双曲线的简单几何性质 (一) - 浙江省桐乡
双曲线的简单几何性质(一)
B1 F2(c,0)
A1 O F1
x F1(0,-c)
x y 2 1 (a b 0) a2 b
x ≥ a 或 x ≤ a,y R
关于x轴、y轴、原点对称
A1(- a,0),A2(a,0)
y ≥ a 或 y ≤ a,x R
y2 x2 2 1 (a 0 ,b 0 ) 2 a b
13
根据下列条件,求双曲线方程: x2 y2 ⑴与双曲线 1 有共同渐近线,且过点 ( 3, 2 3) ; 9 16 2 2 x y 1 有公共焦点,且过点 (3 2 , 2) ⑵与双曲线 16 4
分析:这里所求的双曲线方程易知是标准方程.
这里有两种方法来思考:
法一:直接设标准方程,运用待定系数法;
3 2 离心率为_______ 4 2 x x 2 y 1 的渐近线方程为: y (2) : 4 2 2 x x 2 y 4的渐近线方程为: y 2 4 2 x x 2 y 1的渐近线方程为: y 4 2 2 x y 2 4 的渐近线方程为: y x
另外
b a c2 a2 c 2 ( ) 1 e2 1 a a
c ⑴定义:双曲线的焦距与实轴长的比 e ,叫做双曲线的离心率. a
5、离心率
b b ∴当 e (1, ) 时, (0, ) ,且 e 增大, 也增大. a a
e 增大时,渐近线与实轴的夹角增大.
17
b 求证:渐近线方程为 y x 的双曲线的方程可写成 a x2 y2 2 ( 0) 的形式. 2 a b
证明:直线 y
∴双曲线的方程可写成
∴双曲线的中心在原点,焦点在坐标轴上. x2 y2 ⑴当焦点在 x 轴上,则方程可设为 2 2 1 . m 2 n 2 n2 b 2 2 2 ∴ 2 2 ,令 m a ( 0) ,则 n b m a x2 y2 x2 y2
双曲线的简单几何性质课件
1(λ≠0,-b2<λ<a2).
x2 y2
x2 y2
(4) 与 双 曲 线 a2 - b2 = 1 具 有 相 同 渐 近 线 的 双 曲 线 方 程 可 设 为 a2 - b2 =
λ(λ≠0).
(5)渐近线为 ax±by=0 的双曲线方程可设为 a2x2-b2y2=λ(λ≠0).
求满足下列条件的双曲线的标准方程. (1)以直线 2x±3y=0 为渐近线,过点(1,2);
b
b
b2
程求解,另一种方法是消去 c 转化成含a 的方程,求出a 后利用 e= 1+a2 求
离心率.
2.求离心率的范围技巧 (1)根据条件建立 a,b,c 的不等式. (2)通过解不等式得ca 或ba 的范围,求得离心率的范围.
(2)双曲线离心率对曲线形状有何影响? x2 y2
提示:以双曲线a2 -b2 =1(a>0,b>0)为例.
c
a2+b2
b2
b
b
e=a = a = 1+a2 ,故当a 的值越大,渐近线 y=a x 的斜率越大,双
曲线的开口越大,e 也越大,所以 e 反映了双曲线开口的大小,即双曲线的离心
率越大,它的开口就越大.
巧设双曲线方程的方法与技巧
x2 y2 (1)焦点在 x 轴上的双曲线的标准方程可设为a2 -b2 =1(a>0,b>0).
y2 x2 (2)焦点在 y 轴上的双曲线的标准方程可设为a2 -b2 =1(a>0,b>0).
