初一数学幂的运算

合集下载

七年级数学8.1幂的运算讲解与例题

七年级数学8.1幂的运算讲解与例题

8.1 幂的运算1.了解幂的运算性质,会利用幂的运算性质进行计算.2.通过幂的运算性质的形成和应用,养成观察、归纳、猜想、论证的能力,提高计算和口算的能力.3.了解和体会“特殊—一般—特殊”的认知规律,体验和学习研究问题的方法,培养思维严谨性,做到步步有据,正确熟练,养成良好的学习习惯.1.同底数幂的乘法(1)同底数幂的意义“同底数幂”顾名思义,是指底数相同的幂.如32与35,(-5)2与(-5)6,(a+b)4与(a+b)3等表示的都是同底数的幂.(2)幂的运算性质1同底数幂相乘,底数不变,指数相加.用字母可以表示为:a m·a n=a m+n(m,n都是正整数).(3)性质的推广运用当三个或三个以上的同底数幂相乘时,也具有这一性质,如:a m·a n·a p=a m+n+p(m,n,p是正整数).(4)在应用同底数幂的乘法的运算性质时,应注意以下几点:①幂的底数a可以是任意的有理数,也可以是单项式或多项式;底数是和、差或其他形式的幂相乘,应把这些和或差看作一个“整体”.②底数必须相同才能使用同底数幂的乘法公式,若底数不同,则不能使用;注意:-a n 与(-a)n不是同底数的幂,不能直接用性质.③不要忽视指数是1的因数或因式.【例1-1】(1)计算x3·x2的结果是______;(2)a4·(-a3)·(-a)3=__________.解析:(1)题中的底数都是x,是两个同底数幂相乘的运算式子,只需运用同底数幂相乘的性质进行运算,即x3·x2=x3+2=x5;(2)应先把底数分别是a,-a的幂化成同底数的幂,才能应用同底数幂的乘法性质,原式=a4·(-a3)·(-a3)=a4·a3·a3=a4+3+3=a10.答案:(1)x5(2)a10正确运用幂的运算性质解题的前提是明确性质的条件和结论.例如同底数幂的乘法,条件是底数相同,且运算是乘法运算,结论是底数不变,指数相加.【例1-2】计算:(1)(x+y)2·(x+y)3;(2)(a-2b)2·(2b-a)3.分析:(1)把(x+y)看作底数,可根据同底数幂的乘法性质来解;(2)题中(a-2b)2可转化为(2b-a)2,或者把(2b-a)3转化为-(a-2b)3,就是两个同底数的幂相乘了.解:(1)原式=(x+y)2+3=(x+y)5;(2)方法一:原式=(2b -a )2·(2b -a )3=(2b -a )5;方法二:原式=(a -2b )2·[-(a -2b )3]=-(a -2b )5.本题应用了整体的数学思想,把(x +y )和(a -2b )看作一个整体,(2)题中的两种解法所得的结果实质是相等的,因为互为相反数的奇次幂仍是互为相反数. 2.幂的乘方(1)幂的乘方的意义:幂的乘方是指几个相同的幂相乘.如(a 5)3是指三个a 5相乘,读作“a 的五次幂的三次方”,即有(a 5)3=a 5·a 5·a 5=a 5+5+5=a 5×3;(a m )n 表示n 个a m 相乘,读作“a 的m 次幂的n 次方”,即有(a m )n =m m m n a a a ⋅⋅⋅L 1442443个=m m m n a a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅L L L L 142431424314243144444424444443个个个个=a mn(m ,n 都是正整数) (2)幂的运算性质2幂的乘方,底数不变,指数相乘.用字母可以表示为:(a m )n =a mn(m ,n 都是正整数).这个性质的最大特点就是将原来的乘方运算降次为乘法运算,即底数不变,指数相乘. (3)性质的推广运用幂的乘方性质可推广为: [(a m )n ]p =a mnp(m ,n ,p 均为正整数).(4)注意(a m )n 与am n的区别 (a m )n 表示n 个a m 相乘,而am n 表示m n 个a 相乘,例如:(52)3=52×3=56,523=58.因此,(a m )n ≠am n .【例2】(1)计算(x 3)2的结果是( ).A .x 5B .x 6C .x 8D .x 9(2)计算3(a 3)3+2(a 4)2·a =__________.解析:(1)根据性质,底数不变,指数相乘,结果应选B ;(2)先根据幂的乘方、同底数幂相乘进行计算,再合并同类项得到结果.3(a 3)3+2(a 4)2·a =3a 3×3+2a 4×2·a =3a 9+2a 8·a =3a 9+2a 9=5a 9.答案:(1)B (2)5a 9防止“指数相乘”变为“指数相加”,同时防止“指数相乘”变为“指数乘方”.如(a 4)2=a 4+2=a 6与(a 2)3=a 23=a 8都是错误的.3.积的乘方(1)积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(2ab )3,(ab )n等.(2ab )3=(2ab )·(2ab )·(2ab )(乘方意义)=(2×2×2)(a ·a ·a )(b ·b ·b )(乘法交换律、结合律) =23a 3b 3.(ab )n =n ab ab ab ()()()L 1442443个=n a a a (⋅⋅⋅)L 14243个n b b b (⋅⋅⋅⋅)L 14243个=a n b n(n 为正整数).(2)幂的运算性质3积的乘方等于各因式乘方的积.也就是说,先把积中的每一个因式分别乘方,再把所得的结果相乘.用字母可以表示为:(ab )n =a n b n(n 是正整数). (3)性质的推广运用三个或三个以上的乘方也具有这一性质,如(abc )n =a n b n c n(n 是正整数).【例3】计算:(1)(-2x )3;(2)(-xy )2;(3)(xy 2)3·(-x 2y )2;(4)⎝ ⎛⎭⎪⎫-12ab 2c 34.分析:(1)要注意-2x 含有-2,x 两个因数;(2)-xy 含有三个因数:-1,x ,y ;(3)把xy 2看作x 与y 2的积,把-x 2y 看作-1,x 2,y 的积;(4)-12ab 2c 3含有四个因数-12,a ,b 2,c 3,先运用积的乘方性质计算,再运用幂的乘方性质计算.解:(1)(-2x )3=(-2)3·x 3=-8x 3;(2)(-xy )2=(-1)2·x 2·y 2=x 2y 2;(3)(xy 2)3·(-x 2y )2=x 3(y 2)3·(-1)2·(x 2)2y 2=x 3y 6·x 4y 2=x 7y 8;(4)⎝ ⎛⎭⎪⎫-12ab 2c 34=⎝ ⎛⎭⎪⎫-124a 4(b 2)4(c 3)4=116a 4b 8c 12.(1)在计算时,把x 2与y 2分别看成一个数,便于运用积的乘方的运算性质进行计算,这种把某个式子看成一个数或字母的方法的实质是换元法,它可以把复杂问题简单化,它是数学的常用方法.(2)此类题考查积的乘方运算,计算时应特别注意底数含有的因式,每个因式都分别乘方,不要漏掉,尤其要注意系数及系数的符号,对系数是-1的不可忽略.负数的奇次方是一个负数,负数的偶次方是一个正数.4.同底数幂的除法 (1)幂的运算性质4同底数幂相除,底数不变,指数相减.用字母可以表示为:a m ÷a n =a m -n(a ≠0,m ,n 都是正整数,且m >n ).这个性质成立的条件是:同底数幂相除,结论是:底数不变,指数相减.和同底数幂的乘法类似,被除式和除式都是幂的形式且底数一定要相同,商也是一个幂,其底数与被除式和除式的底数相同,商中幂的指数是被除式的指数与除式的指数之差.因为零不能作除数,所以底数a ≠0.