4-2 制动时车轮受力解析
汽车理论知识
汽车的驱动力与发动机的转矩、传动系 的各传动比及传动系的机械效率成正比,与车 轮半径成反比。驱动力Ft随发动机的转矩Te的 增大而增大,当发动机的转矩达到最大转矩时, 驱动力也达到最大驱动力。
2、附着力和附着系数
汽车驱动力的最大值受轮胎与路面的附着情况 影响。在容易打滑的滑溜路面上,如冰雪、泥泞路 面,即使增大驱动力,也会出现不能使车辆行驶的 现象,即驱动车轮在原地空转或滑转,原因是附着 力过小。
所谓附着力F,是指地面对轮胎的切向反作用 力的极限值。 为车轮与路面间的附着系数。根据 试验,在硬路面上附着力的大小与驱动轮法向作用 力Z成正比,即F= Z 。
由于地面给驱动轮提供的驱动力的最大值受 到附着力的限制,Ftmax≤F ,这也是汽车行驶 的必须满足的条件,即附着条件,否则驱动轮将 出现滑转,车辆将不能行驶。
汽车的制动性
汽车行驶时能在短距离内停车且维持 行驶方向稳定性和在下长坡时能维持一定 车速的能力,称为汽车的制动性。
1、制动性的评价指标
(1)制动性评价指标 1)制动效能,即制动距离与制动减速度; 2)制动效能的恒定性,即抗热衰退性能; 3)制动时汽车的方向稳定性,即制动时汽 车不发生跑偏、侧滑以及失去转向能力 的性能。
(2)制动距离:指汽车以一定的初速度紧急制动, 从驾驶员踩上制动踏板开始到完全停车所行驶的 距离,即在制动系协调时间和持续制动时间两个 时间段内汽车驶过的距离。
(3)制动效能的恒定性:一般以连续制动时制动 效能占冷制动效能(制动器工作温度在100℃以下) 的百分数作为评价指标。
2、汽车制动时方向的稳定性
3、汽车的制动效能及其恒定性
汽车的制动效能是指汽车迅速降低行驶速度 直 至停车的能力。评价制动效能的指标有制动减速度 和制动距离。 制动过程包括: 1)驾驶员反应时间 2)制动系协调时间(即制动器的作用时间) 3)持续制动时间 4)制动释放时间
《汽车理论》教案4-汽车制动性
3. 汽车的制动效能及其恒定性(60’)
(1)制动减速度(10’) 1)车辆制动时整车受力分析 2)最大制动减速度的推导
abmax s g , abmax p g
3)平均制动减速度 (2)制动过程分析(15’) 1)制动踏板力、汽车制动减速度与制动时间的关系曲线 2)阶段划分 驾驶员反应时间
(7)同步附着系数φ0 的选择(15’)
4
预习 思考题
《汽车理论 A》教案
1)轿车同步附着系数φ0 的选择 2)货车同步附着系数φ0 的选择 本章节的重点,介绍完轿车的φ0 选择后采用提问式教学让学生 自己分析货车φ0 的选择 (8)对前、后制动器制动力分配的要求(15’) ECE 制动法规 (9)制动力的调节(15’) 1)限压阀 2)比例阀 3)感载比例阀、感载射线阀 (10)制动防抱死系统(ABS)(40’) 1)ABS 的理论依据 2)ABS 的优缺点 3)ABS 的基本组成 4)ABS 的液压原理 5)ABS 的控制原理 ABS 的理论依据和优点是本章节的重点,应认真分析到位。结 合视频文件和实际案例进行教学 本章共 10 学时,5 次课,各次课的预习思考题: 第 1 次课预习思考题 汽车制动性从哪些方面进行评价? 什么是地面制动力、制动器制动力?它们和附着力的关系如何? 什么是滑动率? 什么是制动力系数?它与滑动率的关系如何? 什么是侧向力系数?它与滑动率的关系如何? 影响制动力系数的因素有哪些? 第 2 次课预习思考题 制动过程分成哪几个阶段?哪几个阶段与制动距离有关? 盘式制动器和鼓式制动器的制动性能比较? 什么制动跑偏?其产生原因有哪些? 前后轴的抱死次序有哪几种?各是何含义? 什么制动侧滑?哪种情况下易发生制动侧滑?为什么? 第 3 次课预习思考题 什么情况下会发生失去转向能力? 制动时地面对前、后车轮的法向反作用力的计算公式(4-6)与(4-7)的
汽车理论第四章汽车的制动性
一、地面对前、后车轮的反作用力
图中忽略了汽车的滚动阻力偶矩、空气阻 力以及旋转质量减速时产生的惯性力偶矩。 下面的分析中还忽略制动时车轮边滚边滑 的过程,附着系数只取一个定值φ0。
对后轮接地点取力矩得
du Fz1L Gb m hg dt
对前轮接地点取力矩得
du Fz 2 L Ga m hg dt
1:理想的制动器制动力曲线
2:具有固定比值的制动器制动力曲线
3:地面制动力线
4:同步附着系数
5:制动过程分析
6:制动效率 7:前后制动器制动力的分配原则β
制动过程中,可能出现如下三种情况:
1:前轮先抱死拖滑,然后后轮抱死
2:后轮先抱死拖滑,然后前轮抱死
3:前、后轮同时抱死拖滑
其中,1是稳定情况;2是不稳定情况;3可 避免侧滑,同时只有在最大制动强度时才会失去 转向能力,同时附着条件利用较好。 所以,前、后制动器制动力分配的比例将影 响汽车制动时的方向稳定性和附着条件利用程度, 是设计汽车制动系统必须妥善处理的问题。
2 b 2 e
式中:
ub——0.8u0的车速(km/h);
u0 ——起始制动车速(km/h) ; ue ——0.1u0的车速(km/h) ; sb ——u0到ub车辆经过的距离(m); se ——u0到ue车辆经过的距离(m)。
二、制动距离的分析 驾驶员反应时间
1
' 1 ' 2
制动时汽车跑 偏的情形
a)制动跑偏 时轮胎在地面上留 下的印迹 b)制动跑偏 引起后轴轻微侧滑 时轮胎留在地面上 的印迹 b)
a)