x2
y2
x2
y2
(3) 与 双 曲 线 a2 - b2 = 1 共 焦 点 的 双 曲 线 方 程 可 设 为 a2-λ - b2+λ =
B.y=±34 x
高中数学教程双曲线的几何性质
高中数学教程双曲线的几何性质(1)目标:1.能用对比的方法分析双曲线的范围、对称性、顶点等几何性质,并熟记之;2.掌握双曲线的渐近线的概念和证明; 3.明确双曲线方程中,,a b c 的几何意义;4.能根据双曲线的几何性质,确定双曲线的方程并解决简单问题。
重、难点:双曲线的范围、对称性、顶点和渐近线。
(一)复习:1.双曲线的定义和标准方程; 2.椭圆的性质;(二)新课讲解:以双曲线标准方程12222=-by a x 为例进行说明。
1.范围:观察双曲线的草图,可以直观看出曲线在坐标系中的范围:双曲线在两条直线a x ±= 的外侧。
注意:从双曲线的方程如何验证?从标准方程12222=-b y a x 可知22221b y a x ≥-,由此双曲线上点的坐标都适合不等式122≥ax即22a x ≥,a x ≥即双曲线在两条直线a x ±=的外侧。
2.对称性:双曲线12222=-by a x 关于每个坐标轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线12222=-by a x 的对称中心,双曲线的对称中心叫做双曲线的中心。
3.顶点:双曲线和对称轴的交点叫做双曲线的顶点。
在双曲线12222=-by a x 的方程里,对称轴是,x y 轴,所以令0=y 得a x ±=,因此双曲线和x 轴有两个交点)0,()0,(2a A a A -,他们是双曲线12222=-by a x 的顶点。
令0=x ,没有实根,因此双曲线和y 轴没有交点。
1)注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点), 双曲线的顶点分别是实轴的两个端点。
2)实轴:线段2A A 叫做双曲线的实轴,它的长等于2,a a 叫做双曲线的实半轴长。
虚轴:线段2B B 叫做双曲线的虚轴,它的长等于2,b b 叫做双曲线的虚半轴长。
在作图时,我们常常把虚轴的两个端点画上(为要确定渐进线),但要注意他们并非是双曲线的顶点。
双曲线的简单几何性质(基础知识+基本题型)(含解析)2021-2022学年高二数学上学期
3.2.2双曲线的简单几何性质(基础知识+基本题型)知识点一 双曲线的性质根据双曲线的标准方程22221(0,0)x y a b a b-=>>研究它的几何性质.1.范围,x a y R ≥∈,即,x a x a y R ≥≤-∈或.双曲线位于两条直线x a =±的外侧.讨论双曲线的范围就是确定方程中变量,x y 的范围,由不等式222211x y a b =+≥,得||x a ≥,由222211y x b a--≥-,得y R ∈. 提示双曲线在直线x a =与x a =-之间没有图象,当x 无限增大时,y 也无限增大,所以双曲线是无限伸展的,不像椭圆那样是封闭的.2.对称性双曲线的图象关于x 轴、y 轴成轴对称,关于原点成中心对称,我们把x 轴、y 轴叫做双曲线的对称轴,原点(0,0)O 叫做双曲线的对称中心,简称中心. 提示(1)把双曲线标准方程中的x 换成x -,方程并没有发生变化,说明当点(,)P x y 在双曲线上时,它关于y 轴的对称点1(,)P x y -也在双曲线上,所以双曲线的图象关于y 轴成轴对称.(2)同理,把双曲线标准方程中的y 换成y -,可以说明双曲线的图象关于关于x 轴成轴对称;把双曲线标准方程中的x 换成x -,y 换成y -,可以说明双曲线的图象关于原点成中心对称. (3)如果曲线具有三种对称性的其中两种,那么它就具有另一种对称性.(4)对于任意一个双曲线而言,对称轴是两个焦点的连线所在直线及其垂直平分线,且双曲线的中心是双曲线的对称中心.3.顶点与实轴、虚轴如图所示.(1)双曲线和其对称轴的交点叫做双曲线的顶点,双曲线的顶点为1(,0)A a -,2(,0)A a . (2)线段12A A 叫做双曲线的实轴,线段12B B 叫做双曲线的虚轴.(3)实轴长122A A a =,虚轴长122B B b =,,a b 分别为双曲线的半实轴长和半虚轴长.