(2)性质的推广运用三个或三个以上的同底数幂连续相除时,该性质仍然成立,例如a m ÷a n ÷a p =a m -n -p(a ≠0,m ,n ,p 为正整数,m >n +p ).【例4】计算:(1)(-a )6÷(-a )3;(2)(a +1)4÷(a +1)2;(3)(-x )7÷(-x 3)÷(-x )2. 分析:利用同底数幂的除法性质进行运算时关键要找准底数和指数.(1)中的底数是-a ,(2)中的底数是(a +1),(3)中的底数可以是-x ,也可以是x .解:(1)(-a )6÷(-a )3=(-a )6-3=(-a )3=-a 3;(2)(a +1)4÷(a +1)2=(a +1)4-2=(a +1)2; (3)方法1:(-x )7÷(-x 3)÷(-x )2=(-x )7÷(-x )3÷(-x )2=(-x )7-3-2=(-x )2=x 2. 方法2:(-x )7÷(-x 3)÷(-x )2=(-x 7)÷(-x 3)÷x 2=x 7-3-2=x 2.运用同底数幂除法性质的关键是看底数是否相同,若不相同则不能运用该性质,指数相减是指被除式的指数减去除式的指数;幂的前三个运算性质中字母a ,b 可以表示任何实数,也可以表示单项式和多项式;第四个性质即同底数幂的除法性质中,字母a 只表示不为零的实数,或表示其值不为零的单项式和多项式.注意指数是“1”的情况,如a 5÷a =a 5-1,而不是a 5-0.5.零指数幂与负整数指数幂(1)零指数幂:任何一个不等于零的数的零次幂都等于1.用字母可以表示为:a 0=1(a ≠0).a 0=1的前提是a ≠0,如(x -2)0=1成立的条件是x ≠2.(2)负整数指数幂:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.用字母可以表示为:a -p=1ap (a ≠0,p 是正整数).a -p =1ap 的条件是a ≠0,p 为正整数,而0-2等是无意义的.当a >0时,a p 的值一定为正;当a <0时,a -p 的值视p 的奇偶性而定,如(-2)-3=-18,(-3)-2=19.规定了零指数幂和负整数指数幂的意义后,正整数指数幂的运算性质,就可以推广到整数指数幂了,于是同底数幂除法的性质推广到整数指数幂,即a m ÷a n =a m -n(a ≠0,m ,n 都是整数).如a ÷a 2=a 1-2=a -1=1a;正整数指数幂的某些运算,在负整数指数幂中也能适用.如a -2·a -3=a-2-3=a -5等.【例5】计算:(1)1.6×10-4;(2)(-3)-3;(3)⎝ ⎛⎭⎪⎫-53-2;(4)(π-3.14)0;(5)⎝ ⎛⎭⎪⎫130+⎝ ⎛⎭⎪⎫-13-2+⎝ ⎛⎭⎪⎫-23-1.分析:此题是负整数指数幂和零指数幂的计算,可根据a -p=1ap (p 是正整数,a ≠0)和a 0=1(a ≠0)计算.其中(1)题应先求出10-4的值,再运用乘法性质求出结果.解:(1)1.6×10-4=1.6×1104=1.6×0.000 1=0.000 16.(2)(-3)-3=1-33=-127. (3)⎝ ⎛⎭⎪⎫-53-2=⎝ ⎛⎭⎪⎫-352=925. (4)因为π=3.141 592 6…, 所以π-3.14≠0.故(π-3.14)0=1.(5)原式=1+1⎝ ⎛⎭⎪⎫-132+1⎝ ⎛⎭⎪⎫-231=1+9-32=812.只要底数不为零,而指数是零,不管底数多么复杂,其结果都是1.当一个负整数指数幂的底数是分数时,它等于底数倒数的正整数次幂,即⎝ ⎛⎭⎪⎫a b -p =⎝ ⎛⎭⎪⎫b a p .6.用科学记数法表示绝对值较小的数(1)绝对值小于1的数可记成±a ×10-n的形式,其中1≤a <10,n 是正整数,n 等于原数中第一个不等于零的数字前面的零的个数(包括小数点前面的一个零),这种记数方法也是科学记数法.(2)把一个绝对值小于1的数用科学记数法表示分两步:①确定a,1≤a <10,它是将原数小数点向右移动后的结果;②确定n ,n 是正整数,它等于原数化为a 后小数点移动的位数.(3)利用科学记数法表示数,不仅简便,而且更便于比较数的大小,如:2.57×10-5显然大于2.57×10-8,前者是后者的103倍.【例6-1】2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.000 001 56 m ,用科学记数法表示这个数是( ).A .0.156×10-5B .0.156×105C.1.56×10-6 D.1.56×106解析:本题考查科学记数法,将一个数用科学记数法表示为±a×10-n(1≤a<10)的形式,其中a是正整数数位只有一位的数,所以A、B不正确,n是正整数,n等于原数中第一个有效数字前面的零的个数(包括小数点前面的一个零),所以n=6,即0.000 001 56=1.56×10-6.故选C.答案:Cn的值也等于将原数写成科学记数法±a×10-n时,小数点移动的位数.如本题中将0.000 001 56写成科学记数法表示时,a为1.56,即将原数的小数点向右移动了6位,所以n的值是6.【例6-2】已知空气的单位体积质量为 1.24×10-3 g/cm3,1.24×10-3用小数表示为( ).A.0.000 124 B.0.012 4C.-0.001 24 D.0.001 24解析:因为a=1.24,n=3,因此原数是1前面有3个零(包括小数点前面的一个零),即1.24×10-3=0.001 24.答案:D本题可把1.24的小数点向左移动3位得到原数,也可利用负整数指数幂算出10-3的值,再与1.24相乘得到原数.7.幂的混合运算幂的四个运算性质是整式乘(除)法的基础,也是整式乘(除)法的主要依据.进行幂的运算,关键是熟练掌握幂的四个运算性质,深刻理解每个性质的意义,避免互相混淆.幂的混合运算顺序是先乘方,再乘除,最后再加减,有括号的先算括号里面的.因此,运算时,应先细心观察,合理制定运算顺序,先算什么,后算什么,做到心中有数.(1)同底数幂相乘与幂的乘方运算性质混淆,从而导致错误.如:①a3·a2=a6;②(a3)2=a5.解题时应首先分清是哪种运算:若是同底数幂相乘,应将指数相加;若是幂的乘方,应将指数相乘.正解:①a3·a2=a5;②(a3)2=a6.(2)同底数幂相乘与合并同类项混淆,从而导致错误.如:①a3·a3=2a3;②a3+a3=a6.①是同底数幂相乘,应底数不变,指数相加;②是合并同类项,应系数相加作系数,字母和字母的指数不变.正解:①a3·a3=a6;②a3+a3=2a3.【例7-1】下列运算正确的是( ).A.a4+a5=a9B.a3·a3·a3=3a3C.2a4·3a5=6a9D.(-a3)4=a7解析:对于A,两者不是同类项,不能合并;对于B,结果应为a9;对于C,结果是正确的;对于D,(-a3)4=a3×4=a12.故选C.答案:C【例7-2】计算:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3.分析:按照运算顺序,先利用积的乘方化简,即(-2x2y)3=-8(x2)3·y3,8(x2)2·(-x)2·(-y)6=8x4·x2·y6,再利用幂的乘方及同底数幂的乘法化简乘方后的结果,最后合并同类项.解:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3=-8(x2)3·y3+8x4·x2·y6÷y3=-8x6y3+8x6y3=0.8.幂的运算性质的逆用对于幂的运算性质的正向运用大家一般比较熟练,但有时有些问题需要逆用幂的运算性质,可以使问题化难为易、求解更加简单.