制动跑偏时的受力图
一、汽车的制动跑偏 制动时汽车跑偏的原因有两个: 1)汽车左、右车轮,特别是前轴左、右车轮 (转向轮)制动器的制动力不相等。 2)制动时悬架导向杆系与转向系拉杆在运动 学上的不协调(互相干涉)。 二、制动时后轴侧滑与前轴转向能力的丧失 制动时发生侧滑,特别是后轴侧滑,将引起 汽车剧烈的回转运动,严重时可使汽车调头。
第四章 汽车的制动性
§2 制动时车轮的受力
17
§2 制动时车轮的受力
4、侧向力系数 侧向力系数φℓ : 侧向力极限值与垂直 载荷之比。
侧向力包括: 侧向风 离心力 侧向力
18
§2 制动时车轮的受力
19
§2 制动时车轮的受力
※较低滑动率时(S=15%),可以获得较大的制动 力系数与较高的侧向力系数。
ABS系统
3)在τ3时间段内所驶 过距离S3
u2f ue2 2jmaxS3
S3
u
2 e
2 jm ax
(u 0
1 2
k
'' 2 2
)
2
2 jm ax
(u 0
1 2
(
jm
ax
)
'' 2 2
)
2
2 jm ax
u 02 2 jm ax
1 2
u 0
'' 2
1 8
j '' 2
m ax 2
31
第三节 汽车制动效能及其恒定性
43
第四节 制动时的方向稳定性
一、汽车制动跑偏 跑偏原因有两个:
1)汽车左、右车轮,特别是前轴左、右转 向轮制动器制动力不等。——制造或调整 误差 2) 制动时悬架导向杆系与转向杆系在运动 学上的不协调或干涉。——结构设计原因
44
第四节 制动时的方向稳定性
1)由于汽车左、右车轮,特别是前轴左、 右转向轮制动器制动力不等
τ——制动时间s S——制动距离m
27
第三节 汽车制动效能及其恒定性
2)在τ2''时间段内所驶
过距离S2'' (作匀变减
车轮制动时的受力学分析ppt课件
φp
0.8~0.9 0.5~0.7 0.8 0.6 0.68 0.55 0.2 0.1
φS
0.75 0.45~0.60 0.7 0.55 0.65 0.4~0.5 0.15 0.07
9
道路的类型、路况 汽车运动速度 轮胎结构、花纹、材料
b
柏油(干)
b
松砾石
光滑冰面
s
Adhisive Coefficient
10
ua
s
轮胎的磨损会影响其附着能力。 路面的宏观结构应有一定的不平度而有
自排水能力;路面的微观结构应是粗糙 且有一定的棱角,以穿透水膜,让路面 与胎面直接接触。 增大轮胎与地面的接触面积可提高附着 能力:低气压、宽断面和子午线轮胎附 着系数大。 滑水现象减小了轮胎与地面的附着能力, 影响制动、转向能力。 潮湿路面且有尘土、油污与冰雪、霜类。
痕,看不出花纹。 u wrr 0 w w0
4
不 同 滑 动 率 轮 胎 印 迹 变 化 规 律
5
随着制动强度的增加,车轮的滑动成分越来越大。它
通常用滑动率S表示。
S u w rr 0 w 100 %
p
uw u w rr 0 为纯滚动
S 0
s
w 0 , S 100 % 为纯滑动
现象分析
p
纯滚动uw rr0wቤተ መጻሕፍቲ ባይዱ
s 0
纯滑动w=0
l
s 100%
b
S
FS mg
s
s
边滚边滑0 s 100%15~20
100
s
uw
rr0w
uw
100%,b
Fb mg
车轮制动受力分析 - 车轮制动受力分析
第四章 汽车制动性第二节 制动时车轮受力分析制动时的汽车行驶方程式为)(i w f j F F F F F b ++-=(4-1)式中:b F 为汽车地面制动力。
由制动性的定义可知,滚动阻力0f ≈F ;制动时车速较低且迅速降低,即0w ≈F ;坡道阻力0i =F 。
所以,汽车行驶方程式可近似表达为jF F b =(4-2)一、地面制动力、制动器制动力和附着力假设滚动阻力偶矩、车轮惯性力和惯性力偶矩均可忽略图,则车轮在平直良好路面上制动时的受力情况如图4-1所示。
图4-1 制动时车轮受力条件制动器制动力μF 等于为了克服制动器摩擦力矩而在轮胎轮缘作用的力。
其大小为rT F /μμ=(4-3)式中:μT 是车轮制动器摩擦副的摩擦力矩。
制动器制动力μF 是由制动器结构参数所决定的。
它与制动器的型式、结构尺寸、摩擦副的而摩擦系数和车轮半径以及踏板力有关。
从力矩平衡可得地面制动力b F 为rT F /μb =(4-4)地面制动力b F 是使汽车减速的外力。
它不但与制动器制动力μF 有关,受地面附着力ϕF 的制约。
图4-2 地面制动力、车轮制动力及附着力的关系图4-2给出了地面制动力、车轮制动力及附着力三者之间的关系。
当踩下制动踏板时,首先消除制动系间隙后,制动器制动力开始增加。
开始时踏板力较小,制动器制动力μF 也较小,地面制动力b F 足以克服制动器制动力μF ,而使得车轮滚动。
此时,μb F F =,且随踏ϕFμxb =板力增加成线性增加。
但是地面制动力是地面摩擦阻力的约束反力,其值不能大于地面附着力ϕF 或最大地面制动力bmax F ,即⎩⎨⎧==≤zz F F F F F ϕϕϕmax b b (4-5)当制动踏板力上升到一定值时,地面制动力b F 达到最大地面制动力ϕF F =max b ,车轮开始抱死不转而出现拖滑现象。
随着制动踏板力以及制动管路压力的继续升高,制动器制动力μF 继续增加,直至踏板最大行程,但是地面制动力b F 不再增加。
汽车制动受力
汽车制动时受力分析1.摩擦阻力的因素汽车在制动过程中,有两个地方会产生摩擦阻力。