拓展双曲线中,,a b c 的几何意义及特征三角形:(1)当双曲线焦点在x 轴上时,a 是半实轴长,b 是半虚轴长,且222c a b =+,所以以,,a b c 为三边长可构成直角三角形,如图2.3-10所示,其中22Rt OA B ∆称为双曲线的特征三角形,双曲线的焦点永远在实轴上.(2)当双曲线的焦点在y 轴上时,可得类似的结论.4.渐近线(1)渐近线画法:经过点1(,0)A a -,2(,0)A a 作y 轴的平行线x a =±,经过点1(0,)B b -,2(0,)B b 作x轴的平行线y b =±,四条直线围成一个矩形,矩形 两条对角线,这两条对角线所在的直线即为双曲线的渐近线.双曲线22221x y a b-=的各支向外延伸时,与这两条直线逐渐接近.(2)渐近线方程:by x a =±.拓展(1)双曲线22221x y a b -=的渐近线方程为b y x a =±,双曲线22221y x a b -=的渐近线方程为ay x b=±,两者容易混淆,可先将双曲线方程中的“1”换成“0”,再因式分解即可得渐近线方程,这样就不容易记错了.(2)双曲线与它的渐近线无限接近,但永远不相交.(3)与双曲线22221x y a b -=共渐近线的双曲线方程可设为2222(0)x y a b λλ-=≠;与双曲线22221x y a b-=共焦点的双曲线方程可设为2222221()x y b a a b λλλ-=-<<-+.5.离心率(1)定义:双曲线的焦距与实轴长的比叫做双曲线的离心率,定义式c e e a =⇒(2)范围:1e >.由等式222c a b =+,得b a ==e 越大,b a 也越大,即渐近线b y xa=±的斜率的绝对值越大,这时双曲线的形状就越陡,由此可知,双曲线的离心率越大,它的开口就越开阔. 提示因为c e a =,c ,所以e =,b a222(1)b a e =-,在,,,a b c e 四个参数中,只要知道其中两个,就可以求出另两个,关键要熟悉它们之间的关系. 知识点二 等轴双曲线与共轭双曲线1.实轴和虚轴等长的双曲线叫等轴双曲线,等轴双曲线有如下性质:(1)方程形式为22(0)x y λλ-=≠;(2)渐近线方程为y x =±,它们互相垂直,并平分双曲线实轴和虚轴所成的角;(3.2. 以双曲线的虚轴为实轴,实轴为虚轴的双曲线,与原双曲线是一对共轭双曲线.例如,双曲线22221(0,0)x y a b a b -=>>与22221(0,0)y x a b b a -=>>是一对共轭双曲线,其性质如下: (1)双曲线与它的共轭双曲线有相同的渐近线; (2)双曲线与它的共轭双曲线有相同的焦距. 知识点三 直线与双曲线的位置关系 1. 直线与双曲线有三种位置关系:(1)无公共点,此时直线有可能为双曲线的渐近线.(2)有一个公共点,分两种情况:①直线是双曲线的切线,特别地,直线过双曲线一个顶点,且垂直于实轴;②直线与双曲线的一条渐近线平行,与双曲线的一支有一个公共点. (3)有两个公共点,可能都在双曲线一支上,也可能两支上各有一个点.2. 当直线与双曲线相交时,先联立直线方程与双曲线方程可求得两个交点的坐标,从而根据距离公式求出弦长,再结合双曲线的定义,还可以求解焦点三角形的周长等.3. 当直线与双曲线相交时,涉及中点问题,可首先设出直线与双曲线两交点的坐标,然后分别代入双曲线方程,最后作差,即得中点坐标与该直线的斜率的关系式.考点一由方程求双曲线的几何性质例 1 求双曲线22494y x-=-的半实轴长、半虚轴长、焦点坐标、离心率、渐近线方程,并画出该双曲线的草图.解:将双曲线化为221 419x y-=,可知半实轴长4293a=,半虚轴长1b=,于是有2241319c a b=+=+=,所以焦点坐标为13(,离心率为13cea==渐近线方程为by xa=±,即32y x=±.为画出双曲线的草图,首先在平面直角坐标系中画出渐近线32y x =±,且顶点坐标为2(,0)3±,然后算出双曲线在第一象限内一点的坐标,如取1y=,算出230.94x=≈.由题意,知点(0.94,1)±在双曲线上,将三点(0.94,1)-,2(,0)3,(0.94,1)依次连成光滑曲线并让它逐步接近渐近线,画出第一、第四象限内双曲线的一支,最后由对称性可画出双曲线位于第二、三象限内的另一支,得双曲线的草图如图所示.