(1)逆用同底数幂的乘法性质:a m +n =a m ·a n (m ,n 为正整数).如25=23×22=2×24.当遇到幂的指数是和的形式时,为了计算的需要,往往逆用同底数幂的乘法性质,将幂转化成几个同底数幂的乘法.但是一定要注意,转化后指数的和应等于原指数.(2)逆用幂的乘方性质:a mn =(a m )n =(a n )m (m ,n 均为正整数).逆用幂的乘方性质的方法是:幂的底数不变,将幂的指数分解成两个因数的乘积,再转化成幂的乘方的形式.如x 6=(x 2)3=(x 3)2,至于选择哪一个变形结果,要具体问题具体分析.(3)逆用积的乘方性质: a n b n =(ab )n (n 为正整数).当遇到指数相差不大,且指数比较大时,可以考虑逆用积的乘方性质解题.注意,必须是同指数的幂才能逆用性质,逆用时一定要注意:底数相乘,指数不变.(4)逆用同底数幂的除法性质: a m -n =a m ÷a n (a ≠0,m ,n 为整数).当遇到幂的指数是差的形式时,为了计算的需要,往往逆用同底数幂的除法性质,将幂转化成几个同底数幂的除法.但是一定要注意,转化后指数的差应等于原指数.【例8-1】(1)已知3a =2,3b =6,则33a -2b的值为__________;(2)若m p =15,m 2q =7,m r =-75,则m 3p +4q -2r的值为__________.解析:(1)因为3a =2,3b=6,所以33a -2b =33a ÷32b =(3a )3÷(3b )2=23÷62=29.(2)m 3p +4q -2r =(m p )3·(m 2q )2÷(m r )2=⎝ ⎛⎭⎪⎫153×72÷⎝ ⎛⎭⎪⎫-752=15.答案:(1)29 (2)15【例8-2】(1)计算:⎝ ⎛⎭⎪⎫18 2 011×22 012×24 024;(2)已知10x =2,10y =3,求103x +2y的值.分析:(1)本题的指数较大,按常规方法计算很难,观察式子特点发现:4 024是2 012的两倍,可逆用幂的乘方性质,把24 024化为(22)2 012,这样再与22 012逆用积的乘方性质,此时发现与⎝ ⎛⎭⎪⎫18 2 011底数互为倒数,但指数不相同,因此逆用同底数幂的乘法及逆用积的乘方性质,简化计算;(2)可逆用幂的乘方,把103x +2y化为条件中的形式.解:(1)原式=⎝ ⎛⎭⎪⎫18 2 011×22 012×(22)2 012(逆用幂的乘方)=⎝ ⎛⎭⎪⎫18 2 011×(2×22)2 012(逆用积的乘方) =⎝ ⎛⎭⎪⎫18 2 011×82 012 =⎝ ⎛⎭⎪⎫18 2 011×82 011×8(逆用同底数幂的乘法) =⎝ ⎛⎭⎪⎫18×8 2 011×8(逆用积的乘方) =8.(2)因为103x =(10x )3=23=8,102y =(10y )2=32=9,所以103x +2y =103x ·102y=8×9=72. 9.利用幂的运算性质比较大小 在幂的运算中,经常会遇到比较正整数指数幂的大小问题.对于一些幂的指数较小的问题,可以直接计算出幂进行比较;但当幂的指数较大时,若通过先计算出幂再比较大小,就会很繁琐甚至不可能.这时可利用幂的运算性质比较幂的大小.比较幂的大小,一般有以下几种方法:(1)指数比较法:利用乘方,将比较大小的各个幂的底数化为相同的底数,然后根据指数的大小关系确定出幂的大小.(2)底数比较法:利用乘方,将比较大小的各个幂的指数化为相同的指数,然后根据底数的大小关系确定出幂的大小.(3)作商比较法:当a >0,b >0时,利用“若a b >1,则a >b ;若a b =1,则a =b ;若a b<1,则a <b ”比较.有关幂的大小比较的技巧和方法除灵活运用幂的有关性质外,还应注意策略,如利用特殊值法、放缩法等.【例9】(1)已知a =8131,b =2741,c =961,则a ,b ,c 的大小关系是( ). A .a >b >c B .a >c >b C .a <b <c D .b >c >a(2)350,440,530的大小关系是( ).A .350<440<530B .530<350<440C .530<440<350D .440<530<350(3)已知P =999999,Q =119990,那么P ,Q 的大小关系是( ).A .P >QB .P =QC .P <QD .无法比较解析:(1)因为a =8131=(34)31=3124,b =2741=(33)41=3123,c =961=(32)61=3122,又124>123>122,所以3124>3123>3122,即a >b >c .故选A .(2)因为350=(35)10=24310,440=(44)10=25610,530=(53)10=12510,而125<243<256,所以12510<24310<25610,即530<350<440.故选B .(3)因为P Q =999999×990119=9×119999×990119=99×119999×990119=1,所以P =Q .故选B . 答案:(1)A (2)B (3)B10.幂的运算性质的实际应用利用幂的运算可以解决一些实际问题,所以要熟练掌握好幂的运算性质,能在实际问题中灵活地运用幂的运算性质求解问题.解决此类问题时,必须认真审题,根据题意列出相关的算式,进而利用幂的运算性质进行运算或化简,特别地,当计算的结果是比较大的数时,一般要写成科学记数法的形式.【例10】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103m/s ,则卫星运行3×102s 所走的路程约是多少?分析:要计算卫星运行3×102s 所走的路程,根据路程等于时间乘以速度可解决问题.本题实际是一道同底数幂的乘法运算问题.解:因为7.9×103×3×102=(7.9×3)×(103×102)=23.7×105=2.37×106,所以卫星运行3×102 s 所走的路程约为2.37×106m . 11.幂的运算中的规律探究题探究发现型题是指命题中缺少一定的题设或未给出明确的结论,需要经过推断、补充并加以总结.它不像传统的解答题或证明题,在条件和结论给出的情景中只需进行由因导果或由果导因的工作,而是必须利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或去探索存在的各种可能性以及发现所形成的客观规律.规律探索题是指在一定条件下,需要探索发现有关数学对象所具有的规律性或不变性的题目,要解答此类问题,首先要仔细阅读,弄清题意,并从阅读过程中找出其规律,然后进一步利用规律进行计算.【例11】(1)观察下列各式:由22×52=4×25=100,(2×5)2=102=100,可得22×52=(2×5)2;由23×53=8×125=1 000,(2×5)3=103=1 000,可得23×53=(2×5)3;….请你再写出两个类似的式子,你从中发现了什么规律?(2)x2表示两个x相乘,(x2)3表示3个__________相乘,因此(x2)3=__________,由此类推得(x m)n=__________.利用你发现的规律计算:①(x3)15;②(x3)6;③[(2a-b)3]8.解:(1)如:34×54=(3×5)4,45×55=(4×5)5,等等.规律:a n·b n=(ab)n,即两数n次幂的积等于这两个数的积的n次幂.(2)x2x2×3=x6x mn①(x3)15=x45;②(x3)6=x18;③[(2a-b)3]8=(2a-b)24.。