一个是车轮制动器产生的摩擦阻力,使车轮转速减慢;另一个是车轮与地面产生摩擦阻力使汽车减速。
前者称制动器制动力,后者称地面制动力,也就是我们车在检测站检测的制动力。
如果制动器产生的摩擦力偶大于轮胎与路面之间的最大摩擦力偶时,车轮即完全停止滚动,也就是车轮被抱死。
在车轮未抱死前,地面制动力始终等于制动器制动力,此时制动器制摩擦力消耗一部份动能(发热),地面制动力消耗一部份动能。
在车轮抱死后,地面制动力等于地面附着力,它不再随制动器制动力的增加而增加,制动器制不再消耗动能(W=FS,∵S=0,∴W=0),只有轮胎与地面摩擦消耗动能。
由于车轮抱死后,纵向附着系数(摩擦力)下降,制动器制也不消耗动能,侧向附着系数趋于0,所以刹车距离也就变长,易产生则滑。
2.前后轴载荷重心变动的因素车辆在静止时,其前后轴的垂直载荷之比仅决定于汽车重心的纵向位置。
但在车辆行驶中制动时,由于作用在重心上的向前的惯性力使汽车俯冲前倾,因而前后轴的垂直载荷比值变大,即前轴载荷加大,而后轴载荷减少;而且制动力越强,惯性力越大,前后轴垂直载荷的比值也越大。
即刹车时前轴荷随加速度变大而增大,后轴荷减少。
年后生产的国产及进口车轿车,前后轴制动力分配按欧共体的ECE R13标准制定,即按“前后轴附着糸数利用曲线”分配比例,不允许有车轮抱死现象,前轴所占总制动力通常为80%,上限为85%。
各种轿车都是按自身的悬挂糸统的动态重心分配特性去设计前后轴制动力分配,原车的前后轴制动力分配是经过各种实验优化定案,提供良好的制动平衡。
根椐北京理工大学做的路试,国产及进口轿车前轴刹车力在800kg-1100kg 以上,后轴最低173kg,最高290kg(满载车重1684kg),路试刹车减速度、距离都符合要求。
实试正实,后轮刹车即使一轮失效,30km/h刹车距离变化很小,不跑偏。
汽车概论第六章汽车性能
影响平顺性的因素
汽车的悬挂质量由车身、车架及其上的总成所构成。悬架 结构、轮胎、悬挂质量和非悬挂质量是影响汽车平顺性的 重要因素。
1. 悬架结构
悬架结构主要指弹性元件、导向装置与减振装置,其中弹 性元件与悬架系统的阻尼对平顺性影响较大。 (1) 弹性元件 (2)阻尼系统的阻尼
2. 轮胎
轮胎由于本身的弹性,在很大程度上吸收了因路面不平所 产生的振动,因此它和悬架系统共同保证了汽车的平顺性
2. 汽车的行驶阻力
(2)空气阻力 汽车直线行驶时所受空气的作用力,在行驶方向上的分力,称为空气阻力
。空气阻力分为压力阻力和摩擦阻力两部分。 (3)坡度阻力 如下图所示,当汽车上坡行驶时,其重力沿坡道斜面的分力表现为对汽
车行驶的一种阻力,称坡度阻力。
汽车的驱动力和行驶阻力
2. 汽车的行驶阻力
(4)加速阻力
车辆坐标系与转向盘阶跃输入下的时域响应
汽车作等速圆周行驶,即汽车转向盘角阶跃输入下进入稳 态响应,其特性成为汽车转向稳态特性。分为不足转向、 中性转向和过度转向三种。这三种不同转向特性的汽车具 有如下图所示行驶特点:
人-车闭路系统
驾驶员-汽车系统是一个闭环控制系统。在汽车行驶过 程中,驾驶员根据需要,操纵转向盘使汽车做转向运动。 路面的凹凸不平、侧风、偏载等影响汽车的行驶。驾驶员 根据道路、交通等情况,通过眼、手及身体感知的汽车运 动状况(输出参数),经过头脑的分析、判断(反馈), 修正其对转向盘的操纵。如此不断地反复循环,操纵汽车 行驶前进,如下图所示。
2. 制动侧滑 侧滑是指汽车制动时,某一轴的车轮或两轴的车轮发生横 向滑动的现象。
3. 前轮失去转向能力 前轮失去转向能力是指弯道制动时,汽车不再按照原来的 行驶方向而沿弯道切线方向驶出的现象。
汽车制动性能(最新)
(4)侧向附着系数φ , 在Fy 侧向力的作用下, φ =Fy /Fz 侧向力Fy与地面垂直反 力之比。
侧 侧
φb—S关系:
(1)OB段:φb直线上升, S从0—15—20%,出现 峰值φp。 (2)S再增大,φ纵下降, φ侧也下降。
(3)S再增大,S=100% 时,φ=φS 纵向φ较小,制动距离长。 侧向φ=0,能承受的侧向 力Fy=0。 所以:极易侧滑。
4——2制动时车轮受力 一、地面制动力( T—— 车轴的推 力;W——车轮垂直载荷) Tu FXb ( N ) r 因为:FXb受到轮胎与地面附着力, Fφ=Fzφ的限制。 T 所以: FXb u FZ
r
制动力图:
W Ua
Tp FXb
Tu
r
Fz
当 则FXb不再上升, F F 即:
最理想的制动系统 应能防止车轮抱死,工 作在S=15—20%以内。 ABS即:Antilock Braking System
ABS系统 (S=15—20%) (1)利用φp获得较大的 F 和最小的制动距离。 ( 2 )同时φ侧较大,也可 承受较大的侧向力Fy,不 致侧滑。
Xbmax
滑水现象:减小了胎面 与地面的φ, Ua=100km/n时, 水膜=10mm时。 φs≈0,滑水现象,雨天 路滑,易翻车。
G (b hg ) L
G (a hg ) L
Fu1 FZ 1 FZ 1 b hg 所以: Fu 2 FZ 2 FZ 2 a hg
Fu1 Fu 2 G Fu1 b hg Fu 2 a hg
(1)
第四章汽车的 制动性能
4-1 制动性能评价指标 制动性能:指汽车 行驶时,能在短距离内 停车,并维持行驶方向 稳定,下长坡时能维持 一定车速的能力。
汽车理论—制动性
§4-1 制动性的评价指标
