()g x x a =-+的图像大致是A .B .C .D .3.(2021·全国·高一课时练习)若1a >,10b -<<,则函数x y a b =+的图像一定经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第二、三、四象限D .第一、二、四象限高频考点四:指数(型)函数定义域1.(2022·全国·高三专题练习)函数()f x = ) A .[)1,+∞B .1,2⎡⎫+∞⎪⎢⎣⎭C .(),1-∞-D .(),2-∞-2.(2022·全国·高三专题练习)函数()22f x x =-的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞3.(2021·江苏·高一专题练习)函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1D .a ≠14.(2021·广西河池·高一阶段练习)设函数()f x 2x f ⎛⎫ ⎪⎝⎭的定义域为( )A .(],4∞-B .(],1-∞C .(]0,4D .(]0,1高频考点五:指数(型)函数的值域①指数函数在区间[,]m n 上的值域1.(2022·全国·高一)当x ∈[-1,1]时,函数f (x )=3x -2的值域为________2.(2022·全国·高三专题练习)已知函数f (x )=9x ﹣a ⋅3x +1+a 2(x ∈[0,1],a ∈R ),记f (x )的最大值为g (a ).(Ⅰ)求g (a )解析式;(Ⅱ)若对于任意t ∈[﹣2,2],任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立,求实数m 的范围.3.(2022·全国·高三专题练习)已知函数()2421x x f x a =⋅--.当1a =时,求函数()f x 在[]3,0x ∈-的值域;4.(2022·江西省丰城中学高一开学考试)函数()3x f x =且()218f a +=,函数()34ax x g x =-.(1)求()g x 的解析式;(2)若关于x 的方程()80xg x m -⋅=在区间[]22-,上有实数根,求实数m 的取值范围.②指数型复合函数值域1.(2022·山西·临汾第一中学校高一期末)函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,22.(2022·湖南邵阳·高一期末)函数2212x y -⎛⎫= ⎪⎝⎭的值域为______.3.(2022·全国·高三专题练习)函数1()41(0)2xxf x x -⎛⎫=++≥ ⎪⎝⎭的值域是___________.4.(2022·河南·洛宁县第一高级中学高一阶段练习)已知函数()2422ax x f x ++=.(1)当1a =时,求()f x 的值域; (2)若()f x 有最大值16,求a 的值.5.(2022·全国·高三专题练习)已知函数()24x x f x =-.(1)求()y f x =在[]1,1-上的值域;③根据指数函数值域(最值)求参数1.(2022·广东湛江·高一期末)已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[1,0]-,则a b +=( ) A .32-B .1-C .1D .322.(2022·辽宁鞍山·高一期末)若函数()f x =的值域为[0,)+∞,则实数a 的取值范围是( )A .12⎧⎫⎨⎬⎩⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .[0,)+∞3.(2022·全国·高一)已知函数()(0xf x a a =>且1)a ≠在区间[]1,2上的最大值比最小值大2a ,求a 的值.4.(2022·湖南·高一期末)已知函数()245x xf x a a =+-.(1)求()f x 的值域;(2)当[]1,2x ∈-时,()f x 的最大值为7,求a 的值.5.(2022·全国·高三专题练习)已知函数()22x x f x k -=+⋅(k 为常数,k ∈R )是R 上的奇函数.(1)求实数k 的值;(2)若函数()y f x =在区间[]1,m 上的值域为15,4n ⎡⎤⎢⎥⎣⎦,求m n +的值.高频考点六: 指数函数单调性①判断指数函数单调性1.(2022·广西南宁·高一期末)设函数()122xx f x ⎛⎫=- ⎪⎝⎭,则()f x ( )A .是偶函数,且在()0,+∞单调递增B .是偶函数,且在()0,+∞单调递减C .是奇函数,且在()0,+∞单调递增D .是奇函数,且在()0,+∞单调递减2.(2022·福建宁德·高一期末)已知()21x b f x a =-+是R 上的奇函数,且()113f =. (1)求()f x 的解析式;(2)判断()f x 的单调性,并根据定义证明.3.(2021·贵州·六盘水红桥学校高一阶段练习)若函数()(3)3(1)x f x k a b a =++->是指数函数 (1)求k ,b 的值;(2)求解不等式(27)(43)f x f x ->-4.(2021·全国·高一期末)设函数2()12xx f x a =++,(1)判断()f x 的单调性,并证明你的结论;②由指数(型)函数单调性求参数1.(2022·辽宁朝阳·高一开学考试)若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫ ⎪⎝⎭2.(2022·内蒙古·赤峰二中高一期末(文))若函数()33,0,0xx a x f x a x -+-<⎧=⎨⎩是R 上的减函数,则实数a 的取值范围是___.3.(2022·河北张家口·高一期末)已知函数()()2,1,32,1x a x x f x a x -⎧-<=⎨⋅-≥⎩在R 上单调递减,则实数a 的取值范围是______.4.(2022·湖南·高一课时练习)若函数2()2535xm y m m ⎛⎫- ⎝=+⎪⎭-是指数函数,且为指数增长型函数模型,则实数m =________.5.(2022·安徽·歙县教研室高一期末)若函数22113x mx y +-⎛⎫= ⎪⎝⎭在区间[]1,1-上为增函数,则实数m 的取值范围为______.6.(2022·湖南·高一课时练习)若函数()()28xf x a =-是区间(),-∞+∞上的减函数,求实数a 的取值范围.③判断指数型复合函数单调性1.(2022·安徽省蚌埠第三中学高一开学考试)函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞B .3,4⎛⎤-∞ ⎥⎝⎦C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭2.(2022·河南·商丘市第一高级中学高一开学考试)已知函数()24,18,1x x ax x f x a x ⎧-+≤=⎨+>⎩,且对于任意的12,x x ,都有()()()1212120f x f x x x x x ->≠-,则实数a 的取值范围是( )A .(]1,2B .(]1,3C .[)1,+∞D .1,2⎡⎫+∞⎪⎢⎣⎭3.(2022·宁夏·吴忠中学高一期末)已知函数2251()2x x f x -+⎛⎫= ⎪⎝⎭在(),a +∞上单调递减,则实数a 的取值范围是______.4.(2022·河南·林州一中高一开学考试)已知函数2()21x x af x +=+是奇函数.(1)求a 的值;(2)判断并证明函数()f x 的单调性.④比较大小1.(2022·广东汕尾·高一期末)若1312a ⎛⎫= ⎪⎝⎭,1314b ⎛⎫= ⎪⎝⎭,1412c ⎛⎫= ⎪⎝⎭,则( )A .c a b >>B .c b a >>C .b c a >>D .a b c >>2.(2022·陕西·略阳县天津高级中学高三阶段练习(文))设233a =,1413b ⎛⎫= ⎪⎝⎭,133c =,则a ,b ,c 的大小关系是( ) A .b c a >>B .a b c >>C .c a b >>D .a c b >>3.(2022·福建三明·高一期末)已知0.20.30.30.30.2,2,a b c ===,则它们的大小关系是( ) A .a b c <<B .b a c <<C .c a b <<D .b c a <<4.(2022·海南·模拟预测)设0.22e a -=,0.2e b =, 1.2c =,则( ) A .a b c <<B .b c a <<C .b a c <<D .c b a <<⑤根据指数函数单调性解不等式1.(2022·全国·高一)若1()273x >,则x 的取值范围是______.2.(2022·海南鑫源高级中学高一期末)已知不等式124x ->的解集是__________.3.(2022·福建·莆田一中高一开学考试)已知()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,若实数a 满足()(212a f f ->,则a 的取值范围是______.4.(2022·福建福州·高一期末)已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()23x f x =+.(1)求()f x 的解析式; (2)解不等式()()22f x f x ≥.高频考点七:指数函数的最值①求已知指数型函数的值域1.(2022·新疆·石河子第二中学高二阶段练习)已知函数4()f x x x =+,()2x g x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[2,3]x ∃∈,使得()()12f x g x ,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[3,)-+∞D .[1,)+∞2.(2022·北京·高三学业考试)已知函数()2x f x =,[0,)x ∈+∞,则()f x ( ) A .有最大值,有最小值 B .有最大值,无最小值 C .无最大值,有最小值D .无最大值,无最小值3.(2022·全国·高三专题练习(文))设函数1()422x x f x +=-+,则(1)f =________;函数()f x 在区间[1,2]-的最大值为_________.4.(2022·贵州贵阳·高一期末)已知函数2()35,()2x f x x x g x a =-++=+,若12[0,2],[2,3]x x ∀∈∃∈,使得()()12f x g x <,则实数a 的取值范围是___________.5.(2022·甘肃·兰州一中高一期末)已知02x ≤≤,则函数124325x x y -=-⨯+的最大值为__________.②根据指数函数最值求参数1.(2022·辽宁·渤海大学附属高级中学高一期末)若函数()213ax a f x +⎛⎫= ⎪⎝⎭在[)1,+∞上有最大值19,则实数a的值为( ) A .1B .2-C .1或2-D .1或1-2.(多选)(2022·江苏常州·高一期末)若函数()xf x a =(0a >且1a ≠)在区间[]22-,上的最大值和最小值的和为103,则a 的值可能是( )A .13B CD .33.(2022·上海虹口·高一期末)已知函数x y a =(0a >且1a ≠)在[]1,2的最大值与最小值之差等于2a,则实数a 的值为______.4.(2022·青海·海南藏族自治州高级中学高一期末)已知指数函数()x f x a =(0a >且1a ≠)在区间[]2,3上的最大值是最小值的2倍,则=a ______.5.(2022·全国·高三专题练习)若函数()0,1xy a a a =>≠在区间[]1,2上的最大值和最小值之和为6,则实数=a ______.6.(2022·湖南·高一课时练习)若函数()22x x f x a a =+-(0a >且1a ≠)在区间[]1,0-上的最小值为54-,求a 的值.③含参指数(型)函数最值1.(2022·全国·高三专题练习)如果函数y =a 2x +2ax -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.2.(2022·宁夏吴忠区青铜峡市教育局高一开学考试)已知函数()1423x x f x a +=⋅--.(1)当1a =时,求函数()f x 的零点;(2)若0a >,求()f x 在区间[]1,2上的最大值()g a .3.(2022·全国·高三专题练习(文))已知函数1()421x x f x a +=-+. (1)若函数()f x 在[0x ∈,2]上有最大值8-,求实数a 的值; (2)若方程()0f x =在[1x ∈-,2]上有解,求实数a 的取值范围.4.(2022·全国·高一课时练习)求函数2()2x x f x e e =-的最值.1.(2020·山东·高考真题)已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01xy a a =<<,则该函数在(,0)-∞上的图像大致是( )A .B .C .D .2.(2021·湖南·高考真题)已知函数()2,0282,24x x f x x x ⎧≤≤=⎨-<≤⎩(1)画出函数()f x 的图象; (2)若()2f m ≥,求m 的取值范围.一、单选题1.(2022·江苏江苏·一模)设全集U =R ,集合{}21A x x =-≤,{}240x B x =-≥,则集合()UAB =( )A .()1,2B .(]1,2C .[)1,2D .[]1,22.(2022·河南·模拟预测(文))已知58a =,45b =,则ab =( ) A .2B .32C .43D .13.(2022·辽宁朝阳·高二开学考试)已知函数()x x f x ππ-=-,若32(2)2a fb fc f ===,则a ,b ,c 的大小关系为( ) A .a b c >>B .a b c >>C .c b a >>D .b c a >>4.(2022·四川宜宾·二模(文))物理学家和数学家牛顿(IssacNewton )提出了物体在常温下温度变化的冷却模型:设物体的初始温度是1T (单位:℃),环境温度是0T (单位:℃),且经过一定时间t (单位:min )后物体的温度T (单位:℃)满足10e kt T T T T -=-(k 为正常数).现有一杯100℃热水,环境温度20℃,冷却到40℃需要16min ,那么这杯热水要从40℃继续冷却到30℃,还需要的时间为( ) A .6minB .7minC .8minD .9min5.(2022·湖北·石首市第一中学高一阶段练习)已知函数211()3x f x -⎛⎫= ⎪⎝⎭,则不等式()f x ≥( ) A .1,6⎡⎫+∞⎪⎢⎣⎭B .1,6∞⎛⎤- ⎥⎝⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞- ⎥⎝⎦6.(2022·河南·模拟预测(文))已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞7.(2022·云南玉溪·高一期末)函数||()2x f x =,4()g x x =,则函数()()y f x g x =+的图象大致是( )A .B .C .D .8.(2022·全国·高三专题练习)已知432a =,254b =,1325c =,则( ) A .b a c << B .a b c << C .b c a << D .c a b <<二、填空题9.(2022·江苏连云港·二模)函数()1293x x f x -=+的最小值是___________.10.(2022·全国·高一)下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是________. (填序号)①()12f x x =;②()3f x x =;③()12xf x ⎛⎫= ⎪⎝⎭;④f (x )=3x11.(2022·江西宜春·高三期末(文))高斯是德国著名的数学家,近代数学莫基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设R x ∈,用[x ]表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[][]3.74 2.32-=-=,.已知()112x x e f x e =-+,则函数()y f x ⎡⎤=⎣⎦的值域为_________.12.(2022·全国·高三专题练习)设函数()322x x f x x -=-+,则使得不等式()()2130f x f -+<成立的实数x的取值范围是________ 三、解答题13.(2022·湖南·高一课时练习)已知1x >,且13x x -+=,求下列各式的值: (1)1122x x -+; (2)1122x x --; (3)3322x x -+.14.(2022·贵州·凯里一中高一开学考试)已知函数()f x 是定义在[2,2]-上的奇函数,且(]0,2x ∈时,()21x f x =-,()22g x x x m =-+.(1)求()f x 在区间[)2,0-上的解析式;(2)若对[]12,2x ∀∈-,则[]22,2x ∃∈-,使得()()12f x g x =成立,求m 的取值范围.15.(2022·河南·高一阶段练习)已知函数()24x m x f x +=-.(1)当0m =时,求关于x 的不等式()2f x >-的解集;(2)若对[]0,1x ∀∈,不等式()22xf x m >-⋅恒成立,求实数m 的取值范围.16.(2022·辽宁丹东·高一期末)已知函数()22x x af x a-=+是奇函数.(1)求实数a 的值; (2)求()f x 的值域.。

第5讲 函数的概念

第5讲 函数的概念
2 ⎤ 1 ⎞ ⎡⎛ 1⎞ ⎛ = ⎜ x + ⎟ ⎢ ⎜ x + ⎟ − 3⎥ x ⎠⎣ x⎠ ⎝ ⎢⎝ ⎥ ⎦
又x +
1 1 ≥ 2或x + ≤ −2 x x
∴ f ( x ) = x ( x − 3) ( x ≥ 2或x ≤ −2 )
(2)解:令 t =
∴ f ( x) = 则 f ( x) =
∴ 值域 [5,+ ∞ )
- 第 5页 版权所有 北京天地精华教育科技有限公司 咨询电话:400-650-7766
⎧ ⎡1 ⎞ ⎪3x + 3 x ∈ ⎢ 2 , + ∞ ⎟ ⎣ ⎠ ⎪ ⎪ 1⎞ ⎡ x ∈ ⎢ −4, ⎟ (3)解: y = ⎨− x + 5 2⎠ ⎣ ⎪ ⎪ −3x − 3 x ∈ ( −∞, − 4 ) ⎪ ⎩
例 6.已知函数 f ( x) =
3x − 1 的定义域是 R,则实数 a 的取值范围是( ax + ax − 3
3 2

A.a>
1 3
B.−12<a ≤ 0
C.−12<a<0
D.a ≤
1 3
例 7. (1)若函数 f ( x) 的定义域为(0,3) ,则 f ( x 2 + 2 x) 的定义域是____________ (2)已知 f ( x + 1) 的定义域是 [ −2,5] ,则 f ( x) 的定义域是____________
函数的概念
教 师:苗金利
爱护环境,从我做起
提倡使用电子讲义
第5讲
教学目标:
函数的概念
(1)理解函数的概念;明确函数的三要素; (2)掌握函数的三种主要的表示方法,即解析法、列表法、图象法; (3)能够正确表示和求某些函数的定义域、值域。