北师大版七年级幂的运算

北师大版七年级幂的运算

北师大版七年级幂的运算在我们七年级的数学学习中,幂的运算可是一个非常重要的知识点。

它就像是一把神奇的钥匙,能够帮助我们打开数学世界里很多复杂问题的大门。

首先,咱们来聊聊什么是幂。

幂其实就是几个相同的数相乘的简便表示方法。

比如说,2×2×2×2×2,写起来很麻烦对不对?这时候我们就可以用幂的形式来表示,写成 2 的 5 次方。

其中,2 叫做底数,5 叫做指数,整个“2 的 5 次方”就叫做幂。

接下来,咱们看看幂的运算都有哪些规则。

同底数幂相乘,底数不变,指数相加。

比如说,2 的 3 次方乘以 2的 4 次方,就等于 2 的(3 + 4)次方,也就是 2 的 7 次方。

这个规则很好理解,你可以想象成一堆 2 相乘,再乘以另一堆 2 相乘,那不就是更多的 2 相乘了嘛。

同底数幂相除,底数不变,指数相减。

比如 2 的 5 次方除以 2 的 3次方,就等于 2 的(5 3)次方,也就是 2 的 2 次方。

这就好像是把一堆 2 分成了几小堆 2,剩下的 2 的个数就是指数的差值。

幂的乘方,底数不变,指数相乘。

比如(2 的 3 次方)的 2 次方,就等于 2 的(3×2)次方,也就是 2 的 6 次方。

这个就像是给一组相同的数相乘又整体乘了几次,那么指数就得相乘。

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

比如(2×3)的 2 次方,就等于 2 的 2 次方乘以 3 的 2 次方。

这些运算规则看起来好像有点复杂,但只要多做几道练习题,就能熟练掌握啦。

咱们来通过几个例子感受一下。

比如计算 3 的 4 次方乘以 3 的 5 次方。

因为是同底数幂相乘,底数3 不变,指数 4 和 5 相加,得到 3 的 9 次方。

再比如计算 4 的 7 次方除以 4 的 4 次方。

同底数幂相除,底数 4 不变,指数 7 减去 4,得到 4 的 3 次方。

还有(5 的 2 次方)的 3 次方,底数 5 不变,指数 2 和 3 相乘,得到 5 的 6 次方。

(完整版)幂的运算方法总结

(完整版)幂的运算方法总结

•幂的运算方法总结幂的运算的基本知识就四条性质,写作四个公式:①a m×a n=a m+n②(a m)n=a mn③(ab)m=a m b m④a m÷a n=a m—n只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。

问题1、已知a7a m=a3a10,求m的值.思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。

方法思考:只要是符合公式形式的都可套用公式化简试一试。

方法原则:可用公式套一套。

但是,渗入幂的代换时,就有点难度了.问题2、已知x n=2,y n=3,求(x2y)3n的值。

思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n和y n的运算.因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值.方法原则:整体不同靠一靠。

然而,遇到求公式右边形式的代数式该怎么办呢?问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。

思路探索:试逆用公式,变形出与已知同形的幂即可代入了。

简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。

方法原则:逆用公式倒一倒.当底数是常数时,会有更多的变化,如何思考呢?问题4、已知22x+3-22x+1=48,求x的值。

思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。

由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数.简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x=6×22x=48 ∴22x=8 ∴2x=3∴x=1。

初中幂的运算公式口诀

初中幂的运算公式口诀

初中幂的运算公式口诀哎呀,说到初中数学里的幂运算公式,真是让人又爱又恨,尤其是刚开始接触的时候,感觉就像是看天书。

大家知道吗,幂运算可不是随便说说的,它可是数学里的“小霸王”!先来聊聊什么是幂。

就简单来说,幂就是把一个数乘以自己好几次,比如说(2^3) 就是把2乘以自己3次,得8。

很简单吧?不过,听着容易,做起来可不一定哦。

先讲讲最基本的幂的运算规律,真是让人耳熟能详。

比如说 (a^m times a^n =a^{m+n),就是把同底数的幂相乘,指数相加。

想想看,就像是你和小伙伴一起去打怪,打怪的次数加起来,怪物还不是一只只倒下。

(a^m div a^n = a^{mn),这也是一样的道理,底数不变,指数相减,怪物一个个被你干掉,剩下的也只会越来越少,爽!再来就是幂的乘方了,像是 ( (a^m)^n = a^{m times n )。