制动协调时间: 是指在急踩制动时, 制动协调时间 : 是指在急踩制动时 , 从踏板开始动 作至车辆减速度(或制动力)达到表 中规定的车辆充分 作至车辆减速度(或制动力)达到表2中规定的车辆充分 发出的平均减速度( 所规定的制动力) 发出的平均减速度(或表4所规定的制动力)75%所需的 所规定的制动力 所需的 时间。 时间。 制动协调时间: 制动协调时间: ①液压制动的汽车不应大于 0.35 s ②气压制动的汽车不应大于 0.60 s 汽车列车、 ③ 汽车列车 、 铰接客车和铰接式无轨电车不应大于 0.80 s 。
试验通 道宽度 m
20 50 30 50 30 ≥5.9 ≥5.2 ≥5.4 ≥5.0
≥3.8 ≥6.2 ≥5.6 ≥5.8 ≥5.4
2.5 2.5 2.5 2.5 3.0
§4-1 制动性的评价指标
3. 进行制动性能检验时的制动踏板力或制动气压应
符合以下要求: 符合以下要求:
①满载制动时 气压制动系:气压表的指示气压≤额定工作气压 额定工作气压; 气压制动系:气压表的指示气压 额定工作气压; 液压制动系(踏板力) 乘用车≤500N; 液压制动系(踏板力): 乘用车 ; 其它机动车≤700N 其它机动车 ②空载制动时 气压制动系:气压表的指示气压≤600kPa; 气压制动系:气压表的指示气压 ; 液压制动系(踏板力) 乘用车≤400N; 液压制动系(踏板力):乘用车 ; 其它机动车≤450N 其它机动车 三轮汽车、 ③ 三轮汽车 、 正三轮摩托车和拖拉机运输机组检验 踏板力不大于600N。 时,踏板力不大于 。
交通安全 制动距离 制动稳定性
§4-1 制动性的评价指标
制动效能 制动性的 评价指标
制动减速度 制动距离
汽车制动性能的评价指标
汽车制动性能的评价指标WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】汽车制动性能的评价指标制动效能制动效能是指汽车迅速降低行驶速度直至停车的能力,是制动性能最基本的评价指标。
他是由制动力、制动减速度、制动距离和制动时间来评价的。
汽车在制动过程中人为地使汽车受到一个与其行驶方向相反的外力,汽车在受一外力作用下迅速地降低车速至停车,这个外力称为汽车的制动力。
图4-1为汽车在良好的路面上制动图4-1 制动时车轮受力时的车轮受力图,图中为车轮制动器的摩擦力矩,为汽车旋转质量的惯性力矩,车轮的滚动阻力矩,F为车轴对车轮的推力,G为车轮的垂直载荷,是地面对车轮的法向反作用力。
在制动工程中滚动阻力矩,惯性力矩相对较小时可忽略不计。
地面制动力可写为:式中:r――车轮半径。
地面制动力是汽车制动时地面作用于车轮外力,值取决于车轮的半径与制动器的摩擦力矩,但其极限值受到轮胎与地面间附着力的限制。
在轮胎周缘克服车轮制动器摩擦力矩所需的力称为制动器制动力即式中:――车轮制动器(制动蹄与制动鼓相对滑转时)的摩擦力矩。
制动器制动力取决于制动器结构、型式与尺寸大小,制动器摩擦副系数和车轮半径。
一般情况下其数值与制动踏板成正比,即与制动系的液压或气压大小成线性关系。
对于机构、尺寸一定的制动器而言,制动器动力主要取决于制动踏板与摩擦副的表面状况,如接触面积大小,表面有无油污等。
图4-2是在不考虑附着系数变化的制动过程,地面制动力及附着力随制动系的压力(液压或气压)的变化关系。
车辆制动时,车轮有滚动或抱死滑移两种运动状态。
当制动踏板力 ( )较小时,踏板力和制动摩擦力矩不大,地面与轮胎摩擦力即地面制动力足以克服制动器摩擦力矩使车轮滚动。
车轮滚动时的地面制动力等于制动器制动力()时,且随踏板力图4-2 地面制动力、制动器制动力及附着力之间的关系的增长成正比增长。
但当制动踏板力时地面制动力等于附着力时,车轮即抱死不转而出现拖滑现象,显然,地面制动力受轮胎与路面附着条件的限制,其最大值不可超过附着力,即当车轮抱死而拖滑后,随着制动踏板力继续增大(),制动器制动力由于制动器摩擦力矩的增长而直线上升,当地面制动力达到极限值后不再增长。
任务四 检测汽车制动性能
制动力小于该 轴轴荷60%时
≤24%
≤8%
≤30%
≤10%
表4-2 台式检验制动力平衡要求
引导问题4:国标中对汽车制动效能的检测标准是什么?
(3)制动协调时间 汽车的制动协调时间,对液压制动的汽车应小于等于0.35s,对气压制动的汽车应小
于等于0.60s;汽车列车和铰接客车、铰接式无轨电车的制动协调时间应小于等于0.80s。 (4)车轮阻滞力 进行制动力检验时,汽车、汽车列车各车轮的阻滞力均应小于等于车轮负荷的10%
2.制动踏板行程故障分析 在规定的制动踏板行程内,如果制动踏板自由行程过大,则工作行程就偏小,在制动时, 不能使制动蹄完全张开,摩擦片与制动盘(鼓)没有完全接触,造成制动效能不良。
引导问题1:哪些原因会导致汽车制动效能不良?
3.液压传动装置故障分析 液压传动装置主要包括制动主缸、制动轮缸和真空助力器。制动主缸介于制动踏板 与管路之间,用于将制动踏板传来的机械力转换为液压力,制动轮缸固定在制动底板上, 用于将制动主缸传来的液压力转换为使制动蹄张开的机械力。如果制动主缸或制动轮缸中 制动液不足、活塞磨损、皮碗损坏,都会使液压力降低,不能使制动蹄完全张开,从而导 致制动效能不良。 4.制动器故障分析 摩擦片磨损过度、摩擦片与制动鼓之间的间隙不当,或者制动鼓散热不良,在高温 下热衰退而使摩擦系数下降,都会导致制动效能不良。
引导问题5:用什么设备检测汽车制动性能?它是怎么工作的?
