河北省衡水市2018届高考数学复习专题十不等式专项练习理
2018届高考数学二轮复习第六章 不等式专题(共4个专题)
专题1 不等关系与不等式专题[基础达标](15分钟40分)一、选择题(每小题5分,共30分)1a>b成立的充分不必要条件是()A.|a|>|b|B.1a >1bC.a2>b2D.lg a>lg bD【解析】当a=-1,b=0时,满足|a|>|b|,但不满足a>b,所以|a|>|b|不是a>b的充分条件,排除A;当a=2,b=3时,满足1a >1b,但不满足a>b,所以1a>1b不是a>b的充分条件,排除B;当a=-1,b=0时,满足a2>b2,但不满足a>b,所以a2>b2不是a>b的充分条件,排除C;因为lg a>lg b⇔a>b>0,所以lg a>lg b 是a>b成立的充分不必要条件.2.如果a<b<0,那么下列不等式成立的是()A.-1a <-1bB.ab<b2C.-ab<-a2D.|a|<|b|A【解析】利用作差法逐一判断.因为1b −1a=a-bab<0,所以-1a<-1b,A正确;因为ab-b2=b(a-b)>0,所以ab>b2,B错误;因为ab-a2=a(b-a)<0,所以-ab>-a2,C错误;a<b<0,所以|a|>|b|,D错误.3.若0<m<n,则下列结论正确的是()A.2m>2nB.12m<12nC.lo g1m>lo g1nD.log2m>log2nC【解析】函数y=2x和y=log2x均是增函数,又n>m>0,∴2m<2n,log2m<log2n;函数y=lo g12x,y=12x均是减函数,又n>m>0,∴lo g12m>lo g12n,12m>12n.4.命题“∀x∈[1,2],关于x的不等式x2-a≤0恒成立”为真命题的一个必要不充分条件是() A.a≥4 B.a≤4 C.a≥3 D.a≤3C【解析】不等式x2-a≤0,∀x∈[1,2]恒成立⇔a≥(x2)max=4,x∈[1,2],所以所求的一个必要不充分条件是a≥3.5.设a>b>1,c<0,给出下列四个结论:①a c>1;②a c<b c;③log b(a-c)>log a(b-c);④b b-c>a a-c.其中所有的正确结论的序号是() A.①②B.②③C.①②③D.②③④B【解析】因为a>1,所以指数函数y=a x递增,又c<0,所以a c<1,①错误,排除A和C;而B和D中都有②和③,所以只要判断④是否正确.又b b-c<b a-c<a a-c,所以④错误,排除D.6f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,以a为横坐标,b为纵坐标,则f(-2)的取值范围是() A.[5,8] B.[7,10] C.[5,10] D.[5,12]C【解析】由题意可得1≤a-b≤2,2≤a+b≤4,又f(-2)=4a-2b=3(a-b)+(a+b),由不等式的基本性质可得f(-2)的取值范围是[5,10].二、填空题(每小题5分,共10分)7.已知x∈R,m=(x+1) x2+x2+1,n= x+12(x2+x+1),则m,n的大小关系为.m>n【解析】因为m-n=(x+1) x2+x2+1− x+1 2(x2+x+1)=x3+12x2+x+x2+x2+1- x3+x2+x+12x2+12x+12=12>0,所以m>n.8.设实数x,y满足3≤xy2≤8,4≤x 2y ≤9,则x3y4的最大值是.27【解析】根据不等式的基本性质求解.x 2y 2∈[16,81],1xy2∈18,13,则x3 y =x2y2·1xy∈[2,27],x3y的最大值是27.[高考冲关](15分钟25分)1.(5分p:若a>b,则a2>b2,q:“x≤1”是“x2+2x-3≤0”的必要不充分条件,则下列命题是真命题的是() A.p∧q B.(p)∧qC.(p)∧(q)D.p∧(q)B【解析】取a=-1,b=-2,可知命题p是假命题.x2+2x-3≤0⇔-3≤x≤1,由x≤1不能得知-3≤x≤1;反过来,由-3≤x≤1可得x≤1,因此“x≤1”是“x2+2x-3≤0”的必要不充分条件,命题q是真命题,故(p)∧q是真命题.2.(5分)若a>b>0,则下列不等式中总成立的是()A.a+1b >b+1aB.a+1a>b+1bC.ba >b+1a+1D.2a+ba+2b>abA【解析】a+1b -b-1a=(a-b)+1b-1a=(a-b)+a-bab=(a-b)1+1ab,其中a-b>0,ab>0,故a+1b -b-1a>0,故A正确;令a=2,b=12,则a+1a=b+1b,故B错误;又b a −b+1a+1=b-aa(a+1)<0,所以ba<b+1a+1,故C错误;2a+ba+2b−ab=b2-a2b(a+2b)<0,故D错误.3.(5分y=a x(a>0,a≠1)与y=x b的图象如图,则下列不等式一定成立的是()A.b a>0B.a+b>0C.a b>1D.log a2>bD【解析】由函数图象可知a>1,b<0,所以a b<1,排除C;A,B项中的不等式不一定成立;log a2>0>b,故D项中的不等式一定成立.4.(5分)若a=1816,b=1618,则a,b的大小关系为.a<b【解析】因为ab =181616=9816216=8216,且0<82<1,所以8216<1,又a>0,b>0,则a<b.5.(5分)设a,b为正实数,现有下列命题:①若a2-b2=1,则a-b<1;②若1b −1a=1,则a-b<1;③若|a−|=1,则|a-b|<1;④若|a3-b3|=1,则|a-b|<1.其中的真命题有.(写出所有真命题的编号)①④【解析】由a2-b2=1得(a-b)(a+b)=1,又由已知得a+b>a-b,故a-b<1,所以①是真命题;当a=2,b=23时,有1b−1a=1,此时a-b>1,所以②是假命题;当a=9,b=4时,|a−|=1,|a-b|=5>1,所以③是假命题;对于④,假设|a-b|≥1,不妨设a>b,则a≥b+1,因为|a3-b3|=|a-b|·|a2+ab+b2|,则a2+ab+b2>a2+b2≥(b+1)2+b2>1,则|a3-b3|=|a-b||a2+ab+b2|>1,与已知矛盾,则|a-b|<1,所以④是真命题.专题2 二元一次不等式(组)与简单的线性规划问题专题[基础达标](25分钟50分)一、选择题(每小题5分,共25分)1x,y满足约束条件x-y≥0,x+y-4≤0,y≥1,则z=-2x+y的最大值是() A.-1 B.-2 C.-5 D.1A【解析】约束条件对应的区域是一个三角形,当z=-2x+y经过点(1,1)时取得最大值-1.2x,y满足约束条件x-y+2≥0,y+2≥0,x+y+2≤0,则y+1x-1的取值范围为()A.-13,15B.-13,1C.-∞,-13∪15,+∞D.-∞,-13∪[1,+∞)B【解析】约束条件对应的平面区域是以点(-2,0),(-4,-2)和(0,-2)为顶点的三角形,当目标函数y+1x-1经过点(-2,0)时取得最小值-13,经过点(0,-2)时取得最大值1,则y+1x-1的取值范围是-13,1.3x,y满足不等式组x+y-6≤0,2x-y-1≤0,3x-y-2≥0,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围是() A.[-2,1] B.[-1,2] C.[-3,-2] D.[-3,1]A【解析】不等式组对应的平面区域是以点(1,1),(2,4)和73,113为顶点的三角形,且目标函数y=-ax+z经过点(2,4)时z取得最大值,经过点(1,1)时z 取得最小值,则-1≤-a≤2,即-2≤a≤1.4.若x,y满足kx+y≤4,2y-x≤4,x≥0,y≥0,且z=5y-x的最小值为-8,则k的值为()A.-12B.12C.-2D.2B【解析】直线kx+y=4恒过定点(0,4),画图可知k>0,且不等式组对应的平面区域是以点(0,0),(0,2),42k+1,4k+42k+1和4k,0为顶点的四边形(包含边界),z=5y-x在点4k ,0处取得最小值-8,则-4k=-8,解得k=12.5.在平面直角坐标系中,若点P(x,y)满足x-4y+4≤0,2x+y-10≤0,5x-2y+2≥0,则当xy取得最大值时,点P的坐标是()A.(4,2)B.(2,2)C.(2,6)D.52,5D【解析】不等式组对应的平面区域是以点(0,1),(2,6)和(4,2)为顶点的三角形(包含边界),当xy取得最大值时,点(x,y)必在线段2x+y-10=0,x∈[2,4]上,所以xy=x(10-2x)=-2x2+10x,x∈[2,4],当x=52时,xy取得最大值,此时点P52,5.二、填空题(每小题5分,共25分)6y≤x,x+y≤8,y≥a表示的平面区域的面积为25,点P(x,y)在所给平面区域内,则z=2x+y的最大值为.17【解析】不等式组对应的平面区域是以点(a,a),(8-a,a),(4,4)(a<4)为顶点的三角形,则该三角形的面积为12(8-2a)·(4-a)=25,解得a=-1(舍去9).目标函数经过点(9,-1)时,z取得最大值17.7.若实数x,y满足x≤2,y≤2,x+y≥2,则目标函数z=yx+1的最大值是.2【解析】不等式组对应的平面区域是以点(2,0),(0,2)和(2,2)为顶点的三角形(包含边界),当目标函数z=yx+1经过点(0,2)时取得最大值2.8x,y满足约束条件x≤4-2y,x≥0,y≥0,那么x2+y2-10x-6y的最小值为.-1215【解析】约束条件对应的平面区域是以点(0,0),(0,2)和(4,0)为顶点的三角形,目标函数可变形为(x-5)2+(y-3)2-34,其中(x-5)2+(y-3)2的几何意义是可行域上的点(x,y)与点(5,3)的距离的平方,最小值为点(5,3)到直线x+2y-4=0的距离的平方,即为52=495,则x2+y2-10x-6y=(x-5)2+(y-3)2-34的最小值为49 5-34=-1215.9.在平面直角坐标系xOy中,记不等式组y-3≥0,2x+y-7≤0,x-2y+6≥0表示的平面区域为D.若对数函数y=log a x(a>1)的图象与D有公共点,则a的取值范围是.(1, 23] 【解析】作出不等式组对应的平面区域,如图阴影部分所示(包含边界),若a>1,当对数函数图象经过点A 时,满足条件,此时y -3=0,2x +y -7=0,解得 x =2,y =3,即A (2,3),此时log a 2=3,解得a= 23,∴当1<a< 23时,满足条件.∴实数a 的取值范围是(1, 23].10x ,y 满足 x ≥2,x +y ≤4,2x -y -m ≤0,若目标函数z=3x+y的最大值为10,则z 的最小值为 .-1 【解析】不等式组所表示的平面区域是以点(2,2),(2,4-m ), m +43,8-m 3 (m>2)为顶点围成的三角形(包括边界),当目标函数y=-3x+z 经过点 m +43,8-m3时z 取得最大值,则m+4+8-m3=10,解得m=5,则z min =-1.[高考冲关] (15分钟 30分)1.(5分x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则实数a 的取值范围是( )A .a ≥43 B .0<a ≤1 C .1≤a ≤43D .0<a ≤1 或a ≥43D【解析】不等式中前面3个不等式表示的平面区域是以点(0,0),(1,0)和23,23为顶点的三角形,由图可得当0<a≤1或a≥43时,上述三角形位于直线x+y=a 下方的区域仍然是三角形.2.(5分)已知实系数一元二次方程x2+(1+a)x+a+b+1=0的两个根为x1,x2,且0<x1<1,x2>1,则ba的取值范围是()A.-1,-12B.-1,-12C.-2,-12D.-2,-12D【解析】令f(x)=x2+(1+a)x+a+b+1,则f(0)=a+b+1>0,f(1)=2a+b+3<0,则点P(a,b)对应的平面区域如图阴影部分所示(不含边界),当(a,b)取点(-2,1)时,ba取得最大值-12,当过原点的直线与2a+b+3=0平行时,不经过可行域上的点,所以-2<ba <-12.3.(5分)若变量x,y满足x+y≤4,2x-y+4≥0,x-2y-4≤0,则xy的取值范围是()A.[-2,16]B.(-∞,-2]∪[16,+∞)C.[16,+∞)D.[-2,0]∪[16,+∞)A【解析】作出不等式组对应的平面区域如图中阴影部分所示(包含边界),当z>0时,y=zx与区域有公共点,且与边界x+y=4相切时,z=4,经过点(-4,-4)时,z=16,此时0<z≤16;当z=0时与区域有公共点;当z<0时,与边界2x-y+4=0,x-2y-4=0相切时,z=-2,此时-2≤z<0.