高中数学复习学(教)案(第5讲)函数的解析式与表示方法

高中数学复习学(教)案(第5讲)函数的解析式与表示方法

题目 第二章函数函数的解析式与表示方法 高考要求1.由所给函数表达式正确求出函数的定义域;2.掌握求函数值域的几种常用方法;3.能根据函数所具有的某些性质或它所满足的一些关系,求出它的解析式;4.会进行函数三种表示方法的互化,培养学生思维的严密性、多样性. 知识点归纳1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系. (3)图象法:就是用函数图象表示两个变量之间的关系. 2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法;(5)应用题求函数解析式常用方法有待定系数法等.题型讲解例1(1)已知3311()f x x xx+=+,求()f x ;(2)已知2(1)lg f x x+=,求()f x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x .解:(1)∵3331111()()3()f x x x x x x x x+=+=+-+,∴3()3f x x x =-(2x ≥或2x ≤-).(2)令21t x +=(1t >), 则21x t =-,∴2()lg1f t t =-,∴2()lg(1)1f x x x =>-.(3)设()(0)f x ax b a =+≠,则3(1)2(1)333222f x f x ax a b ax a b +--=++-+-5217ax b a x =++=+,∴2a =,7b =,∴()27f x x =+. (4)12()()3f x f x x += ①,把①中的x 换成1x,得132()()f f x x x+=②,①2⨯-②得33()6f x x x=-,∴1()2f x x x=-.注:第(1)题用配凑法;第(2)题用换元法;第(3)题已知一次函数,可用待定系数法;第(4)题用方程组法.例1 已知函数f (x )=31323-+-ax axx 的定义域是R ,则实数a 的取值范围是A.a >31 B.-12<a ≤0 C.-12<a <0 D.a ≤31解:由a =0或⎩⎨⎧<-⨯-=≠,0)3(4,02a a Δa 可得-12<a ≤0. 答案:B例2 在△ABC 中,BC =2,AB +AC =3,中线AD 的长为y ,AB 的长为x ,建立y 与x 的函数关系式,并指出其定义域.解:设∠ADC =θ,则∠ADB =π-θ.根据余弦定理得 12+y 2-2y cos θ=(3-x )2, ①12+y 2-2y cos (π-θ)=x 2. ②由①+②整理得y =2732+-x x .θ3-x y x 11DCBA其中⎪⎩⎪⎨⎧>+-->+>,2)3(,32,0x x x x x 解得21<x <25.∴函数的定义域为(21,25).评述:函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义的要求.例3 若函数f (x )=cxax ++21的值域为[-1,5],求实数a 、c .解:由y =f (x )=cxax ++21,得x 2y -ax +cy -1=0.当y =0时,ax =-1,∴a ≠0.当y ≠0时,∵x ∈R ,∴Δ=a 2-4y (cy -1)≥0. ∴4cy 2-4y -a 2≤0.∵-1≤y ≤5,∴-1、5是方程4cy 2-4y -a 2=0的两根.∴⎪⎪⎩⎪⎪⎨⎧-=-=.54,412ca c ∴⎪⎩⎪⎨⎧=±=.41,5c a 评述:求f (x )=11212222c x b xa c xb x a ++++(a 12+a 22≠0)的值域时,常利用函数的定义域非空这一隐含的条件,将函数转化为方程,利用Δ≥0转化为关于函数值的不等式.求解时,要注意二次项系数为字母时要讨论.例4设定义在N 上的函数f (x )满足f (n )=⎩⎨⎧-+)]18([13n f f n),2000(),2000(>≤n n 试求f (2002)的值.解:∵2002>2000,∴f (2002)=f [f (2002-18)]=f [f (1984)]=f [1984+13]=f (1997)=1997+13=2010.例5设f (x )=1214+-x x-2x +1,已知f (m )=2,求f (-m ).解法一:∵f (m )=2,∴1214+-m m-2m +1=2. ①∴1214+-m m-2m =2-1.∴f (-m )=1214+---m m+2m +1=mm212141⋅-+2m +1=12441+-⋅-m mm+2m +1=1241+-m m+2m +1=-1214+-m m+ 2m +1=-(1214+-m m-2m )+1=-(2-1)+1=2-2.解法二:f (x )=1214+-x x-2x +1=222x x---2x +1令22()22x xg x x --=-,则22()2()()2xxg x x g x ---=--=-∴22()21()12xxf x xg x --=-+=+∵()()12()21f m g m g m =+=⇒=-∴()()1()121122f m g m g m -=-+=-+=-++=-例6某市有小灵通与全球通两种手机,小灵通手机的月租费为25元,接听电话不收费,打出电话一次在3 min 以内收费0.2元,超过3 min 的部分为每分钟收费0.1元,不足1 min 按1 min 计算(以下同).全球通手机月租费为10元,接听与打出的费用都是每分钟0.2元.若某人打出与接听次数一样多,每次接听与打出的时间在1 min 以内、1到2 min 以内、2到3 min 以内、3到4 min 以内的次数之比为4∶3∶1∶1.问,根据他的通话次数应该选择什么样的手机才能使费用最省?(注:m 到m +1 min 以内指含m min ,而不含m +1 min )解:设小灵通每月的费用为y 1元,全球通的费用为y 2元,分别在1 min以内、2 min 以内、3 min 以内、4 min 以内的通话次数为4x 、3x 、x 、x ,则y 1=25+(4x +3x +x +x )×0.2+0.1x =25+1.9x ,y 2=10+2(0.2×4x +0.4×3x +0.6x +0.8x )=10+6.8x . 令y 1≥y 2,即25+1.9x ≥10+6.8x ,解得x ≤9.415≈3.06.∴总次数为(4+3+1+1)×2×3.06=55.1. 故当他每月的通话次数小于等于55次时,应选择全球通,大于55次时应选择小灵通.例7 某市收水费的方法是:水费=基本费+超额费+耗损费,若每月用水量不超过最低限量am 3时,只付基本费8元及每户每月的定额耗损费c 元,若用水量超过am 3时,除了付同上的基本费和耗损费之外,超过部分每m 3付b 元的超额费,已知耗损费不超过5元。

函数的定义域和值域

函数的定义域和值域

第五讲 函数的定义域和值域一、 本周教学主要内容及重点难点说明本周教学主要内容是函数的定义域和函数的值域。

定义域是指原象的集合,通俗地说即自变量的取值范围,值域是象的集合,通俗地说 是所有函数值组成的集合,因初中与高中在函数定义上的差异,以及目前高一同学对函数的学习甚少(仅限于一次函数,反比例函数,二次函数的一部分),所以使得求函数的定义域与值域既是重点也是难点。

定义域和值域都是实数集的子集,定义域不同的函数一定是不同函数,定义域既是函数性质重要内容又是研究函数其它性质优先考虑的因素和赖以存在的前提。

值域中元素数目不多于定义域中元素数目,函数的值域取决于其定义域和对应法则,求函数值域的问题。

灵活性较大,就高一同学目前知识范围而言,还缺乏较完整、规范的办法。

下面将要介绍的几种方法,有的适用范围有限,有的也不介绍理论根据,所以目前还不能求出任意给定的函数的值域,请同学们不必苦钻难题。

二、 典型解析【例1】求下列函数的定义域⑴ x x y ---+=331 ⑵ )3)(3(++=x x y ⑶ 831522-+-=x x x y 分析:对于⑴因偶次根式的根号内的值非负,所以⎩⎨⎧≥-≥-0303x x 解得3=x 故定义域为{}3对于⑵因幂指数为零时,底数不可以为零,所以03≠+x 故函数定义域为),3()3,(+∞---∞对于⑶因分式函数分母不可以为零,,并且偶次根式的根号内的值非负,所以⎩⎨⎧≠-+≥--08301522x x x 解得 ⎩⎨⎧-≠≠≥-≤11553x x x x 或或 故其定义域 (]),5(3,11)11,(+∞----∞ 说明:对于给定解析式的函数的定义域的求法,通常考虑偶次根式的根号内的值应当非负,分式函数的分母不能为零,幂指数为零时,底数不为零等。

在有限个实数上定义的函数,其定义域就是这有限个实数的集合;有限个基本初算函数的四则运算而合成的新函数的定义域,是各个基本初算函数的定义域的交集,并考虑新出现的分母不能为零。

高考数学一轮复习 第五讲 函数的定义域与值域

高考数学一轮复习 第五讲 函数的定义域与值域

第五讲函数的定义域与值域班级________某某________考号________日期________得分________一、选择题:(本大题共6小题,每小题6分共36分,将正确答案的代号填在题后的括号内.)1.(某某模拟)函数0()A.{x|x<0}B.{x|x>0}C.{x|x<0且x≠-1}D.{x|x≠0且x≠-1,x∈R}解析:依题意有\left\{\begin{array}{l}x+1≠0|x|-x>0\end{array}\right.,解得x<0且x≠-1,故定义域是{x|x<0且x≠-1}.答案:C2.(某某某某模拟)下列表示y是x的函数,则函数的值域是()x 0<x<5 5≤x<1010≤x<1515≤x≤20y 2 3 4 5A.[2,5]B.NC.(0,20]D.{2,3,4,5}解析:函数值只有四个数2、3、4、5,故值域为{2,3,4,5}.答案:D3.(2010·某某)设函数g(x)=x2-2(x∈R),f(x)=\left\{\begin{array}{l}g(x)+x+4,x<g(x),g(x)-x,x≥g(x).\end{array}\right.则f(x)的值域是()A.\left[\begin{array}{l}-\frac{9}{4},0\end{array}\right]∪(1,+∞)B.[0,+∞)C.\left[\begin{array}{l}-\frac{9}{4},+∞\end{array}\right)D.\left[\begin{ar ray}{l}-\frac{9}{4},0\end{array}\right]∪(2,+∞)解析:令x<g(x),即x2-x-2>0,解得x<-1或x>2.令x≥g(x),而x2-x-2≤0,解得-1≤x≤2.故函数f(x)=\left\{\begin{array}{l}x2+x+2(x<-1或x>2),x2-x-2(-1≤x≤2).\end{array}\right.当x<-1或x>2时,函数f(x)>f(-1)=2;当-1≤x≤2时,函数f\left(\begin{array}{l}\frac{1}{2}\end{array}\right)≤f(x)≤f(-1),即-\frac{9}{4}≤f(x)≤0.故函数f(x)的值域是\left[\begin{array}{l}-\frac{9}{4},0\end{array}\right]∪(2,+∞).答案:D4.设f(x)=\left\{\begin{array}{l}x2,|x|≥1,x,|x|<1.\end{array}\right.g(x)是二次函数,若f[g(x)]的值域为[0,+∞),则g(x)的值域是()A.(-∞,-1]∪[1,+∞)B.(-∞,-1]∪[0,+∞)C.[0,+∞)D.[1,+∞)解析:设t=g(x),则f[g(x)]=f(t),∴t=g(x)的值域即为f(t)的定义域.画出函数y=f(x)的图象(如图).[TPTL19.TIF,BP]∵函数f[g(x)]值域为[0,+∞),∴函数f(t)的值域为[0,+∞).∵g(x)是二次函数,且g(x)的值域即为f(t)的定义域,∴由图象可知f(t)的定义域为[0,+∞),即g(x)的值域为[0,+∞).答案:C5.已知函数f(x)的定义域为[1,9],且当1≤x≤9时,f(x)=x+2,则函数y=[f(x)]2+f(x2)的值域为()A.[1,3]B.[1,9]C.[12,36]D.[12,204]解析:∵函数f(x)的定义域为[1,9],∴要使函数y=[f(x)]2+f(x2)有意义,必须\left\{\begin{array}{l}1≤x≤9,1≤x2≤9,\end{array}\right.解得1≤x≤3.∴函数y=[f(x)]2+f(x2)的定义域为[1,3].∵当1≤x≤9时,f(x)=x+2,∴当1≤x≤3时,y=[f(x)]2+f(x2)=(x+2)2+(x2+2)=2(x+1)2+4,∴当x=1时,y min=12,当x=3时,y max=36,∴所求函数的值域为[12,36],故答案选C.答案:C评析:本题容易忽视复合函数y=[f(x)]2+f(x2)的定义域,而错误地把f(x)的定义域[1,9]当作函数y=[f(x)]2+f(x2)的定义域,从而得出错误的结果D.6.若函数y=x2-6x-16的定义域为[0,m],值域为[-25,-16],则m的取值X围()A.(0,8]B.[3,8]C.[3,6]D.[3,+∞)解析:函数y=(x-3)2-25,因为函数的定义域为[0,m],值域为[-25,-16],而当x=0时,y=-16,当x=3时,y=-25,由二次函数的对称性可得m的取值X围为[3,6],故选C.答案:C二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.若函数f(x+1)的定义域是[1,2],则函数f(\sqrt{x})的定义域为________.解析:∵f(x+1)的定义域是[1,2],∴f(x)的定义域为[2,3],对于函数f(\sqrt{x})满足2≤\sqrt{x}≤3,∴4≤x≤9.∴f(\sqrt{x})的定义域为[4,9].答案:[4,9]8.函数y=\frac{2x-5}{x-3}的值域是{y|y≤0或y≥4},则此函数的定义域为________.解析:∵y≤0或y≥4,∴\frac{2x-5}{x-3}≤0或\frac{2x-5}{x-3}≥4.∴\frac{5}{2}≤x<3或3<x≤\frac{7}{2}.答案:\left[\begin{array}{l}\frac{5}{2},3\end{array}\right)∪\left(\begin{array}{l }3,\frac{7}{2}\end{array}\right][TPTL21.TIF,Y#]9.函数f(x)=|log3x|在区间[a,b]上的值域为[0,1],则b-a的最小值为________.解析:由图象可知,[a,b]应为\left[\begin{array}{l}\frac{1}{3},3\end{array}\right]的一个子区间.当a=\frac{1}{3},b=1时b-a取最小值为\frac{2}{3}.答案:\frac{2}{3}10.(2010·某某模拟)函数f(x)=log\frac{1}{2}(x-1)+\sqrt{2-x}的值域为________.解析:由\left\{\begin{array}{l}x-1>02-x≥0\end{array}\right.,解得1<x≤2,∴函数f(x)的定义域为(1,2].又∵函数y1=log\frac{1}{2}(x-1)和y2=\sqrt{2-x}在(1,2]上都是减函数,∴当x=2时,f(x)有最小值,f(2)=log\frac{1}{2}(2-1)+\sqrt{2-2}=0,f(x)无最大值,∴函数f(x)的值域为[0,+∞).答案:[0,+∞)三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1.(1)求函数f(x)的解析式.(2)求函数y=f(x2-2)的值域.解:(1)设f(x)=ax2+bx+c(a≠0),由题意可知\left\{\begin{array}{l}c=0a(x+1)2+b(x+1)+c=ax2+bx+c+x+1,x∈R\end{array}\right.整理得\left\{\begin{array}{l}2a+b=b+1a≠0a+b=1c=0\end{array}\right.,解得\left\{\begin{array}{l}a=\frac{1}{2}b=\frac{1}{2}c=0\end{array}\right.,∴f(x)=\frac{1}{2}x2+\frac{1}{2}x;(2)由(1)知y=f(x2-2)=\frac{1}{2}(x2-2)2+\frac{1}{2}(x2-2)=\frac{1}{2}(x4-3x2+2)=\frac{1}{2}\left(\begin{array}{l}x2-\frac{3}{2}\end{a rray}\right)2-\frac{1}{8},当x2=\frac{3}{2}时,y取最小值-\frac{1}{8},故函数值域为\left[\begin{array}{l}-\frac{1}{8},+∞\end{array}\right).12.已知函数y=\sqrt{mx^2-6mx+m+8}的定义域为R.(1)某某数m的取值X围;(2)当m变化时,若y的最小值为f(m),求函数f(m)的值域.解:(1)依题意,当x∈R时,mx2-6mx+m+8≥0恒成立.当m=0时,x∈R;当m≠0时,\left\{\begin{array}{l}m>0,Δ≤0,\end{array}\right.即\left\{\begin{array}{l}m>0,(-6m)2-4m(m+8)≤0.\end{array}\right.解之得0<m≤1,故实数m的取值X围是0≤m≤1.(2)当m=0时,y=2\sqrt{2};当0<m≤1时,y=\sqrt{m(x-3)^2+8-8m},∴y min=\sqrt{8-8m},因此,f(m)=\sqrt{8-8m}(0≤m≤1),∴f(m)的值域为[0,2\sqrt{2}].13.(2011·某某某某模拟)已知函数f(x)=\left\{\begin{array}{l}1-\frac{1}{x},x≥1,\frac{1}{x}-1,0<x<1.\end{array}\right.(1)当0<a<b,且f(a)=f(b)时,求\frac{1}{a}+\frac{1}{b}的值;(2)是否存在实数a、b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a、b的值;若不存在,请说明理由.解:(1)∵f(x)=\left\{\begin{array}{l}1-\frac{1}{x},x≥1,\frac{1}{x}-1,0<x<1,\end{array}\right.∴f(x)在(0,1)上为减函数,在[1,+∞)上为增函数.由0<a<b,且f(a)=f(b),可得0<a<1≤b且\frac{1}{a}-1=1-\frac{1}{b},∴\frac{1}{a}+\frac{1}{b}=2.(2)不存在满足条件的实数a、b.若存在满足条件的实数a、b,则0<a<b.①当a,b∈(0,1)时,f(x)=\frac{1}{x}-1在(0,1)上为减函数.故\left\{\begin{array}{l}f(a)=b,f(b)=a,\end{array}\right.即\left\{\begin{array}{l}\frac{1}{a}-1=b,\frac{1}{b}-1=a.\end{array}\right.解得a=b.故此时不存在符合条件的实数a、b.②当a,b∈[1,+∞)时,f(x)=1-\frac{1}{x}在[1,+∞)上是增函数.故\left\{\begin{array}{l}f(a)=a,f(b)=b,\end{array}\right.即\left\{\begin{array}{l}1-\frac{1}{a}=a1-\frac{1}{b}=b.\end{array}\right.此时a,b是方程x2-x+1=0的根,此方程无实根.故此时不存在符合条件的实数a、b. ③当a∈(0,1),b∈[1,+∞)时,由于1∈[a,b],而f(1)=0∉[a,b],故此时不存在适合条件的实数a、b.综上可知,不存在适合条件的实数a、b.。

函数简单

函数简单

实例
例2 设 A = {1, 2, 3}, B = {a, b}, 求BA. 解 BA = {f0, f1, … , f7}, 其中 f0={<1,a>,<2,a>,<3,a>}, f1={<1,a>,<2,a>,<3,b>} f2={<1,a>,<2,b>,<3,a>},f3={<1,a>,<2,b>,<3,b>} f4={<1,b>,<2,a>,<3,a>},f5={<1,b>,<2,a>,<3,b>} f6={<1,b>,<2,b>,<3,a>}, f7={<1,b>,<2,b>,<3,b>}
f、g: NN
x 1 x 0,1,2,3 f ( x ) 0 x4 x x5
求复合函数gof , fog
x g ( x) 2 3
x为偶数 x为奇数
注意,函数是一种关系,今用斜体“ o” 表
示函数复合运算,记为gof,这是“左复合”,
它与关系的“右复合” fog 次序正好相反,为区 分它们在同一公式中的出现,用粗体符号表示 关系复合fog,故有gof=fog。
下面讨论由集合A和B,构成这样函数 f:AB 会有多少呢?或者说,在 AB 的所有子 集中,是全部还是部分子集可以定义函数?令 BA表示这些函数的集合,即
BA={f|f:AB}
设 |A|=m , |B|=n ,则 |BA|=nm 。这是因为对
每个自变元,它的函数值都有n种取法,故总共

第5讲-指数函数与对数函数

第5讲-指数函数与对数函数

指数函数与对数函数学习目标1、了解反函数的概念,以及函数与其反函数的图像关系,会求简单函数的反函数。

2、掌握指数函数、对数函数的定义及相关性质3、会利用指数函数、对数函数的相关性质分析和解决常规问题1、 反函数:对于函数()y f x =,设其定义域为A ,值域为B ,我们知道,按照定义,对任意的a A ∈,都有唯一的b B ∈,满足()b f a =,即点(,)P a b 在()y f x =的图像上。

如果这里的对应关系f 比较特殊,即对于值域B 中的元素b ,在定义域A 中与b 对应的元素只有a 一个元素,这样的话,我们利用f 可得到另外一个从B A →的对应关系:1:fB A -→,满足1()a f b -=,易知1:f B A -→是一个函数,我们记为1()y f x -=,并称其为()y f x =的反函数。

易知1()y f x -=的定义域为B ,值域为A ,满足1()a f b -=,也即点(,)Q b a 在1()y f x -=的图像上,由于(,)a b 与(,)b a 关于直线y x =对称,故函数与其反函数的图像关于直线y x =对称。

从反函数的定义,我们实际上也得到了反函数的求解方法: (1) 从()y f x =中反解出x ,不妨假设的得到()x y ϕ=(2) 将()x y ϕ=中的,x y 交换位置,得到()y x ϕ=,此即为()y f x =的反函数。