汽车制动性能检测有台试法和路试法两种。路试法须在道路试验中进行,采用五轮 仪和制动减速度仪检测汽车制动性能。因为中等职业学校教学因素等原因。在这里我们不 学习路试法检测汽车制动性能。
1.台试法概述 台试法使用制动试验台进行检测,与路试法相比,台试法具有迅速、准确、经济、 安全,不受自然条件的限制、检测可重复性好、能定量指示出各车轮的制动力等优点。 台式法根据测试原理的不同,可分为反力式和惯性式两类;根据检验台支撑车轮形式不同 可分为滚筒式和平板式两类;根据检测参数不同可分为测制动力式、测制动距离式、测制 动减速度式和综合式四种;根据检验台的测量、指示装置、传递信号的不同可分为机械式 、液力式和电气式三类。 目前国内汽车综合性能检测站所用制动检验设备多为反力式滚筒制动检验台和平板式 制动检验台。
车辆行驶系的组成及受力分析
3.纯弯曲梁的变形及截面上应力
取一矩形截面梁,在其侧面画出若干互相平行的横 向线和纵向线,然后在梁的对称面内施加一对等值、 反向的力偶m,使梁发生纯弯曲。这时可看到如下变 形现象:
(1)各横向线仍保持为直线,但相对转过了一定角度; (2)各纵向线均变成圆弧线,但仍垂直于横向线; (3)内凹一侧纵向线缩短,外凸一侧纵向线伸长。
汽车机械基础技术应用
(二)梁的受力与变形
1.平面弯曲概念
弯曲变形:是指杆的 轴线由直线变成曲 线。
梁的受力特点:是在 轴线平面内受到力 偶矩或垂直于轴线 方向的外力的作用。
汽车机械基础技术应用
2.平面弯曲
可以用梁轴线的变形表示梁的弯曲变形。
平面弯曲——当外力都作用在梁的纵向对称面内 时,梁的轴线在纵向对称面内弯成一条平面曲线 的变形。
2.车轮传动装置的功用
基本功用:接受从差速器传来的转矩并将其传给车轮。
非断开式驱动桥: 半轴 断开式驱动桥和转向驱动桥: 万向传动装置
汽车机械基础技术应用
3.结构形式分析
根据其车轮端的支承方式分为:半浮式、 3/4浮式和全浮式三种形式。
半浮式半轴:除面传对递车转轮矩 的外反,力其所外引端起还的承全受部由力路和 力矩。结构简单,所受载荷较大, 适用于轿车和轻型货车及轻型客车。
Fb≤ Fψ ≤ ψFz 或 Fbmax= ψFz
当制动踏板力上升到一定值时,地 面制动力Fb达到最大地面制动力Fbmax= ψFz,车轮开始抱死不转而出现拖滑现 象。随着制动踏板力以及制动管路压 力的继续升高,制动器制动力Fų继续 增加,直至踏板最大行程,但是地面 制动力Fb不再增加。
汽车机械基础技术应用
平面假设:梁变形后,其横截面仍为平面,并垂直于 梁的轴线,只是绕截面上的某轴转动了一个角度
大学_汽车理论第四版(余志生著)课后答案下载
汽车理论第四版(余志生著)课后答案下载汽车理论第四版(余志生著)课后答案下载本书为全国高等学校机电类专业教学指导委员会汽车与拖拉机专业小组制订的规划教材,并于“九五”期间被教育部立项为“普通高等教育九五部级重点教材”和“面向21世纪课程教材”,于“十五”期间被教育部立项为“普通高等教育十五国家级规划教材”。
本书根据作用于汽车上的外力特性,分析了与汽车动力学有关的汽车各主要使用性能:动力性、燃油经济性、制动性、操纵稳定性、行驶平顺性及通过性。
各章分别介绍了各使用性能的评价指标与评价方法,建立了有关的动力学方程,分析了汽车及其部件的结构形式与结构参数对各使用性能的影响,阐述了进行性能预测的基本计算方法。
各章还对性能试验方法作了简要介绍。
另外,还介绍了近年来高效节能汽车技术方面的新发展。
本书为学生提供了进行汽车设计、试验及使用所必需的专业基础知识。
汽车理论第四版(余志生著):推荐理由点击此处下载汽车理论第四版(余志生著)课后答案汽车理论第四版(余志生著):书籍目录第4版前言第3版前言第2版前言第1版前言常用符号表第一章汽车的动力性第一节汽车的动力性指标。
第二节汽车的驱动力与行驶阻力一、汽车的驱动力二、汽车的行驶阻力三、汽车行驶方程式第三节汽车的驱动力,行驶阻力平衡图与动力特性图一、驱动力一行驶阻力平衡图二、动力特性图第四节汽车行驶的附着条件与汽车的附着率一、汽车行驶的附着条件二、汽车的附着力与地面法向反作用力三、作用在驱动轮上的地面切向反作用力四、附着率第五节汽车的功率平衡第六节装有液力变矩器汽车的动力性参考文献第二章汽车的燃油经济性第一节汽车燃油经济性的评价指标第二节汽车燃油经济性的计算第三节影响汽车燃油经济性的因素一、使用方面二、汽车结构方面第四节装有液力变矩器汽车的燃油经济性计算第五节电动汽车的研究一、混合动力电动汽车的特点二、混合动力电动汽车的结构三、混合动力电动汽车的节油原理四、能量管理策略五、实例分析一一丰田混合动力电动汽车Prius六、电动汽车的动力性计算第六节汽车动力性、燃油经济性试验一、路上试验二、室内试验参考文献第三章汽车动力装置参数的选定第一节发动机功率的选择第二节最小传动比的选择第三节最大传动比的选择第四节传动系挡数与各挡传动比的选择第五节利用燃油经济性-加速时间曲线确定动力装置参数一、主减速器传动比的确定二、变速器与主减速器传动比的确定三、发动机、变速器与主减速器传动比的确定参考文献第四章汽车的制动性第一节制动性的评价指标第二节制动时车轮的受力一、地面制动力二、制动器制动力三、地面制动力、制动器制动力与附着力之间的关系四、硬路面上的附着系数第三节汽车的制动效能及其恒定性一、制动距离与制动减速度二、制动距离的分析三、制动效能的恒定性第四节制动时汽车的方向稳定性一、汽车的制动跑偏二、制动时后轴侧滑与前轴转向能力的丧失第五节前、后制动器制动力的比例关系一、地面对前、后车轮的法向反作用力二、理想的前、后制动器制动力分配曲线三、具有固定比值的前、后制动器制动力与同步附着系数四、前、后制动器制动力具有固定比值的汽车在各种路面上制动过程的分析五、利用附着系数与制动效率六、对前、后制动器制动力分配的要求七、辅助制动器和发动机制动对制动力分配和制动效能的影响八、制动防抱装置第六节汽车制动性的试验参考文献第五章汽车的操纵稳定性第一节概述一、汽车操纵稳定性