听起来好像有点复杂,其实不然,就像你请朋友一起帮忙,结果是你原来的力量翻倍。

哈哈,说得有点夸张,不过这个意思就是这样的。

还有哦,任何数的零次方都是1,真是个奇妙的数字法则。

比如说你不管怎样,只要乘以1,结果都是那个数本身,这就好比你一成不变的个性,永远不会改变。

说到这里,我得提醒大家一下,负数的指数就像个小陷阱,千万别掉进去哦!(a^{n = frac{1{a^n),就是把底数变成分母,记得要搞清楚这个哦。

就像打游戏的时候,别被陷阱搞到,冷静应对,绝对没问题!根号也是跟幂有关系的,比如说 (sqrt{a = a^{1/2)。

听着简单,但在实际操作中,很多小伙伴会一脸懵逼。

就像你去外面吃东西,看到菜单上那些花花绿绿的东西,反而不知道点什么,慌了神。

但是,放心,熟能生巧,多做几道题就能记住这些了。

好了,聊了这么多,你有没有感觉这些幂运算公式就像是你学习路上的小伙伴呢?每次遇到它们,就像是碰到老朋友,虽然有时会让你挠头,但认真对待,总能收获满满。

别忘了,练习是关键,做题的时候千万要认真,每一个细节都不能放过。

初一数学幂的运算题目

初一数学幂的运算题目

初一数学幂的运算题目一、幂的运算题目1. 计算:a^3· a^4- 解析:根据同底数幂相乘,底数不变,指数相加。

所以a^3· a^4=a^3 + 4=a^7。

2. 计算:(x^2)^3- 解析:根据幂的乘方,底数不变,指数相乘。

所以(x^2)^3=x^2×3=x^6。

3. 计算:(2a)^3- 解析:根据积的乘方等于乘方的积,(2a)^3=2^3· a^3=8a^3。

4. 计算:a^5div a^2- 解析:根据同底数幂相除,底数不变,指数相减。

所以a^5div a^2=a^5 - 2=a^3。

5. 计算:( - 3x^3)^2- 解析:根据积的乘方,( - 3x^3)^2=(-3)^2·(x^3)^2=9x^6。

6. 若a^m=3,a^n=2,求a^m + n的值。

- 解析:根据同底数幂相乘的运算法则a^m + n=a^m· a^n,已知a^m=3,a^n=2,所以a^m + n=3×2 = 6。

- 解析:- 先计算x^3· x^5,根据同底数幂相乘,底数不变,指数相加,得到x^3· x^5=x^3+5=x^8。

- 再计算(x^4)^2,根据幂的乘方,底数不变,指数相乘,得到(x^4)^2=x^4×2=x^8。

- 所以x^3· x^5-(x^4)^2=x^8-x^8=0。

8. 计算:(a^2b)^3- 解析:根据积的乘方等于乘方的积,(a^2b)^3=(a^2)^3· b^3=a^6b^3。

9. 若a^m=5,a^2m的值是多少?- 解析:根据幂的乘方,a^2m=(a^m)^2,已知a^m=5,所以a^2m=5^2=25。

10. 计算:y^10div y^5div y^3- 解析:- 根据同底数幂相除,底数不变,指数相减。

- 先计算y^10div y^5=y^10 - 5=y^5。

初中数学幂运算知识点总结

初中数学幂运算知识点总结

初中数学幂运算知识点总结一、乘方的概念乘方是指用同一个数乘以自己若干次。

例如,a的n次方(写作an)表示a与自己相乘n 次,其中a称为底数,n称为指数。

乘方的一般形式为an=a×a×a×…×a(共n个a相乘)。

在乘方中,n必须是正整数,0的0次方没有意义,1的任何次方都等于1。

二、幂的基本性质1. 乘方的指数法则(1)乘法法则:a的m次方与a的n次方相乘等于a的m+n次方,即am×an=am+n。

(2)除法法则:a的m次方除以a的n次方等于a的m-n次方,即am÷an=am-n。

(3)乘方的乘方:a的m次方的n次方等于a的m×n次方,即(am)n=am×n。

以上三个法则是幂运算中最基本的性质,通过这些法则,我们可以将复杂的乘方运算简化成更简单的形式,从而更容易进行计算。

2. 幂的运算规律(1)零幂:任何非零数的0次方都等于1,即a的0次方=1(a≠0)。

(2)负指数:a的-m次方等于1除以a的m次方,即a的-m=1/am。

(3)幂的乘法:a的m次方乘以b的m次方等于(a×b)的m次方,即am×bm=(ab)m。

(4)幂的除法:a的m次方除以b的m次方等于(a÷b)的m次方,即am÷bm=(a÷b)m。

通过这些运算规律,我们可以有效地计算幂运算,简化运算步骤,提高计算效率。

三、指数函数1. 指数函数的图像指数函数的一般形式为f(x)=a^x(a>0且a≠1),其中a称为底数,x是自变量。

当指数函数中的底数a大于1时,函数图像呈现递增趋势;当底数a介于0和1之间时,函数图像呈现递减趋势。

指数函数的图像一般经过点(0,1),在x轴的左侧与y轴交于一点,其图像呈现出一定的对称性。

2. 指数函数的性质(1)当x=0时,指数函数的函数值为1,即f(0)=a^0=1。

(2)当x增大时,指数函数的值呈指数增长,增长速度非常快。

数学幂的运算技巧男老师

数学幂的运算技巧男老师

数学幂的运算技巧男老师数学幂运算是数学中的基本运算之一。

在解决各种数学问题时,掌握数学幂的运算技巧非常重要。

以下是关于数学幂运算的一些常见技巧:1. 同底数相乘:两个相同底数的幂相乘时,底数不变,指数相加。

例如,a^m * a^n = a^(m+n)。

2. 同底数相除:两个相同底数的幂相除时,底数不变,指数相减。

例如,a^m / a^n = a^(m-n)。

3. 幂的乘法法则:当有一个幂的乘法时,可以将底数相乘,指数相加。

例如,(a^m)^n = a^(mn)。

4. 幂的除法法则:当有一个幂的除法时,可以将底数相除,指数相减。

例如,(a^m) / (a^n) = a^(m-n)。

5. 乘方运算:任何数的0次方都等于1。

例如,a^0 = 1,其中a ≠0。

6. 幂的负指数:一个数的负指数相当于其倒数的正指数。

例如,a^(-n) = 1 / (a^n),其中a ≠0。

7. 积的幂:一个积的幂可以分别对每个因子进行幂运算,然后将结果相乘。

例如,(ab)^n = a^n * b^n。

8. 商的幂:一个商的幂可以分别对分子和分母进行幂运算,然后将结果相除。

例如,(a/b)^n = a^n / b^n,其中b ≠0。

9. 幂的幂:一个幂的幂可以将指数相乘。

例如,(a^m)^n = a^(mn)。

10. 幂的分配律:两个幂的和的幂等于这两个幂的幂的积。

例如,(a^m +b^m)^n = a^(mn) + b^(mn)。

11. 零的幂:任何非零数的0次方都等于1。

例如,0^0 = 1。

12. 幂的乘法的连乘法则:当有多个幂相乘时,可以将它们的底数相乘,指数相加。

例如,a^m * b^m * c^m = (abc)^m。

以上是一些常见的数学幂运算技巧,可以帮助人们更加灵活地处理幂运算问题。

通过合理运用这些技巧,可以简化计算过程,提高计算效率。

在实际应用中,数学幂运算经常与其他运算一起出现,因此熟练掌握这些技巧对解决各类数学问题都非常有帮助。

初一下幂的运算

初一下幂的运算

幂的运算1.同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)2.. 幂的乘方法则:mn n m a a =)((m,n 都是正数)⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n3. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷ (a ≠0,m 、n 都是正数,且m>n). 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0.②任何不等于0的数的0次幂等于1,即)0(10≠=a a ,如1100=,(-2.50=1),则00无意义. ③任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即p p a a 1=-( a ≠0,p 是正整数), 而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的; 当a<0时,a -p 的值可能是正也可能是负的,如41(-2)2-=,81)2(3-=-- ④运算要注意运算顺序..例题解析:1、同底数幂的乘法①5(2)-的底数是,指数是 ,幂是 .②计算下列各式 (1)521010⨯ (2) 5488⨯ (3)53101101⨯问853101010⨯⨯=?(p n m p n m aa a a ++=⋅⋅ t p n m t p n m a a a a a +++=⋅⋅⋅) ③计算(1)()()51288--⨯ (2)123-⋅m m a a(3)4462m m m m ⋅-⋅ (4)x x x x x ⋅⋅+⋅5372④填空:(1)332(3)3(3)-⋅⋅- =_____ , 2210101000⋅⋅n = _____,(2) =⋅-32x x _____ , 2221()()()n n n x x x +-⋅-⋅- =______(3) m 32m 5a b b a a b b a +(-)(-)(-)(-) =_________(4) 234(a b)(a b)(a b)(b a)(a b)++---=_________⑤已知213==n m a a ,,求n m a +的值.1、同底数幂的乘方与积的乘方①计算:(1)(106)2 (2)(a m )4(m 为正整数)(3)-(y 3)2 (4)(-x 3)3.②若a m =2,a 2n =7,求a 3m+4【提升】①计算20132014133⎛⎫⋅ ⎪⎝⎭(1)- 49124⎛⎫⋅ ⎪⎝⎭(2)(3)(31xy 2)2 (4)(-2ab 3c 2)4②填空:(1)(41)4·210= (2) 若(a 2b n )m =a 4b 6,则m = n =(3) [(-2)×106]2=(4) 0.52004·22004=(5)若 x n =5,y n =3,则(xy )2n =2、同底数幂的除法公式有时也可以写成=mn a a①计算(1)631010÷ (2)37a a ÷(3)462m m m +÷ (4)62()()a b b a -÷-(5)523()[()]y x x y -÷- (6)22212)()()(++-÷--n n n a b a b b a②已知105m =,103n =,求2310m n -的值。