很明显,并非每个函数都有反函数。

2、有理数指数幂(1)幂的有关概念①正整数指数幂:n a a a a=⨯⨯⨯(n个a相乘,n∈N*);②零指数幂:a0=1(a≠0);③负整数指数幂:1ppaa-=(a≠0,p∈N*);④正分数指数幂:mn mna a=(a>0,m、n∈N*,且n>1);⑤负分数指数幂:11mnm n mnaaa-==(a>0,m、n∈N*且n>1).⑥0的正分数指数幂等于0,0的负分数指数幂没有意义.(2)有理数指数幂的性质 ①(0,,)r sr sa a aa r s Q +=>∈ ②()r s rs a a =(0,,)a r s Q >∈ ③()(0,0,)r r rab a b a b r Q =>>∈3、指数函数:形如(0,1)xy a a a =>≠的函数叫指数函数,其中a 叫底数,x 叫指数。

第05讲-函数的单调性与最值(解析版)

第05讲-函数的单调性与最值(解析版)

第05讲-函数的单调性与最值一、考情分析借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义.二、知识梳理1.函数的单调性(1)单调函数的定义增函数减函数定义设函数y=f(x)的定义域为A,区间M⊆A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当Δy=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数Δy=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)上是增函数或是减函数,性,区间M称为单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于任意x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值[微点提醒]1.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大值(或最小值).2.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反.3.“对勾函数”y =x +ax (a >0)的增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].三、 经典例题考点一 确定函数的单调性(区间)【例1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数f(x)在[a ,b]上是增函数,对于任意的x 1,x 2∈[a ,b](x 1≠x 2),下列结论不正确的是( ) A .()()1212f x f x x x -->0B .f(a)<f(x 1)<f(x 2)<f(b)C .(x 1-x 2) [f(x 1)-f(x 2)]>0D .()()2121x x f x f x -->0【答案】B 【解析】试题分析:函数在[a ,b]上是增函数则满足对于该区间上的12,x x ,当12x x <时有()()12f x f x <,因此()()12120f x f x x x ->-,(x 1-x 2) [f(x 1)-f(x 2)]>0,()()21210x x f x f x ->-均成立,因为不能确定12,x x 的大小,因此f(a)<f(x 1)<f(x 2)<f(b)不正确【例1-2】(2020·诸城市教育科学研究院高一期末)函数2y x =-的单调递增区间为( ) A .(],0-∞ B .[)0,+∞C .()0,∞+D .(,)-∞+∞【答案】A 【分析】由解析式知函数图像为开口向下的抛物线,且对称轴为y 轴,故可得出其单调增区间. 【详解】∵函数2y x =-, ∴函数图像为开口向下的抛物线,且其对称轴为y 轴 ∴函数的单调增区间为(],0-∞.规律方法 1.(1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1).(2)单调区间不能用集合或不等式表达,且图象不连续的单调区间要用“和”“,”连接.2.(1)函数单调性的判断方法有:①定义法;②图象法;③利用已知函数的单调性;④导数法. (2)函数y =f [g (x )]的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.考点二 求函数的最值【例2-1】(2020·安徽省六安一中高一月考)若函数()22231x f x x+=+,则()f x 的值域为( ) A .(],3-∞ B .()2,3 C .(]2,3 D .[)3,+∞【答案】C 【分析】利用分子分离法化简()f x ,再根据不等式的性质求函数的值域. 【详解】()22222232(1)112111x x f x x x x+++===++++, 又22211110122311x x x +≥⇒<≤⇒<+≤++, ∴()f x 的值域为(]2,3,故选:C.【例2-2】(2020·民勤县第一中学高二期中(理))下列结论正确的是( )A .当2x ≥时,1xx+的最小值为2 B .当0x >时,2≥ C .当02x <≤时,1x x-无最大值D .当0x >且1x ≠时,1lg 2lg x x+≥ 【答案】B 【分析】结合函数的单调性及基本不等式逐个判断即可. 【详解】 对于A ,x +1x 在[2,+∞)上单调增,所以x =2时,1x x +的最小值为52,故A 错误;对于B ,当x >0时,2x x+≥,当且仅当x =1时,等号成立,故B 成立; 对于C ,1x x -在(0,2]上单调增,所以x =2时,1x x-取得最大值,故C 不成立;对于D ,当0<x <1时,lgx <0,1lg x<0,结论不成立;规律方法 求函数最值的四种常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)均值不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用均值不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 考点三 函数单调性的应用【例3-1】(2020·安徽师范大学附属中学高三月考(理))若函数32,1()3,1x e a x f x x x x ⎧->=⎨-+≤⎩有最小值,则实数a 的取值范围为( ) A .(,1]-∞ B .(–],e ∞C .(01],D .(0,]e【答案】B 【分析】分别求出两段的范围,结合图象即可得到实数a 的取值范围. 【详解】作出32,1()3,1x e x f x x x x ⎧>=⎨-+≤⎩的图象:当1x >时,()f x =x e a e a ->-,当1x ≤时,'2()363(2),f x x x x x =-+=--在(),0-∞上'()0,<f x 在 ()0,1上'()0,f x > 则()f x =323x x -+在(),0-∞上单调递减,在 ()0,1上单调递增,又(0)0f = ∴()0f x ≥,函数32,1()3,1x e a x f x x x x ⎧->=⎨-+≤⎩有最小值,则0e a -≥, 即a e ≤,故选:B【例3-2】(2020·江苏省高一期末)函数()11xxe f x e -=+(e 是自然对数的底数)的图象大致为( ). A . B .C .D .【答案】A 【分析】利用分离常数的方法,将式子化简,可得()211x f x e =-++,根据单调性以及值域,可得结果. 【详解】因为()11211x x x x e e f x e e -+-==-++ 所以()211xf x e =-++, 可知y=x e 是递增的函数,所以2y=1x e +为递减的函数, 则()211x f x e =-++是递减的函数,且0,1x x e >>所以1112,012xxe e +><<+ 则21101x e -<-+<+,所以A 正确 故选:A【例3-3】(2019·会泽县第一中学校高二开学考试(理))已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a R ∈,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 A .47[,2]16-B .4739[,]1616-C.[- D.39[]16- 【答案】A 【解析】 不等式()2x f x a ≥+为()()2xf x a f x -≤+≤(*), 当1x ≤时,(*)式即为22332x x x a x x -+-≤+≤-+,2233322x x a x x -+-≤≤-+, 又22147473()241616x x x -+-=---≤-(14x =时取等号), 223339393()241616x x x -+=-+≥(34x =时取等号),所以47391616a -≤≤, 当1x >时,(*)式为222x x a x x x --≤+≤+,32222x x a x x--≤≤+,又3232()22x x x x --=-+≤-x =,222x x +≥=(当2x =时取等号),所以2a -≤≤, 综上47216a -≤≤.故选A .规律方法 1.利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.对于分段函数,要注意衔接点的取值. 2.(1)比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)求解函数不等式,其实质是函数单调性的逆用,由条件脱去“f ”. [思维升华]1.利用定义证明或判断函数单调性的步骤: (1)取值;(2)作差;(3)定号;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法、利用均值不等式. [易错防范]1.区分两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.例如,函数f (x )在区间(-1,0)上是减函数,在(0 ,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x.四、 课时作业1.(2020·湖南省茶陵三中高二开学考试)已知函数()([1,5])y f x x =∈-的图象如图所示,则()f x 的单调递减区间为( )A .[1,1]-B .[1,3]C .[3,5]D .[1,5]-【答案】B 【分析】根据递减区间的性质分析即可. 【详解】由图像可得,函数在[1,3]内单调递减.2.(2020·湖北省高一月考)下列四个函数中,在(0,)+∞上为增函数的是( ) A .||y x = B .1y x =-+ C .23y x x =- D .2y x=【答案】A 【分析】根据四个函数解析式,依次判断即可得解. 【详解】对于A ,||y x =在(),0-∞内单调递减,在(0,)+∞内单调递增,所以A 正确; 对于B ,1y x =-+在R 内单调递减,所以在(0,)+∞内也单调递减,所以B 错误; 对于C ,23y x x =-在3,2⎛⎫-∞ ⎪⎝⎭内单调递减,在3,2⎛⎫+∞ ⎪⎝⎭内单调递增,所以在(0,)+∞内单调递增错误,即C 错误; 对于D ,2y x=在在(0,)+∞内也单调递减,所以D 错误. 综上可知,A 为正确选项,故选:A.3.(2019·湖南省长郡中学高二期中)下列函数中,在区间()0,1上是增函数的是( ) A .y x = B .3y x =-C .1y x=D .24y x =-+【答案】A 【分析】根据一次函数,反比例函数,二次函数性质可得3y x =-,1y x=,24y x =-+在0,1不是增函数,在区间0,1上,y x x ==是增函数. 【详解】()0,1x ∈时, y x x ==,所以y x =在0,1上是增函数;13,y x y x=-=在0,1上均是减函数; 24y x =-+是开口向下以0x =为对称轴的抛物线,所以24y x =-+在在0,1上是减函数,所以A 正确.故选:A4.(2019·江苏省高一月考)下列函数,在区间()0,∞+上是增函数的是( ) A .y x =- B .1y x=-C .1y x =-D .2yx x【答案】B 【分析】A 选项讲0x >的表达式写出易判断;B 选项注意改变单调性的两个因素:取倒数和加负号,易判断;C 选项一次函数看斜率正负,易判断;D 选项二次函数看对称轴,易判断。

第5课时:基本初等函数

第5课时:基本初等函数

1基本初等函数一.【课标要求】1.指数函数 2.对数函数3.指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1)。

4.幂函数 (y=x, ,y=x2, y=x3,y=x21,y=x1的图象特征) 二.【命题走向】指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。

从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。

为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。

预测2012年对本节的考察是:1.题型有两个选择题和一个解答题;2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质。

同时它们与其它知识点交汇命题,则难度会加大三.【要点精讲】1.指数与对数运算(1)根式的概念:①定义:若a x n=,则x 称a 的n 次方根()1*∈>N n n 且,②性质:1)a a n n =)(;2)当n 为奇数时,a a n n =;3)当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n 。

(2).幂的有关概念①规定:1)∈⋅⋅⋅=n a a a a n( N *;2))0(10≠=a a3)∈=-p aap p(1Q ,4)m a a a n m n m,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=⋅+、∈s Q );2)r a a a s r s r ,0()(>=⋅、∈s Q ); 3)∈>>⋅=⋅r b a b a b a r r r ,0,0()( Q )。

(注)上述性质对r 、∈s R 均适用。

(3).对数的概念①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b=,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数 1)N 10log =N lg 常用对数2)N e log =N ln 自然对数 )71828.2( =e e ②基本性质:1)真数N 为正数(负数和零无对数); 2)01log =a ; 3)1log =a a ; 4)对数恒等式:N a Na =log 。