综上可得z=xy的取值范围是[-2,16].4.(5分)已知变量x,y满足约束条件x+y≤1,x-y≤1,x≥a,若yx-2≤12恒成立,则实数a的取值范围为.[0,1]【解析】要使不等式组对应的平面区域存在,则a≤1,此时不等式组对应的区域是以点(a,a-1),(a,1-a),(1,0)为顶点的三角形(包含边界),则1-a a-2≤yx-2≤a-1a-2,由yx-2≤12,得a-1a-2≤12,则a≥0,故实数a的取值范围是[0,1].5.(5分m>1,已知在约束条件y≥x,y≤mx,x+y≤1下,目标函数z=x2+y2的最大值为23,则实数m的值为.2+3【解析】m>1,由题意可知,约束条件对应的平面区域是以点(0,0),1 2,12和11+m,m1+m为顶点的三角形(包含边界),且当目标函数z=x2+y2经过点11+m ,m1+m时取得最大值23,所以11+m2+m1+m2=23,化简得m2-4m+1=0,m>1,解得m=2+3.6.(5分P(x,y)的坐标满足3x-y<0,x-3y+2<0,y≥0,3x22的取值范围为.-3,3【解析】作出不等式组所表示的平面区域,如图,其中B(-2,0),C(1,3),A32,12,设P(x,y)为区域内一个动点,向量OA,OP的夹角为θπ6=∠AOC<θ≤∠AOB=5π6,则cos θ=OA·OP|OA||OP|=32x+12yx2+y2=12×3xx2+y2,又-32≤cosθ<32,则3x22=2cos θ∈[-3,3).专题3 基本不等式及其应用专题[基础达标](20分钟45分)一、选择题(每小题5分,共20分)1.已知a,b∈R*且a+b=1,则ab的最大值等于()A.1B.14C.12D.22B【解析】由于a,b∈R*,则1=a+b≥2ab,得ab≤14,当且仅当a=b=12时等号成立.2.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则() A.a<v<ab B.v=abC.<v<a+b2D.v=a+b2A【解析】设甲、乙两地相距S,则平均速度v=2S S+S =2aba+b,又∵a<b,∴v=2aba+b >2abb+b=a.∵a+b>2ab,∴2aba+b−2ab<0,即v<ab,∴a<v<ab.3mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则1m +3n的最小值为()A. 4B. 12C. 16D. 6D【解析】直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则直线过圆心,即3m+n=2,则1 m +3n=1m+3n3m2+n2=3+n2m+9m2n≥3+2n2m·9m2n=6,当且仅当n2m=9m2n,m=13,n=1时取等号,则1m +3n的最小值为6.4x,y满足x+4y=4,则x+28y+4xy的最小值为()A.852B.24C.20D.18D【解析】由题意可得x=4-4y>0,y>0,则0<y<1.令2+6y=t,t∈(2,8),则y=t-26,所以x+28y+4xy=8+24y(4-4y)y=2+6y(1-y)y=t8-t6×t-26=36t10t-t-16=3610- t+16t≥3610-8=18,当且仅当t=4时取等号,则x+28y+4xy的最小值为18.二、填空题(每小题5分,共25分)5.当x>1时,函数y=x+1x-1的最小值是.3【解析】因为x>1,y=x+1x-1=(x-1)+1x-1+1≥2(x-1)·1x-1+1=3,当且仅当x-1=1x-1,且x>1,即x=2时等号成立,故函数y的最小值为3.6.实数x,y满足x+2y=2,则3x+9y的最小值是.6【解析】利用基本不等式可得3x+9y=3x+32y≥23x·32y=23x+2y,∵x+2y=2,∴3x+9y≥2x+2y=22=6,当且仅当3x=32y,即x=1,y=12时,取等号,即3x+9y 的最小值为6.7P,Q分别是曲线y=x+4x与直线4x+y=0上的动点,则线段PQ长的最小值为.717 17【解析】由y=x+4x可得y=1+4x,若PQ长取最小值,则点P在与直线4x+y=0平行的切线上,且PQ垂直于直线4x+y=0,由y'=-4x=-4,解得x=1或-1.当x=1时,点P(1,5),则点P到直线4x+y=0的距离为17=91717,即此时PQ=91717;当x=-1时,P(-1,-3),则点P到直线4x+y=0的距离为17=71717,即此时PQ=71717<91717,则线段PQ长的最小值为71717.8(a,b)在直线2x+3y-1=0上,则代数式2a +3b的最小值为.25【解析】由题意可得2a+3b=1,a>0,b>0,则2a +3b=2a+3b(2a+3b)=13+6ba+6a b ≥13+26ba·6ab=25,当且仅当a=b=15时取等号,所以代数式2a+3b的最小值为25.9.若不等式1x +41-x≥a对任意的x∈(0,1)恒成立,则a的最大值是.9【解析】由x∈(0,1),得1-x>0,1x +41-x=x+1-xx+4(x+1-x)1-x=5+1-xx+4x 1-x ≥5+21-xx×4x1-x=5+4=9,当且仅当1-xx=4x1-x,即x=13时,取等号,所以1x+41-x的最小值为9,所以a≤9,所以a的最大值为9.[高考冲关](15分钟30分)1.(5分f(x)≤M成立的所有常数M中,我们把M的最小值叫做f(x)的“上确界”,若a,b∈R*且a+b=1,则-12a −2b的“上确界”为()A.-92B.92C.14D.-4A【解析】因为12a +2b=12a+2b(a+b)=52+b2a+2ab≥52+2b2a·2ab=92,当且仅当b=2a=23时取等号,所以-12a−2b≤-92,即-12a−2b的“上确界”为-92.2.(5分S n为正项等比数列{a n}的前n项和,若S12-S6 S6-7·S6-S3S3-8=0,且正整数m,n满足a1a m a2n=2a53,则1m+8n的最小值是()A.75B.53C.95D.157B【解析】设等比数列{a n}的公比为q(q>0),则S12-S6S6=q6,S6-S3S3=q3,q6-7q3-8=0,解得q=2(舍负),则a1a m a2n=a13×2m+ 2n-2=2a53=a13×213,化简得m+2n=15,则1 m +8n=1151m+8n(m+2n)=11517+2nm+8mn≥11517+22nm·8mn=53,当且仅当m=3,n=6时取等号,所以1m +8n的最小值是53.3.(5分)若a>0,b>0,且1a +1b=ab,则a3+b3的最小值为.42【解析】因为a>0,b>0,所以1a +1b=ab≥ab,则ab≥2,所以a3+b3=(a+b)(a2-ab+b2)≥2ab·(2ab-ab)=2(ab)3≥2(2)3=42,当且仅当a=b 时取等号,即a3+b3的最小值为42.4.(5分)已知△ABC的面积S和三边a,b,c满足:S=a2-(b-c)2,b+c=6,则△ABC 面积S的最大值为.36 17【解析】由S=a2-(b-c)2得b2+c2-a2+S=2bc,则2bc cos A+12bc sin A=2bc,所以cos A=1-14sin A,代入cos2A+sin2A=1中解得sin A=817.又b+c=6≥2bc,则bc≤9,当且仅当b=c=3时取等号,所以△ABC面积S的最大值为12bc sin A≤12×9×817=3617.5.(5分x,y均为正数,且方程(x2+xy+y2)·a=x2-xy+y2成立,则a的取值范围是.1 3,1【解析】由(x2+xy+y2)·a=x2-xy+y2可得a=x2-xy+y2x+xy+y=1-2xyx+xy+y=1-2x+1+y,又x,y均为正数,所以xy +yx+1≥2+1=3,0<2xy+yx+1≤23,13≤1-2xy+yx+1<1,则a的取值范围是13,1.6.(5分2ax+by-1=0(a>-1,b>0)经过曲线y=cosπx+1(0<x<1)的对称中心,则1a+1+2b的最小值为.3+222【解析】曲线y=cos πx+1(0<x<1)的对称中心12,1在直线2ax+by-1=0上,则a+b=1,1a+1+2b=121a+1+2b[(a+1)+b]=123+ba+1+2(a+1)b≥1 23+2ba+1·2(a+1)b=3+222,当且仅当ba+1=2(a+1)b时取等号,则1a+1+2b的最小值为3+222.专题4 一元二次不等式及其解法专题[基础达标](25分钟50分)一、选择题(每小题5分,共20分)1.若不等式x2+px+4≤0恰好有一个解,则实数p的值为()A.4B.-4C.±4D.以上都不对C【解析】由已知可得方程x2+px+4=0有两个相等的实数根,所以Δ=p2-16=0,解得p=±4.2.若不等式2kx2+kx-38<0对一切实数x都成立,则k的取值范围为() A.(-3,0) B.[-3,0) C.[-3,0] D.(-3,0]D【解析】当k=0时,显然成立;当k≠0时,即一元二次不等式2kx2+kx-38<0对一切实数x都成立,则k<0,k2-4×2k×-38<0,解得-3<k<0.综上,满足不等式2kx2+kx-38<0对一切实数x都成立的k的取值范围是(-3,0].3x的不等式x2+ax-2>0在区间[1,5]上有解,则实数a的取值范围为()A.-235,+∞B.-235,1C.(1+∞)D.(-∞,-1)A【解析】令f(x)=x2+ax-2,则f(0)=-2.①若顶点横坐标x=-a2≤0,要使关于x的不等式x2+ax-2>0在区间[1,5]上有解,则应满足f(5)>0,解得a>-235,即此时a≥0;②若顶点横坐标x=-a2>0,要使关于x的不等式x2+ax-2>0在区间[1,5]上有解,也应满足f(5)>0,解得a>-235,即此时-235<a<0.综上可知,实数a的取值范围是-235,+∞.4p:∃x∈R,(m+1)(x2+1)≤0,命题q:∀x∈R,x2+mx+1>0恒成立.若p∧q为假命题,则实数m应满足()A.m≥2B.m≤-2或m>-1C.m≤-2或m≥2D.-1<m≤2B【解析】若命题p:∃x∈R,(m+1)(x2+1)≤0是真命题,则m+1≤0,m≤-1;若命题q:∀x∈R,x2+mx+1>0恒成立是真命题,则Δ=m2-4<0,即-2<m<2,所以若p∧q为真命题,则-2<m≤-1,所以p∧q为假命题时实数m应满足m≤-2或m>-1.二、填空题(每小题5分,共20分)5x的不等式x2-ax-4>0在x∈[-2,1]时无解,则实数a 的取值范围是.[-3,0]【解析】不等式x2-ax-4>0,x∈[-2,1]无解,即x2-ax-4≤0,x∈[-2,1]恒成立,则4+2a-4≤0,1-a-4≤0,解得-3≤a≤0.6.已知不等式组x2-4x+3<0,x2-6x+8<0的解集是不等式2x2-9x+a<0的解集的子集,则实数a的取值范围是.(-∞,9]【解析】不等式组x2-4x+3<0,x2-6x+8<0的解集是{x|2<x<3},设f(x)=2x2-9x+a,则由题意得f(2)≤0,f(3)≤0,解得a≤9.7.若关于x的不等式a≤34x2-3x+4≤b的解集恰好是[a,b],则a+b=.4【解析】二次函数y=34x2-3x+4的顶点坐标为(2,1),开口向上.若a>1,则由图象可知原不等式的解集是两个区间的并集,不合题意,故a≤1,此时a≤34x2-3x+4的解集为R,所以原不等式的解集即为34x2-3x+4≤b的解集,所以a,b为方程34x2-3x+4=b的两个不同根,则a+b=4.8.若对任意实数p∈[-1,1],不等式px2+(p-3)x-3>0成立,则实数x的取值范围为.(-3,-1)【解析】不等式可变形为(x2+x)p-3x-3>0,令f(p)=(x2+x)p-3x-3,p∈[-1,1].原不等式成立等价于f(p)>0,p∈[-1,1],即f(-1)>0,f(1)>0,即-x2-x-3x-3>0,x2+x-3x-3>0,解得-3<x<-1.三、解答题(共10分)9.(10分)若不等式ax2+5x-2>0的解集是 x|12<x<2.(1)求实数a的值;(2)求不等式ax2-5x+a2-1>0的解集.【解析】(1)由题意知a<0,且方程ax2+5x-2=0的两个根为12,2,则-5a=12+2,解得a=-2.(2)由(1)知a=-2,则ax2-5x+a2-1>0即为-2x2-5x+3>0,即为2x2+5x-3<0,解得-3<x<12,即不等式ax2-5x+a2-1>0的解集为-3,12.