包含的内容二、车辆坐标系与转向盘角阶跃输入下的时域响应三、人一汽车闭路系统四、汽车试验的两种评价方法第二节轮胎的侧偏特性一、轮胎的坐标系二、轮胎的侧偏现象和侧偏力-侧偏角曲线三、轮胎的结构、工作条件对侧偏特性的影响四、回正力矩一一绕OZ轴的力矩五、有外倾角肘轮胎的滚动第三节线性二自由度汽车模型对前轮角输入的响应一、线性二自由度汽车模型的运动微分方程二、前轮角阶跃输入下进入的汽车稳态响应一一等速圆周行驶三、前轮角阶跃输入下的瞬态响应四、横摆角速度频率响应特性第四节汽车操纵稳定性与悬架的关系一、汽车的侧倾二、侧倾时垂直载荷在左、右侧车轮上的'重新分配及其对稳态响应的影响三、侧倾外倾一一侧倾时车轮外倾角的变化四、侧倾转向五、变形转向一一悬架导向装置变形引起的车轮转向角六、变形外倾一一悬架导向装置变形引起的外倾角的变化第五节汽车操纵稳定性与转向系的关系一、转向系的功能与转向盘力特性二、不同工况下对操纵稳定性的要求三、评价高速公路行驶操纵稳定性的试验一一转向盘中间位置操纵稳定性试验四、转向系与汽车横摆角速度稳态响应的关系第六节汽车操纵稳定性与传动系的关系一、地面切向反作用力与“不足-过多转向特性”的关系二、地面切向反作用力控制转向特性的基本概念简介第七节提高操纵稳定性的电子控制系统一、极限工况下前轴侧滑与后轴侧滑的特点二、横摆力偶矩及制动力的控制效果三、各个车轮制动力控制的效果四、四个车轮主动制动的控制效果五、VSC系统的构成六、装有VSC系统汽车的试验结果第八节汽车的侧翻一、刚性汽车的准静态侧翻二、带悬架汽车的准静态侧翻三、汽车的瞬态侧翻第九节汽车操纵稳定性的路上试验一、低速行驶转向轻便性试验二、稳态转向特性试验三、瞬态横摆响应试验四、汽车回正能力试验五、转向盘角脉冲试验六、转向盘中间位置操纵稳定性试验参考文献第六章汽车的平顺性第一节人体对振动的反应和平顺性的评价一、人体对振动的反应二、平顺性的评价方法第二节路面不平度的统计特性一、路面不平度的功率谱密度二、空间频率功率谱密度C。
4.2.2制动时车轮受力分析
4.2.2 制动时车轮受力分析制动时的汽车行驶方程式为)(i w f j b F F F F F ++-= (4-1)式中:b F 为汽车地面制动力。
由制动性的定义可知,滚动阻力0≈f F ;制动时车速较低且迅速降低,即0≈w F ;坡道阻力0=i F 。
所以,汽车行驶方程式可近似表达为jb F F = (4-2)4.2.2.1 地面制动力、制动器制动力和附着力假设滚动阻力偶矩、车轮惯性力和惯性力偶矩均可忽略图,则车轮在平直良好路面上制动时的受力情况如图4-1所示。
制动器制动力μF 等于为了克服制动器摩擦力矩而在轮胎轮缘作用的力。
其大小为rT F /μμ= (4-3)式中:μT 是车轮制动器摩擦副的摩擦力矩。
制动器制动力μF 是由制动器结构参数所决定的。
它与制动器的型式、结构尺寸、摩擦副的而摩擦系数和车轮半径以及踏板力有关。
从力矩平衡可得地面制动力bF 为rT F b /μ= (4-4)地面制动力b F 是使汽车减速的外力。
它不但与制动器制动力μF 有关,受地面附着力ϕF 的制约。
图4-1 制动时车轮受力条件图4-2 地面制动力、车轮制动力及附着力的关系图4-2给出了地面制动力、车轮制动力及附着力三者之间的关系。
当踩下制动踏板时,首先消除制动系间隙后,制动器制动力开始增加。
开始时踏板力较小,制动器制动力μF 也较小,地面制动力b F 足以克服制动器制动力μF ,而使得车轮滚动。
此时,μF F b =,且随踏板力增加成线性增加。
但是地面制动力是地面摩擦阻力的约束反力,其值不能大于地面附着力ϕF 或最大地面制动力max b F ,即⎩⎨⎧==≤z b zb F F F F F ϕϕϕmax (4-5)当制动踏板力上升到一定值时,地面制动力b F 达到最大地面制动力ϕF F b =max ,车轮开始抱死不转而出现拖滑现象。
随着制动踏板力以及制动管路压力的继续升高,制动器制动力μF 继续增加,直至踏板最大行程,但是地面制动力bF 不再增加。
汽车的制动性基础知识
三、制动效能的恒定性
高速制动时,制动器温度也会很快上升。制动器温度 上升后,摩擦力矩将显著下降,这种现象称为制动器的热 衰退。热衰退是目前制动器不可避免的现象,只是程度上 有所差别。制动效能的恒定性主要指的是抗热衰退性能。
抗热衰退性能与制动器摩擦副材料及制动器结构有关 。
一般制动器是以铸铁作制动鼓、盘,石棉摩擦材料作 摩擦片组成的。正常制动时,摩擦副的温度在200℃左右 ,摩擦副的摩擦系数约0.3~0.4。但在更高的温度时,摩擦 系数会有很大降低,而出现所谓热衰退现象。
s2
s
' 2
s
'' 2
u
0
'' 2
1 6
j ''2 max 2
s
1 3.6
' 2
'' 2
2
u a 0
u
2 a0
25.92 jmax
决定汽车制动距离的主要因素是:制动器起作用的
时间、最大制动减速度即附着力(或最大制动器制动力) 、制动的起始车速。附着力(或制动器制动力)愈大、起 始车速愈低,制动距离愈短,这是显而易见的。
一般可用作图法直接求得I曲线
(4-9)
理想的前、后制动器制动力分布曲线
对于某一 值,均可找到两条直线,这两条直线的交 点同便值是 的满两足直式线(交4-9点)A中、两B式、的C、Fμ…1值连和接F起μ2值来。,把便对得应到于了不I
曲线。曲线上任一点代表在该附着系数路面上前、后制动 器制动力应有的数值。
2、后轮无制动力、前轮有足够的制动力,前轮抱死。 汽车将失去转向能力。
3 、前后轮均抱死,但抱死的循序不同,时间间隔不 同。
图 4-22 前轮抱死或后轮抱死时汽车纵轴线转过的 角度(航向角)
DEC_02_车轮的力学特性_01车轮的纵向力学特性
§2.1 车轮的纵向力学特性 ua
n
加载变形区 n' 卸载变形区
图2-3 9.00-20轮胎的镜像变形曲线
思
由轮胎的迟滞损失图看,在轮胎径向变形相同的情况下,
考
地面作用在加载变形区与卸载变形区的法向反力是否相等?