第四章 第5讲 三角函数的图象与性质-2025年高考数学备考

第四章 第5讲 三角函数的图象与性质-2025年高考数学备考

第四章三角函数第5讲三角函数的图象与性质课标要求命题点五年考情命题分析预测1.借助单位圆能画出三角函数(正弦、余弦、正切)的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值.2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在(-π2,π2)上的性质.三角函数的定义域本讲每年必考,主要考查三角函数的定义域、值域(最值)、周期性、单调性、对称性和奇偶性,有时与函数零点和极值点综合命题,题型以选择题和填空题为主,难度中等.预计2025年高考命题趋势变化不大,备考时要注意区分正弦函数和余弦函数的图象与性质,不要混淆,另应关注新角度、新综合问题.三角函数的值域(最值)2021全国卷乙T4三角函数的性质及应用2023新高考卷ⅠT15;2023全国卷乙T6;2023天津T5;2022新高考卷ⅠT6;2022全国卷乙T15;2022全国卷甲T11;2022北京T5;2021新高考卷ⅠT4;2020全国卷ⅢT16;2019全国卷ⅠT11;2019全国卷ⅡT9学生用书P0801.用“五点法”作正弦函数和余弦函数的简图在正弦函数y =sin x ,x ∈[0,2π]的图象上,起关键作用的五个点是(0,0),(π2,1),①(π,0),(3π2,-1),②(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,起关键作用的五个点是(0,1),(π2,0),③(π,-1),(3π2,0),④(2π,1).五点法作图有三步:列表、描点、连线(注意光滑).2.正弦、余弦、正切函数的图象与性质三角y =sin xy =cos xy =tan x函数图象定义域R R ⑤{x |x ≠k π+2,k ∈Z}值域⑥[-1,1]⑦[-1,1]R周期性周期是2k π(k ∈Z 且k ≠0),最小正周期是⑧2π.周期是2k π(k ∈Z 且k ≠0),最小正周期是⑨2π.周期是k π(k ∈Z 且k ≠0),最小正周期是⑩π.对称性对称轴方程是⑪x =k π+2(k ∈Z ),对称中心是⑫(k π,0)(k ∈Z ).对称轴方程是⑬x =k π(k ∈Z ),对称中心是⑭(k π+2,0)(k ∈Z ).无对称轴,对称中心是⑮(2,0)(k ∈Z ).奇偶性⑯奇函数⑰偶函数⑱奇函数单调性在⑲[-2+2k π,2+2k π](k ∈Z )上单调递增,在⑳[2+2k π,32+2k π](k ∈Z )上单调递减.在㉑[2k π-π,2k π](k ∈Z )上单调递增,在㉒[2k π,2k π+π](k ∈Z )上单调递减.在㉓(-2+k π,2+k π)(k ∈Z )上单调递增.注意y =tan x 在其定义域内不单调.常用结论1.三角函数的对称性与周期T 的关系(1)相邻的两条对称轴(或两个对称中心)之间的距离为2;(2)相邻的对称中心与对称轴之间的距离为4;(3)相邻的两个最低点(或最高点)之间的距离为T .2.与三角函数奇偶性有关的结论(1)若函数y =A sin (ωx +φ)(x ∈R )是奇函数,则φ=k π(k ∈Z );若为偶函数,则φ=k π+π2(k ∈Z ).(2)若函数y =A cos (ωx +φ)(x ∈R )是奇函数,则φ=k π+π2(k ∈Z );若为偶函数,则φ=k π(k ∈Z ).(3)若y=A tan(ωx+φ)为奇函数,则φ=kπ(k∈Z).1.设A是△ABC最小的内角,则sin A+cos A的取值范围是(D)A.(-2,2)B.[-2,2]C.(1,2)D.(1,2]解析∵A是△ABC最小的内角,∴0<A≤π3,∴π4<A+π4≤7π12,sin(A+π4)≤1,则sin A+cos A=2sin(A+π4)∈(1,2],故选D.2.函数f(x)=tan(-4x+π6)的最小正周期为(A)A.π4B.π2C.πD.2π解析函数f(x)=tan(-4x+π6)的最小正周期T=π||=π|-4|=π4.3.[全国卷Ⅱ]若x1=π4,x2=3π4是函数f(x)=sinωx(ω>0)两个相邻的极值点,则ω=(A)A.2B.32C.1D.12解析依题意得函数f(x)的最小正周期T=2π=2×(3π4-π4)=π,解得ω=2,选A.4.函数f(x)=sin(x-π4)的图象的一条对称轴的方程是(C)A.x=π4B.x=π2C.x=-π4D.x=-π2解析函数y=sin x的图象的对称轴方程为x=kπ+π2(k∈Z),令x-π4=kπ+π2(k∈Z),得x=kπ+3π4(k∈Z),故函数f(x)=sin(x-π4)的图象的对称轴方程为x=kπ+3π4(k∈Z).令k=-1,得x=-π4.故选C.5.[易错题]函数y=2sin(-x+π3)(x∈[-π,0])的单调递增区间是(A)A.[-π,-π6]B.[-5π6,-π6]C.[-π3,0]D.[-π6,0]解析令π2+2kπ≤-x+π3≤3π2+2kπ,k∈Z,则-7π6-2kπ≤x≤-π6-2kπ,k∈Z.又x∈[-π,0],所以所求单调递增区间为[-π,-π6].6.函数f(x)=tan(3x+π6)的图象的对称中心为(χ6-π18,0)(k∈Z).解析令3x +π6=χ2,k ∈Z ,解得x =χ6-π18,k ∈Z ,所以f (x )的图象的对称中心为(χ6-π18,0),k ∈Z.学生用书P082命题点1三角函数的定义域例1函数y =lg (sin x 的定义域为{x |2k π<x ≤π3+2k π,k ∈Z}.解析要使函数有意义,则sin >0,Hs -12≥0,解得2χ<<π+2χ(Ap,-π3+2χ≤≤π3+2χ(Ap,所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为{x |2k π<x ≤π3+2k π,k ∈Z}.方法技巧求三角函数的定义域实质上是解不等式或不等式组,常借助于三角函数的图象解决.训练1函数f (x )=tanbtan2tan2-tan 的定义域为{x |x ≠χ4,k ∈Z}.解析tan 2x ,tan x 有意义,则≠π2+χ,2≠π2+χ,k ∈Z ,又tan 2x -tan x ≠0,即2tan1-tan 2-tan x ≠0,则tan x ≠0,即x ≠k π,k ∈Z ,综上可得,x ≠χ4,k ∈Z ,则函数f (x )的定义域为{x |x ≠χ4,k ∈Z}.命题点2三角函数的值域(最值)例2(1)[2021全国卷乙]函数f (x )=sin3+cos3的最小正周期和最大值分别是(C)A.3π和2B.3π和2C.6π和2D.6π和2解析因为函数f (x )=sin3+cos 3=2(sin 3cos π4+cos3sin π4)=2sin (3+π4),所以函数f (x )的最小正周期T =2π13=6π,最大值为2.故选C.(2)已知函数f (x )=cos (2x +π3)+2的定义域为[α,π],值域为[52,3],则α的取值范围是(C )A.[2π3,π]B.[0,2π3]C.[2π3,5π6]D.[π2,5π6]解析由题意知,2x+π3∈[2α+π3,7π3],且y=cos(2x+π3)在[α,π]上的值域为[12,1],∴2α+π3≥5π3,且2α+π3≤2π,解得2π3≤α≤5π6,∴α的取值范围是[2π3,5π6],故选C.方法技巧三角函数值域的不同求法1.把所给的三角函数式变换成y=A sin(ωx+φ)+b的形式求值域.2.把sin x或cos x看作一个整体,转换成二次函数求值域.3.利用sin x±cos x和sin x cos x的关系转换成二次函数求值域.训练2(1)[2023四川省模拟]已知函数f(x)=cos2x+sin x-14的定义域为[0,m],值域为[34,1],则实数m的最大值为(A)A.πB.7π6C.4π3D.3π2解析由已知,得f(x)=cos2x+sin x-14=1-sin2x+sin x-14=-sin2x+sin x+34,令t=sin x,函数f(x)可转换为y=-t2+t+34=-(t-12)2+1,因为y∈[34,1],所以根据二次函数的图象与性质可得t∈[0,1],即sin x∈[0,1],又x∈[0,m],所以根据三角函数的图象与性质可得m∈[π2,π],所以实数m的最大值为π,故选A.(2)函数y=sin x-cos x+sin x cos x12解析令sin x-cos x=t,则t=2sin(x-π4),t∈[-2,2],t2=sin2x+cos2x-2sin x cos x,故sin x cos x=1-22,所以y=t+1-22=-12(t-1)2+1,所以当t=1时,函数有最大值1;当t=-2时,函数有最小值-2-12,即值域为[-2-12,1].命题点3三角函数的性质及应用角度1三角函数的周期性例3(1)[2023天津高考]已知函数f(x)图象的一条对称轴为直线x=2,f(x)的一个周期为4,则f(x)的解析式可能为(B)A.f(x)=sin(π2x)B.f(x)=cos(π2x)C.f(x)=sin(π4x)D.f(x)=cos(π4x)解析对于A,f(x)=sin(π2x),其最小正周期为2ππ2=4,因为f(2)=sinπ=0,所以函数f(x)=sin(π2x)的图象不关于直线x=2对称,故排除A;对于B,f(x)=cos(π2x),其最小正周期为2ππ2=4,因为f(2)=cosπ=-1,所以函数f(x)=cos(π2x)的图象关于直线x=2对称,故选项B符合题意;对于C,D,函数y=sin(π4x)和y=cos(π4x)的最小正周期均为2ππ4=8,均不符合题意,故排除C,D.综上,选B.(2)[全国卷Ⅲ]函数f(x)=tG1+B2的最小正周期为(C)A.π4B.π2C.πD.2π解析f(x)=tan1+tan2=sin cos1+sin2cos2=sinvoscos2+sin2=sin x cos x=12sin2x,所以f(x)的最小正周期T=2π2=π.故选C.方法技巧1.求三角函数周期的基本方法(1)定义法.(2)公式法:函数y=A sin(ωx+φ)(或y=A cos(ωx+φ))的最小正周期T=2π||,函数y=A tan(ωx+φ)的最小正周期T=π||.(3)图象法:求含有绝对值符号的三角函数的周期时可画出函数的图象,通过观察图象得出周期.2.有关周期的2个结论(1)函数y=|A sin(ωx+φ)|,y=|A cos(ωx+φ)|,y=|A tan(ωx+φ)|的最小正周期T均为π||.(2)函数y=|A sin(ωx+φ)+b|(b≠0),y=|A cos(ωx+φ)+b|(b≠0)的最小正周期T均为2π||.角度2三角函数的单调性例4(1)[2022北京高考]已知函数f(x)=cos2x-sin2x,则(C)A.f(x)在(-π2,-π6)上单调递减B.f(x)在(-π4,π12)上单调递增C.f(x)在(0,π3)上单调递减D.f(x)在(π4,7π12)上单调递增解析依题意可知f(x)=cos2x-sin2x=cos2x,对于A,因为x∈(-π2,-π6),所以2x∈(-π,-π3),函数f(x)=cos2x在(-π2,-π6)上单调递增,所以A不正确;对于B,因为x∈(-π4,π12),所以2x∈(-π2,π6),函数f(x)=cos2x在(-π4,π12)上不单调,所以B不正确;对于C,因为x∈(0,π3),所以2x∈(0,2π3),函数f(x)=cos2x在(0,π3)上单调递减,所以C正确;对于D,因为x∈(π4,7π12),所以2x∈(π2,7π6),函数f(x)=cos2x在(π4,7π12)上不单调,所以D不正确.故选C.(2)[全国卷Ⅱ]若f(x)=cos x-sin x在[-a,a]上是减函数,则a的最大值是(A)A.π4B.π2C.3π4D.π解析f(x)=cos x-sin x=2cos(x+π4),因为函数y=cos x在区间[0,π]上单调递减,则由0≤x+π4≤π,得-π4≤x≤3π4.因为f(x)在[-a,a]上是减函数,|-π4|<3π4,所以-a≥-π4,解得a≤π4.又区间[-a,a]有意义时,a>0,所以0<a≤π4,所以a的最大值是π4.方法技巧三角函数单调性问题的常见类型及求解策略常见类型求解策略已知三角函数解析式求单调区间(1)将函数化简为“一角一函数”的形式,如y=A sin(ωx+φ)+b(A>0,ω>0);(2)利用整体思想,视“ωx+φ”为一个整体,根据y=sin x的单调区间列不等式求解.对于y=A cos(ωx+φ),y=A tan(ωx+φ),可以利用类似方法求解.注意求函数y=A sin(ωx+φ)+b的单调区间时要先看A和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.已知三角函数的单调性求参数(1)求出原函数的相应单调区间,由已知区间是求出的单调区间的子集,列不等式(组)求解.(2)由所给区间求出“ωx+φ”的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.角度3三角函数的奇偶性与对称性例5(1)[2022全国卷甲]将函数f(x)=sin(ωx+π3)(ω>0)的图象向左平移π2个单位长度后得到曲线C,若C关于y轴对称,则ω的最小值是(C)A.16B.14C.13D.12解析记曲线C的函数解析式为g(x),则g(x)=sin[ω(x+π2)+π3]=sin[ωx+(π2ω+π3)].因为函数g(x)的图象关于y轴对称,所以π2ω+π3=kπ+π2(k∈Z),得ω=2k+13(k∈Z).因为ω>0,所以ωmin=13.故选C.(2)[2022新高考卷Ⅰ]记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T <π,且y=f(x)的图象关于点(3π2,2)中心对称,则f(π2)=(A)A.1B.32C.52D.3解析因为2π3<T<π,所以2π3<2π<π,解得2<ω<3.因为y=f(x)的图象关于点(3π2,2)中心对称,所以b=2,且sin(3π2ω+π4)+b=2,即sin(3π2ω+π4)=0,所以3π2ω+π4=kπ(k∈Z),又2<ω<3,所以13π4<3π2ω+π4<19π4,所以3π2ω+π4=4π,解得ω=52,所以f(x)=sin(52x+π4)+2,所以f(π2)=sin(52×π2+π4)+2=sin3π2+2=1.故选A.方法技巧1.三角函数图象的对称轴和对称中心的求解方法:对于函数f(x)=A sin(ωx+φ)(ω≠0),令ωx+φ=kπ+π2,k∈Z,求出对称轴方程;令ωx+φ=kπ,k∈Z,求出对称中心的横坐标(纵坐标为0).对于y=A cos(ωx+φ),y=A tan(ωx+φ),可以利用类似方法求解(注意y=A tan(ωx+φ)的图象无对称轴).说明选择题可以通过验证f(x0)的值进行判断,即f(x0)=±A⇔x=x0是函数f(x)图象的对称轴方程;f(x0)=0⇔点(x0,0)是函数f(x)图象的对称中心.2.三角函数中奇函数一般可化为y=A sinωx或y=A tanωx的形式,而偶函数一般可化为y =A cosωx+b的形式.训练3(1)[2023全国卷乙]已知函数f(x)=sin(ωx+φ)在区间(π6,2π3)单调递增,直线x=π6和x=2π3为函数y=f(x)的图象的两条相邻对称轴,则f(-5π12)=(D)A. B.-12 C.12解析由题意得12×2π||=2π3-π6=π2,解得|ω|=2,易知x=π6是f(x)的最小值点.若ω=2,则π6×2+φ=-π2+2kπ(k∈Z),得φ=-5π6+2kπ(k∈Z),于是f(x)=sin(2x-6π5+2kπ)=sin(2x-5π6),f(-5π12)=sin(-5π12×2-5π6)=sin(-5π3)=sinπ3=ω=-2,则π6×(-2)+φ=-π2+2kπ(k∈Z),得φ=-π6+2kπ(k∈Z),于是f(x)=sin(-2x-π6+2kπ)=sin(-2x-π6)=sin(2x-56π),所以f(-5π12)故选D.(2)在函数①y=cos|2x|,②y=|cos x|,③y=cos(2x+π6),④y=tan(2x-π4)中,最小正周期为π的所有函数为(A)A.①②③B.①③④C.②④D.①③解析对于①,y=cos|2x|=cos2x,其最小正周期为2π2=π;对于②,y=|cos x|的最小正周期为π;对于③,y=cos(2x+π6)的最小正周期为2π2=π;对于④,y=tan(2x-π4)的最小正周期为π2.所以最小正周期为π的所有函数为①②③.(3)函数f(x)=3sin(2x-π3+φ)+1,φ∈(0,π),且f(x)为偶函数,则φ=5π6,f(x)图象的对称中心为(π4+χ2,1),k∈Z.解析∵f(x)=3sin(2x-π3+φ)+1为偶函数,∴-π3+φ=kπ+π2,k∈Z,即φ=5π6+kπ,k∈Z.又φ∈(0,π),∴φ=5π6,∴f(x)=3sin(2x+π2)+1=3cos2x+1.由2x=π2+kπ,k∈Z,得x=π4+χ2,k∈Z,∴f(x)图象的对称中心为(π4+χ2,1),k∈Z.1.[命题点2/2023福建模拟]若对任意x∈R都有f(sin x)=-cos2x+cos2x+2sin x-3,则f(x)的值域为[-4,0].解析易知f(sin x)=2sin2x-1+1-sin2x+2sin x-3=sin2x+2sin x-3,所以f(x)=x2+2x-3(-1≤x≤1),曲线y=x2+2x-3的对称轴为直线x=-1,所以函数f(x)在区间[-1,1]上单调递增,所以f(-1)≤f(x)≤f(1),即-4≤f(x)≤0,所以f(x)的值域为[-4,0].2.[命题点2/2023潍坊市高三统考]已知函数f(x)=3sin x+4cos x,且f(x)≤f(θ)对任意x∈R恒成立,若角θ的终边经过点P(4,m),则m=3.解析因为f(x)=3sin x+4cos x=5sin(x+φ),其中cosφ=35,sinφ=45,则sin(θ+φ)=1,所以θ+φ=π2+2kπ(k∈Z),所以θ=π2-φ+2kπ(k∈Z),所以sinθ=sin(π2-φ)=cosφ=35,同理cosθ=45,所以tanθ=4=sin cos=34,所以m=3.3.[命题点3角度1/多选/2023福建省福州市联考]如图所示,一个质点在半径为2的圆O上以点P为起始点,沿逆时针方向运动,每3s转一圈.该质点到x轴的距离关于时间t的函数记为f(t).下列说法正确的是(AC)A.f(t)=|2sin(2π3t-π4)|B.f(t)=2sin(2π3t-π4)C.f(t)的最小正周期为32D.f(t)的最小正周期为3解析由题可知,质点的角速度为2π3rad/s,因为点P为起始点,沿逆时针方向运动,设经过t s之后所成角为φ,则φ=2π3-π4,根据任意角的三角函数定义有y P=2sin(2π3-π4),所以该质点到x轴的距离为f(t)=|2sin(2π3t-π4)|,故A正确,B错误;因为f(t)=|2sin(2π3t-π4)|,所以f(t)的最小正周期为π2π3=32,故C正确,D错误.故选AC.4.[命题点3/多选/2023河北名校联考]已知函数f(x)=2sin(ωx+π4)+b(ω>0)的最小正周期T满足π2<T<3π2,且P(-π8,1)是f(x)图象的一个对称中心,则(AC)A.ω=2B.f(x)的值域是[-2,2]C.直线x=π8是f(x)图象的一条对称轴D.f(x+π4)是偶函数解析对于A,因为P(-π8,1)是函数f(x)图象的一个对称中心,所以-π8ω+π4=kπ(k∈Z),且b=1,得ω=2-8k(k∈Z).又π2<T<3π2,且ω>0,即π2<2π<3π2,所以43<ω<4,所以ω=2,故A正确.对于B,由对A的分析得f(x)=2sin(2x+π4)+1,因为-1≤sin(2x+π4)≤1,所以f(x)∈[-1,3],故B不正确.对于C,解法一由2x+π4=kπ+π2(k∈Z),得x=χ2+π8(k∈Z),当k=0时,x=π8,所以直线x=π8是函数f(x)图象的一条对称轴,故C正确.解法二将x=π8代入f(x),可得f(π8)=3(f(x)的最大值),所以直线x=π8是f(x)图象的一条对称轴,故C正确.对于D,因为f(x+π4)=2sin[2(x+π4)+π4]+1=2sin(2x+π2+π4)+1=2cos(2x+π4)+1,显然该函数不是偶函数,故D不正确.综上所述,选AC.学生用书·练习帮P2961.函数f(x)=tan(2x+π4)的定义域为(C)A.{x|x≠kπ+π2,k∈Z}B.{x|x≠2kπ+π2,k∈Z}C.{x|x≠χ2+π8,k∈Z}D.{x|x≠kπ+π8,k∈Z}解析由2x+π4≠kπ+π2,k∈Z,得2x≠kπ+π4,k∈Z,∴x≠χ2+π8,k∈Z,∴函数y=tan(2x+π4)的定义域为{x|x≠χ2+π8,k∈Z}.2.[2023天津新华中学统练]下列函数中,最小正周期为π的奇函数是(D)A.y=sin(2x+π2)B.y=tan2xC.y=2sin(π-x)D.y=tan(x+π)解析对于函数y=sin(2x+π2)=cos2x,最小正周期为π,是偶函数,排除A;对于函数y=tan2x,最小正周期为π2,是奇函数,排除B;对于函数y=2sin(π-x)=2sin x,最小正周期为2π,是奇函数,排除C;对于函数y=tan(π+x)=tan x,最小正周期为π,是奇函数,故选D.3.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是(A)A.f(x)=|cos2x|B.f(x)=|sin2x|C.f(x)=cos|x|D.f(x)=sin|x|解析A中,函数f(x)=|cos2x|的最小正周期为π2,当x∈(π4,π2)时,2x∈(π2,π),函数f(x)单调递增,故A正确;B中,函数f(x)=|sin2x|的最小正周期为π2,当x∈(π4,π2)时,2x∈(π2,π),函数f(x)单调递减,故B不正确;C中,函数f(x)=cos|x|=cos x的最小正周期为2π,故C不正确;D中,f(x)=sin|x|=sin,≥0,由正弦函数图象知,在x≥0和x<0时,f(x)均以2π为周期,但在整个-sin,<0,定义域上f(x)不是周期函数,故D不正确.故选A.4.已知函数f(x)=sin(ωx+θ)+3cos(ωx+θ)(θ∈[-π2,π2])是偶函数,则θ的值为(B)A.0B.π6C.π4D.π3解析由已知可得f(x)=2sin(ωx+θ+π3),若函数为偶函数,则必有θ+π3=kπ+π2(k∈Z),又由于θ∈[-π2,π2],故有θ+π3=π2,解得θ=π6,经代入检验符合题意.故选B.5.[2023江西月考]已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2)的两个相邻的零点为-13,23,则f(x)的图象的一条对称轴方程是(B)A.x=-16B.x=-56C.x=13D.x=23解析设f(x)的最小正周期为T,则2=23-(-13)=1,得T=2π=2,所以ω=π,又因为-π3+φ=kπ(k∈Z),且0<φ<π2,所以φ=π3,则f(x)=sin(πx+π3),由πx+π3=kπ+π2(k∈Z),解得x=k+16(k∈Z),取k=-1,得一条对称轴方程为x=-56.6.已知函数f(x)=-2tan(2x+φ)(0<φ<π2)的图象的一个对称中心是点(π12,0),则该函数的一个单调递减区间是(D)A.(-5π6,π6)B.(-π6,π3)C.(-π3,π6)D.(-5π12,π12)解析因为函数f(x)=-2tan(2x+φ)的图象的一个对称中心是点(π12,0),所以2×π12+φ=χ2,k∈Z,解得φ=χ2-π6,k∈Z.又0<φ<π2,所以φ=π3,所以f(x)=-2tan(2x+π3).令-π2+kπ<2x+π3<π2+kπ,k∈Z,解得-5π12+χ2<x<π12+χ2,k∈Z,所以函数f(x)的单调递减区间为(-5π12+χ2,π12+χ2),k∈Z.当k=0时,得f(x)的一个单调递减区间为(-5π12,π12).7.[全国卷Ⅰ]设函数f(x)=cos(ωx+π6)在[-π,π]的图象大致如图,则f(x)的最小正周期为(C)A.10π9B.7π6C.4π3D.3π2解析解法一由题图知,f(-4π9)=0,∴-4π9ω+π6=π2+kπ(k∈Z),解得ω=-3+94(k∈Z).设f(x)的最小正周期为T,易知T<2π<2T,∴2π||<2π<4π||,∴1<|ω|<2,当且仅当k=-1时,符合题意,此时ω=32,∴T=2π=4π3.故选C.解法二由题图知,f(-4π9)=0且f(-π)<0,f(0)>0,∴-4π9ω+π6=-π2(ω>0),解得ω=32,经验证符合题意,∴f(x)的最小正周期T=2π=4π3.故选C.8.[2024安徽铜陵模拟]已知函数f(x)=a sin4x+cos4x的图象关于直线x=π12对称,则f(π24)=(A)A.3 C.-12 D.-1解析由题设f(x)=2+1sin(4x+φ)(a≠0)且tanφ=1,又函数图象关于直线x=π12对称,所以π3+φ=π2+kπ,k∈Z⇒φ=π6+kπ,k∈Z,则tanφ=tan(π6+kπ)=tanπ6=1⇒a=3,综上,f(x)=3sin4x+cos4x=2sin(4x+π6),故f(π24)=2sinπ3=3.故选A.9.[多选/2023江苏南京模拟]已知x1,x2是函数f(x)=2sin(ωx-π6)(ω>0)的两个不同零点,且|x1-x2|的最小值是π2,则下列说法正确的是(ABD)A.函数f(x)在[0,π3]上单调递增B.函数f(x)的图象关于直线x=-π6对称C.函数f(x)的图象关于点(π,0)中心对称D.当x∈[π2,π]时,函数f(x)的值域是[-2,1]解析由题意可知,最小正周期T=2π=π,所以ω=2,f(x)=2sin(2x-π6).对于选项A,当x∈[0,π3]时,2x-π6∈[-π6,π2],所以f(x)在[0,π3]上单调递增,故A正确;对于选项B,f(-π6)=2sin[2×(-π6)-π6]=2sin(-π2)=-2,所以f(x)的图象关于直线x =-π6对称,故B正确;对于选项C,f(π)=2sin(2π-π6)=-1≠0,所以f(x)的图象不关于点(π,0)中心对称,故C错误;对于选项D,当x∈[π2,π]时,2x-π6∈[5π6,11π6],sin(2x-π6)∈[-1,12],f(x)∈[-2,1],故D正确.故选ABD.10.定义运算a*b为:a*b=(≤p,(>p,例如,1*2=1,则函数f(x)=sin x*cos x的值域为[-1,22].解析f(x)=sin x*cos x,当x∈[π+2kπ,5π4+2kπ],k∈Z,这时sin x≥cos x,所以f(x)=cos x,这时函数的值域为[-1;当x∈[-3π4+2kπ,π4+2kπ],k∈Z,这时sin x≤cos x,所以f(x)=sin x,这时函数的值域为[-1综上,函数的值域为[-1 11.[2023上海松江二中模拟]若函数y=sin(πx-π6)在[0,m]上单调递增,则m的最大值为23.解析由x∈[0,m],知πx-π6∈[-π6,mπ-π6],因为函数在[0,m]上单调递增,所以-π6<mπ-π6≤π2,即0<m≤23,所以m的最大值为23.12.[2024安徽合肥一中模拟]已知函数f(x)=sin x cos x-3cos2x(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[-π6,π4]上的值域.解析(1)因为f(x)=sin x cos x-3cos2x=12sin2x=12sin2x-2x=sin(2x-π3),所以函数f(x)的最小正周期为T=2π2=π.由2kπ+π2≤2x-π3≤2kπ+3π2(k∈Z)可得kπ+5π12≤x≤kπ+11π12(k∈Z),所以函数f(x)的单调递减区间为[kπ+5π12,kπ+11π12](k∈Z).(2)当-π6≤x≤π4时,-2π3≤2x-π3≤π6,则-1≤sin(2x-π3)≤12,因此,函数f(x)在区间[-π6,π4]上的值域为[-1,12].13.设函数f(x)=2cos(12x-π3),若对于任意的x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为(C)A.π2B.πC.2πD.4π解析函数f(x)=2cos(12x-π3),若对于任意的x∈R,都有f(x1)≤f(x)≤f(x2),则f(x1)是函数的最小值,f(x2)是函数的最大值,|x1-x2|的最小值就是函数的半个周期,故2=12×2π12=2π,故选C.14.[2023湘潭模拟]若函数f(x)=cos2x+sin(2x+π6)在(0,α)上恰有2个零点,则α的取值范围为(B)A.[5π6,4π3)B.(5π6,4π3]C.[5π3,8π3)D.(5π3,8π3]解析由题意得,函数f(x)=cos2x+sin(2x+π6)=3sin(2x+π3),因为0<x<α,所以π3<2x+π3<2α+π3,又由f(x)在(0,α)上恰有2个零点,可得2π<2α+π3≤3π,解得5π6<α≤4π3,所以α的取值范围为(5π6,4π3].15.[2023福建龙岩模拟]已知函数f(x)=2|sin x|+cos x,则f(x)的最小值为(C)A.-5B.-2C.-1D.0解析解法一f(x)=2|sin x|+cos x,分别作出y=2|sin x|(图1)与y=cos x (图2)的部分图象,如图所示.图1图2从图中可以看出,当x=π时,两个函数同时取得最小值,此时f(π)=2|sinπ|+cosπ=-1最小.解法二因为f(-x)=2|sin(-x)|+cos(-x)=2|sin x|+cos x=f(x),所以f(x)=2|sin x|+cos x为偶函数,又f(x+2π)=2|sin(x+2π)|+cos(x+2π)=2|sin x|+cos x=f(x),所以f(x)的一个周期为2π.当x∈[0,π]时,f(x)=2sin x+cos x,f'(x)=2cos x-sin x,令f'(x)=0,则tan x=2,故存在x0∈(0,π2),使得f'(x0)=0,当x∈[0,x0)时,f'(x)>0,f(x)单调递增;当x∈(x0,π]时,f'(x)<0,f(x)单调递减,又f(0)=1,f(π)=-1,结合f(x)为偶函数,周期为2π,作出f(x)=2|sin x|+cos x的图象如图,由图可知,函数的最小值为-1.故选C.16.[多选/2022新高考卷Ⅱ]已知函数f(x)=sin(2x+φ)(0<φ<π)的图象关于点(2π3,0)中心对称,则(AD)A.f(x)在区间(0,5π12)单调递减B.f(x)在区间(-π12,11π12)有两个极值点C.直线x=7π是曲线y=f(x)的对称轴D.直线y x是曲线y=f(x)的切线解析因为函数f(x)的图象关于点(2π3,0)中心对称,所以sin(2×2π3+φ)=0,可得4π3+φ=kπ(k∈Z),结合0<φ<π,得φ=2π3,所以f(x)=sin(2x+2π3).对于A,解法一由2kπ+π2≤2x+2π3≤2kπ+3π2(k∈Z),得kπ-π12≤x≤kπ+5π12(k∈Z);当k =0时,-π12≤x≤5π12.因为(0,5π12)⊆(-π12,5π12),所以函数f(x)在区间(0,5π12)单调递减,故A正确.解法二当x∈(0,5π12)时,2x+2π3∈(2π3,3π2),所以函数f(x)在区间(0,5π12)单调递减,故A正确.对于B,解法一由2x+2π3=kπ+π2(k∈Z),得x=χ2-π12(k∈Z),当k=0时,x=-π12;当k=1时,x=5π12;当k=2时,x=11π12.所以函数f(x)在区间(-π12,11π12)只有一个极值点,故B不正确.解法二当x∈(-π12,11π12)时,2x+2π3∈(π2,5π2),所以函数f(x)在区间(-π12,11π12)只有一个极值点,故B不正确.对于C,解法一由选项B解法一的分析知,函数f(x)图象的对称轴方程为x=χ2-π12(k∈Z),而方程χ2-π12=7π6(k∈Z)无解,故C不正确.解法二因为f(7π6)=sin(2×7π6+2π3)=sin3π=0,所以x=7π6不是曲线y=f(x)的对称轴,故C不正确.对于D,因为f'(x)=2cos(2x+2π3),若直线y x为曲线y=f(x)的切线,则由2cos(2x+2π3)=-1,得2x+2π3=2kπ+2π3或2x+2π3=2kπ+4π(k∈Z),所以x=kπ或x=kπ+π3(k∈Z).当x=kπ(k∈Z)时,f(x)kπ(k∈Z),解得k=0;当x=kπ+π3(k∈Z)时,f(x)kπ-π3(k∈Z)无解.综上所述,直线y x为曲线y=f(x)的切线,故D正确.综上所述,选AD.17.[条件创新]已知函数f(x)=2sinωx(ω>0)在区间[-3π4,π4]上单调递增,且直线y=-2与函数f(x)的图象在[-2π,0]上有且仅有一个交点,则实数ω的取值范围是[14,23].解析易知f(x)的图象关于点(0,0)对称,则由函数f(x)在[-3π4,π4]上单调递增可得4≥3π4(T为f(x)的最小正周期),即2π4≥3π4,结合ω>0,解得0<ω≤23.因为直线y=-2与函数f(x)的图象在[-2π,0]×2π≤2π,×2π>2π,解得14≤ω<54.综上,ω∈[14,23].18.[2023湖北省部分重点中学联考]已知函数f(x)=4sin2(π4+2)sin x+(cos x+sin x)·(cos x-sin x)-1.(1)求f(x)的解析式及其图象的对称中心;(2)若函数g(x)=12[f(2x)+af(x)-af(π2-x)-a]-1在区间[-π4,π2]上的最大值为2,求实数a的值.解析(1)f(x)=2[1-cos(π2+x)]·sin x+cos2x-sin2x-1=sin x·(2+2sin x)+1-2sin2x-1=2sin x.对称中心为(kπ,0),k∈Z.(2)g(x)=sin2x+a sin x-a cos x-2-1,令sin x-cos x=t,则sin2x=1-t2,(小技巧:函数式中既含正余弦的和或差(sin x-cos x或sin x+cos x),又含二者的乘积(即sin x·cos x),可令sin x-cos x=t或sin x+cos x=t,然后转化为关于t的二次函数求最值)∴y=1-t2+at-2-1=-(t-2)2+2 4-2.∵t=sin x-cos x=2sin(x-π4),x∈[-π4,π2],∴x-π4∈[-π2,π4],∴-2≤t≤1.①当2<-2,即a <-22时,y max =-(-2-2)2+24-2=-2a -2-2.令-2a -2-2=2,解得a .②当-2≤2≤1,即-22≤a ≤2时,y max =24-2,令24-2=2,解得a =-2或a =4(舍去).③当2>1,即a >2时,y max =-(1-2)2+24-2=2-1,由2-1=2,得a =6.综上,a =-2或6.19.[条件创新/多选]已知函数f (x )=cos (2x +φ)(|φ|<π2),F (x )=f (x )+'(x )为奇函数,则下述四个结论正确的是(BC )A.tan φ=3B.若f (x )在[-a ,a ]上存在零点,则a 的最小值为π6C.F (x )在(π4,3π4)上单调递增D.f (x )在(0,π2)上有且仅有一个极大值点解析由f (x )=cos (2x +φ),得f '(x )=-2sin (2x +φ),则F (x )=f (x )+'(x )=cos (2x +φ)-3sin (2x +φ)=-2sin (2x +φ-π6).因为F (x )为奇函数,所以φ-π6=k π(k ∈Z ),所以φ=k π+π6(k ∈Z ).因为|φ|<π2,所以φ=π6.对于A ,由以上可得tan φA 错误;对于B ,令f (x )=cos (2x +π6)=0,得2x +π6=k π+π2(k ∈Z ),则x =χ2+π6(k ∈Z ),即函数f (x )的零点为x =χ2+π6(k ∈Z ),且该函数零点的绝对值的最小值为π6,所以a 的最小值为π6,故B 正确;对于C ,F (x )=-2sin 2x ,当x ∈(π4,3π4)时,2x ∈(π2,3π2),此时函数F (x )单调递增,故C 正确;对于D ,函数f (x )=cos (2x +π6),令2x +π6=2k π(k ∈Z ),得x =k π-π12(k ∈Z ),所以函数f (x )在(0,π2)上无极大值点,故D 错误.。