[高考冲关](15分钟30分)1.(5分f(x)=x2+2x(x<0),-x2(x≥0),若f(f(a))≤3,则实数a的取值范围是()A.(-∞,-3]B.[-3,+∞)C.[-3,3]D.(-∞,3]D【解析】令f(a)=t,则f(t)≤3⇔t<0,t2+2t≤3或t≥0,-t2≤3,解得t≥-3,则f(a)≥-3⇔a<0,a2+2a≥-3或a≥0,-a2≥-3,解得a<0或0≤a≤3,则实数a的取值范围是(-∞,3].2.(5分a>0,b>0,函数f(x)=ax2+b满足:对任意实数x,y,有f(xy)+f(x+y)≥f(x)f(y),则实数a的取值范围是() A. (0,1] B. (0,1) C. (0,2) D. (0,2]B【解析】令y=0,得f(0)+f(x)≥f(x)f(0),即a(1-b)x2+2b-b2≥0对任意实数x恒成立,所以有b=1或1-b>0,2b-b2≥0,所以b的范围是(0,1].再令y=-x,得f(-x2)+f(0)≥f(x)f(-x),即为a(a-1)x4+2abx2+b2-2b≤0对任意实数x恒成立,当a=1时,x2≤2-b2不恒成立,所以a(a-1)<0,解得0<a<1.3.(5分x的不等式a cos 2x+cos x≥-1恒成立,则实数a 的取值范围是.0,2+24【解析】原不等式即为a(2cos2x-1)+cos x≥-1,令cos x=t,t∈[-1,1],则2at2+t+1-a≥0,t∈[-1,1]恒成立.令f(t)=2at2+t+1-a,t∈[-1,1],由f(-1)=2a-1+1-a=a≥0,当a=0时,f(t)=t+1≥0,t∈[-1,1]恒成立,则a=0适合.当a>0时,对称轴t=-14a <0,当t=-14a≤-1,即0<a≤14时,f(t)min=f(-1)=a≥0,所以0<a≤14;当-1<-14a<0,即a>14时,f(t)min=f-14a=-18a+1-a≥0,解得2-24≤a≤2+24,所以14<a≤2+24.综上可得实数a的取值范围是0,2+24.4.(5分f(x)=ax2+x-b(a,b均为正数),不等式f(x)>0的解集记为P,集合Q={x|-2-t<x<-2+t}.若对于任意正数t,P∩Q≠⌀,则1a −1b的最大值是.12【解析】因为集合Q实质上是包含-2的一个区间,在该区间上存在实数满足f(x)>0,则f(-2)=4a-2-b≥0,0<b≤4a-2 a>12.所以1a−1b≤1a−14a-2a>12,令g(a)=1a −14a-2a>12,则g'(a)=-4(a-1)(3a-1)a2(4a-2)2,由g'(a)=0得a=1舍去13,且a∈1 2,1时,g'(a)>0,g(a)递增,a∈(1,+∞)时,g'(a)<0,g(a)递减,则g(a)≤g(1)=12,故1a −1b≤12,即1a−1b的最大值是12.5.(10分)若不等式mx2-2x+1-m<0对满足-2≤m≤2的所有m都成立,求实数x的取值范围.【解析】已知不等式可以化为(x2-1)m+1-2x<0.设f(m)=(x2-1)m+1-2x,这是一个关于m的一次函数(或常数函数),要使f(m)<0在-2≤m≤2时恒成立,其等价条件是f(2)=2(x2-1)+1-2x<0,f(-2)=-2(x2-1)+1-2x<0,整理得2x2-2x-1<0,2x2+2x-3>0,解得-1+72<x<1+32,所以实数x的取值范围是-1+72,1+32.。
河北省衡水中学2018届高三下学期理数10
游刃有余
组题人:
审核:
一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中, 只有一 项是符合题目要求的.) 1.设 x R , i 为虚数单位,且 A.-1 B.1
a 的取值范围是(
A.
) C.
1 x R ,则 x ( 1 i 1 i
1 ,对 a R , b 0, ,使得 f a g b ,则 2
20, 25
B. 30,57
C. 30,32
D. 28,57
b a 的最小值为(
A. 1
) B. 1
x 2 y 3 0 8.已知变量 x, y 满足条件 x 3 y 3 0 ,若目标函数 z ax y 仅在点 3, 0 处取得最大值,则 y 1 0
3
(1)求曲线 y f x 与 y 轴,直线 x 1 及 x 轴围成图形的面积 S ; (2)若函数 g x f x mx 在 3, a 上的极小值不大于 m 1 ,求 m 的取值范围.
1 x 1 t, x cos , 2 已知直线 l : ( t 为参数) ,曲线 C1 : ( 为参数). y sin . 3 y t. 2
4 的 an an 1
①求 决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率; ②记高三(2)班在决赛中进入前三位的人数为 X ,求 X 的分布列和数学期望.
20.(本小题满分 12 分) 18. 如图,在三棱锥 P ACD 中, AB 3BD , PB 底面 ACD , BC AD , AC 10 , 已知椭圆 C : 9 x y m (m 0) ,直线 l 不过原点 O 且不平行于坐标轴, l 与 C 有两个交点
河北省衡水2018届高三第十次模拟考试数学(理)试题含答案
河北省衡水2018届高三第十次模拟考试数学(理)试题含答案2017—2018学年度第一学期高三十模考试数学试卷(理科)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.设集合2{|log (2)}A x y x ==-,2{|320}B x x x =-+<,则A C B =( ) A .(,1)-∞ B .(,1]-∞ C .(2,)+∞ D .[2,)+∞ 2.在复平面内,复数2332iz i-++对应的点的坐标为(2,2)-,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知ABC ∆中,sin 2sin cos 0A B C +=c =,则tan A 的值是( )A C4.设{(,)|0,01}A x y x m y =<<<<,s 为(1)ne +的展开式的第一项(e 为自然对数的底数),m =取(,)a b A ∈,则满足1ab >的概率是( ) A .2e B .2e C .2e e - D .1e e- 5.函数4lg x x y x=的图象大致是( )A .B .C .D . 6.已知一个简单几何体的三视图如图所示,若该几何体的体积为2448π+,则该几何体的表面积为( )A .2448π+ B .2490π++.4848π+ D .2466π++7.已知11717a =,16logb =17logc =,则a ,b ,c 的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .c b a >> 8.执行如下程序框图,则输出结果为( )A .20200B .5268.5-C .5050D .5151-9.如图,设椭圆E :22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( ) A .12 B .23 C .13 D .1410.设函数()f x 为定义域为R 的奇函数,且()(2)f x f x =-,当[0,1]x ∈时,()sin f x x =,则函数()cos()()g x x f x π=-在区间59[,]22-上的所有零点的和为( )A .6B .7C .13D .14 11.已知函数2()sin 20191x f x x =++,其中'()f x 为函数()f x 的导数,求(2018)(2018)f f +-'(2019)'(2019)f f ++-=( )A .2B .2019C .2018D .012.已知直线l :1()y ax a a R =+-∈,若存在实数a 使得一条曲线与直线l 有两个不同的交点,且以这两个交点为端点的线段长度恰好等于a ,则称此曲线为直线l 的“绝对曲线”.下面给出的四条曲线方程:①21y x =--;②22(1)(1)1x y -+-=;③2234x y +=;④24y x =.其中直线l 的“绝对曲线”的条数为( )A .1B .2C .3D .4二、填空题:(本大题共4小题,每题5分,共20分)13.已知实数x ,y 满足2202401x y x y y x +-≥⎧⎪+-≤⎨⎪≤+⎩,且341x y m x ++=+,则实数m 的取值范围 .14.双曲线22221x y a b-=的左右焦点分别为1F 、2F ,P 是双曲线右支上一点,I 为12PF F ∆的内心,PI 交x 轴于Q 点,若12FQ PF =,且:2:1PI IQ =,则双曲线的离心率e 的值为 .15.若平面向量1e ,2e 满足11232e e e =+=,则1e 在2e 方向上投影的最大值是 .16.观察下列各式:311=;3235=+; 337911=++; 3413151719=+++;……若3*()m m N ∈按上述规律展开后,发现等式右边含有“2017”这个数,则m 的值为 .三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)17.已知等差数列{}n a 中,公差0d ≠,735S =,且2a ,5a ,11a 成等比数列.(1)求数列{}n a 的通项公式; (2)若n T 为数列11{}n n a a +的前n 项和,且存在*n N ∈,使得10n n T a λ+-≥成立,求实数λ的取值范围. 18.为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:(1)已知该校有400名学生,试估计全校学生中,每天学习不足4小时的人数.(2)若从学习时间不少于4小时的学生中选取4人,设选到的男生人数为X ,求随机变量X 的分布列. (3)试比较男生学习时间的方差21S 与女生学习时间方差22S 的大小.(只需写出结论)19.如图所示,四棱锥P ABCD -的底面为矩形,已知1PA PB PC BC ====,AB =,过底面对角线AC 作与PB 平行的平面交PD 于E .(1)试判定点E 的位置,并加以证明; (2)求二面角E AC D --的余弦值.20.在平面直角坐标平面中,ABC ∆的两个顶点为(0,1)B -,(0,1)C ,平面内两点P 、Q 同时满足:①0PA PB PC ++=;②QA QB QC ==;③//PQ BC .(1)求顶点A 的轨迹E 的方程;(2)过点F 作两条互相垂直的直线1l ,2l ,直线1l ,2l 与A 的轨迹E 相交弦分别为11A B ,22A B ,设弦11A B ,22A B 的中点分别为M ,N .①求四边形1212A A B B 的面积S 的最小值;②试问:直线MN 是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由. 21.已知函数ln(1)()1x f x ax +=+.(1)当1a =,求函数()y f x =的图象在0x =处的切线方程; (2)若函数()f x 在(0,1)上单调递增,求实数a 的取值范围;(3)已知x ,y ,z 均为正实数,且1x y z ++=,求证(31)ln(1)(31)ln(1)11x x y y x y -+-++--(31)ln(1)01z z z -++≤-.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程] 在极坐标系中,曲线1C 的极坐标方程是244cos 3sin ρθθ=+,以极点为原点O ,极轴为x 轴正半轴(两坐标系取相同的单位长度)的直角坐标系xOy 中,曲线2C 的参数方程为:cos sin x y θθ=⎧⎨=⎩(θ为参数).(1)求曲线1C 的直角坐标方程与曲线2C 的普通方程;(2)将曲线2C 经过伸缩变换''2x y y⎧=⎪⎨=⎪⎩后得到曲线3C ,若M ,N 分别是曲线1C 和曲线3C 上的动点,求MN 的最小值.23.[选修4-5:不等式选讲] 已知()21()f x x a x a R =--+∈.(1)当1a =时,解不等式()2f x >. (2)若不等式21()12f x x x a +++>-对x R ∈恒成立,求实数a 的取值范围.十模数学答案(理)一、选择题1-5: BDACD 6-10: DACCA 11、12:AC二、填空题13. [2,7] 14.3215. 3- 16. 45三、解答题17.