七年级幂的运算100道

七年级幂的运算100道

七年级幂的运算100道1. 计算 $2^3$。

2. 计算 $5^2$。

3. 计算 $(-3)^4$。

4. 计算 $(-2)^3$。

5. 计算 $10^0$。

6. 计算 $4^2$。

7. 计算 $(-5)^3$。

8. 计算 $3^4$。

9. 计算 $(-4)^2$。

10. 计算 $2^5$。

11. 计算 $(-6)^2$。

12. 计算 $7^3$。

13. 计算 $(-2)^4$。

14. 计算 $3^2$。

15. 计算 $(-8)^3$。

16. 计算 $5^4$。

18. 计算 $4^3$。

19. 计算 $(-7)^4$。

20. 计算 $2^6$。

21. 计算 $(-5)^2$。

22. 计算 $6^3$。

23. 计算 $(-2)^5$。

24. 计算 $8^2$。

25. 计算 $(-4)^3$。

26. 计算 $3^5$。

27. 计算 $(-6)^4$。

28. 计算 $9^2$。

29. 计算 $(-3)^3$。

30. 计算 $5^5$。

31. 计算 $(-7)^2$。

32. 计算 $2^7$。

33. 计算 $(-4)^4$。

35. 计算 $(-8)^3$。

36. 计算 $3^6$。

37. 计算 $(-5)^4$。

38. 计算 $7^2$。

39. 计算 $(-2)^6$。

40. 计算 $4^5$。

41. 计算 $(-6)^2$。

42. 计算 $8^3$。

43. 计算 $(-3)^5$。

44. 计算 $5^6$。

45. 计算 $(-7)^3$。

46. 计算 $2^8$。

47. 计算 $(-4)^2$。

48. 计算 $6^4$。

49. 计算 $(-8)^2$。

50. 计算 $3^7$。

52. 计算 $7^4$。

53. 计算 $(-2)^7$。

54. 计算 $4^6$。

55. 计算 $(-6)^3$。

56. 计算 $8^4$。

57. 计算 $(-3)^6$。

58. 计算 $5^7$。

59. 计算 $(-7)^5$。

幂的运算总结归纳专题

幂的运算总结归纳专题

幂的运算总结归纳专题【幂的运算总结归纳专题】一、引言在数学领域,幂运算是一种基本的数学运算,常见于代数学、数论以及实际应用中。

幂的运算可以用于计算数值的乘方、指数等。

本文将全面总结和归纳幂的运算规则,以及一些经典的应用场景。

二、幂运算的定义在数学中,幂运算指一个数的乘方。

设a和n为实数,其中n是非负整数,则我们可以定义a的n次幂,表示为a^n,其计算规则如下:1. 当n=0时,a^n=1,这是因为任何数的0次方等于1;2. 当n>0时,a^n等于a连乘n次的结果;3. 当n<0时,a^n等于1除以a的负n次方,即a^n = 1/ a^(-n)。

三、幂运算的基本性质1. 幂的乘法法则:对于任意实数a和b,以及任意非负整数m和n,有以下基本性质:- a^m * a^n = a^(m+n):对于相同的底数a,相同底数的幂相乘,指数相加;- (a^m)^n = a^(mn):对于相同的底数a,幂的指数相乘,结果的指数为两个指数的乘积。

2. 幂的除法法则:对于任意实数a和b(其中a≠0),以及任意非负整数m和n,有以下基本性质:- a^m / a^n = a^(m-n):对于相同的底数a,相同底数的幂相除,指数相减。

3. 幂的乘方法则:对于任意实数a(其中a≠0),以及任意非负整数m和n,有以下基本性质:- (ab)^n = a^n * b^n:幂的乘方,底数相乘,指数保持不变;- (a^n)^m = a^(nm):幂的乘方,指数相乘。

四、应用场景1. 幂的数值计算:幂运算常用于计算数值的乘方,例如计算面积、体积等。

2. 幂的指数函数:幂运算也常用于指数函数的建模与分析,如指数增长、指数衰减等。

3. 幂的离散数学:幂运算在离散数学中有广泛应用,例如密码学中的公钥密码算法。

4. 幂的代数性质:幂运算也是代数学中一些基本定理的核心,如费马小定理、欧拉定理等。

五、结论本文全面总结和归纳了幂的运算规则以及一些常见的应用场景。

七年级下册数学幂运算知识点讲解

七年级下册数学幂运算知识点讲解

七年级下册数学幂运算知识点讲解数学是一门具有挑战和启发性的学科。

作为一名初中生,了解和掌握幂运算是十分重要的。

在这篇文章里,我们将详细介绍七年级下册数学幂运算的知识点,以便可以更好地理解和掌握这方面的基础知识。

一、幂的定义幂运算,简单地说就是同一个自然数相乘的运算。

数学中,幂表示一个数字或是变量的次方。

也就是说,“幂”是一个数的指数,可以表示成X^N,其中X是底数,N是幂。

例如:X²表示X的平方,X³表示X的立方。

在这里,需要注意一点:我们通常使用X^N这种形式来表示一个数X的N次幂。

这里,幂是一个指数,它告诉我们计算的是多少个X的乘积,X^N的结果就是将X连乘N次得到的值。

二、幂运算的性质了解幂运算的性质,有助于我们更好地掌握计算方法。

以下是几个值得注意的幂运算的性质:1、乘方的交换律:a^b×a^c=a^(b+c)或者a^b×a^c=(a^b)^c。

2、乘方的结合律:(a×b)^c=a^c×b^c3、除法的定义:a^b/a^c=a^(b-c)或者a^b/(a^c)=(a^(b-c))4、幂的乘积:a^b∙c^b=(a∙c)^b5、乘方的倒数:a^(-b)=1/a^b,其中a≠0。

三、幂运算的计算学习数学,当然要重视计算方法。

接下来,我们将介绍一些求幂的简单计算方法:1、相同底数的乘方:如果底数相同,幂相加。

例如:3^2×3^4=3^(2+4)=3^62、不同底数,幂相同:如果幂相同,底数相乘。

例如:2^3×3^3=(2×3)^3=6^33、底数不同,幂不同:根据指数运算法则化简。

例如:5^6×(2/5)^6=(5×2/5)^6=2^6=64四、幂运算的应用幂运算在数学中的应用十分广泛。

无论是几何还是代数,自然科学还是社会科学,都离不开幂运算。

在这里,我们列举一些常见的应用案例,大家可以自行探索:1、幂运算在计量学中的应用2、幂运算在图表中的应用3、幂运算在物理学中的应用4、幂运算在流体动力学中的应用5、幂运算在传输技术中的应用总之,幂运算是数学中十分基础和重要的一部分。