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

第5讲 基本初等函数、函数与方程[考情分析] 1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0)(1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-a b ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下. (3)当a >0时,]2,(a b --∞是减区间,),2[+∞-ab是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间. (4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x(a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根. 负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aanm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b=N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a aa a a log log log ;log log )(log -=+=; M M a a log log αα=; bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.函数的图象 在函数图象上,定义域、值域、对应关系、单调性、奇偶性和周期性一览无遗.因此,快速准确地作出函数图象成为学习函数的一项基本功,而读图也从“形”的角度成为解决函数问题及其他相关问题的一种重要方法.【知识要点】作函数图象最基本的方法是列表描点作图法.常用的函数图象变换有:1.平移变换y=f(x+a):将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位可得.y=f(x)+a:将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位可得.2.对称变换y=-f(x):作y=f(x)关于x轴的对称图形可得.y=f(-x):作y=f(x)关于y轴的对称图形可得.3.翻折变换y=|f(x)|:将y=f(x)的图象在x轴下方的部分沿x轴翻折到x轴的上方,其他部分不变即得.y=f(|x|):此偶函数的图象关于y轴对称,且当x≥0时图象与y=f(x)的图象重合.【复习要求】1.能够在对函数性质作一定的讨论之后,用描点法作出函数的图象.2.能够对已知函数y=f(x)的图象,经过适当的图象变换得到预期函数的图象.3.通过读图能够分析出图形语言所表达的相关信息(包括函数性质及实际意义),运用数形结合的思想解决一些与函数有关的问题.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【例题分析】1.=()A.2B.C.D.﹣2【考点】有理数指数幂及根式.【专题】转化思想;定义法;函数的性质及应用;数学运算.【答案】B【分析】利用根式与有理指数幂的互化以及有理指数幂的运算性质求解即可.【解答】解:原式=.故选:B.【点评】本题考查了有理数指数幂及根式的运算,主要考查了有理指数幂的互化以及有理指数幂的运算性质,属于基础题.2.函数y=2x(x≤0)的值域是()A.(0,1)B.(﹣∞,1)C.(0,1]D.[0,1)【考点】指数函数的定义、解析式、定义域和值域.【专题】函数思想;转化法;函数的性质及应用.【答案】C【分析】本题可利用指数函数的值域.【解答】解:∵y=2x(x≤0)为增函数,且2x>0,∴20=1,∴0<y≤1.∴函数的值域为(0,1].故选:C.【点评】本题考查的是函数值域的求法,关键是要熟悉指数函数的单调性,本题计算量极小,属于容易题.3.如果函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,则()A.b<﹣1B.﹣1<b<0C.0<b<1D.b>1【考点】指数函数的图象与性质.【专题】计算题;函数思想;转化法;函数的性质及应用;数学运算.【答案】B【分析】利用函数图象的平移变换,得到关于b的不等式,再求出b的范围.【解答】解:∵函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,∴函数f(x)=3x+b是由函数f(x)=3x的图象向下平移|b|个单位长度得到,且|b|<1,又∵图象向下平移,∴b<0,∴﹣1<b<0,故选:B.【点评】本题主要考查了函数图象的平移变换,是基础题.函数的最值最大值与最小值是研究变量问题时常需要考虑的问题,也是高中数学中最重要的问题之一.函数的最大值、最小值问题常与实际问题联系在一起.函数的最值与值域在概念上是完全不同的,但对于一些简单函数,其求法是相通的. 【知识要点】本节主要讨论两类常见的函数最值的解决方法及其应用.1.基本初等函数在特定区间上的最值(或值域)问题.解决这类问题的方法是:作出函数图象,观察单调性,求出最值(或值域).2.一些简单的复合函数的最值问题.解决这类问题的方法通常有: (1)通过作出函数图象变成第1类问题; (2)通过换元法转化成第1类问题; (3)利用平均值定理求最值;(4)通过对函数单调性进行讨论进而求出最值.其中讨论单调性的方法可以用单调性定义或导数的知识(导数的方法在后面相应章节复习); (5)转化成几何问题来求解,如线性规划问题等. 【复习要求】从整体上把握求函数最值的方法,明确求最值的一般思路.函数与方程【知识要点】1.如果函数y =f (x )在实数a 处的值等于零,即f (a )=0,则a 叫做这个函数的零点. 函数零点的几何意义:如果a 是函数y =f (x )的零点,则点(a ,0)一定在这个函数的函数图象上,即这个函数与x 轴的交点为(a ,0). 2.零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是不间断的,而且f (a )f (b ),则这个函数在区间[a ,b ]上至少有一个零点.这也是二分法的依据.注意:上述判定零点的方法只是判断零点存在的充分条件.这种判定零点方法主要适用于在无法对函数进行作图而且也不易对函数所对应的方程求根的情况下.如果可以画出函数的图象(这时判断函数零点的方法将是非常直观的),如果函数所对应的方程可以求根,那么就可以用“作图”和“求根”的方法判断零点. 3.用二分法求函数y =f (x ),x ∈D 零点的一般步骤为:第一步、确定初始区间,即在D 内取一个闭区间[a ,b ],使得f (a )f (b )<0; 第二步、求中点及其对应的函数值,即求)(21b a x +=<0以及f (x )的值,如果f (x )=0,则计算终止,否则进一步确定零点所在的区间;第三步、计算精确度,即计算区间的两个端点按给定的精确度取近似值时是否相等,若相等,则计算终止,否则重复第二步.【复习要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2、能够用二分法求相应方程的近似解.考点二函数的零点核心提炼判断函数零点个数的方法:(1)利用零点存在性定理判断法.(2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y=f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.规律方法利用函数零点的情况求参数值(或取值范围)的三种方法【例题分析】1.函数f(x)=﹣lnx的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)【考点】函数的零点.【专题】函数的性质及应用.【答案】B【分析】由函数的解析式可得f(2)•f(3)<0,再利用函数的零点的判定定理可得函数的零点所在的大致区间.【解答】解:∵函数满足f(2)=>0,f(3)=1﹣ln3<0,∴f (2)•f(3)<0,根据函数的零点的判定定理可得函数的零点所在的大致区间是(2,3),故选:B .【点评】本题主要考查函数的零点的判定定理的应用,属于基础题. 2.已知函数f (x )=﹣log 2x ,在下列区间中,函数f (x )有零点的是( ) A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【考点】函数的零点.【专题】计算题;函数思想;试验法;函数的性质及应用. 【答案】B【分析】首先判断函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续;从而由零点的判定定理判断即可.【解答】解:易知函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续; f (1)=1﹣0=1>0,f (2)=﹣1=﹣<0; 故函数f (x )有零点的区间是(1,2); 故选:B .【点评】本题考查了函数的性质的判断与应用及零点的判定定理的应用,注意掌握基本初等函数的性质.3.函数24,0()(),0x x f x g x x ⎧->=⎨<⎩是奇函数,则函数()f x 的零点是 2± .【答案】2±.【考点】函数的零点;函数奇偶性的性质与判断【专题】整体思想;综合法;函数的性质及应用;数学运算 【分析】由已知函数解析式及奇函数的对称性即可求解. 【解答】解:当0x >时,()240x f x =-=, 解得,2x =,根据奇函数的对称性可知,2x =-也是函数()f x 的零点, 故答案为:2±.【点评】本题主要考查了函数零点的求解,属于基础题.考点3 函数零点的判定定理 【例题分析】1.在下列区间中,存在函数3()2f x lnx x =-+的零点的是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】AD【考点】函数零点的判定定理【专题】计算题;方程思想;转化思想;综合法;函数的性质及应用;数学运算【分析】根据题意,求出函数的导数,分析()f x 的单调区间,由函数零点判断定理依次分析选项,综合即可得答案.【解答】解:根据题意,3()2f x lnx x =-+,其定义域为(0,)+∞,其导数11()1xf x x x -'=-=,在区间(0,1)上,()0f x '>,()f x 为增函数, 在区间(1,)+∞上,()0f x '<,()f x 为减函数, 依次分析选项:对于A ,()f x 在1(0,)2上递增,2222111311()022f ln e e e e =-+=--<,1113()12022222ef ln ln ln =-+=-=>,在()f x 在1(0,)2上存在零点,A 正确,对于B ,()f x 在1(2,1)上递增,1()1202f ln =->,f (1)3111022ln =-+=>,在()f x 在1(2,1)上不存在零点,B 错误,对于C ,()f x 在(1,2)上递减,f (1)102=>,f (2)31222022ln ln =-+=->, 在()f x 在(1,2)上不存在零点,C 错误, 对于D ,()f x 在(2,3)上递减,f (2)1202ln =->,f (3)33333022ln ln =-+=-<, 在()f x 在(2,3)上存在零点,D 正确, 故选:AD .【点评】本题考查函数的零点判断定理,解题的关键是确定区间端点对应的函数值异号,属于基础题.2.函数2()2log f x x x =-+的零点所在的一个区间是( ) A .(4,5) B .(3,4)C .(2,3)D .(1,2)【答案】D【考点】函数零点的判定定理【专题】转化思想;定义法;函数的性质及应用;逻辑推理【分析】由函数解析式,判断f (1)f (2)0<,由零点的存在性定理进行分析求解即可. 【解答】解:因为2()2log f x x x =-+, 所以f (1)212log 110=-+=-<, f (2)222log 210=-+=>,所以f (1)f (2)0<,由零点的存在性定理可得,函数2()2log f x x x =-+的零点所在的一个区间是(1,2). 故选:D .【点评】本题考查了函数零点的问题,主要考查了函数零点的存在性定理的应用,属于基础题.3.利用二分法求方程20lnx x +-=的近似解,已求得()2f x lnx x =+-的部分函数值的数据如表:A .1.55B .1.62C .1.71D .1.76【答案】A【考点】函数零点的判定定理【专题】函数思想;定义法;函数的性质及应用;逻辑推理【分析】利用表格中的数据,在结合零点的存在性定理进行分析求解即可. 【解答】解:根据表中的数据可得,(1.5)0.0945f =-,(1.5625)0.0088f =, 故函数()f x 的零点在区间(1.5,1.5625)之间, 只有1.55符合要求. 故选:A .【点评】本题考查了函数零点的求解,涉及了零点存在性定理的应用,解题的关键是熟练掌握函数零点的存在性定理,属于基础题. 函数零点与方程根的关系 【例题分析】1.已知函数2,12()1,21log x x f x x x <⎧⎪=⎨>⎪-⎩,若方程()0f x a -=至少有两个实数根,则实数a 的取值范围为( ) A .(0,1)B .(0,1]C .[0,2)D .[0,2]【答案】A【考点】函数的零点与方程根的关系【专题】计算题;数形结合;转化思想;演绎法;函数的性质及应用;逻辑推理;数学运算【分析】首先将问题转化为两个函数交点个数的问题,然后数形结合即可确定实数a的取值范围.【解答】解:原问题等价于函数y a与函数()f x至少有两个交点,绘制函数图象如图所示,观察可得,实数a的取值范围是(0,1).故选:A.【点评】本题主要考查由函数的零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于基础题.2.若方程|2x﹣2|=b有一个零点,则实数b的取值范围是.【考点】函数的零点;函数的零点与方程根的关系.【专题】数形结合;数形结合法;函数的性质及应用;逻辑推理.【答案】(2,+∞)∪{0}..【分析】根据函数与方程之间的关系,作出两个函数的图象,利用数形结合进行求解即可.【解答】解:作出函数y=|2x﹣2|的图象如图:要使方程|2x﹣2|=b有一个零点,则函数y=|2x﹣2|与y=b有一个交点,则b>2或b=0,故实数b的取值范围是b>2或b=0,即(2,+∞)∪{0}.故答案为:(2,+∞)∪{0}.【点评】本题主要考查函数与方程的应用,作出函数图象,利用数形结合是解决本题的关键,是基础题.3.已知关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =,则实数a 的值是() A .5 B .6 C .7 D .15【答案】B【考点】函数的零点与方程根的关系【专题】方程思想;转化法;高考数学专题;函数的性质及应用;数学运算【分析】根据条件可得3log (10)(010)x a a =±<<,然后由212x x =,得到33log (10)2log (10)a a +=-或33log (10)2log (10)a a -=+,再求出a 的值.【解答】解:关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,∴由|310|x a -=,可知010a <<,3log (10)(010)x a a ∴=±<<,关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =, 33log (10)2log (10)a a ∴+=-或33log (10)2log (10)a a -=+ 210(10)a a ∴+=-或210(10)a a -=+,6a ∴=±或15a =±,又010a <<, 6a ∴=.故选:B .【点评】本题考查了函数的零点与方程根的关系,考查了方程思想和转化思想,属基础题.。