解:(1)由题意可得12111767352(4)()(10)a d a d a d a d ⨯⎧+=⎪⎨⎪+=++⎩,即121352a d d a d +=⎧⎨=⎩. 又因为0d ≠,所以121a d =⎧⎨=⎩.所以1n a n =+.(2)因为111(1)(2)n n a a n n +=++1112n n =-++,所以11112334n T =-+-1112n n +⋅⋅⋅+-++11222(2)n n n =-=++. 因为存在*n N ∈,使得10n n T a λ+-≥成立,所以存在*n N ∈,使得(2)02(2)nn n λ-+≥+成立,即存在*n N ∈,使得22(2)nn λ≤+成立.又2142(2)2(4)n n n n =+++,114162(4)n n≤++(当且仅当2n =时取等号), 所以116λ≤.即实数λ的取值范围是1(,]16-∞.18.解:(1)由折线图可得共抽取了20人,其中男生中学习时间不足4小时的有8人,女生中学习时间不足4小时的有4人.∴可估计全校中每天学习不足4小时的人数为:1240024020⨯=人.(2)学习时间不少于4本的学生共8人,其中男学生人数为4人,故X 的所有可能取值为0,1,2,3,4.由题意可得4448(0)C P X C ==170=;134448(1)C C P X C ==1687035==; 224448(2)C C P X C ==36187035==;314448(3)C C P X C ==1687035==; 4448(4)C P X C ==170=. 所以随机变量的分布列为∴均值017070EX =⨯+⨯237070+⨯+⨯4270+⨯=.(3)由折线图可得2212s s >.19.解:(1)E 为PD 的中点,证明如下: 连接OE ,因为//PB平面AEC ,平面PBD 平面AEC OE =,PB ⊄平面AEC ,所以//OE PB ,又O 为BD的中点,所以E 为PD 的中点.(2)连接PO ,因为四边形ABCD 为矩形,所以OA OC =.因为PA PC =,所以PO AC ⊥.同理,得PO BD ⊥,所以PO ⊥平面ABCD ,以O 为原点,OP 为z 轴,过O平行于AD 的直线为x 轴,过O 平行于CD 的直线为y 轴建立空间直角坐标系(如图所示). 易知1(,,0)22A -,1(,,0)22B,1(,22C -,1(,,0)22D --,1(0,0,)2P ,11(,)444E --,则11(,,)444EA =--,1(,22OA =-. 显然,OP 是平面ACD 的一个法向量.设1(,,)n x y z =是平面ACE 的一个法向量,则1100n EA n OA ⎧⋅=⎪⎨⋅=⎪⎩,即1104441022x y z x y ⎧--=⎪⎪⎨⎪-=⎪⎩,取1y =, 则1(2,1n =,所以1cos ,n OP <>11n OP n OP⋅==所以二面角E AC D --的余弦值为11. 20.(1)221(0)3x y x +=≠;(2)①S 的最小值的32,②直线MN 恒过定点4⎛⎫ ⎪ ⎪⎝⎭. 试题解析:(1)∵2PA PB PO +=,∴由①知2PC PO =-,∴P 为ABC ∆的重心. 设(,)A x y ,则,33x y P ⎛⎫⎪⎝⎭,由②知Q 是ABC ∆的外心, ∴Q 在x 轴上由③知,03x Q ⎛⎫ ⎪⎝⎭,由QC QA =,得=,化简整理得:221(0)3x y x +=≠. (2)解:F 恰为2213x y +=的右焦点, ①当直线1l ,2l 的斜率存且不为0时,设直线1l的方程为my x =,由22330my x x y ⎧=-⎪⎨+-=⎪⎩22(3)10m y ⇒++-=, 设111(,)A x y ,122(,)B x y,则12y y +=,12213y y m -=+,①根据焦半径公式得1112)A B x x =+,又1212x x my my +=12()m y y =++223m -=++23m =+,所以1123A B m =+=,同理22221113m A B m⎫+⎪⎝⎭=+221)31m m +=+, 则2222(1)6(3)(31)m S m m +=++2222(1)64(1)2m m +≥⎛⎫+ ⎪⎝⎭32=, 当22331m m +=+,即1m =±时取等号.②根据中点坐标公式得M ⎝⎭,同理可求得N ⎝⎭,则直线MN的斜率为22MNk -=243(1)m m =-, ∴直线MN的方程为23y m -+243(1)m x m ⎛= -⎝⎭,整理化简得()4334ymx m +()263490ym x m y ++-=, 令0y =,解得x =∴直线MN恒过定点4⎛⎫⎪ ⎪⎝⎭.②当直线1l ,2l 有一条直线斜率不存在时,另一条斜率一定为0,直线MN 即为x轴,过点4⎛⎫⎪ ⎪⎝⎭.综上,S 的最小值的32,直线MN恒过定点4⎛⎫ ⎪ ⎪⎝⎭.21.(1)当1a =时,ln(1)()1x f x x +=+则(0)0f =,21ln(1)'()(1)x f x x -+=+则'(0)1f =,∴函数()y f x =的图象在0x =时的切线方程为y x =.(2)∵函数()f x 在(0,1)上单调递增,∴10ax +=在(0,1)上无解, 当0a ≥时,10ax +=在(0,1)上无解满足,当0a <时,只需1010a a +≥⇒-≤<,∴1a ≥-①21ln(1)1'()(1)ax a x x f x ax +-++=+,∵函数()f x 在(0,1)上单调递增,∴'()0f x ≥在(0,1)上恒成立, 即[](1)ln(1)1ax x x ++-≤在(0,1)上恒成立.设()(1)ln(1)x x x ϕ=++'()ln(1)(1)x x x x ϕ-=+++11ln(1)1x x ⋅-=++, ∵(0,1)x ∈,∴'()0x ϕ>,则()x ϕ在(0,1)上单调递增,∴()x ϕ在(0,1)上的值域为(0,2ln 21)-.∴1(1)ln(1)a x x x ≤++-在(0,1)上恒成立,则12ln 21a ≤-②综合①②得实数a 的取值范围为11,2ln 21⎡⎤-⎢⎥-⎣⎦.(3)由(2)知,当1a =-时,ln(1)()1x f x x+=-在(0,1)上单调递增,于是当103x <≤时,ln(1)()1x f x x +=-134()ln 323f ≤=,当113x ≤<时,ln(1)()1x f x x +=-134()ln 323f ≥=, ∴(31)()x f x -34(31)ln 23x ≥-⋅,即(31)ln(1)1x x x -+-33(31)ln 24x ≤-⋅,同理有(31)ln(1)1y y y -+-33(31)ln 24y ≤-⋅,(31)ln(z 1)1z z -+-33(31)ln 24z ≤-⋅,三式相加得(31)ln(1)1x x x -+-(31)ln(1)1y y y -++-(31)ln(z 1)01z z -++≤-.22.解:(1)∵1C 的极坐标方程是244cos 3sin ρθθ=+,∴4cos 3sin 24ρθρθ+=,整理得43240x y +-=,∴1C 的直角坐标方程为43240x y +-=.曲线2C :cos sin x y θθ=⎧⎨=⎩,∴221x y +=,故2C 的普通方程为221x y +=.(2)将曲线2C经过伸缩变换''2x y y ⎧=⎪⎨=⎪⎩后得到曲线3C 的方程为22''184x y +=,则曲线3C的参数方程为y 2sin x αα⎧=⎪⎨=⎪⎩(α为参数).设(),2sin N αα,则点N 到曲线1C的距离为d==24)5αϕ-+=(tan 3ϕ=.当()sin1αϕ+=时,d有最小值MN23.解:(1)当1a =时,等式()2f x >,即2112x x --+>,等价于11212x x x <-⎧⎨-++>⎩或1121212x x x ⎧-≤≤⎪⎨⎪--->⎩或122112x x x ⎧>⎪⎨⎪--->⎩,解得23x <-或4x >, 所以原不等式的解集为2(,)(4,)3-∞-+∞; (2)设()()1g x f x x x =+-+2x a x =-+,则,2()3,2a a x x f x a x a x ⎧-≤⎪⎪=⎨⎪->⎪⎩, 则()f x 在(,)2a-∞上是减函数,在(,)2a +∞上是增函数, ∴当2a x =时,()f x 取最小值且最小值为()22a a f =, ∴2122a a >-,解得112a -<<,∴实数a 的取值范围为1(,1)2-.。
2018届高考数学复习不等式选讲(选修4-5)练习题
2018届高考数学复习不等式选讲(选修4-5)练习题1.设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ca ≤13;(2)a 2b +b 2c +c 2a ≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a ≥1.2.设函数f (x )=|2x +2|-|x -2|.(1)求不等式f (x )>2的解集;(2)若∀x ∈R ,f (x )≥t 2-72t 恒成立,求实数t 的取值范围.解析:(1)不等式f (x )>2等价于⎩⎨⎧ x <-1,-(2x +2)+(x -2)>2或⎩⎨⎧ -1≤x ≤2,(2x +2)+(x -2)>2或⎩⎨⎧x >2,(2x +2)-(x -2)>2,解得x <-6或23<x ≤2或x >2,∴x >23或x <-6.∴不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >23或x <-6. (2)∵f (x )=⎩⎨⎧ -x -4,x <-1,3x ,-1≤x <2,x +4,x ≥2,∴f (x )min =f (-1)=-3, 若∀x ∈R ,f (x )≥t 2-72t 恒成立,则只需f (x )min =-3≥t 2-72t ⇒2t 2-7t +6≤0⇒32≤t ≤2,综上所述,32≤t ≤2.3.(2017·安徽皖南八校联考)已知函数f (x )=|2x -1|+|x +1|.(1)求不等式f (x )≥2的解集;(2)若关于x 的不等式f (x )<a 的解集为∅,求a 的取值范围.解析:(1)当x >12时,f (x )=3x ≥2,解得x ≥23,当-1≤x ≤12时,f (x )=2-x ≥2,解得-1≤x ≤0,当x <-1时,f (x )=-3x ≥2,解得x <-1.综上,不等式的解集为(-∞,0]∪⎣⎢⎡⎭⎪⎫23,+∞. (2)由题意知,f (x )≥a 对一切实数x 恒成立,当x >12时,f (x )=3x >32,当-1≤x ≤12时,f (x )=2-x ≥32,当x <-1时,f (x )=-3x >3,综上,f (x )min =32,故a ≤32.4.已知函数f (x )=|2x +1|-|x -1|.(1)求不等式f (x )<2的解集;(2)若关于x 的不等式f (x )≤a -a 22有解,求a 的取值范围. 解析:(1)当x >1时,f (x )=2x +1-(x -1)=x +2,∵f (x )<2,∴x <0,此时无解;当-12≤x ≤1时,f (x )=2x +1-(1-x )=3x ,∵f (x )<2,∴x <23,此时-12≤x <23;当x <-12时,f (x )=-2x -1-(1-x )=-x -2,∵f (x )<2,∴x >-4,此时-4<x <-12.综上所述,不等式f (x )<2的解集为⎝ ⎛⎭⎪⎫-4,23. (2)f (x )≤a -a 22有解⇔f (x )min ≤a -a 22.由(1)可知f (x )=⎩⎪⎨⎪⎧ -x -2,x <-12,3x ,-12≤x ≤1,x +2,x >1.当x <-12时,f (x )>-32;当-12≤x ≤1时,-32≤f (x )≤3; 当x >1时,f (x )>3. ∴f (x )min =-32,故-32≤a -a 22⇒a 2-2a -3≤0⇒-1≤a ≤3.。
2018届河北省衡水中学高三第十次模拟考试数学(理)试卷及解析
A. B. C. D.
【答案】A
【解析】由题意易得:
∴函数 的图象关于点 中心对称,
∴
由 可得
∴ 为奇函数,
∴ 的导函数为偶函数,即 为偶函数,其图象关于y轴对称,
∴
∴
故选:A
12.已知直线 : ,若存在实数 使得一条曲线与直线 有两个不同的交点,且以这两个交点为端点的线段长度恰好等于 ,则称此曲线为直线 的“绝对曲线”.下面给出的四条曲线方程:
故曲线x2+3y2=4是直线的“绝对曲线”.