§2.1 车轮的纵向力学特性 4.车轮在水平硬路面上的滚动阻力
ua
n
W
Fp1
FZ
FZd
§2.1 车轮的纵向力学特性
4.车轮在水平硬路面上的滚动阻力
轮胎变形
硬路面上
产生滚动阻力的主要原因 软路面上
思考
轮胎变形和路面变形
轮胎变形为什么会产生滚动阻力?
轮胎的迟滞损失:轮胎在加载变形时所消耗的能量在卸载恢复时不能完全收 回,一部分能量消耗在轮胎内部摩擦损失上,产生热量,这种损失称为轮胎的 迟滞损失。
Fp1
Tf r
FZ
a r
令 f a
r
f—滚动阻力系数
Fp1 Wf
Ff Wf
f Fp1 W
Ff
Tf r
ua
n
W
FZ
Fp1
r
a
FX 1
n'
ua
n
W
Fp1
FZ
Tf
FX 1
n'
§2.1 车轮的纵向力学特性
5.滑转率、滑移率和附着力
滑转率
➢当车轮上作用了驱动转矩后,在轮胎 与路面接触印迹上会产生驱动力,此时 ,轮胎胎面在接地印迹前端受到压缩, 从而使轮胎产生纵向滑移。在刚开始施 加驱动力时,轮胎开始转动却并不向前 移动,此时,由车轮角速度决定的速度 rdωw大于汽车实际行驶速度ua,车轮出 现滑转现象。常用驱动轮的滑转率Sr来 表示滑转程度。
车轮螺栓受力分析
车轮螺栓、螺母受力分析汽车行驶时,汽车车轮承受汽车的重力、行驶中的滚动阻力,以及转弯时或在倾斜路面上产生的侧向力,汽车制动时还受到路面的制动力,随着车轮转动,路面对车轮产生的冲击力。
相应地车轮螺栓、螺母也承受这些力,这些力构成车轮螺栓、螺母的交变循环应力。
一、车轮螺栓、螺母受力分析简图1、车轮螺栓受力分析图下图为汽车车轮螺栓的受力情况。
图中:G —后轴负荷(重力)通过轮毂作用于车轮螺栓上的力;N —地面反力通过轮辋作用于车轮螺栓上的力;FM1—杯形螺母拧紧时产生的对车轮螺栓的拉力(预紧力);FX—转向或侧倾时产生的侧向横力;F M —紧固螺母对FM1的反作用力;F M2—紧固螺母对FX的反作用力;FW—汽车牵引力作用于车轮螺栓上的力;FS—汽车行驶阻力;FZ—汽车制动时产生的制动力;F G —轮毂对FZ的作用反力。
其中,G=N,FX = FM2,FM1= FM,FW= FS,FZ= FG2、车轮螺母受力分析简图下图为汽车车轮杯形螺母的受力情况。
车轮球面螺母受力情况较为简单,略。
图中:G —后轴负荷(重力)通过轮轮螺栓作用于车轮螺母上的力;N —地面反力通过轮辋作用于车轮螺母上的力;FM1—轮辋对车轮螺母的推力(预紧力);FX—转向或侧倾时产生的侧向力;F M —紧固螺母对FM1的反作用力;F M2—车轮螺栓对FX的反作用力;FW—汽车牵引力作用于车轮螺母上的力;FS—汽车行驶阻力;FZ—汽车制动时产生的制动力;F G —通过轮毂传到螺母对FZ的作用反力。
其中,G=N,FX = FM2,FM1= FM,FW= FS,FZ= FG二、车轮螺栓、螺母受力情况分析(一)平行于车轮平面受力情况由于车轮螺母拧紧时,产生的预紧力作用在内、外轮辋及轮毂上,从而在轮辋与轮毂贴合面上产生巨大的摩擦力。
而车轮受到的各种平行于车轮平面的力,如重力、阻力、路面冲击力以及制动力等,不全部是由车轮螺栓、螺母承受,它还要克服轮辋与轮毂之间摩擦力。
(完整版)汽车理论知识点
t f w i jF F F F F =+++tq g 0T2D a d cos sin 21.15d T i i C A uGf u G mrt=+++ηααδtq g 0T2D a d 21.15d T i i C A uGf u Gi mrt=+++ηδ第一章 汽车的动力性 1.1汽车的动力性指标1)汽车的动力性指:汽车在良好路面上直线行驶时,由汽车受到的纵向外力决定的、所能达到的平均行驶速度。
2)汽车动力性的三个指标:最高车速、加速时间、最大爬坡度。
3)常用原地起步加速时间与超车加速时间来表明汽车的加速能力。
4)汽车的上坡能力是用满载时汽车在良好路面上的最大爬坡度imax 表示的。
货车的imax=30%≈16.7°,越野车的imax=60%≈31°。
1.2汽车的驱动力与行驶阻力 1)汽车的行驶方程式2)驱动力F t :发动机产生的转矩经传动系传到驱动轮,产生驱动力矩T t ,驱动轮在T t 的作用下给地面作用一圆周力F 0,地面对驱动轮的反作用力F t 即为驱动力。
3)传动系功率P T 损失分为机械损失和液力损失。
4)自由半径r :车轮处于无载时的半径。
静力半径r s :汽车静止时,车轮中心至轮胎与道路接触面间的距离。
滚动半径r r :车轮几何中心到速度瞬心的距离。
GiG G F =≈=ααtan sin i ψ()F Gf Gi G f i =+=+ψf i F F F =+ααsin cos G Gf +=ji w f F F F F F+++=∑ψF G ψ=5)汽车行驶阻力:6)滚动阻力Ff :在硬路面上,由轮胎变形产生;在软路面上,由轮胎变形和路面变形产生。
7)轮胎的迟滞损失指:轮胎在加载变形时所消耗的能量在卸载恢复时不能完全收回,一部分能量消耗在轮胎内部摩擦损失上,产生热量,这种损失称为轮胎的迟滞损失。
8)滚动阻力系数f 指:车轮在一定条件下滚动时所需的推力与车轮负荷之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-2 制动时车轮的受力