第5讲 函数的概念及其表示方法

第5讲 函数的概念及其表示方法

4.已知f(2x+3)=x+2,则f(x)的解析式为f(x)=________. 5.已知函数 f(x)=3-x,x,x≤x>1,1,若 f(x)=2,则 x=______.
目标 1 函数的概念
1 (1)下列四组函数,表示同一个函数的一组是
A.y= x2,y=( x)2
B.y=lg 10x,y=10lg x
第二章 基本初等函数
第5讲 函数的概念及其表示方法
1.函数的概念 (1)设A,B是两个__非__空____的数集,如果按某个确定的__对__应__关_系__f____, 使对于集合A中的__每__一__个____元素x,在集合B中都有__唯__一____的元素y和 它对应,那么称__f_:_A__→_B___为从集合A到集合B的一个函数,记做y= f(x) , x∈A . 其 中 将 所 有 的 输 入 值 x 组 成 的 集 合 A 叫 做 函 数 y = f(x) 的 __定_义__域____,将所有的输出值y组成的集合叫做函数的__值_域_____.函数的 定义含有三个要素,即__定_义__域____、_值__域____和_对__应__关__系___. (2)当函数的定义域及从定义域到值域的对应关系确定之后,函数的值域 也就随之确定.因此,当且仅当两个函数的定义域和对应关系都分别相 同时,这两个函数才是同一个函数.
A.3x+2
B.3x-2
C.2x+3
D.2x-3
(3)若 f(x)对于定义域内的任意实数 x 都有 2f(x)-f1x=2x+1,则 f(2)等于
()
A.0
B.1
C.83
D.4
变式 (1)若函数 fx+1x=x2+x12,且 f(m)=4,则实数 m 的值为
A.

第5讲 函数的值域与最值

第5讲 函数的值域与最值

第5讲 函数的值域与最值1.掌握求值域或最值的基本方法,会求一些简单函数的值域或最值.2.建立函数思想,能应用函数观点(如应用函数的值域、最值)解决数学问题.知识梳理 1.函数的值域值域是 函数值 的取值范围,它是由 定义域和对应法则 所确定的,所以求值域时要注意 定义域 .1.基本函数的值域(1)一次函数y =kx +b (k ≠0)的值域为 R ; (2)二次函数y =ax 2+bx +c (a ≠0)的值域: 当a>0时,值域为 [4ac -b 24a ,+∞) ;当a <0时,值域为 (-∞,4ac -b 24a] ;(3)反比例函数y =kx (x ≠0)的值域为y ∈R ,且 y ≠0 ;(4)指数函数y =a x (a >0且a ≠1)的值域为 (0,+∞) ; (5)对数函数y =log a x (a >0且a ≠1,x >0)的值域为 R ; (6)正、余弦函数的值域为 [-1,1] ,正切函数的值域为 R .2.若f (x )>A 在区间D 上恒成立,则等价于在区间D 上,f (x )min >A ;若不等式f (x )<B 在区间D 上恒成立,则等价于在区间D 上,f (x )max <B .热身练习1.函数y =3x (-1≤x ≤3,且x ∈Z )的值域为(D) A .[-1,3] B .[-3,9]C .{-1,0,1,2,3}D .{-3,0,3,6,9}由-1≤x ≤3,且x ∈Z ,得x ∈{-1,0,1,2,3},代入y =3x ,得值域为{-3,0,3,6,9}.2.已知函数f (x )的定义域为R ,M 为常数.若p :对∀x ∈R ,都有f (x )≥M ;q :M 是函数f (x )的最小值.则p 是q 的(B)A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件对∀x ∈R ,都有f (x )≥M ≠>M 是函数f (x )的最小值;M 是函数f (x )的最小值⇒对∀x ∈R ,都有f (x )≥M .所以p 是q 的必要不充分条件.3.(2016·全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是(D)A .y =xB .y =lg xC .y =2xD .y =1x函数y =10lg x 的定义域与值域均为(0,+∞).函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x 的定义域为(-∞,+∞),值域为(0,+∞). 函数y =1x的定义域与值域均为(0,+∞).故选D. 4.函数y =2x -1x +1的值域是(C)A .RB .{y |y ≠-1,y ∈R }C .{y |y ≠2,y ∈R }D .{2}因为y =2x -1x +1=2(x +1)-3x +1=2-3x +1,又因为-3x +1≠0,所以2-3x +1≠2,即y ≠2.5.(2018·南阳月考)已知f (x )=x -1-x ,则(C)A.f(x)max=2,f(x)无最小值B.f(x)min=1,f(x)无最大值C.f(x)max=1,f(x)min=-1D.f(x)max=1,f(x)min=0f(x)=x-1-x的定义域为[0,1],易知y=x与y=-1-x在[0,1]上是增函数,所以函数f(x)=x-1-x在[0,1]上是增函数,所以f(x)max=f(1)=1,f(x)min=f(0)=-1,故选C.求函数的值域或最值求下列函数的值域: (1)y =-x 2+2x ,x ∈[0,3]; (2)y =2x +1x -3;(3)f (x )=2x +log 3x ,x ∈[1,3].(1)因为y =-(x -1)2+1,x ∈[0,3], 结合函数图象可知,所求函数的值域为[-3,1]. (2)因为y =2(x -3)+7x -3=2+7x -3,而7x -3≠0,所以所求函数的值域为{y ∈R |y ≠2}. (3)由于f (x )为增函数,所以f (1)≤f (x )≤f (3), 所以函数的值域为[2,9].求函数值域的常用方法:(1)配方法——转化为二次函数在闭区间上的最值,与二次型函数有关的函数常用此法. (2)分离常数法——分式型函数注意用此法. (3)利用函数的单调性; (4)利用基本不等式等.1.求下列函数的值域: (1)y =1-x 21+x 2;(2)y =x -1-2x .(1)y =1-x 21+x 2=2-(1+x 2)1+x 2=21+x 2-1,因为1+x 2≥1,所以0<21+x 2≤2,所以-1<21+x 2-1≤1,即y ∈(-1,1].(2)设1-2x =t (t ≥0),得x =1-t 22,所以y =1-t 22-t =-12(t +1)2+1≤12(t ≥0),所以y ∈(-∞,12].分段函数的值域或最值(经典真题)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是____________.因为当x ≤2时,y =-x +6≥4. f (x )的值域为[4,+∞),所以当x >2,a >1时,3+log a x >3+log a 2≥4, 所以log a 2≥1,所以1<a ≤2;当0<a <1时,3+log a x <3+log a 2,不合题意. 故a ∈(1,2].(1,2](1)本题主要考查单调性的应用,分段函数的值域等基础知识,考查推理论证能力、运算求解能力及分类讨论能力.(2)分段函数的值域为函数f (x )在各个段上函数值域的并集.本题f (x )在x ≤2这段的值域为[4,+∞),要f (x )的值域为[4,+∞),只要f (x )在x >2这段的值域是[4,+∞)的子集就行了.2.(经典真题)已知函数f (x )=⎩⎪⎨⎪⎧x 2, x ≤1,x +6x -6, x >1,则f [f (-2)]= -12,f (x )的最小值是 26-6 .f [f (-2)]=f (4)=4+64-6=-12.当x ≤1时,f (x )min =0;当x >1时,f (x )=x +6x -6≥26-6,当且仅当x =6x ,即x =6时,等号成立.所以f (x )min =26-6<0. 综上,f (x )的最小值是26-6.恒成立问题(2018·泉州期末)若不等式x 2+ax +1≥0对于一切x ∈(0,12]成立,则a 的最小值为( )A .0B .-2C .-52D .-3从题目条件的切入点不同可以有多种方法求解,主要有:配方法、分离变量法,下面用分离变量法进行求解.因为x ∈(0,12],所以a ≥-x 2-1x =-x -1x,因为y =x +1x 在(0,12]上单调递减,在x =12处取得最小值52,所以-(x +1x )≤-52.故a 的最小值为-52.C(1)恒成立问题常转化为最值问题.一般地,若f (x )>A 在区间D 上恒成立,则等价于在区间D 上,f (x )min >A ;若不等式f (x )<B 在区间D 上恒成立,则等价于在区间D 上,f (x )max <B .(2)含参数问题的处理常采用分离变量法,分离变量后,转化为函数的最值问题.3.已知ax 2+x ≤1对任意x ∈(0,1]恒成立,则实数a 的取值范围为 (-∞,0] .因为x >0,所以ax 2+x ≤1可化为a ≤1x 2-1x .要使a ≤1x 2-1x 对任意x ∈(0,1]恒成立,令f (x )=1x 2-1x ,x ∈(0,1],则只需要a ≤[f (x )]min .设t =1x,因为x ∈(0,1],所以t ≥1,则1x 2-1x =t 2-t =(t -12)2-14, 所以当t =1时,(t 2-t )min =0, 即x =1时,f (x )min =0.所以a ≤0,即实数a 的取值范围为(-∞,0].1.函数值的集合叫做函数的值域,值域是由定义域和对应法则所确定的,因此,在研究函数的值域时,既要重视对应法则的作用,又要特别注意定义域对值域的制约作用.2.求值域的具体方法很多,如配方法、利用函数的单调性、不等式法等,但没有通用的方法和固定模式,要靠在学习过程中不断积累,抓住特点,掌握规律.要记住各种基本函数的值域,总结什么结构特点的函数用什么样的方法求值域,以及使用各种方法的注意事项,并在解决求值域问题时注意选择最优的解法.3.函数的值域常常化归为函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.4.恒成立问题常转化为最值问题.一般地,若f (x )>A 在区间D 上恒成立,则等价于在区间D 上,f (x )min >A ;若不等式f (x )<B 在区间D 上恒成立,则等价于在区间D 上,f (x )max <B .。

高三数学一轮复习 第5讲三角函数的图像与性质教案 人教大纲版

高三数学一轮复习 第5讲三角函数的图像与性质教案 人教大纲版

第5讲 三角函数的图像与性质★知 识 梳理正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质:(1)定义域:都是R (2)值域:都是[-1,1] 对于sin y x =,当()22x k k Z ππ=+∈时,y 取最大值1;当()322x k k Z ππ=+∈时,y 取最小值-1; 对于cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。

(3)周期性:①sin y x =、cos y x =的最小正周期都是2π②()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω= (4)奇偶性与对称性:正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线()2x k k Z ππ=+∈;余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z ππ⎛⎫+∈ ⎪⎝⎭,对称轴是直线()x k k Z π=∈ (5)单调性:sin y x =在区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦单调递减; cos y x =在[]()2,22k k k Z ππππ++∈上单调递增,在区间[]()2,2k k k Z πππ+∈上单调递减,。

(6)正切函数tan y x =的图象和性质: (1)定义域:{|,}2x x k k Z ππ≠+∈。

(2)值域是R ,在上面定义域上无最大值也无最小值; (3)周期性:周期是π.(4)奇偶性与对称性:奇函数,对称中心是,02k π⎛⎫⎪⎝⎭()k Z ∈, (5)单调性:正切函数在开区间(),22k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭内都是增函数。