对于④将y=ax+1﹣a代入 .
把直线y=ax+1-a代入y2=4x得a2x2+(2a-2a2-4)x+(1-a)2=0,
∴x1+x2= ,x1x2= .
若直线l被椭圆截得的弦长是|a|,
则a2=(1+a2)[(x1+x2)2-4x1x2]=(1+a2)
化为a6-16a2+16a-16=0,
【答案】
【解析】可设|PF1|=m,|PF2|=n,|F1F2|=2c,
对于②,(x﹣1)2+(y﹣1)2=1是以A为圆心,半径为1的圆,
所以直线l与圆总有两个交点,且距离为直径2,所以存在a=±2,使得圆(x﹣1)2+(y﹣1)2=1与直线l有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于|a|.
所以圆(x﹣1)2+(y﹣1)2=1是直线l的“绝对曲线”;
对于③,将y=ax+1﹣a代入x2+3y2=4,
2018届衡水中学高三十模考试
数学(理)试卷
一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)
高考数学压轴专题衡水备战高考《不等式》经典测试题及答案解析
数学《不等式》高考复习知识点一、选择题1.若变量x ,y 满足2,{239,0,x y x y x +≤-≤≥则x 2+y 2的最大值是A .4B .9C .10D .12【答案】C 【解析】试题分析:画出可行域如图所示,点A (3,-1)到原点距离最大,所以22max ()10x y +=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.2.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤()2n m n m -; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值. A .2 B .3C .4D .5【答案】C 【解析】 【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得22m n m n+-=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.3.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A.[;B .(,-∞C .)+∞D.(,)-∞⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立; 当10a <时,11322a d a =--≥=1a =立;∴实数d的取值范围为(,)-∞⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.4.已知函数())2log f x x =,若对任意的正数,a b ,满足()()310f a f b +-=,则31a b+的最小值为( )A .6B .8C .12D .24【答案】C 【解析】 【分析】先确定函数奇偶性与单调性,再根据奇偶性与单调性化简方程得31a b +=,最后根据基本不等式求最值. 【详解】0,x x x x ≥-=所以定义域为R ,因为()2log f x =,所以()f x 为减函数 因为()2log f x =,())2log f x x -=,所以()()()f x f x f x =--,为奇函数,因为()()310f a f b +-=,所以()()1313f a f b a b =-=-,,即31a b +=,所以()3131936b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,因为96b a a b +≥=, 所以3112a b +≥(当且仅当12a =,16b =时,等号成立),选C. 【点睛】本题考查函数奇偶性与单调性以及基本不等式求最值,考查基本分析求解能力,属中档题.5.已知实数x ,y满足不等式||x y +≥,则22x y +最小值为( )A .2B .4C.D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,x y +≥ (2)当0y <时,x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2d ==,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.6.已知x、y满足约束条件122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩,若22z x y=+,则实数z的最小值为()A 2B.25C.12D.2【答案】C【解析】【分析】作出不等式组所表示的可行域,利用目标函数的几何意义求出22x y+的最小值,进而可得出实数z的最小值.【详解】作出不等式组122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩所表示的可行域如下图所示,22z x y =+表示原点到可行域内的点(),x y 的距离的平方,原点到直线10x y +-=的距离的平方最小,()222min212x y+==⎝⎭. 由于22z x y =+,所以,min 12z =. 因此,实数z 的最小值为12. 故选:C. 【点睛】本题考查线性规划中非线性目标函数最值的求解,考查数形结合思想的应用,属于中等题.7.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ).A .33,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .2323,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .233⎛⎫+∞ ⎪ ⎪⎝⎭D .3,3⎛⎫+∞ ⎪ ⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r, 即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=, 解得233t <-或233t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.8.已知,x y 满足约束条件24030220x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩则目标函数22x y z -=的最大值为( ).A .128B .64C .164D .1128【答案】B 【解析】 【分析】画出可行域,再求解2x y -的最大值即可. 【详解】不等式组表示的平面区域如下图阴影部分所示.设2x y μ=-,因为函数2xy =是增函数,所以μ取最大值时,z 取最大值.易知2x y μ=-在A 点处取得最大值.联立220,30x y x y +-=⎧⎨+-=⎩解得4,1.x y =⎧⎨=-⎩即(4,1)A -.所以max 42(1)6μ=-⨯-=,所以6max 264z ==.故选:B 【点睛】本题考查线性规划,考查化归与转化思想以及数形结合思想.9.变量,x y 满足约束条件1{2314y x y x y ≥--≥+≤,若使z ax y =+取得最大值的最优解不唯一,则实数a 的取值集合是( ) A .{3,0}- B .{3,1}-C .{0,1}D .{3,0,1}-【答案】B 【解析】若0a =,结合图形可知不合题设,故排除答案A ,C ,D ,应选答案B .10.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+…,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-…,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-…,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.11.若0a >,0b >,23a b +=,则36a b+的最小值为( )A.5 B.6 C.8 D.9【答案】D【解析】【分析】把36a b+看成(36a b+)×1的形式,把“1”换成()123a b+,整理后积为定值,然后用基本不等式求最小值.【详解】∵3613a b+=(36a b+)(a+2b)=13(366b aa b+++12)≥13×(15+266b aa b⋅=)9等号成立的条件为66b aa b=,即a=b=1时取等所以36a b+的最小值为9.故选:D.【点睛】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换,是基础题12.已知x,y满足约束条件234x yx yy-≥⎧⎪+≤⎨⎪≥⎩,若z ax y=+的最大值为4,则a=()A.2 B.12C.-2 D.12-【答案】A【解析】【分析】由约束条件可得到可行域,根据图象可知最优解为()2,0A,代入可构造方程求得结果.【详解】由约束条件可知可行域如下图阴影部分所示:当直线:l y ax z =-+经AOB V 区域时,当l 过点()2,0A 时,在y 轴上的截距最大, 即()2,0A 为最优解,42a ∴=,解得:2a =. 故选:A . 【点睛】本题考查线性规划中的根据目标函数的最值求解参数值的问题,关键是能够通过约束条件准确得到可行域,根据数形结合的方式确定最优解.13.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( ) A .log 3log 3a b > B .336a b +> C .133ab a b ++> D .b a a b >【答案】B 【解析】 【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立. 【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =; 因为0a b >>,1ab >,所以336a b +>=>>,综上选B. 【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.14.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx ky x=++⎧⎪⎨=-+⎪⎩,解得24216121kxkkyk-⎧=⎪⎪+⎨+⎪=⎪+⎩,Q直线21y kx k=++与直线122y x=-+的交点位于第一象限,∴24216121kkkk-⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k-<<.故选:D.【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.15.实数,x y满足20360x yx yx y-≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y-的最大值为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】画出可行域和目标函数,根据平移得到答案.【详解】如图所示,画出可行域和目标函数,2z x y=-,则2y x z=-,z表示直线与y轴截距的相反数,根据平移知:当3,3x y==时,2z x y=-有最大值为3.故选:C.【点睛】本题考查了线性规划问题,画出图像是解题的关键.16.已知实数x y ,满足1030350x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则()22(4)2z x y =-+-的最小值为( ) A .5 B .5 C .3 D .52【答案】D【解析】【分析】由题意作出其平面区域,22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,求阴影内的点到点(4,2)P 的距离的平方最小值即可.【详解】 解:由题意作出实数x ,y 满足1030350x y x y x y -+⎧⎪+-⎨⎪--⎩………平面区域, 22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,则22(4)(2)z x y =-+-的最小值为P 到350x y --=的距离的平方,解得,2222523(1)d -⎛⎫+ ⎪= ⎝⎭=⎪; 所以min 52z =故选:D .【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题.17.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.18.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( ) A .4B .3 C.2 D .2【答案】D【解析】【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值. 【详解】 解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+.得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D .【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.19.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是A .3B .4C .92D .112 【答案】B【解析】【详解】 解析:考察均值不等式2228(2)82x y x y x y +⎛⎫+=-⋅≥- ⎪⎝⎭,整理得2(2)4(2)320x y x y +++-≥即(24)(28)0x y x y +-++≥,又x+2 y>0,24x y ∴+≥20.已知,x y 满足33025010x y x y x y -+≥⎧⎪+≥⎨⎪+-≤⎩,则36y z x -=-的最小值为( ) A .157 B .913 C .17 D .313【答案】D【解析】【分析】 画出可行域,目标函数36y z x -=-的几何意义是可行域内的点与定点(6,3)P 连接的斜率,根据图像得到答案.【详解】画出可行域如图中阴影部分所示, 目标函数36y z x -=-的几何意义是可行域内的点与定点(6,3)P 连接的斜率. 直线330x y -+=与直线10x y +-=交于点13(,)22A -,由图可知,当可行域内的点为A 时,PA k 最小,故min333211362z -==--. 故选:D .【点睛】本题考查了线性规划问题,画出图像是解题的关键.。