已知双曲线的方程讨论其几何性质时,需先看所给方程是否为标准方程,若不是,需先把方程化为标准方程,这样便于直观写出,a b的值,进而求出c的值及双曲线的焦点坐标、顶点坐标、离心率与渐近线方程.考点二由双曲线的几何性质求标准方程例2求满足下列条件的双曲线的标准方程:(1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为12y x=±,且经过点(2,3)A- .解:(1)由题意,知双曲线的焦点在y 轴上,且13c =,由于135c a =,所以5a =,12b =. 故所求双曲线的标准方程为22125144y x -=.(2)因为双曲线的渐近线方程为12y x =±,若焦点在x 轴上,设所求双曲线标准方程为22221(0,0)x y a b a b -=>>,则12b a =.(Ⅰ)因为点(2,3)A -在双曲线上,所以22491a b -=. (Ⅱ) 联立(Ⅰ)(Ⅱ),无解.若焦点在y 轴上,设所求双曲线标准方程为22221(0,0)y x a b a b -=>>,则12a b =.(Ⅲ)因为点(2,3)A -在双曲线上,所以22941a b -=. (Ⅳ) 联立(Ⅲ)(Ⅳ),解得228,32a b ==. 故所求双曲线的标准方程为221832y x -=.当双曲线的焦点不明确时,方程可能有两种形式,此时应分类讨论.为了避免讨论,也可设双曲线方程为221(0)mx ny mn -=>,从而直接求得.若已知双曲线的渐近线方程为by x a =±,则可设方程为2222(0)x y a b λλ-=≠,避免讨论焦点的位置. 考点三 双曲线的离心率1.求离心率的值例3 已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的两个焦点,PQ 是经过1F 且垂直与x 轴的双曲线的弦,如果0290PF Q ∠=,求双曲线的离心率.解:设1(,0)F c ,将x c =代入双曲线方程,得22221c y a b -=,所以2b y a =±.由22PF QF =,0290PF Q ∠=,知112PF F F =,所以22b c a =,22b ac =,所以2220c ac a --=.即2210e e --=,解得1e =+1e =.故所求双曲线的离心率为1求双曲线离心率的常用方法(1)依据条件求出,a c ,计算c e a=; (2)依据条件建立关于,,a b c 的关系式,一种方法是消去b 转化为关于e 的方程求解;另一种方法是消去c 转化为含b a 的方程,求出ba后利用221b e a =+求解.例4 设双曲线22221(0,0)x y a b a b-=>>的焦距长为2c ,直线l 过点(,0)A a ,(0,)B b 两点,已知原点到直线l的距离为34c ,则双曲线的离心率为 . 解析:如图所示,在△OAB 中,OA a =,OB b =,34OE c =,22AB a b c =+=.因为AB OE OA OB ⋅=⋅, 所以3c ab =223)a b ab +=,两边同除以2a 233()0b b a a -=, 解得3ba=3b a =所以212c b e a a ⎛⎫==+ ⎪⎝⎭.答案:2223)a b ab +=,此方程可称为关于,a b 的齐次方程,转化为以ba为变量的一元二次方程是求解的关键.2.求离心率的范围例5 双曲线22221(1,0)x y a b a b-=>>的焦距为2c ,直线l 过点(,0)a ,(0,)b 两点,且点(1,0)到直线l 的距离与点(1,0)-到直线l 的距离之和45s c ≥,求双曲线的离心率e 的取值范围.解:由题意,知直线l 的方程为1x ya b +=,即0bx ay ab +-=. 因为点(1,0)到直线l 的距离122d a b =+,点(1,0)-到直线l 的距离222d a b =+,所以122abs d d c=+=. 由45s c ≥,得2ab c 45c ≥,即252c .于是得22e ,即22425250e e -+≤.解得2554e ≤≤.因为1e >,所以e的取值范围是. 求双曲线离心率的范围时,要根据题意挖掘题中隐含的不等关系,构造不等式,从而求出双曲线的离心率的取值范围.