初一数学幂的运算

初一数学幂的运算

幂的运算同底数幂的乘法1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()m n m n a a a m n +⋅=、为正整数2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 ()m n p m m p a a a a m n p ++⋅⋅=、、为正整数 注意点:(1同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.幂的乘方与积的乘方1、幂的乘方幂的乘方,底数不变,指数相乘.公式表示为:()()n m mn a a m n =、都是正整数.2、积的乘方积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘.公式表示为:()()nn n ab a b n =为正整数.注意点:(1) 幂的乘方的底数是指幂的底数,而不是指乘方的底数.(2) 指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开.(3) 运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果;(4) 运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其中任何一个因式.例1. 已知453)5(31+=++n n x x x ,求x 的值. 例2. 1+2+3+…+n =a ,代数式))(())()(123221n n n n n xy y x y x y x y x --- (的值. 例3. 已知2x +5y -3=0,求y x 324∙的值.例4. 已知472510225∙=∙∙n m ,求m 、n .例5. 已知y x y x x a a aa +==+求,25,5的值. 已知,710,510,310===cb a 试把105写成底数是10的幂的形式.例6. 比较下列一组数的大小. 61413192781,,例7. 如果的值求12),0(020*******++≠=+a aa a a . 例10.已知723921=-+n n ,求n 的值.练习:1.计算9910022)()(-+-所得的结果是( ) A.-2 B.2 C.-992 D.9922.当n 是正整数时,下列等式成立的有( )(1)22)(m m a a = (2)m m a a )(22= (3)22)(m m a a -= (4)m m a a )(22-= A.4个 B.3个 C.2个 D.1个3.计算:2332)()(a a -+-= .4.若52=m ,62=n ,则n m 22+= .5.下列运算正确的是( )A .xy y x 532=+B .36329)3(y x y x -=-C .442232)21(4y x xy y x -=-⋅ D .333)(y x y x -=- 6.若的值求n m m n b a b b a +=2,)(1593.7.1.已知:点D 是△ABC 的BC 边的延长线上的一点,DF ⊥AB 交AB 于F ,交AC 于E ,∠A =30°,∠D =20°,求∠ACB 的度数。

七年级下册幂的运算知识点

七年级下册幂的运算知识点

七年级下册幂的运算知识点幂的运算在数学中是一个基础且重要的概念。

在七年级下册的数学学习中,学生们会接触到幂的运算,并掌握幂的基本运算规律。

本文将从定义、运算法则和应用三个方面详细介绍幂的运算知识点。

一、定义幂是数学中的一种表示方式,用于表示一个数的指数形式,由底数和指数两部分组成。

其中,底数是被乘方的数,指数表示幂的次数,比如a^2表示a的平方,a^3表示a的立方。

二、运算法则1. 幂的乘法规则底数相同时,幂相乘,指数相加。

例如,2^3 × 2^4 = 2^(3+4) = 2^72. 幂的除法规则底数相同时,幂相除,指数相减。

例如,5^7 ÷ 5^4 = 5^(7-4) = 5^3 3. 幂的幂法则幂的幂,底数不变,指数相乘。

例如,(2^3)^4 = 2^(3×4) = 2^12 4. 积的幂法则积的幂等于各因子幂的乘积。

例如,(2 × 3)^4 = 2^4 × 3^45. 商的幂法则商的幂等于分子幂除以分母幂。

例如,(5^4 ÷ 7^2)^3 = 5^(4×3) ÷ 7^(2×3)三、应用幂的运算在数学中有广泛的应用。

比如,在科学计算中,通过对数据进行指数运算,可以得到更加精确的结果。

在几何中,幂的概念还可以用于圆的切线和切点的问题中。

另外,在代数表达式的化简中,幂的运算也是不可或缺的一部分。

通过灵活运用幂的运算法则,可以简化代数式,使得计算更为方便和高效。

总之,幂的运算是学习数学的基础,在学习第一次接触一定要认真掌握。

同时,也要灵活应用幂运算法则,掌握好运用方法,为后续的学习打下坚实的基础。

初一幂运算记忆方法

初一幂运算记忆方法

初一幂运算记忆方法
幂运算是一种数学运算方式,表示同一数的连乘积。

例如,如果有一个数a,那么a的n次幂表示a自乘n次,即a×a×a…×a(n个a相乘)。

这种运算称为幂运算。

初一幂运算记忆方法主要包括以下几个步骤:
1.理解幂的定义:幂是表示乘方运算的结果,表达式为a^n,其中a是底数,
n是指数。

理解这个定义是记忆幂运算规则的基础。

2.掌握幂的基本性质:包括同底数幂相乘、同底数幂相除、幂的乘方等。

这些
性质是幂运算的核心,需要反复练习以加深记忆。

3.记忆幂的运算法则:同底数幂相乘,底数不变,指数相加;同底数幂相除,
底数不变,指数相减;幂的乘方,底数不变,指数相乘。

这些法则可以通过口诀或示例来帮助记忆。

4.练习和应用:通过大量的练习,逐渐熟悉和掌握幂运算的规则和技巧。

可以
将幂运算应用于实际问题中,以加深对幂运算的理解和记忆。

5.制作记忆卡片:将幂运算的规则和公式写在卡片上,随身携带并经常复习,
有助于加深记忆。

6.寻找规律:在幂运算中,有些数字或公式具有特殊的规律,例如指数的性质、
负整数指数幂等。

掌握这些规律可以帮助记忆和理解幂运算。

7.与他人合作学习:与同学或老师一起学习和讨论幂运算的规则和技巧,可以
互相激励和讨论,有助于加深记忆和理解。

总之,初一幂运算记忆方法需要多方面的努力和练习,通过以上这些方法,学生可以更好地掌握幂运算的知识和技能。

初中幂的运算

初中幂的运算

初中幂的运算
初中数学中,幂是一个重要的概念。

幂的运算常常出现在数学中的各个领域,如代数、几何、概率等。

那么,什么是幂的运算,它有哪些性质呢?
定义:
幂运算是指将一个数(称为底数)乘以自身多次(称为指数)的运算。

在数学符号中,幂运算通常表示为:a^n。

性质:
1、相同底数的幂,指数相加。

a^m * a^n = a^(m+n)
2、幂的乘法,底数不变,指数相加。

(a^m)^n = a^(mn)
3、幂的除法,底数不变,指数相减。

a^m / a^n = a^(m-n)
4、两个幂的乘积,底数相同,指数相加。

a^m * b^m = (ab)^m
5、幂的乘积,底数不同,指数相同。

a^m * b^m = (a*b)^m
6、幂的倒数,幂的指数变为相反数。

(a^m)^(-1) = a^(-m)
以上是初中幂的运算的基本定义和性质,掌握这些知识,能够帮助我们更好地理解和应用幂运算。

[初一数学]幂的运算知识总结

[初一数学]幂的运算知识总结

幂的四则运算(知识总结)一、同底数幂的乘法运算法则:同底数幂相乘,底数不变,指数相加。

用式子表示为: n m n m a a a+=⋅(m 、n 是正整数)练习:a 3·a =_______a ·a 7—a 4 ·a 4 =____二、同底数幂的除法运算法则:同底数幂相除,底数不变,指数相减。

用式子表示为:n m n m aa a -=÷。

(0≠a 且m 、n 是正整数,m>n 。

) 补充:零次幂及负整数次幂的运算:任何一个不等于零的数的0次幂都等于1;任何不等于零的数的p -(p 是正整数)次幂,等于这个数的p 次幂的倒数。

用式子表示为:)0(10≠=a a ,pp a a 1=-(0≠a ,p 是正整数)。

练习:1、下面的计算对不对?如果不对,应怎样改正?(1)236x x x =÷ (2)m m m =÷45(3)33a a a =÷ (4)224)()(c c c -=-÷- 2、计算: 03,15-,310-,27-,101-,0)2004( 三、幂的乘方运算法则:幂的乘方,底数不变,指数相乘. 用式子表示为:()n m mn a a =(m 、n 都是正整数) 注:把幂的乘方转化为同底数幂的乘法练习:1、计算:①()()()()2452232222x x x x -⋅-⋅ ②()()()32212m n m a a a a -⋅-⋅ 2、下列各式的计算中,正确的是( ) A.()235xx = B.()236x x = C.()2121n n x x ++= D.326x x x ⋅= 补充:同底数幂的乘法与幂的乘方性质比较:幂的运算 指数运算种类 同底数幂乘法乘法 加法 幂的乘方乘方 乘法四、积的乘方运算法则:两底数积的乘方等于各自的乘方之积。