【导数经典技巧与方法】第5讲-洛必达法则-解析版

【导数经典技巧与方法】第5讲-洛必达法则-解析版

第5讲洛必达法则知识与方法与函数导数相关的压轴题,一般需要确定函数的值域和参数的取值范围,其传统做法是构造函数,然后通过分类讨论,求导分析单调性进行,过程相对复杂繁琐,且分类的情况较多.并且我们采用分离参数时,往往还会出现最值难以求解的情况,这时,我们就可以考虑使用“洛必达法则”来简化解题过程,快速解题. 下面,我们先来介绍一下洛必达法则:法则1:若函数f(x)和g(x)满足下列条件:(1)lim x→a f(x)=0及lim x→a g(x)=0;(2)在点a的去心邻域内,f(x)与g(x)可导,且g′(x)≠0;(3)lim x→a f′(x)g′(x)=l.那么lim x→a f(x)g(x)=lim x→a f′(x)g′(x)=l.法则2:若函数f(x)和g(x)满足下列条件:(1)limx→∞f(x)=0及limx→∞g(x)=0;(2)∃A>0,f(x)和g(x)在(−∞,A)与(A,+∞)内可导,且g′(x)≠0;(3)limx→∞f′(x)g′(x)=l.那么limx→∞f(x)g(x)=limx→∞f′(x)g′(x)=l.法则3:若函数f(x)和g(x)满足下列条件:(1)lim x→a f(x)=∞及lim x→a g(x)=∞;(2)在点a的去心邻域内,f(x)与g(x)可导,且g′(x)≠0;(3)lim x→a f′(x)g′(x)=l.那么lim x→a f(x)g(x)=lim x→a f′(x)g′(x)=l.利用洛必达法则解题时,应点睛意:①将上面公式中的x→a,x→∞换成x→+∞,x→−∞,x→a+,x→a−,洛必达法则也成立.②洛必达法则可处理00,∞∞,0⋅∞,1∞,∞0,00,∞−∞型.③在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞0,00,∞−∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.④若条件符合,洛必达法则可连续多次使用,直到求出极限为止.典型例题【例1】已知f(x)=(x+1)lnx.(1)求f(x)的单调区间;(2)若对于任意x≥1,不等式x[f(x)x+1−ax]+a≤0成立,求a的取值范围.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=lnx+1+1x,令g(x)=lnx+1+1x (x>0),则g′(x)=1x−1x2=x−1x2,所以当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以x>0时,g(x)≥g(1)=2>0,即f(x)在(0,+∞)上单调递增.所以f(x)的单调递增区间为(0,+∞),无减区间.(2)解法1:分离参数+洛必达法则对任意x≥1,不等式x[f(x)x+1−ax]+a≤0成立等价于对任意x≥1,lnx−a(x−1x)≤0恒成立.当x=1时,a∈R;对任意x>1,不等式x[f(x)x+1−ax]+a≤0恒成立等价于对任意x>1,a≥xlnxx2−1恒成立.记m(x)=xlnxx2−1(x>1),则m′(x)=(1+lnx)(x2−1)−2x2lnx(x2−1)2=x2−1−(1+x2)lnx(x2−1)2=1x2+1(1−2x2+1−lnx)(x2−1)2.记t(x)=1−21+x2−lnx(x>1),则t′(x)=4x(1+x2)2−1x=4x2−(1+x2)2x(1+x2)2=−(1−x2)2x(1+x2)2<0,所以t(x)在(1,+∞)单调递减,又t(1)=0,所以x>1时,t(x)<0,m′(x)<0,所以m(x)在(1,+∞)单调递减.所以m(x)max<m(1)=lim x→1xlnxx2−1=lim x→1xlnxx+1−0x−1=lim x→1x+1−lnx(x+1)2=12.综上所述,实数a的取值是[12,+∞).解法2:直接讨论+分类讨论“对任意x ≥1,不等式x [f (x )x+1−ax]+a ≤0恒成立”等价于“对任意x ≥1,不等式x (lnx −ax )+a ≤0恒成立”.令ℎ(x )=xlnx −ax 2+a (x ≥1), 则ℎ′(x )=1+lnx −2ax ,令m (x )=1+lnx −2ax (x ≥1),则m ′(x )=1x −2a . ①当2a ≥1,即a ≥12时,因为x ≥1,所以0<1x ≤1,所以m ′(x )≤0,从而m (x )在[1,+∞)上单调递减, 又m (1)=1−2a ≤0,所以x ≥1时,m (x )≤0, 即ℎ′(x )≤0,所以ℎ(x )在[1,+∞)上单调递减,又ℎ(1)=0,所以当x ≥1时,ℎ(x )≤0,即a ≥12符合题意; ②若0<2a <1,即0<a <12时,所以1≤x <12a 时,m (x )≥m (1)=1−2a >0, 即ℎ′(x )>0,所以ℎ(x )在[1,12a )单调递增.所以当1≤x <12a 时,ℎ(x )≥ℎ(1)=0,故0<2a <1不符合题意. ③若a ≤0时,则m ′(x )≥0恒成立,所以m (x )在[1,+∞)上单调递增, 故当x ≥1时,m (x )≥m (1)=1−2a >0, 即ℎ′(x )>0,所以ℎ(x )在[1,+∞)上单调递增,所以当x ≥1时,ℎ(x )≥ℎ(1)=0,故x (lnx −ax )+a ≥0恒成立. 综上所述,实数a 的取值范围是[12,+∞). 解法3:构造函数+分类讨论对任意x≥1,不等式x[f(x)x+1−ax]+a≤0恒成立等价于对任意x≥1,lnx−a(x−1x)≤0恒成立.令t(x)=lnx−a(x−1x)(x≥1),则t′(x)=1x −a(1+1x2)=−ax2−x+ax2,记Δ=1−4a2.①当a≥12时,Δ≤0,此时t′(x)≤0,t(x)在[1,+∞)单调递减,又t(1)=0,所以x≥1时,t(x)≤0,即对任意x≥1,lnx−a(x−1x)≤0恒成立;②当a≤−12时,Δ≤0,此时t′(x)≥0,t(x)在[1,+∞)单调递增,又t(1)=0,所以x≥1时,t(x)≥0,即对任意x≥1,lnx−a(x−1x)≥0恒成立,不符合题意;③当a=0时,不等式转化为lnx≤0(x≥1),显然不成立;④当−12<a<12,且a≠0时,方程ax2−x+a=0的二根为x1=1+√1−4a22a,x2=1−√1−4a22a.若0<a<12,x1>1,0<x2<1,则t(x)在(1,x1)单调递增,又t(1)=0,所以x∈(1,x1),t(x)≥0,即不等式lnx−a(x−1x)≤0不恒成立;⑤若−12<a<0,x1<x2<0,则t(x)在(1,+∞)上单调递增,又t(1)=0,所以x∈[1,+∞)时,t(x)≥0,即不等式lnx−a(x−1x)≤0不恒成立,不符合题意.综上所述,实数a的取值范围是[12,+∞).【点睛】通过此例,我们可以发现使用“洛必达法则”的好处,可以较为简单地解决问题,在恒成立问题中的求参数取值范围,参数与变量分离较易理解,但有些题中的求分离出来的函数式的最值有点麻烦,利用洛必达法则可以较好的处理它的最值,是一种值得借鉴的方法.【例2】设函数f(x)=ln(x+1)+a(x2−x),其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】(1)f(x)=ln(x+1)+a(x2−x),定义域为(−1,+∞)f′(x)=1x+1+a(2x−1)=a(2x−1)(x+1)+1x+1=2ax2+ax+1−ax+1,当a=0时,f′(x)=1x+1>0,函数f(x)在(−1,+∞)上为增函数,无极值点.设g(x)=2ax2+ax+1−a,g(−1)=1,g(−1)=1,Δ=a(9a−8)>0,当a≠0时,g(x)=0的根的个数就是函数f(x)极值点的个数.若Δ=a(9a−8)≤0,即0<a≤89时,g(x)≥0,f′(x)≥0,函数f(x)在(−1,+∞)为增函数,无极值点.若Δ=a(9a−8)>0,即a>89或a<0,而当a<0时,g(−1)≥0,此时方程g(x)=0在(−1,+∞)只有一个实数根,此时函数f(x)只有一个极值点;当a>89时,方程g(x)=0在(−1,+∞)有两个不相等的实数根,此时函数f(x)有两个极值点;综上可知:当0≤a≤89时,f(x)的极值点个数为0;当a<0时,f(x)的极值点个数为1;当a>89时,f(x)的极值点个数为2.(2)解法1:由(1)可知当0≤a ≤89时f (x )在(0,+∞)单调递增, 而f (0)=0,则当x ∈(0,+∞)时,f (x )>0,符合题意; 当a >89时,Δ=a (9a −8)>0,方程g (x )=0的两根为: x 1=−a−√a (9a−8)4a ,x 2=−a+√a (9a−8)4a,当89<a ≤1时,g (0)≥0,x 2≤0,f (x )在(0,+∞)单调递增,而f (0)=0, 则当x ∈(0,+∞)时,f (x )>0,符合题意;当a >1时,g (0)<0,x 2>0,所以函数f (x )在(0,x 2)单调递减,而f (0)=0, 则当x ∈(0,x 2)时,f (x )<0,不符合题意;当a <0时,设ℎ(x )=x −ln (x +1),当x ∈(0,+∞)时ℎ′(x )=1−1x+1=x1+x >0,ℎ(x )在(0,+∞)单调递增,因此当x ∈(0,+∞)时ℎ(x )>ℎ(0)=0,ln (x +1)<x , 于是f (x )<x +a (x 2−x )=ax 2+(1−a )x ,当x >1−1a 时ax 2+(1−a )x <0, 此时f (x )<0,不符合题意.综上所述,a 的取值范围是0≤a ≤1. 解法2:函数f (x )=ln (x +1)+a (x 2−x ),∀x >0,都有f (x )≥0成立, 即ln (x +1)+a (x 2−x )≥0恒成立, 设ℎ(x )=−ln (x+1)x 2−x ,则ℎ′(x )=−1x+1(x 2−x)+(2x−1)ln (x+1)(x 2−x )2=(2x−1)[−x 2−x(2x−1)(x+1)+ln (x+1)](x 2−x )2,设φ(x )=−x 2−x(2x−1)(x+1)+ln (x +1),则φ′(x )=(x 2−x)(4x+1)(2x−1)2(x+1)2,所以x ∈(0,12)和x ∈(12,1)时,φ′(x )<0,所以φ(x )在(0,12),(12,1)上单调递减, x ∈(1,+∞)时,φ′(x )>0,所以φ(x )在(1,+∞)上单调递增, 因为φ(0)=0,lim x→12−x 2−x (2x−1)(x+1)>0,φ(1)=ln2>0,所以x ∈(0,1)和x ∈(1,+∞)时,ℎ′(x )>0,所以ℎ(x )在(0,1)与(1,+∞)上递增. 当x ∈(0,1)时,x 2−x <0,所以a ≤−ln (x+1)x 2−x,由ℎ(x )的单调性可得,a ≤lim x→0−ln (x+1)x 2−x=lim x→0−1x+12x−1=lim x→0−1(2x−1)(x+1)=1;当x =1时,f (x )=0,恒成立; 当x ∈(1,+∞)时,x 2−x >0,所以a ≥−ln (x+1)x 2−x ,由ℎ(x )的单调性可得,a ≥−ln (x +1)x 2−x =lim x→+∞−ln (x +1)x 2−x =lim x→+∞−1x +12x −1=lim x→+∞−1(2x −1)(x +1)=0,综上,a ∈[0,1].【例3】已知f (x )=(ax +1)lnx −ax . (1)当a =1时,讨论f (x )的单调性;(2)若f (x )在(0,+∞)上单调递增,求实数a 的取值范围;(3)令g (x )=f ′(x ),存在0<x 1<x 2,且x 1+x 2=1,g (x 1)=g (x 2),求实数a 的取值范围.【解析】(1)当a =1时,f (x )=(x +1)lnx −x ,则f ′(x )=lnx +x+1x−1=lnx +1x ,所以f ′′(x )=1x −1x 2=x−1x 2,当x ∈(0,1)时,f ′′(x )<0;当x ∈(1,+∞)时,f ′′(x )>0, 则f ′(x )在(0,1)上单调递减,在(1,+∞)上单调递增,又因为f ′(1)=1>0,所以x ∈(0,+∞)时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;(2)当a =0时,f (x )=lnx,f (x )在(0,+∞)上单调递增,则a =0时满足要求;当a ≠0时,f (x )在(0,+∞)上单调递增,则当x ∈(0,+∞)时,f ′(x )≥0恒成立,因为f ′(x )=alnx +1x ,f ′′(x )=ax −1x 2,当a <0时,f ′′(x )=ax −1x 2<0,所以f′(x )在(0,+∞)上单调递减,而f ′(e −1a)=−1+1e −1a,因为a <0,e−1a≥1,所以f ′(e −1a)=−1+1e −1a<0,所以x ∈(e −1a,+∞)时,f ′(x )<0,故a <0时不成立,当a >0时,f ′′(x )=ax−1x 2,当x ∈(0,1a )时,f ′′(x )<0,x ∈(1a ,+∞)时,f ′′(x )>0,则f ′(x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增,因为x ∈(0,+∞)时,f ′(x )≥0,只需f ′(1a )≥0,即f ′(1a )=aln 1a +a =a (1−lna )≥0,因为a >0,所以1−lna ≥0,则0<a ≤e , 综上所述,实数a 的取值范围是[0,e].(3)因为g (x )=f ′(x )=alnx +1x ,所以g (x 1)=alnx 1+1x 1,g (x 2)=alnx 2+1x 2,因为g (x 1)=g (x 2),所以alnx 1+1x 1=alnx 2+1x 2,即alnx 2x 1+1x 2−1x 1=0,又x 1+x 2=1, 所以aln x2x 1+(x 1+x 2)x 2−(x 1+x 2)x 1=0,即aln x 2x 1+x1x 2−x2x 1=0,令t =x 2x 1,则t ∈(1,+∞),即alnt +1t −t =0方程有解.解法1:分离参数+洛必达法则 即a =t−1tlnt,令ℎ(t )=t−1tlnt,则ℎ′(t )=(1+1t2)lnt−(t−1t)×1t(lnt )2=(1+t 2t 2)lnt+1−t 2t2(lnt )2,令F (t )=lnt +1−t 2t 2+1,F′(t )=1t +−4t(t 2+1)2=(t 2+1)2−4t 2t (t 2+1)2≥0,所以当t ∈(1,+∞)时,ℎ′(t )≥0,故ℎ(t )在(1,+∞)上单调递增, 故ℎ(t )=t−1tlnt>ℎ(1),由洛必达法则知:当t →1时,ℎ(t )=1+1t21t ,则ℎ(1)→2,则a >2,所以实数a 的取值范围是(2,+∞). 解法2:令G (t )=alnt +1t −t ,则t ∈(1,+∞)时,G (t )=0有解, G′(t )=a t −1t 2−1=−t 2+at−1t 2,因为t ∈(1,+∞)时,则t +1t >2,当a ≤2时,−t 2+at−1t 2=a−(t+1t)t≤0,即t ∈(1,+∞)时,G ′(t )≤0,则G (t )在(1,+∞)上单调递减,又G (1)=0,故t ∈(1,+∞)时,G (t )=0无解,则a ≤2时不成立;当a>2时,当t∈(1,a+√a2−42)时,G′(t)>0,t∈(a+√a2−42,+∞)时,G′(t)<0,又G(1)=0,则t∈(1,a+√a2−42),G(t)>0,而G(e a)=a2+1e a−e a<a2+1−e a(a>2),令H(x)=x2+1−e x(x>2),H′(x)=2x−e x,H′′(x)=2−e x,因为x>2,则H′′(x)=2−e x<0,则H′(x)在(2,+∞)单调递减,H′(x)≤H′(2)=4−e2<0,则H(x)在(2,+∞)单调递减,则H(x)<H(2)=5−e2<0,即G(e a)<0,故存在x0∈(a+√a2−42,e a),使得G(x0)=0,故a>2时满足要求,综上所述,实数a的取值范围是(2,+∞).【点睛】(1)利用导数研究函数的单调性,求导得f′(x)=lnx+1x,则f′′(x)=x−1x2,由此得f′(x)≥f′(1)=1>0,从而得到函数的单调性;(2)分类讨论,当a=0时,f(x)=lnx,满足要求;当a≠0时,x∈(0,+∞)时,f′(x)≥0恒成立,而f′(x)=alnx+1x ,f′′(x)=ax−1x2,再分a<0和a>0两种情况讨论即可求出答案;(3)由题意得alnx1+1x1=alnx2+1x2,即aln x2x1+1x2−1x1=0,进而有aln x2x1+x1x2−x2 x1=0,令t=x2x1,则转化为t∈(1,+∞)时,alnt+1t−t=0方程有解.一般地,含有参数的函数恒成立问题往往从三个角度求解:一是直接求导,通过对参数的讨论来研究函数的单调性,进一步确定参数的取值范围;二是借助函数单调性确定参数的取值范围,然后对参数取值范围以外的部分进行分析验证其不符合题意,即确定所求;三是分离参数,求相应函数的最值或取值范围,当函数的最值不容易求解时,利用“洛必达法则”往往能化难为易,使问题得到解决.强化训练1.已知函数f (x )=e x −x −1,若当x ≥0时,恒有|f (x )|≤mx 2e |x |成立,求实数m 的取值范围.【解析】因为f (x )=e x −x −1,所以f ′(x )=e x −1, 所以当x ∈(−∞,0)时,f ′(x )<0,即f (x )递减, 当x ∈(0,+∞)时,f ′(x )>0,即f (x )递增.若当x ≥0时,恒有|f (x )|≤mx 2e |x |成立,即恒有0≤f (x )≤mx 2e x 成立, 当x =0时,不等式恒成立.当x >0时,恒有0≤f (x )≤mx 2e x 成立,即m ≥e x −x−1x 2e x,令H (x )=e x −x−1x 2e x,则H′(x )=x 2−2e x +2x+2x 3e x .今ℎ(x )=x 2−2e x +2x +2,则ℎ′(x )=2x −2e x +2,进一步ℎ′′(x )=2−2e x <0,所以ℎ′(x )=2x −2e x +2在(0,+∞)上单调递减,所以ℎ′(x )<ℎ′(0)=0, 所以ℎ(x )=x 2−2e x +2x +2在(0,+∞)上单调递减,所以ℎ(x )<ℎ(0)=0, 即H ′(x )<0在(0,+∞)上恒成立,所以H (x )在(0,+∞)上单调递减. 所以lim x→0+e x −x−1x 2e x=lim x→0+e x −1e x (x 2+2x )=lim x→0+e xe x (x 2+4x+2)=12,所以m ≥12.综上,m 的取值范围为[12,+∞).2.已知函数f (x )=x 2−mx −e x +1.(1)若函数f (x )在点(1,f (1))处的切线l 经过点(2,4),求实数m 的值; (2)若关于x 的方程|f (x )|=mx 有唯一的实数解,求实数m 的取值范围. 【解析】(1)f ′(x )=2x −m −e x ,所以在点(1,f (1))处的切线l 的斜率k =f ′(1)=2−e −m ,又f (1)=2−e −m ,所以切线l 的方程为:y −(2−e −m )=(2−e −m )(x −1),即l:y =(2−e −m )x ,由l 经过点(2,4)可得:4=2(2−e −m )⇒m =−e . (2)易知|f (0)|=0=m ×0,即x =0为方程的根,因此只需说明: 当x >0和x <0时,原方程均没有实数根即可. ① 当x >0时,若m <0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解; 若m =0,f (x )=x 2−e x +1⇒f ′(x )=2x −e x ,f ′′(x )=2−e x ,令f ′′(x )>0⇒x <ln2,故f ′(x )在(0,ln2)单调递增,在(ln2,+∞)单调递减, 故f ′(x )<f ′(ln2)=2ln2−2<0,所以f (x )在(0,+∞)单调递减,于是f (x )<f (0)=0,从而|f (x )|>0,mx =0×x =0,此时方程|f (x )|=mx 也无解; 若m >0,由|f (x )|=mx ⇒m =|x +1x −e x x−m|,记g (x )=x +1x −e x x −m ,则g′(x )=(x−1)(x+1−e x )x 2,设ℎ(x )=x +1−e x,则ℎ′(x )=1−e x <0对任意x ∈(0,+∞)恒成立,所以ℎ(x)在(0,+∞)上单调递减,所以ℎ(x)<ℎ(0)=0恒成立,令g′(x)>0⇒0<x<1⇒g(x)在(0,1)上递增,在(1,+∞)上递减所以g(x)≤g(1)=2−e−m<0⇒|g(x)|≥e−2+m>m,可知原方程也无解.由上面的分析可知,当x>0时,∀m∈R,方程|f(x)|=mx均无解.②当x<0时,若m>0,显然有mx<0,而|f(x)|≥0恒成立,此时方程显然无解;若m=0,和(1)中的分析同理可知此时方程|f(x)|=mx也无解.若m<0,由|f(x)|=mx⇒−m=|x+1x −e xx−m|,记g(x)=x+1x −e xx−m,则g′(x)=(x−1)(x+1−e x)x2,由(1)中的分析可知:ℎ(x)=x+1−e x<0,故g′(x)>0对任意x∈(−∞,0)恒成立,从而g(x)在(−∞,0)上单调递增,点睛意到lim x→0−g(x)=lim x→0−x2+1−e xx −m=lim x→0−2x−e x1−m=−1−m,如果−1−m≤0,即m≥−1,则|g(x)|>m+1,要使方程无解,只需−m≤m+1,即m≥−12,所以−12≤m<0;如果−1−m>0,即m<−1,此时|g(x)|∈[0,+∞),方程−m=|g(x)|一定有解,不满足题意.由上面的分析可知:当x<0时,∀m∈[−12,+∞),方程|f(x)|=mx均无解,综合①②可知,当且仅当m∈[−12,+∞)时,方程|f(x)|=mx有唯一解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五讲 函数的值域【考纲解读】1.会求一些简单函数的值域或最值.2.会通过函数的最值求有关参数的范围,解决实际生活中的优化问题.【命题规律分析】通过对近几年高考试题的统计分析可以看出,单独考查函数值域的题目在高考中已很少见,但求最值以及与最值有关的问题,在高考中却频频出现,对本部分内容的考查既可以以选择题、填空题的形式出现,也可以以解答题的形式出现.命题过程主要侧重在求函数的值域和最值以及最值的应用两个方面.【知识回顾】求函数的值域的方法常用的有:直接法,分离常数法,换元法,配方法,判别式法,不等式法,利用某些函数的有界性法,数形结合法,函数的单调性法,利用导数法,利用平移等.(一)直接法:从自变量x 的范围出发,推出()y f x =的取值范围.(二)图像法(数形结合法):函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法.(三)配方法:配方法是求“二次函数类”值域的基本方法.形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法.(四)分离常数法:分子、分母是一次函数的有理函数,可用分离常数法. (五)利用有界性:利用某些函数有界性求得原函数的值域.(六)换元法:运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,形如y ax b =+a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解.(七)判别式法:把函数转化成关于x 的二次方程(,)0F x y =;通过方程有实数根,判别式0∆≥,从而求得原函数的值域,形如21112222a xb xc y a x b x c ++=++(1a 、2a 不同时为零)的函数的值域,常用此方法求解.【考点分析】考点一 直接法 例1 求函数24x y -=的值域.解析:由,0-4022≥≥x x 及知[]2,042∈-x . 故此函数值域为[]0,2.点评:此方法适用于解答选择题和填空题.考点二 配方法例2 求下列函数的值域(1)232y x x =-+; (2)232y x x =-+,[1,3]x ∈; (3)y =.答案解析:(1)2212323323()61212y x x x =-+=-+≥ , ∴232y x x =-+的值域为23[,)12+∞. (2)(利用函数的单调性)函数232y x x =-+在[1,3]x ∈上单调增, ∴当1x =时,原函数有最小值为4;当3x =时,原函数有最大值为26 ∴函数232y x x =-+,[1,3]x ∈的值域为[4,26].(3)设265x x μ=---(0μ≥),则原函数可化为y =又∵2265(3)44x x x μ=---=-++≤,∴04μ≤≤[0,2],∴y =的值域为[0,2]考点三 分离常数法例3 求下列函数的值域.(1)525+-=x x y ; (2)1313+-=x x y答案解析:(1)5221521525++-=+-=x x x y由于052215≠+x , 所以21-≠y所以函数的值域为}21|{-≠y y(2)令13+=x t ,则1>t tt t y 212-=-=)1,1(21)2,0(2),1(-∈-⇒∈⇒+∞∈tt t 所以函数的值域为)1,1(-点评:(1)本题是一道典型的分离常数法的应用,在教学中老师可以根据情况加入x 的取值范围.(2)本题利用换元变成类似于分离常数法的形式,但要注意换元后的范围,这是容易出错的地方.考点四 换元法例4 求下列函数的值域(1)x x y -+=14; (2)21x x y -+=; 答案解析:(1)设01≥-=x t ,则21t x -=∴原函数可以化为5)2(4122+--=+-=t t t y ,0≥t ∴由二次函数的图象可知5≤y ∴原函数的值域为]5,(-∞. (2)11012≤≤-⇒≥-x x 设αcos =x ,],0[πα∈则)4sin(2sin cos πααα+=+=y]2,1[)4s i n (2]45,4[4],0[-∈+⇒∈+⇒∈παπππαπα ∴原函数的值域是]2,1[-.点评:(1)运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,形如y ax b =+a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解.(2)三角换元时,确定α的取值范围是一个比较关键的环节,请老师和同学仔细体会.强调:1、换元前后取值范围不能改变;2、要使得换元后计算起来简单考点五 利用有界性例5 求下列函数的值域(1)1313+-=x x y ; (2)x x y sin 2sin 2+-=答案解析:(1)y y y x x x -+=⇒+-=1131313由03>x可知011>-+yy ,解得11<<-y 所以函数的值域是(-1,1)(2)由xxy sin 2sin 2+-=解得:22sin 1y x y -=+,由|sin |1x ≤得22||11y y -≤+ 两边平方后整理,得:231030y y -+≤,解得:331≤≤y , 故所给函数的值域为1[,3]3.考点六 判别式法 例6 求下列函数的值域(1)22221x x y x x -+=++; (2)63422-+++=x x x x y答案解析:(1)∵210x x ++>恒成立,∴函数的定义域为R .由22221x x y x x -+=++得:2(2)(1)20y x y x y -+++-= ①①当20y -=即2y =时,①即300x +=,∴0x R =∈②当20y -≠即2y ≠时,∵x R ∈时方程2(2)(1)20y x y x y -+++-=恒有实根,∴22(1)4(2)0y y =+-⨯-≥ , ∴15y ≤≤且2y ≠, ∴原函数的值域为[1,5].(2)由已知得2(1)(4)(63)0y x y x y -+--+= (*) ① 若1y =,代入(*)式390x --=,∴3x =-, 此时原函数分母26x x +-的值为0,∴y ≠1;② 若y ≠1,则2(4)4(1)(63)01y y y y ⎧∆=-+-+≥⎨≠⎩2(52)01y y ⎧-≥⇒⎨≠⎩1y ⇒≠ 但当25y =时,代入(*)得:3x =-,∴25y ≠ ∴函数的值域为:2{|,1}5y y R y y ∈≠≠且.评注:本题中需要检验的原因是:函数22436x x y x x ++=+-可化简为1(3)2x y x x +=≠--. 用判别式法求函数值域时,由于变形过程中易出现不可逆步骤,从而改变函数的定义域或值域.因此,用判别式求函数值域时,变形过程必须等价,必须考虑原函数的定义域、判别式存在的前提,并注意检验区间端点是否符合要求. 考点七 数形结合 例7 求下列函数的值域(1)|1||4|y x x =-++; (2)1sin 2cos xy x-=-.答案解析:(1)解法一:23(4)|1||4|5(41)23(1)x x y x x x x x --≤-⎧⎪=-++=-<<⎨⎪+≥⎩, 由分段函数图象可知5y ≥, ∴函数值域为[5,)+∞.解法二:1-x 可看作数轴上为x 的点到1的距离,4+x 可看作数轴上为x 的点到-4的距离.所以|1||4|y x x =-++可看作数轴上为x 的点到1和-4的距离之和,而当数轴上的点位于1和-4之间时,到1和-4的距离之和为定值5,当数轴上的点位于1和-4两边时,到1和-4的距离之和大于5,故5≥y .(2)解法一(数形结合):1sin 2cos xy x-=-可看作是点)1,2(和点)sin ,(cos x x 连线的斜率,点(2,1)是定点,而点)sin ,(cos x x 是以原点为圆心的单位圆上的点设过点(2,1)与单位圆相切的直线的方程为)2(1-=-x k y ,利用原点到直线的距离等于半径1这个条件,算出0=k 和34=k 所以,原函数的值域为4[0,]3.解法二(方程法):原函数可化为:sin cos 12x y x y -=-,)12x y ϕ-=-(其中cos ϕϕ==∴sin()[1,1]x ϕ-=-,∴|12|y -≤∴2340y y -≤,∴403y ≤≤, ∴原函数的值域为4[0,]3.例8 用},,min{c b a 表示c b a ,,三个数中的最小值.设}10,2,2min{)(x x x f x -+=(0≥x ),则)(x f 的最大值为( ) A .4 B.5 C.6 D.7答案解析:C.由题意知函数)(x f 是三个函数x y 21=,22+=x y ,x y -=103中的较小者,作出三个函数在同一个坐标系下的图象,可知(4,6)为图象的最高点.变式训练:如果实数、满足,则的最大值为x y x y yx()()-+=2322A B C D ....1233323答案解析:D.等式有明显的几何意义,它表坐标平面上的一个圆,()x y -+=2322圆心为,,半径,如图,而则表示圆上的点,与坐()()()20300r y x y x x y ==-- 标原点,的连线的斜率。