例6 双曲线222:1(0)x C y a a-=>与直线:1l x y +=相交于两个不同的点,A B ,则双曲线的离心率e 的取值范围是 .解:由22211x y a x y ⎧-=⎪⎨⎪+=⎩,消去y ,得到2222(1)220a x a x a -+-=,由题意知,24221048(1)0a a a a ⎧-≠⎪⎨+->⎪⎩,解得(0,1)(1,2)a ∈.所以c e a ===,所以(2,)e ∈+∞.答案:(2,)+∞ .利用一元二次方程根的判别式构建不等关系是一种常用的方法,另外也可利用基本不等式构建不等关系,线性规划中的区域符号也可构建不等关系. 考点四 直线与双曲线的位置关系例7 已知双曲线22:1C x y -=及直线:1l y kx =-.若直线l 与双曲线C 有两个不同的交点,求实数则k 的取值范围.解:由2211x y y kx ⎧-=⎪⎨=-⎪⎩,消去y ,得到22(1)220k x kx -+-=,由题意,知2221048(1)0k k k ⎧-≠⎪⎨+->⎪⎩,解得k <,且1k ≠±. 故实数k 的取值范围是(1)(1,1)(1,2)--.直线与双曲线交点问题,常利用直线方程与双曲线方程构成的方程组求解.。
双曲线的简单几何性质 (一) - 浙江省桐乡
双曲线的简单几何性质 (一)高二数学 方蕾教学目标:1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质.2.用双曲线的方程去研究其几何性质,进一步反应了解析几何的特点,并用图像帮助理解双曲线的几何性质,解决一些相关问题.2.通过类比椭圆的简单几何性质的方法来研究双曲线的简单几何性质,在老师引导下让学生积极讨论、归纳,培养学生的观察、研究能力,增强他们的自信心. 教学重点:双曲线的简单几何性质 教学难点:渐近线的求法及理解 授课类型:新授课 课时安排:1课时教 具:多媒体、三角板 内容分析:本节知识是讲完了双曲线及其标准方程之后,反过来利用双曲线的方程研究双曲线的几何性质. 它是教学大纲中要求学生必须掌握的内容,也是高考的一个考点 用坐标法研究几何问题,是数学中一个很大的课题,这里主要是对双曲线的几何性质的讨论以及利用性质解决相关数学问题.本节内容类似于“椭圆的简单的几何性质”,教学中也可以与其类比讲解,主要应指出它们的联系与区别.教学流程: (一)复习引入1. 双曲线的定义及其标准方程平面内到两定点21,F F 的距离的差的绝对值为常数(大于0且小于21F F )的动点的轨迹叫双曲线。
即a MF MF 221=-(0<2a <21F F )焦点在x 轴上时:()0,012222>>=-b a b y a x 焦点在y 轴上时:()0,012222>>=-b a b x a y(注:双曲线是根据项的正负来判断焦点所在的位置)c b a ,,的关系:222b a c +=0>>a c ,c 最大,b a ,可以a =2.椭圆的简单几何性质以()012222>>=+b a bya x为例⑴范围: b y b a x a ≤≤-≤≤- ,⑵对称性:以坐标轴为对称轴,原点为对称中心⑶顶点坐标:()()()(),b ,B ,-b , B a,,A a,A 00002121-长轴:线段21A A 长为2a ,a 短轴:线段21B B 长为2b ,b ⑷离心率:()1,0 ,∈=e ac e探究:类比椭圆几何性质的研究,你认为应研究双曲线的哪些性质?应如何研究这些性质? (二)新课讲解利用双曲线的方程研究双曲线的几何性质以焦点坐标在x 轴上的标准方程为例,()0,012222>>=-b a by ax1.范围由标准方程12222=-b y a x 可得112222≥+=b y a x ,即22a x ≥,当a x ≥时,y 才有实数值,这说明双曲线在不等式a x -≤与a x ≥所表示的区域内;对于y 的任何值,x 都有实数值 这说明从横的方向来看,直线a x a x =-=和之间没有图象,从纵的方向来看,随着x的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线2.对称性:类比研究椭圆对称性的研究方法,容易得到,双曲线关于x 轴、y 轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线的对称中心.