专题06 数列、不等式-河北衡水中学高三数学(文)模拟试卷分项版
一、选择题1.【2018河北衡水11月联考】若实数,满足不等式组则的最大值为()A. 12B. 10C. 7D. 1【答案】B点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.2. 【2018河北衡水11月联考】若,,则下列不等式成立的是()A. B. C. D.【答案】D【解析】解:由指数函数单调递减可得:,选项错误;由幂函数单调递增可得:,选项错误;,选项 错误;本题选择D 选项.点睛:利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.3.【2018河北衡水中学高三上学期五调】若,x y 满足约束条件220,0,4,x y x y x y ⎧+≤⎪-≤⎨⎪+≤⎩则23y z x-=+的最小值为A .2-B .23-C .125-D .247- 【答案】C4. 【2017河北衡水中学高三上学期一调】若变量,x y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则22x y +的最大值是( )A .12B .10C .9D .4 【答案】B 【解析】考点:简单的线性规划.5. 【2017河北衡水中学高三上学期二调】已知数列{}n a 的前n 项和为n S ,满足()()211122,3n n nS n S n n n N a *+-+=+∈=,则数列{}n a 的通项n a =( )A .41n -B .21n +C .3nD .2n + 【答案】A 【解析】试题分析:当1n =时,()2213234,7a a ⋅+-⋅==,故A 选项正确. 考点:数列求通项.6. 【2017河北衡水中学高三上学期二调】已知数列{}n a 满足()211n n n n a a a a n N *+++-=-∈,且52a π=,若函数()2sin 22cos 2xf x x =+,记()n n y f a =,则数列{}n y 的前9项和为( ) A .0 B . 9- C .9 D .1 【答案】C 【解析】考点:数列求和.【思路点晴】由()211n n n n a a a a n N *+++-=-∈可知数列{}n a 为等差数列,另外还知道52a π=,没有其它特殊的要求,故不妨设2n a π=,也就是假设n a 为常熟列,每一项都是2π,然后将2n a π=代入()n f a 也就可以求出n y 每一项都是1,故前9项和为9.在选择填空题中,小题小做不要小题大做,往往可以节约很多的时间.7. 【2017河北衡水中学高三上学期三调】等比数列{}n a 的前n 项和为n S ,已知2532a a a =,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .36 【答案】B 【解析】考点:等比数列通项公式及求前n 项和公式. 【一题多解】由2532a a a =,得42a =.又47522a a +=,所以714a =,所以12q =,所以116a =,所以515(1)311a q S q-==-,故选B .8. 【2017河北衡水中学高三上学期三调】若正数,x y 满足35x y xy +=,则43x y +的取最小值时y 的值为( )A .1B .3C .4D .5 【答案】A 【解析】考点:基本不等式.9. 【2017河北衡水中学高三上学期三调】若,x y 满足3010x y x y x k -+≥⎧⎪++≥⎨⎪≤⎩,且2z x y =+的最大值为6,则k 的值为( )A .-1B .1C .-7D .7 【答案】B 【解析】试题分析:作出满足条件的平面区域,如图所示,由,30,x k x y =⎧⎨-+=⎩解得,3,x k y k =⎧⎨=+⎩则(,3)A k k +.由图知,当目标函数2z x y =+经过点(,3)A k k +时,z 最大,故236k k ++=,解得1k =,故选C .考点:简单的线性规划问题.10. 【2017河北衡水中学高三上学期五调】已知(,)P x y 为平面区域001(0)x y x y a x a a -≥⎧⎪+≥⎨⎪≤≤+>⎩内的任意一点,当该区域的面积为3时,2z x y =-的最大值是( ) A .6 B .3 C.2 D .1 【答案】A考点:线性规划.11. 【2017河北衡水中学高三猜题卷一】设等差数列的前项和为,已知,若,则( )...A. B. C. D.【答案】B 【解析】国为为等差数列,,,所以,所以k=7.选B.12. 【2017河北衡水中学高三押题卷三】数列满足,(),则( )A.B.C.D.【答案】D 【解析】因为数列满足,(),所以所以是公比为2的等比数列,所以13. 【2017河北衡水高三押题卷Ⅱ】已知数列是首项为1,公差为2的等差数列,数列满足关系,数列的前项和为,则的值为( )A.B.C.D.【答案】B点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项. 14. 【2017河北衡水中学九月联考摸底】已知数列{}n a 为等差数列,n S 为前n 项和,公差为d ,若100172017172017=-S S ,则d 的值为( )A.201 B.101 C.10 D.20 【答案】B.15. 【2017河北衡水中学高三下学期三调】已知是等比数列,且,,则等于( ) A.B. 24C.D. 48【答案】B【解析】,,,故选B .16.【2016河北衡水中学高三上学期六调】已知z=2x+y ,其中实数x ,y 满足,且z 的最大值是最小值的4倍,则a 的值是( ) A .B .C .4D .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z 的几何意义,结合目标函数z=2x+y 的最大值是最小值的4倍,建立方程关系,即可得到结论.故选:B.17.【2016河北衡水中学高三上学期六调】设S n是等比数列{a n}的前n项的和,S m﹣1=45,S m=93,则S m+1=189,则m=()A.6 B.5 C.4 D.3【考点】等比数列的前n 项和. 【分析】由题意得===2,再由S m ==93解得a 1=3,从而求m .二、填空题18、【2018河北衡水中学高三上学期一调】已知数列{}n a 是等差数列,数列{}n b 是等比数列,对一切n N +∈,都有1n n na b a +=,则数列{}n b 的通项公式为_________. 【答案】1n b =19. 【2018河北衡水中学高三上学期分科综合测试】若都是正数,且,则的最小值为__________. 【答案】 【解析】设都是正数,且,则,当且仅当时取等号,故答案为.【易错点晴】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).20. 【2018衡水中学高三八模】已知实数满足,则目标函数的最大值为__________.【答案】52.1 【2018河北衡水九月联考】已知实数,满足约束条件则的取值范围为__________(用区间表示).【答案】【解析】作出约束条件表示的平面区域(如图阴影部分表示)设,作出直线,当直线过点时,取得最小值;当直线过点时,取得最大值. 即,所以.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得. 22. 【2018衡水中学高三八模】已知数列的通项公式为,前项和为,则__________.【答案】1011点睛:本题考查了递推关系的应用、分组求和问题、三角函数的性质,考查了推理能力与计算能力,属于中档题.解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律。
河北省衡水中学2018届高三复习数学试题及答案
2017—2018学年高三复习卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设集合{1,2,3,4,5},{2,4},{1,2,3}U A B ===,则图中阴影部分所表示的集合是A .{}4B .{}2,4C .{}4,5D .{}1,3,42、已知集合{|10},{|02}P x x Q x x =-≤=≤≤,则()R C P Q =I A .(0,1) B .(0,2] C .[1,2] D .(1,2]3、设,a b R ∈,则“1ab>”是“0a b >>”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4、一个含有三个实数的集合可表示成{,,1}ba a,也可表示成2{,,0}a a b +,则20162016a b +等于 A .0 B .1 C .1- D .1±5、已知集合{|20},{|}A x x B x x a =-<=<,若A B A =I ,则实数a 的取值范围是 A .(,2]-∞- B .[2,)-+∞ C .(,2]-∞ D .[2,)+∞6、设集合{|1},{|}A x x B x x p =≤=>,要使A B φ=I ,则P 应满足的条件是 A .1p > B .1p ≥ C .1p < D .1p ≤7、下列五个写法:①{}{}11,2,3∈;②{}0φ⊆;③{}{}0,1,21,2,0⊆;④0φ∈;⑤0φφ=I ,其中错误的写法的个数为A .1B .2C .3D .48、设集合222{|1},{|1}2x A x y B y y x =+===-,则A B =I A .[2]- B .6161{(),()}22 C .6161{(),(),(0,1)}22- D .[2,2] 9、对任意实数x ,若[]x 表示不超过x 的最大整数,则“11x y -<-<”是“[][]x y =”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10、已知命题2000:,0p x R x ax a ∃∈++<,若p ⌝是真命题,则实数a 的取值范围是A .[0,4]B .(0,4)C .(,0)(4,)-∞+∞UD .(,0][4,)-∞+∞U11、对于任意两个正整数,m n ,定义某种运算“*”,法则如下:当,m n 都是正奇数时,m n m n *=+;当,m n 不全为正奇数时,m n mn *=,则在此定义下,集合{(,)|16,,}M a b a b a N b N ++=*=∈∈ 的真子集的个数是A .721-B .1121-C .1321-D .1421- 12、设函数()2(,,,0)f x ax bx c a b c R a =++∈> ,则“(())02bf f a-<”是“()f x 与(())f f x ”都恰有两个零点的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13、设命题200:,1p x R x ∃∈>,则p ⌝为14、若集合2{|60},{|10}P x x x T x mx =+-==+=,且T P ⊆,则实数m 的可能值组成的集合是 15、若不等式1x a -<成立的一个充分条件是04x <<,则实数a 的取值范围是16、已知221:12,:2103x p q x x m --≤-+-≤,若p ⌝是q ⌝的必要不充分条件,则实数m 的取值范围是三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 17、(本小题满分10分)已知集合{|23},{|1A x a x a B x x =≤≤+=<-或5}x >. (1)若1a =-,求,()R A B C A B U I ; (2)若A B φ=I ,求实数a 的取值范围.18、(本小题满分12分)已知命题:p 方程2220x ax a +-=在区间[]1,1-上有解,命题:q 只有一个实数0x 满足不等式200220x ax a ++≤,若命题“”是假命题,求实数a 的取值范围.19、(本小题满分12分)已知全集U R =,集合{|4A x x =<-或1},{|312}x B x x >=-≤-≤. (1)求,()()U U A B C A C B I U ;(2)若集合{|2121}M x k x k =-≤≤+是集合A 的子集,求实数k 的取值范围.20、(本小题满分12分)已知命题:p 实数x 满足22430x ax a -+<(其中0a >),命题:q 实数x 满足12302x x x ⎧-≤⎪⎨+≥⎪-⎩ .(1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p ⌝是q ⌝的充分不必要条件,求实数的a 的取值范围.21、(本小题满分12分)已知a R ∈,命题2:[1,2],0p x x a ∀∈-≥,命题2000:,220q x R x ax a ∃∈++-=.(1)若命题p 为真命题,求实数a 的取值范围;(2)若命题“p q ∧”为真命题,命题“p q ∨”为假命题,求实数a 的取值范围22、(本小题满分12分)已知命题:p 方程210x mx ++=有两个不等的实数根;命题:q 方程244(2)10x m x +-+=无实根,若“p q ∨”为真,“p q ∧”为假,求实数m 的取值范围.。
2018年高考数学—不等式专题