如此以来,该问题可转化为如下几何问题:动点()00A在以,为圆心,以为半径的圆上移动,求直线的斜率的最大值,由图()203OA 可见,当∠在第一象限,且与圆相切时,的斜率最大,经简单计算,得最A OA 大值为︒60tan .变式训练:已知,满足,求的最大值与最小值x y x y y x 22162513+=- 答案解析:对于二元函数在限定条件下求最值问题,常采用y x x y -+=31625122构造直线的截距的方法来求之. 令,则,y x b y x b -==+33原问题转化为:在椭圆上求一点,使过该点的直线斜率为,x y 22162513+= 且在轴上的截距最大或最小,y由图形知,当直线与椭圆相切时,有最大截距与最小y x b x y =++=31625122截距.y x b x y x bx b =++=⎧⎨⎪⎩⎪⇒++-=316251169961640002222由,得±,故的最大值为,最小值为。

∆==--01331313b y x考点八 基本不等式例9(1)求2211()212x x y x x -+=>-的值域; (2)若函数)(x f y =的值域是]3,21[,则函数)(1)()(x f x f x F +=的值域是( ) A .]3,21[ B .]210,2[ C .]310,25[ D .]310,3[ 答案解析:(1)2121(21)111121212121222x x x x y x x x x x x -+-+===+=-++----,∵12x >,∴102x ->,∴112122x x -+≥=-当且仅当112122x x -=-时,即12x =.∴12y ≥,∴原函数的值域为1,)2+∞. (2)B . 令)(x f t =,则]3,21[∈t ,tt t F 1)(+=,根据其图象可知: 当1=t 时,2)1()()(min min ===F t F x F 当3=t 时,310)3()()(max max ===F t F x F , 故其值域为]310,2[ 考点九 函数的值域(最值)的综合应用例10 若函数131)(23++-=x ax x x f 在)3,0(上为单调增函数,求a 的取值范围. 答案解析:12)(2'+-=ax x x f函数)(x f 在(0,3)上为增函数,∴)3,0(,012)(2'∈≥+-=x ax x x f , ∴xx a 212+≤令)3,0(,212)(∈+=x xx x g 12122212)(=⋅≥+=xx x x x g ,当且仅当1=x 时等号成立.∴1)(min =x g ,即a 的取值范围是]1,(-∞.点评:若)(x f c ≥,求c 的范围,可先求出)(x f 的最大值max )(x f ,只要c 满足max )(x f c ≥即可,从而求得参数c 的范围;若)(x f c ≤,求c 的范围,可先求出)(x f 的最小值min )(x f ,只要c 满足min )(x f c ≤即可,从而求得参数c 的范围.例11 已知函数2()3y f x x ax ==++在区间[-1,1]上的最小值为-3,求实数a 的值.答案解析:43)2()(22a a x x f y -++== (1)min 12(1)432aa y f a -<->=-=-=-当,即时,,解得:7a =(2)当112a -≤-≤,即22a -≤≤时,2min ()3324a a y f =-=-=-,解得a =± (3)当12a->,即2a <-时,min (1)43y f a ==+=-,解得:7a =-.综合(1)(2)(3)可得:a =±7.变式训练:(2011湖北理17)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当2000≤≤x 时,求函数()x v 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时) 本题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力.解析:(Ⅰ)由题意:当200≤≤x 时,()60=x v ;当20020≤≤x 时,设()b ax x v +=,显然()b ax x v +=在[]200,20是减函数,由已知得⎩⎨⎧=+=+60200200b a b a ,解得⎪⎪⎩⎪⎪⎨⎧=-=320031b a 故函数()x v 的表达式为()x v =()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x (Ⅱ)依题意并由(Ⅰ)可得()=x f ()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x x x 当200≤≤x 时,()x f 为增函数,故当20=x 时,其最大值为12002060=⨯;当20020≤≤x 时,()()()310000220031200312=⎥⎦⎤⎢⎣⎡-+≤-=x x x x x f , 当且仅当x x -=200,即100=x 时,等号成立. 所以,当100=x 时,()x f 在区间[]200,20上取得最大值310000. 综上,当100=x 时,()x f 在区间[]200,0上取得最大值3333310000≈, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.【课后练习】一、选择题1.(2011湖南文8)已知函数2()1,()43,x f x e g x x x =-=-+-若有()(),f a g b =则b 的取值范围为( )A.[2 B.(2 C .[1,3] D .(1,3)【答案】B【解析】由题可知()11x f x e =->-,22()43(2)11g x x x x =-+-=--+≤,若有()(),f a g b =则()(1,1]g b ∈-,即2431b b -+->-,解得22b <2. (2011广东南海中学09届模拟)函数∑=-=20071)(n n x x f 的最小值为( )A. 1003×1004B. 1004×1005C. 2006×2007D. 2005×2006[解析] A ;根据绝对值的几何意义,∑=-=20071)(n n x x f 表示数轴上与数x 对应的点到数2007,,3,2,1 对应的点的距离之和,当此点对应于数1004时)(x f 取得最小值,为10041003)1003321(2)(min ⨯=++++= x f3.(2011湖南理8)设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( )A .1B .12 C D 【答案】D【解析】由题2||ln MN x x =-,(0)x >不妨令2()ln h x x x =-,则1'()2h x x x=-,令'()0h x =解得x =,因x ∈时,'()0h x <,当)x ∈+∞时,'()0h x >,所以当2x =时,||MN 达到最小.即2t =4.(2011天津文10)设函数()22g x x =-()x ∈R ,()()()()()4,,,,g x x x g x f x g x x x g x ++<⎧⎪=⎨-≥⎪⎩则()f x 的值域是( ).A.()9,01,4⎡⎤-+∞⎢⎥⎣⎦U B.[)0,+∞,C.9,4⎡⎫+∞⎪⎢⎣⎭ D.()9,02,4⎡⎤-+∞⎢⎥⎣⎦U 【答案】D【解析】解()22x g x x <=-得220x x -->,则1x <-或2x >.因此()22x g x x ≥=-的解为:12x -≤≤.于是()222,12,2,12,x x x x f x x x x ⎧++<->=⎨---≤≤⎩或当1x <-或2x >时,()2f x >.当12x -≤≤时,2219224x x x ⎛⎫--=-- ⎪⎝⎭,则()94f x ≥-, 又当1x =-和2x =时,220x x --=,所以()904f x -≤≤. 由以上,可得()2f x >或()904f x -≤≤,因此()f x 的值域是()9,02,4⎡⎤-+∞⎢⎥⎣⎦U .故选D. 5.(2012湖南理8)已知两条直线1l :y =m 和2l : y=821m +(m >0),1l 与函数2log y x =的图像从左至右相交于点A ,B ,2l 与函数2log y x =的图像从左至右相交于C,D .记线段AC 和BD 在X 轴上的投影长度分别为a ,b ,当m 变化时,ba的最小值为 A.B.C.D. 【答案】B【解析】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像如下图,由2log x = m ,得122,2m mx x -==,2log x = 821m +,得821821342,2m m x x +-+==.依照题意得82122mm a --+=-,82122m mb +=-,8218218218212222222m m mm mm m m b a++++--+-====-.8141114312122222m m m m +=++-≥-=++ ,min ()ba∴=【点评】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像,结合图像可解得.二、填空题6.(2011上海文14)设()g x 是定义在R 上,以1为周期的函数,若函数()()f x x g x =+在区间[0,1]上的值域为[2,5]-,则()f x 在区间[0,3]上的值域为 【答案】[2,7]- 三、解答题821m =+xm7.(2011北京文18)已知函数()()xf x x k e =-,(I )求()f x 的单调区间;(II )求()f x 在区间[]0,1上的最小值.解:(I )/()(1)x f x x k e =-+,令/()01f x x k =⇒=-;所以()f x 在(,1)k -∞-上递减,在(1,)k -+∞上递增;(II )当10,1k k -≤≤即时,函数()f x 在区间[]0,1上递增,所以min ()(0)f x f k ==-;当011k <-≤即12k <≤时,由(I )知,函数()f x 在区间[]0,1k -上递减,(1,1]k -上递增,所以1min ()(1)k f x f k e -=-=-;当11,2k k ->>即时,函数()f x 在区间[]0,1上递减,所以min ()(1)(1)f x f k e ==-. 8.(2011福建理18)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ) 求a 的值;(Ⅱ) 若该商品的成本为3元/千克, 试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解:(Ⅰ)因为5x =时11y =,所以101122aa +=⇒=; (Ⅱ)由(Ⅰ)知该商品每日的销售量2210(6)3y x x =+--,所以商场每日销售该商品所获得的利润:222()(3)[10(6)]210(3)(6),363f x x x x x x x =-+-=+--<<-; ()()()()()()21062363046f x x x x x x ⎡⎤'=-+--=--⎣⎦,令/()0f x =得4x =,故函数()f x 在(3,4)上递增,在(4,6)上递减, 所以当4x =时函数()f x 取得最大值(4)42f =答:当销售价格4x =时,商场每日销售该商品所获得的利润最大,最大值为42. 9.(2011湖南理20)如图,长方形物体E 在雨中沿面P (面积为S )的垂直方向作匀速移动,速度为(0)v v >,雨速沿E 移动方向的分速度为()c c R ∈.E 移动时单位时间内的淋雨量包括两部分:(1)P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与v c -×S 成正比,比例系数为110;(2)其它面的淋雨量之和,其值为12,记y 为E 移动过程中的总淋雨量,当移动距离d=100,面积S=32时.(Ⅰ)写出y 的表达式(Ⅱ)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少.解析:(I )由题意知,E 移动时单位时间内的淋雨量为31||202v c -+, 故100315(||)(3||10)202y v c v c v v=-+=-+. (II )由(I)知,当0v c <≤时,55(310)(3310)15c y c v v v+=-+=-; 当10c v <≤时,55(103)(3310)15c y v c v v-=-+=+. 故5(310)15,05(103)15,10c v c vy c c v v +⎧-<≤⎪⎪=⎨-⎪+<≤⎪⎩.(1)当1003c <≤时,y 是关于v 的减函数.故当10v =时,min 3202cy =-. (2) 当1053c <≤时,在(0,]c 上,y 是关于v 的减函数;在(,10]c 上,y 是关于v 的增函数;故当v c =时,min 50y c=. 10.(2011山东理21)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .【解析】(Ⅰ)因为容器的容积为803π立方米,所以3243r r l ππ+=803π,解得280433r l r =-,所以圆柱的侧面积为2rl π=28042()33r r r π-=2160833r r ππ-,两端两个半球的表面积之和为24r π,所以y =21608r rππ-+24cr π,定义域为]20,(.(Ⅱ)因为'y =216016r r ππ--+8cr π=328[(2)20]c r r π--,所以令'0y >得:r >令'0y <得:0r <<所以r =, 该容器的建造费用最小.。

相关文档
最新文档