用式子表示为:()n n n b a b a ⋅=⋅(n是正整数) 扩展p n m p n m a a a a -+=÷⋅ ()np mp p n m b a b a = (m 、n 、p 是正整数) 提高训练1.填空(1) (1/10)5 ×(1/10)3 =(2) (-2 x 2 y 3) 2 =(3) (-2 x 2 ) 3 =(4) 0.5 -2 =(5) (-10)2 ×(-10)0 ×10-2 =2.选择题(1) 下列说法错误的是.A. (a -1)0 = 1 a ≠1B. (-a )n = - a n n 是奇数C.n是偶数, (-a n ) 3 =a3nD. 若a≠0 ,p为正整数, 则a p =1/a -p(2) [(-x) 3 ] 2·[(-x) 2 ] 3的结果是( )A.x-10B. - x-10C. x-12D. - x-12(3) a m = 3 , a n = 2, 则a m-n 的值是( )A. 1.5B. 6C. 9D. 83.计算题(1) (-1/2) 2÷(-2) 3÷(-2)–2÷(∏-2005) 0= =(2) (-2 a ) 3÷a -2 =(3) 2×2m+1÷2m =(4) 已知:4m = a , 8n = b ,求: ①22m+3n的值.②24m-6n的值.4.判断正误(1)a n·a n=2a n;(2) a6+a6=a12;(3) c·c5=c5;(4) 3b3·4b4=12b12;(5) (3xy3)2=6x2y6。

初中数学幂的运算

初中数学幂的运算

初中数学幂的运算在初中数学的学习中,幂的运算可是一块重要的基石。

它就像是一把神奇的钥匙,能帮助我们打开数学世界里一扇又一扇神秘的大门。

咱们先来说说什么是幂。

简单来讲,幂就是指一个数自乘若干次的形式。

比如说,2 的 3 次幂,表示 2 乘以自己 3 次,也就是 2×2×2 =8 。

在幂的表示中,底数就是那个被乘的数,像刚才例子里的 2 ;指数就是底数自乘的次数,比如 3 。

接下来,咱们聊聊幂的运算规则。

首先是同底数幂的乘法。

如果有两个同底数的幂相乘,比如 a 的 m 次幂乘以 a 的 n 次幂,结果就是 a的(m + n)次幂。

这就好比一堆相同的苹果,一堆有 m 个,另一堆有 n 个,加在一起不就是(m + n)个嘛。

再说说同底数幂的除法。

a 的 m 次幂除以 a 的 n 次幂(a 不等于0),结果就是 a 的(m n)次幂。

这也好理解,就像把一堆 m 个的苹果,拿走 n 个,不就剩下(m n)个了嘛。

然后是幂的乘方。

(a 的 m 次幂)的 n 次方,结果就是 a 的(m×n)次幂。

这就好像给一组相同数量的东西,每组有 a 的 m 次幂个,一共有 n 组,那总数不就是 a 的(m×n)次幂个嘛。

还有积的乘方。

(ab)的 n 次幂,等于 a 的 n 次幂乘以 b 的 n 次幂。

想象一下,一个大长方形,长是 a ,宽是 b ,现在把它分成 n 个小长方形,每个小长方形的面积不就是 a 的 n 次幂乘以 b 的 n 次幂嘛。

为了更好地掌握幂的运算,咱们得多多练习。

比如说,计算 2 的 3次幂乘以 2 的 4 次幂。

因为是同底数幂相乘,底数 2 不变,指数 3 + 4 = 7 ,所以结果就是 2 的 7 次幂,也就是 128 。

再比如,计算 3 的 5 次幂除以 3 的 2 次幂。

同底数幂相除,底数 3不变,指数 5 2 = 3 ,所以结果就是 3 的 3 次幂,也就是 27 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲 幂的运算
专题一 同底数幂的乘法 一、 基本公式:
m n m n
a a a
+=
二、应用公式: 1、顺用公式: 问题1、计算:
(1)3
5aa a (2)3
5x
x -⋅ ⑶231m m b b +⋅
⑷m n p a a a ⋅⋅ (5)()()
7
6
33-⨯- (6)()()
57
a a a ---
变形练习:(1)234
aa a a (2)
()()48x x x ---
2、常用等式: ()()b a a b -=-- ()()
2
2
b a a b -=-
()()33
b a a b -=-- ()()
44
b a a b -=-
()
()
21
21
n n b a a b ++-=--
()
()
22n
n
b a a b -=-
问题2、(1)()()()
3
8
b a b a b a ---
(2)()()
()
21
221
222n n
n x y y x x y +----
(3)()()()
4
8
x y y x y x --- (4)()()()
37
x y y x y x ---
3、逆用公式:
问题3、已知64,65m
n == ,求6m n +的值。

变形练习:(1)已知7,6m
n a a == ,求m n a +的值。

(2)已知21
29,5m m a
a ++==,求33
m a
+的值。

4、利用指数相等解题: 问题4、已知21
11m a a +=,求m 的值;
变形练习:(1)已知31
232m -=,求m 的值;
(2)已知,146m n x x x --=,求n m 22-的值。

专题二 幂的乘方
一、基本公式:
()
mn n
m a a =(m ,n 都是整数)。

幂的乘方,底数不变,指数相乘。

二、应用公式:
1、顺用公式:(1)34)(10
= (2)3
4a ⎛

⎪⎝⎭
=
(3)
()
3
2m = (4)(
)
=
-3
12n x
2、逆用公式:
(1)已知2
3a = 求6
a 的值;
(2)已知3
2a
= 求12
a
的值;
专题三 积的乘方
一、基本公式:
()n n n b a ab =(n 是正整数)
积的乘方等于每一个因数分别乘方的积。

二、应用公式:
1、顺用公式:(1)()=
2
3x (2) ()=
-3
2b
(3)4
21⎪⎭

⎝⎛-xy = (4)
()
2
3m
a =
2、逆用公式: (1) 5
52
5⨯= (2) 201120110.1258⨯=
(3)计算:()2011
20110.1258-⨯ (4)你能确定整数510256625⨯是几位数吗
3、已知4,25a b =-=,求20102011
a
b
的值。

专题四 综合练习
一、计算: 1、 (
)
2
342a b 2、 (
)3
1m x
+- 3、 ()
2009
20100.25(4)-⨯-
4、(
)
()5
3
34x
x -- 5、()()()33
2
2337325y y y y y -+
二、能力提升: 1、已知2,3m
n x x ==,求32m n x +的值。

2、已知n 是正整数,且()
2
9n x =,求()2
232133n n x x ⎛⎫
- ⎪⎝⎭
的值。

3、比较100
7534和的大小。

4、变形练习:比较555
444333345、、的大小。

5、计算:2
34567822222222------+
家庭作业
第一部分:
1、化简:()()
()
4
8
x y y x y x ---
2、若23,5,m
n m n a
a a +==求的值.
3、已知2,3x x m n ==,求()
22
x
m n
的值。

4、已知39243n
⨯=,求n 的值。

第二部分: 5、已知()411x x +-=,求整数x 。

6、已知2510a b ==,求11
a b
+的值。

第三部分:
7、若2a =3,2b =6,2c
=12,求证:2b =a +c .。

相关文档
最新文档