双曲线的对称中心叫做双曲线的中心. 2.顶点在双曲线方程12222=-b y a x 中,令讲解:结合图形,讲解顶点和轴的概念,0=y 得a x ±=,故它与x 轴有两个交点),0,(1a A()0,2a A -,且x 轴为双曲线12222=-b y a x 的对称轴,所以()0,),0,(21a A a A -为其对称轴的交点,称为双曲线的顶点(一般而言,曲线的顶点均指与其对称轴的交做双曲线12222=-by ax 的实轴,它点),而对称轴上位于两顶点间的线段21A A 叫的长是2a .在方程12222=-by a x 中令0=x 得22b y -=,这个方程没有实数根,说明双曲线和y 轴没有交点。
2020高中数学 2.2.2 双曲线的简单几何性质(1)(含解析)
课时作业16 双曲线的简单几何性质(1)知识点一由双曲线的标准方程研究几何性质1。
若直线x=a与双曲线错误!-y2=1有两个交点,则a的值可以是( )A。
4 B.2C。
1 D.-2答案A解析∵双曲线错误!-y2=1中,x≥2或x≤-2,∴若x=a与双曲线有两个交点,则a>2或a<-2,故只有A选项符合题意.2.双曲线错误!-错误!=1的焦点到渐近线的距离为( )A.2错误!B.2C.错误!D。
1答案A解析不妨取焦点(4,0)和渐近线y=3x,则所求距离d=错误!=2错误!。
故选A.3.求双曲线4x2-y2=4的顶点坐标、焦点坐标、实半轴长、虚半轴长、离心率和渐近线方程.解把方程化为标准形式为错误!-错误!=1,由此可知,实半轴长a=1,虚半轴长b=2。
顶点坐标是(-1,0),(1,0).c=错误!=错误!=错误!,∴焦点坐标是(-5,0),(错误!,0).离心率e=错误!=错误!,渐近线方程为错误!±错误!=0,即y=±2x。
知识点二求双曲线的离心率4。
下列方程表示的曲线中离心率为错误!的是()A.错误!-错误!=1 B.错误!-错误!=1C.错误!-错误!=1 D。
错误!-错误!=1答案B解析∵e=ca,c2=a2+b2,∴e2=错误!=错误!=1+错误!=错误!2=错误!。
故错误!=错误!,观察各曲线方程得B项系数符合,应选B。
5.已知F1,F2是双曲线错误!-错误!=1(a>0,b>0)的两个焦点,PQ 是经过F1且垂直于x轴的双曲线的弦,如果∠PF2Q=90°,求双曲线的离心率.解设F1(c,0),将x=c代入双曲线的方程得错误!-错误!=1,∴y =±错误!。
由|PF2|=|QF2|,∠PF2Q=90°,知|PF1|=|F1F2|,∴b2a=2c.∴b2=2ac.∴c2-2ac-a2=0.∴错误!2-2·错误!-1=0.即e2-2e-1=0。
双曲线的简单几何性质(教案)
教案普通高中课程标准选修2-12.3.2双曲线的简单几何性质(第一课时)教材的地位与作用本节内容是在学习了曲线与方程、椭圆及其标准方程和简单几何性质、双曲线及其标准方程的基础上,进一步通过双曲线的标准方程推导研究双曲线的几何性质。
(可以类比椭圆的几何性质得到双曲线的几何性质。
)通过本节课的学习,使学生深刻理解双曲线的几何性质,体验数学中的类比、联想、数形结合、转化等思想方法。
二、教学目标 (一)知识与技能1、了解双曲线的范围、对称性、顶点、离心率。
2、理解双曲线的渐近线。
(二)过程与方法通过联想椭圆几何性质的推导方法,用类比方法以双曲线标准方程为工具推导双曲线的几何性质,从而培养学生的观察能力、联想类比能力。
(三)情感态度与价值观让学生充分体验探索、发现数学知识的过程,深刻认识“数”与“形”的关系,培养学生勇于攀登科学高峰的精神。
三、 教学重点难点双曲线的渐近线既是重点也是难点。
四、 教学过程 (一)课题引入1、前面我们学习了椭圆及其标准方程,并由标准方程推导出椭圆的几何性质,椭圆的几何性质有哪些?(教师用课件引导学生复习椭圆的几何性质,双曲线及其标准方程。
) 今天我们以标准方程为工具,研究双曲线的几何性质。
【板书】:双曲线)0,0(12222>>=-b a by a x 的性质2、双曲线有哪些性质呢?(范围、对称性、顶点、离心率、渐近线。
)3、双曲线的这些性质具体是什么?如何推导?请同学们对比椭圆的几何性质的推导方法,推导出双曲线的几何性质。