不等式(必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________.解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0,解得m >-3+22或m <-3-2 2.答案 (-∞,-3-22)∪(-3+22,+∞)(2016·全国Ⅱ卷)若x ,y 满足约束条件⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y得到-5. 答案 -5(2016·全国Ⅲ卷)设x ,y 满足约束条件⎩⎨⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x+3y -5的最小值为_____.解析 画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z 3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.(2017·西安检测)已知变量x ,y 满足⎩⎨⎧2x -y ≤0,x -2y +3≥0,x ≥0,则z =(2)2x +y 的最大值为________.解析 作出不等式组所表示的平面区域,如图阴影部分所示.令m =2x +y ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的纵截距最大,此时m 最大,故z 最大.由⎩⎪⎨⎪⎧2x -y =0,x -2y +3=0,解得⎩⎪⎨⎪⎧x =1,y =2,即A (1,2).代入目标函数z =(2)2x +y 得,z =(2)2×1+2=4. 答案 4(2016·北京卷)若x ,y 满足⎩⎨⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为()A.0B.3C.4D.5 解析 画出可行域,如图中阴影部分所示, 令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4.答案 C(2016·山东卷)若变量x ,y 满足⎩⎨⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是()A.4B.9C.10D.12 解析 作出不等式组所表示的平面区域,如图(阴影部分)所示, x 2+y 2表示平面区域内的点到原点的距离的平方,由图易知平面区域内的点A (3,-1)到原点的距离最大.所以x 2+y 2的最大值为32+(-1)2=10.答案 C(2015·福建卷)若直线x a +y b =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A.2B.3C.4D.5解析 因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1.所以a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a =b =2时取“=”,故选C. 答案 C(2016·合肥二模)若a ,b 都是正数,则⎝ ⎛⎭⎪⎫1+b a ·⎝ ⎛⎭⎪⎫1+4a b 的最小值为( ) A.7B.8C.9D.10解析 ∵a ,b 都是正数,∴⎝⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b =5+b a +4a b ≥5+2b a ·4a b =9,当且仅当b =2a >0时取等号.故选C.答案 C(2015·湖南卷)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A. 2B.2C.2 2D.4解析 依题意知a >0,b >0,则1a +2b ≥22ab =22ab ,当且仅当1a =2b,即b=2a时,“=”成立.因为1a +2b=ab,所以ab≥22ab,即ab≥22,所以ab的最小值为22,故选C 答案 C。
最新-2018年高考数学一轮经典例题 不等式解法 理 精品
2018年高考数学(理)一轮经典例题——不等式解法例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
河北衡水中学高三数学高考冲刺--不等式解析版
河北衡水中学高三数学高考冲刺解析版专题不等式(近三年)一、选择题1.【2018河北衡水11月联考】若实数,满足不等式组则的最大值为()A. 12B. 10C. 7D. 1【答案】B点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.2. 【2018河北衡水11月联考】若,,则下列不等式成立的是()A. B. C. D.【答案】D【解析】解:由指数函数单调递减可得:,选项错误;由幂函数单调递增可得:,选项错误;,选项错误;本题选择D选项.点睛:利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.3.【2018河北衡水中学高三上学期五调】若,x y满足约束条件220,0,4,x yx yx y⎧+≤⎪-≤⎨⎪+≤⎩则23yzx-=+的最小值为A.2-B.23-C.125-D.47【答案】C4. 【2017河北衡水中学高三上学期一调】若变量,x y满足2,239,0,x yx yx+≤⎧⎪-≤⎨⎪≥⎩则22x y+的最大值是()A.12 B.10C.9 D.4【答案】B【解析】考点:简单的线性规划.5. 【2017河北衡水中学高三上学期二调】已知数列{}n a 的前n 项和为n S ,满足()()211122,3n n nS n S n n n N a *+-+=+∈=,则数列{}n a 的通项n a =( )A .41n -B .21n +C .3nD .2n + 【答案】A 【解析】试题分析:当1n =时,()2213234,7a a ⋅+-⋅==,故A 选项正确. 考点:数列求通项.6. 【2017河北衡水中学高三上学期二调】已知数列{}n a 满足()211n n n n a a a a n N *+++-=-∈,且52a π=,若函数()2sin 22cos2xf x x =+,记()n n y f a =,则数列{}n y 的前9项和为( ) A .0 B . 9- C .9 D .1【答案】C 【解析】考点:数列求和.【思路点晴】由()211n n n n a a a a n N *+++-=-∈可知数列{}n a 为等差数列,另外还知道52a π=,没有其它特殊的要求,故不妨设2n a π=,也就是假设n a 为常熟列,每一项都是2π,然后将2n a π=代入()n f a 也就可以求出n y 每一项都是1,故前9项和为9.在选择填空题中,小题小做不要小题大做,往往可以节约很多的时间.7. 【2017河北衡水中学高三上学期三调】等比数列{}n a 的前n 项和为n S ,已知2532a a a =,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .36 【答案】B 【解析】考点:等比数列通项公式及求前n 项和公式.【一题多解】由2532a a a =,得42a =.又47522a a +=,所以714a =,所以12q =,所以116a =,所以515(1)311a q S q-==-,故选B .8. 【2017河北衡水中学高三上学期三调】若正数,x y 满足35x y xy +=,则43x y +的取最小值时y 的值为( )A .1B .3C .4D .5 【答案】A 【解析】考点:基本不等式.9. 【2017河北衡水中学高三上学期三调】若,x y 满足3010x y x y x k -+≥⎧⎪++≥⎨⎪≤⎩,且2z x y =+的最大值为6,则k 的值为( )A .-1B .1C .-7D .7 【答案】B 【解析】试题分析:作出满足条件的平面区域,如图所示,由,30,x k x y =⎧⎨-+=⎩解得,3,x k y k =⎧⎨=+⎩则(,3)A k k +.由图知,当目标函数2z x y =+经过点(,3)A k k +时,z 最大,故236k k ++=,解得1k =,故选C .考点:简单的线性规划问题.10. 【2017河北衡水中学高三上学期五调】已知(,)P x y 为平面区域001(0)x y x y a x a a -≥⎧⎪+≥⎨⎪≤≤+>⎩内的任意一点,当该区域的面积为3时,2z x y =-的最大值是( )A .6B .3 C.2 D .1 【答案】A考点:线性规划.11. 【2017河北衡水中学高三猜题卷一】设等差数列的前项和为,已知,若,则( )... A. B. C. D.【答案】B 【解析】国为为等差数列,,,所以,所以k=7.选B.12. 【2017河北衡水中学高三押题卷三】数列满足,(),则( ) A.B.C.D.【答案】D【解析】因为数列满足,(),所以所以是公比为2的等比数列,所以13. 【2017河北衡水高三押题卷Ⅱ】已知数列是首项为1,公差为2的等差数列,数列满足关系,数列的前项和为,则的值为( )A.B.C.D.【答案】B点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.14. 【2017河北衡水中学九月联考摸底】已知数列{}n a 为等差数列,n S 为前n 项和,公差为d ,若100172017172017=-S S ,则d 的值为( ) A.201 B.101 C.10 D.20 【答案】B.15. 【2017河北衡水中学高三下学期三调】已知是等比数列,且,,则等于()A. B. 24 C. D. 48【答案】B【解析】,,,故选B.16.【2016河北衡水中学高三上学期六调】已知z=2x+y,其中实数x,y满足,且z的最大值是最小值的4倍,则a的值是()A.B.C.4 D.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z的几何意义,结合目标函数z=2x+y的最大值是最小值的4倍,建立方程关系,即可得到结论.故选:B.17.【2016河北衡水中学高三上学期六调】设S n是等比数列{a n}的前n项的和,S m﹣1=45,S m=93,则S m+1=189,则m=()A.6 B.5 C.4 D.3【考点】等比数列的前n项和.【分析】由题意得===2,再由S m==93解得a1=3,从而求m.二、填空题18、【2018河北衡水中学高三上学期一调】已知数列{}n a是等差数列,数列{}n b是等比数列,对一切n N+∈,都有1nnnaba+=,则数列{}n b的通项公式为_________.【答案】1nb=19. 【2018河北衡水中学高三上学期分科综合测试】若都是正数,且,则的最小值为__________.【答案】【解析】设都是正数,且,则,当且仅当时取等号,故答案为.【易错点晴】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).20. 【2018衡水中学高三八模】已知实数满足,则目标函数的最大值为__________.【答案】52.1 【2018河北衡水九月联考】已知实数,满足约束条件则的取值范围为__________(用区间表示).【答案】【解析】作出约束条件表示的平面区域(如图阴影部分表示) 设,作出直线,当直线过点时,取得最小值;当直线过点时,取得最大值.即,所以.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.22. 【2018衡水中学高三八模】已知数列的通项公式为,前项和为,则__________.【答案】1011点睛:本题考查了递推关系的应用、分组求和问题、三角函数的性质,考查了推理能力与计算能力,属于中档题.解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律。
衡水市2018届高考数学复习 专题十九 不等式选讲专项练习 理
专题十九《不等式选讲》数学试卷考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________题号一二三四总分得分注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上第1卷评卷人得分一、选择题1、对于实数,若,规定,则不等式的解集是( )A。
B.C。
D。
2、若关于的不等式有实数解,则实数的取值范围为( )A.B。
C。
D。
3、不等式的解集是( )A.B.C.D。
4、不等式的解集是( )A.B.C.D.5、不等式的解集为()A.B.C。
D.6、已知实数,满足,且,则等于( )A.B.C。
D.7、若不等式的解集是,则() A。
B。
C。
D。
8、不等式的解集是( )A。
B.C.D.9、不等式的解集是()A.B。
或C.D。
或10、关于的不等式的解集不是空集,的取值范围是()A。
B.C。
D.11、已知,满足,则的取值范围为( )A。
B。
C。
D。
12、已知函数,若关于的不等式的解集中的整数恰有个,则实数的取值范围为()A.B.C。
D。
评卷人得分二、填空题13、对于任意实数和,不等式恒成立,则实数的取值范围是 .14、已知函数,若,则实数的取值范围是 .15、在上随机取一个数,则事件“成立”发生的概率为__________。
16、设,若不等式对任意实数恒成立,则取值集合是 .评卷人得分三、解答题17、已知函数.1。
求不等式的解集;2.若不等式的解集非空,求的取值范围。
18、已知函数,。
1.当时,求不等式的解集;2.若不等式的解集包含,求的取值范围.19、已知函数.1.证明:;2。
若,求的取值范围.20、根据所学知识,回答下列问题.1。
已知对于任意非零实数和,不等式恒成立,试求实数的取值范围;2。
已知不等式的解集为,若,,试比较与的大小.(并说明理由)21、已知,,为正实数,且.1。
高考数学复习专题十九不等式选讲专项练习理(2021学年)
河北省衡水市2018届高考数学复习专题十九不等式选讲专项练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省衡水市2018届高考数学复习专题十九不等式选讲专项练习理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省衡水市2018届高考数学复习专题十九不等式选讲专项练习理的全部内容。
专题十九《不等式选讲》数学试卷考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________题号一二三四总分得分注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上ﻫ第1卷评卷人得分一、选择题1、对于实数,若,规定,则不等式的解集是( )A.ﻫB。
ﻫC。
D。
2、若关于的不等式有实数解,则实数的取值范围为( )A。
ﻫ B.ﻫ C.D。
3、不等式的解集是( )ﻫA。
B.ﻫC。
D.4、不等式的解集是()ﻫ A.ﻫ B.ﻫC.ﻫD。
5、不等式的解集为( )ﻫA。
B.C.ﻫD.6、已知实数,满足,且,则等于( )ﻫA.ﻫB.ﻫC。
D。
7、若不等式的解集是,则( )ﻫA。
B.C.D。
8、不等式的解集是( )A.B.ﻫC.D.9、不等式的解集是()A。
B。
或C。
D.或10、关于的不等式的解集不是空集,的取值范围是( )ﻫA。