本节主要介绍地面制动力、制动器制动力及其与 附着力的关系;介绍滑动率的概念;分析制动力 系数、侧向力系数与滑动率的关系。从力学的角 度,回答汽车在制动时,哪些因素导致减速直至 停车;哪些因素起到了决定性作用,为设计和使 用汽车提供理论指导。
车轮在制动时的受力图。 影响汽车地面制动力的主要因素。
uw—车轮中心的速度 rr0 —无制动力时车轮滚动半径 ωw—车轮角速度
滑动率的数值说明了车轮运动中滑动成分所
占的比例。
邹旭东 zxd@
4-2 制动时车轮的受力
四、硬路面上的附着系数
uw rr0 w S 100% uw
纯滚动时:uw≈ωw· rr0 ,s=0 纯滑动时:ωw=0 ,s=100% 半滚半滑时:0<s<100%,s逐渐增大
l
邹旭东 zxd@
4-2 制动时车轮的受力
四、硬路面上的附着系数
l
在峰值滑动率右侧, 滑动率s增长到100% 几乎是瞬间完成的 (大约在0.1s)。在s 达到100%时,纵向附 着系数大约降低1/3— 1/4,而侧向力系数下 降50%以上。不但将 增加汽车的停车制动 距离,并使车辆丧失 了抗侧滑能力,故一 般称为不稳定区 。
邹旭东 zxd@
4-2 制动时车轮的受力
四、硬路面上的附着系数
研究表明: l越大,则轮胎保持转向、防止侧滑的能力 越强。制动时保持较低的滑动率,可获得较 大的制动力系数和较高的侧向力系数,使汽 车的制动性能和方向稳定性都很好。 这一点只有ABS能够做到。
邹旭东 zxd@
二、制动器制动力Fμ
定义:在轮胎周缘克服制动器的摩擦力矩
所需的力。
F
T r
制动器制动力大小仅仅取决于制动副之间的摩
擦力矩,由制动器结构参数决定,即取决于制 动器的形式、结构、尺寸,制动器摩擦副的摩 擦系数、车轮半径、踏板力等。
邹旭东 zxd@
4-2 制动时车轮的受力
邹旭东 zxd@
4-2 制动时车轮的受力
四、硬路面上的附着系数
令地面制动力与垂直载荷之比为制动力系数b
FXb b FZ
则有b—s曲线
峰值附着系数
滑动附着系数 s =15%~20%
邹旭东 zxd@
4-2 制动时车轮的受力
四、硬路面上的附着系数
四、硬路面上的附着系数
侧向力系数 实际行驶制动中,由于 各种原因产生的侧向力 使汽车发生侧偏或侧滑。 侧向力与垂直载荷之比 为侧向力系数l
l
FY l FZ
邹旭东 zxd@
4-2 制动时车轮的受力
四、硬路面上的附着系数
在峰值滑动率左侧, 近似线性增长。路面 附着力能跟随汽车制 动力矩的增加,提供 足够的地面制动力(矩 ),并且,此时的侧向 力系数也较大,具有 足够的抗侧滑能力, 故一般称为稳定区 。
二、制动器制动力Fμ
邹旭东 zxd@
4-2 制动时车轮的受力
三、FXb、Fμ和F之间的关系
简化分析,制动时车轮运动分两种情况:
滚动:踏板力小,FXb
≥Fμ,使车轮滚动,FXb
<F
抱死滑动:当Fμ大,
Fμ >FXbmax,车轮抱死,
发生滑动。
邹旭东 zxd@
4-2 制动时车轮的受力
三、FXb 、Fμ和F之间的关系
踏板力小,FXb ≥Fμ,使车轮滚动,FXb<F 踏板力进一步↑,Fμ↑,则FXb↑直至FXbmax= F 当Fμ↑, Fμ >FXbmax ,则车轮抱死,发生滑动
Fμ FXb F
因此,必须使汽车 有足够大的Fμ, 地面有足够大的 F,才能有足够 的FXb。
4-2 制动时车轮的受力
四、硬路面上的附着系数
从制动过程的三个阶段看,随着制动强度的增加,车轮几
何中心的运动速度因滚动而产生的部分越来越少,因滑动
而产生的部分越来越多。 滑动率:车轮接地处的滑动速度与车轮中心运动速度的 比值。
4-2 制动时车轮的受力
四、硬路面上的附着系数
1.滑动率
uw rr0 w S 100% uw
一、地面制动力FXb
Tμ—车轮制动器的摩擦力矩 FXb—地面制动力 由力矩平衡分析可得:
FXb r Tμ Tf T T f FXb r r
地面制动力取决于两方面: 1.制动器内摩擦副间的摩擦力 2.轮胎与地面间的摩擦力—附着力
邹旭东 zxd@
4-2 制动时车轮的受力
4-2 制动时车轮的受力
四、硬路面上的附着系数
当滑动率 s=100%时, l很小,即地面能 产生的侧向力FY很 小。
•如果汽车直线制动,在侧向 外力作用下,容易发生侧滑; •如果汽车转向制动,地面提 供的侧向力不能满足转向的 需要,将会失去转向能力。
邹旭东 zxd@
本节应掌握的内容
邹旭东 zxd@
4-2 制动时车轮的受力
定义
制动力定义:汽车受到与行驶方向相反的 外力,使汽车从一定速度制动到较小的车 速直至停车,此外力称为制动力。
制动力:
空气阻力(较小,可忽略) 地面制动力
邹旭东 zxd@
4-2 制动时车轮的受力
邹旭东 zxd@
FXbmax= F
Fμ= FXb
制动系油压
Pa
4-2 制动时车轮的受力
四、硬路面上的附着系数
实际制动时的车轮有 三种运动状态: (1)纯滚动——制动副 滑动 (2)半滚半滑——制动 副滑动较慢 (3)纯滑动——制动副 抱死
邹旭东 zxd@
OA段:近似线性,s变 化缓慢, b变化快 AB段:s变化加快, b 变化变慢 B点: b达到峰值附着 系数p ,S=15~20% BC段:s平缓增加,b 缓慢下降 C点: 此时b称滑动附 着系数s ,s=100%
邹旭东 zxd@
4-2 制动时车轮的受力