ﻫB。
C。
D。
11、已知,满足,则的取值范围为( )ﻫA。
ﻫ B.C。
D。
12、已知函数,若关于的不等式的解集中的整数恰有个,则实数的取值范围为( )A.B。
ﻫC。
ﻫD。
评卷人得分二、填空题13、对于任意实数和,不等式恒成立,则实数的取值范围是.14、已知函数,若,则实数的取值范围是.15、在上随机取一个数,则事件“成立”发生的概率为__________。
衡水市2018届高考数学复习 专题十 不等式专项练习 理
专题十《不等式》数学试卷考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________题号一二三四总分得分注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上第1卷评卷人得分一、选择题1、设,则下列不等式成立的是( )A。
B。
C。
D。
2、设,,,则,,的大小关系是()A.B.C.D。
3、不等式的解集为( )A。
B。
C。
D。
4、不等式的解集为( )A.或B。
或C.或D。
或5、若实数,满足,则的最小值为( )A。
B.C.D。
6、设,满足约束条件,若目标函数,最大值为,则的图象向右平移后的表达式为( )A.B。
C。
D。
7、,满足约束条件,若取得最大值的最优解不唯一,则实数的值为( )A。
B.C。
D。
或8、不等式组()所表示平面区域的面积为,则的最小值等于( )A。
30B.32C.34D.369、某公司生产甲、乙两种产品,生产甲产品件需耗原料千克、原料千克;生产乙产品件需耗原料千克、原料千克。
每件甲产品的利润是元,每件乙产品的利润是元。
公司在生产这两种产品的计划中,要求每天消耗,原料都不超过千克。
通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()A.1800元B.2400元C。
2800元D。
3100元10、已知,为正实数,则的最小值为( )A.B.C.D.11、若,且,则下列不等式成立的是( )A.B.C.D.12、已知关于的不等式的解集为空集,则的最小值为( )A.B.C。
D.评卷人得分二、填空题13、设,满足约束条件,则的最小值为。
14、若,,则的最小值为。
15、已知不等式的解集为,则不等式的解集为。
16、已知正数,满足,则的最小值为。
评卷人得分三、解答题17、设函数的最大值为。
1。
求;2.若,,,,求的最大值.18、已知,设命题:,使得不等式能成立;命题:不等式对恒成立,若为假,为真,求的取值范围.19、已知函数。
2018衡水名师原创专题卷+理数+专题十《不等式》
绝密★启用前2018衡水名师原创专题卷理数专题十《不等式》数学试卷考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项:卡上第1卷一、选择题1、设,则下列不等式成立的是()A.B.C.D.2、设,,,则,,的大小关系是( )A.B.C.D.3、不等式的解集为()A.B.C.D.4、不等式的解集为()A.或B.或C.或D.或5、若实数,满足,则的最小值为( )A.B.C.D.6、设,满足约束条件,若目标函数,最大值为,则的图象向右平移后的表达式为()A.B.C.D.7、,满足约束条件,若取得最大值的最优解不唯一,则实数的值为( )A.B.C.D.或8、不等式组()所表示平面区域的面积为,则的最小值等于( )A.30B.32C.34D.369、某公司生产甲、乙两种产品,生产甲产品件需耗原料千克、原料千克;生产乙产品件需耗原料千克、原料千克.每件甲产品的利润是元,每件乙产品的利润是元.公司在生产这两种产品的计划中,要求每天消耗,原料都不超过千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A.1800元B.2400元C.2800元D.3100元10、已知,为正实数,则的最小值为( )A.B.C.D.11、若,且,则下列不等式成立的是( )A.B.C.D.12、已知关于的不等式的解集为空集,则的最小值为( )A.B.C.D.二、填空题13、设,满足约束条件,则的最小值为.14、若,,则的最小值为.15、已知不等式的解集为,则不等式的解集为.16、已知正数,满足,则的最小值为.三、解答题17、设函数的最大值为.1.求;2.若,,,,求的最大值.18、已知,设命题:,使得不等式能成立;命题:不等式对恒成立,若为假,为真,求的取值范围.19、已知函数.1.解关于的不等式;2.当时,不等式在上恒成立,求实数的取值范围;20、已知二次函数,关于实数的不等式的解集为.1.当时,解关于的不等式:;2.是否存在实数,使得关于的函数()的最小值为?若存在,求实数的值;若不存在,说明理由.21、解关于不等式:.22、已知不等式的解集为.1.求,的值;2.已知,求证:存在实数,使恒成立,并求的最大值.四、证明题23、设,,均为正数,且,证明:.参考答案:一、选择题1.答案:D解析:由,可设,,代入选项验证可知成立,故选D.2.答案:B解析:,,,所以,选B.3.答案:B解析:∵,故不等式的解集为.4.答案:B解析:不等式,则相应方程的根为,,,由穿针法可得原不等式的解为或.5.答案:D解析:如图,的最小值为,选D.6.答案:C解析:画出可行域与目标函数基准线,由线性规划知识,可得当直线过点时,取得最大值,即,解得;则的图象向右平移个单位后得到的解析式为,故答案选C.7.答案:C解析:作出不等式组对应的平面区域如图:(阴影部分).由得,即直线的截距最小,最大.若,此时,此时,目标函数只在处取得最大值,不满足条件,若,目标函数的斜率,要使取得最大值的最优解不唯一,则直线与直线平行,此时,若,不满足,故选C.8.答案:B解析:,所以,当且仅当时取得等号,所以选B.9.答案:C解析:设生产甲产品件,乙产品件,依题意有,目标函数,作出可行域,如图,由图可知经过点时取得最大值,由得,∴,时,(元).10.答案:D解析:由于,为正实数,则,当且仅当时,等号成立,则其最小值为,故选D.11.答案:B解析:因为,且,所以,,所以,,,所以选B.12.答案:D解析:依题意得:,,得,∴,令,则,所以.则的最小值为.二、填空题13.答案:-5解析:不等式组表示的平面区域如图所示由得,求的最小值,即求直线的纵截距的最大值,当直线过图中点时,纵截距最大,由解得点坐标为,此时.14.答案:4解析:,(前一个等号成立条件是,后一个等号成立的条件是,两个等号可以同时取得,则当且仅当,时取等号).15.答案:或解析:根据题意可得,,∴,,∴可化为,∴不等式的解集为或.16.答案:36解析:,当且仅当时取等号,因此的最小值为.三、解答题17.答案:1.当时,;当时,;当时,,故当时,取得最大值.2.因为,当且仅当时取等号,此时取得最大值.18.答案:命题:,能成立,∵,∴,∵在为增函数,∴,即,命题:当时,适合题意,当时,得,∴当命题为真时,,若为假,为真,则,一真一假,如果真假,则;如果假真,则.∴的取值范围为或.19.答案:1.∵,∴,①当时,,②当时,,∴,③当时,,综上,当时,不等式的解集为,当时,不等式的解集为,当时,不等式的解集为.2.当时,化为,∵,恒成立,∴,设,∴,当且仅当,即时,等号成立.∴,∴.20.答案:1.由不等式的解集为知,关于的方程的两根为和,且,由根与系数关系,得,∴,所以原不等式化为,①当时,原不等式化为,且,解得或;②当时,原不等式化为,解得且;③当时,原不等式化为,且,解得或.综上所述:当时,原不等式的解集为或;当时,原不等式的解集为或.2.假设存在满足条件的实数,由1问得,,,令,则,对称轴,因为,所以,,所以函数在单调递减,所以当时,的最小值为,解得.21.答案:由,有可知,因此原不等式等价于,即,解得,因此原不等式的解集为.22.答案: 1.①当时,不等式可化为,此时无解.②当时,不等式可化为,此时.③当时,不等式可化为,此时.综合①②③得不等式解集为,比较得,.2.由1问知,,.存在实数,使恒成立,即存在实数,使恒成立.又,所以,,,所以,当且仅当时取等号,即,所以,得,故存在实数,使恒成立,且的最大值为.四、证明题23.答案:法一:当且仅当时,等号成立.法二:由柯西不等式有:,所以有.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十《不等式》
数学试卷
考试范围:xxx;考试时间:100分钟;命题人:xxx 学校:___________姓名:___________班级:___________考号:___________
注意事项:
卡上
第1卷
一、选择题
1、设,则下列不等式成立的是( )
A.
B.
C.
D.
2、设,,,则,,的大小关系是( ) A.
B.
C.
D.
3、不等式的解集为( )
A.
B.
C.
D.
4、不等式的解集为( )
A.或
B.或
C.或
D.或
5、若实数,满足,则的最小值为( )
A.
B.
C.
D.
6、设,满足约束条件,若目标函数,最大值为,则的图象向右平移后的表达式为( )
A.
B.
C.
D.
7、,满足约束条件,若取得最大值的最优解不唯一,则实数的值为( )
A.
B.
C.
D.或
8、不等式组()所表示平面区域的面积为,则的最小值等于( )
A.30
B.32
C.34
D.36
9、某公司生产甲、乙两种产品,生产甲产品件需耗原料千克、原料千克;生产乙产
品件需耗原料千克、原料千克.每件甲产品的利润是元,每件乙产品的利润是
元.公司在生产这两种产品的计划中,要求每天消耗,原料都不超过千克.通过合
理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )
A.1800元
B.2400元
C.2800元
D.3100元
10、已知,为正实数,则的最小值为( )
A.
B.
C.
D.
11、若,且,则下列不等式成立的是( )
A.
B.
C.
D.
12、已知关于的不等式的解集为空集,则
的最小值为( )
A.
B.
C.
D.
二、填空题
13、设,满足约束条件,则的最小值为.
14、若,,则的最小值为.
15、已知不等式的解集为,则不等式
的解集为.
16、已知正数,满足,则的最小值为.
三、解答题
17、设函数的最大值为.
1.求;
2.若,,,,求的最大值.
18、已知,设命题:,使得不等式能成立;命题:不等式
对恒成立,若为假,为真,求的取值范围.
19、已知函数.
1.解关于的不等式;
2.当时,不等式在上恒成立,求实数的取值范围;
20、已知二次函数,关于实数的不等式的解集为
.
1.当时,解关于的不等式:;
2.是否存在实数,使得关于的函数()的最小值为?若存在,求实数的值;若不存在,说明理由.
21、解关于不等式:.
22、已知不等式的解集为.
1.求,的值;
2.已知,求证:存在实数,使恒成立,并求的最大值.
四、证明题
23、设,,均为正数,且,证明:.
参考答案:
一、选择题
1.
答案:D
解析:由,可设,,代入选项验证可知
成立,故选D.
2.
答案:B
解析:,,,所以,选B.
3.
答案:B
解析:∵,
故不等式的解集为.
4.
答案:B
解析:不等式
,
则相应方程的根为,,,
由穿针法可得原不等式的解为或.
5.
答案:D
解析:如图,的最小值为,选D.
6.
答案:C
解析:画出可行域与目标函数基准线,由线性规划知识, 可得当直线过点时,取得最大值,
即,解得;
则的图象向右平移个单位后得到的解析式为
,
故答案选C.
7.
答案:C
解析:作出不等式组对应的平面区域如图:(阴影部分).
由得,即直线的截距最小,
最大.若,此时,此时,目标函数只在处取得最大值, 不满足条件,若,目标函数的斜率,
要使取得最大值的最优解不唯一,
则直线与直线平行,
此时,若,不满足,故选C.
8.
答案:B
解析:,
所以
,
当且仅当时取得等号,所以选B.
9.
答案:C
解析:设生产甲产品件,乙产品件,依题意有,
目标函数,
作出可行域,如图,
由图可知经过点时取得最大值,
由得,∴,时,
(元).
10.
答案:D
解析:由于,为正实数,则
,
当且仅当时,等号成立,则其最小值为,故选D.
11.
答案:B
解析:因为,且,所以,,
所以,,
,
所以选B.
12.
答案:D
解析:依题意得:,,得,
∴,
令,则,
所以. 则的最小值为.
二、填空题
13.
答案:-5
解析:不等式组表示的平面区域如图所示
由得,求的最小值,
即求直线的纵截距的最大值,
当直线过图中点时,纵截距最大,
由解得点坐标为,
此时.
14.
答案:4
解析:,(前一个等
号成立条件是,后一个等号成立的条件是,两个等号可以同时取得,则当且仅当,时取等号).
15.
答案:或
解析:根据题意可得,,∴,,
∴可化为
,
∴不等式的解集为或.
16.
答案:36
解析:
,
当且仅当时取等号,因此的最小值为.
三、解答题
17.
答案:1.当时,;
当时,;
当时,,
故当时,取得最大值.
2.因为, 当且仅当时取等号,此时取得最大值.
18.
答案:命题:,能成
立,∵,∴,
∵在为增函数,∴,即,
命题:当时,适合题意,
当时,得,∴当命题为真时,,
若为假,为真,则,一真一假,
如果真假,则;如果假真,则.
∴的取值范围为或.
19.
答案:1.∵,∴,
①当时,,
②当时,,∴,
③当时,,
综上,当时,不等式的解集为,
当时,不等式的解集为,
当时,不等式的解集为.
2.当时,化为,
∵,恒成立,∴,
设,∴, 当且仅当,即时,等号成立.
∴,
∴.
20.
答案:1.由不等式的解集为知,
关于的方程的两根为和,且,
由根与系数关系,得,∴,
所以原不等式化为,
①当时,原不等式化为,
且,解得或;
②当时,原不等式化为,解得且;
③当时,原不等式化为,
且,解得或.
综上所述:当时,原不等式的解集为或;
当时,原不等式的解集为或.
2.假设存在满足条件的实数,由1问得,,
,
令,则,
对称轴,因为,所以,,
所以函数在单调递减,
所以当时,的最小值为,
解得.
21.
答案:由,有可知,
因此原不等式等价于,
即,解得,
因此原不等式的解集为.
22.
答案: 1.①当时,不等式可化为,此时无解.
②当时,不等式可化为,此时
.
③当时,不等式可化为,此时. 综合①②③得不等式解集为,比较得,.
2.由1问知,,.存在实数,使恒成立,
即存在实数,使恒成立.
又,所以,,,
所以,
当且仅当时取等号,即,
所以,得,
故存在实数,使恒成立,
且的最大值为.
四、证明题
23.
答案:法一:
当且仅当时,等号成立.
法二:
由柯西不等式
有:
,
所以有.。