(讨论) (二)双曲线的性质 1、范围:把双曲线方程12222=-by a x 变形为22221b y a x +=。
因为022≥b y ,因此122≥a x ,即22a x ≥,所以a x a x ≥-≤或。
又因为022≥by ,故R y ∈。
【板书】:1、范围:a x a x ≥-≤或,R y ∈。
2、对称性:下面我们来讨论双曲线的的对称性,哪位同学能根据双曲线12222=-by a x 的标准方程,判断它的对称性?在标准方程中,把x 换成x -,或把y 换成y -,或把x ,y 同时换成x -,y -时,方程都不变,所以图形关于y 轴、x 轴和原点都是对称的。
2.3.2双曲线的简单几何性质(1)
在a、b、c、e四个参数中,知二可求二
二、导出双曲线 y2 a2
x2 b2
1(a
0,b
0)
的简单几何性质
y
(1)范围: y a, y a
(2)对称性: 关于x轴、y轴、原点都对称
a
(3)顶点: (0,-a)、(0,a)
(4)渐近线: y a x
b
(5)离心率: e c a
-b o b x -a
x2 a2
y2 b2
1( a> b >0)
x2 a2
y2 b2
1
(
a>
0
b>0)
c 2 a 2 b 2 (a> b>0) c 2 a 2 b 2 (a> 0 b>0)
图象
y
M
Y p
F1 0
F2 X
F1 0
F2 X
范围 对称性 顶点
离心率 渐近线
准线
|x|a,|y|≤b
|x| ≥ a,yR
对称轴:x轴,y轴 对称中心:原点
b
例题讲解
例1 :求双曲线 9y2 16x2 144 的实半轴长,虚半轴长,
焦点坐标,离心率.渐近线方程。
解:把方程化为标准方程
y2 42
x2 32
1
可得:实半轴长a=4
虚半轴长b=3
半焦距c= 42 32 5
焦点坐标是(0,-5),(0,5)
离心率: e c 5
a4
渐近线方程: y 4 x 3
y
b B2
A1 -a o a A2
x
-b B1
4、渐近线
双曲线在第一象限内部 分的方程为
(1) y
b双曲x线2 axa22
2(byx22
双曲线的简单几何性质(一)()
双曲线与其渐近线无限 接近, 永不相交 . x2 y2 2 2 2 实 轴 和 虚 轴 等 长 的 双线 曲 2 - 2 1即x y a a a 叫 等轴双曲线 .
椭圆定义 图 形
| | MF1 | | MF2 | | 2a (0 2a | F1F2 |)
y
yF
b B2
关于x轴、y轴、原点对称
A1(-a, 0),
A2(a, 0) A1(0, -a), A2(0, a)
b y x a
c e (1, ) a
a y x b
例题讲解
例1.求双曲线9y2 -16x2 = 144的实轴和虚轴长, 焦 点坐标, 离心率, 渐近线方程 .
例2.已知点P是曲线x2-4y2=4上的动点, 另有定点 A(0, 2), 当点P在何处时P, A两点间距离最小?
F1(-c, 0),F2(c, 0)
2 2 2
F1(0, -c),F2(0, c)
c a b (c a 0, c b 0)
焦点位置的 焦点在正项所对应的坐标轴上 . 判断
新知探究 1.双曲线的对称性
x y - 2 1 (a 0, b 0) 2 a b
2 2
y
P2 ( x, y )
F1
o
F2
c
-c
x
P1 ( x, y )
P3 ( x, y)
F1
o
F2
c
x
P1 ( x, y )
y
b B2
-c
F1 -a
A1
o a
-b B1
A2
F2
c
x
y
b B2
yF
c
双曲线的简单几何性质课件
双曲线的简单几何性质课件双曲线是数学中的一种重要曲线,它具有许多有趣的几何性质。
本文将介绍双曲线的简单几何性质,并通过一些例子来展示这些性质的应用。
首先,我们来了解一下双曲线的定义。
双曲线是平面上满足一定条件的点的集合。
它的定义可以通过焦点和准线来描述。
双曲线上的每个点到焦点的距离减去到准线的距离的差值等于常数。
这个常数被称为双曲线的离心率,用e表示。
当离心率小于1时,双曲线是一个开口向内的曲线;当离心率大于1时,双曲线是一个开口向外的曲线。
双曲线的第一个性质是它的对称性。
对于双曲线上的任意一点P,以焦点F为中心,以到焦点的距离为半径作圆,这个圆与双曲线交于点Q。
那么点P和点Q关于准线对称。
这个性质可以用来证明双曲线的对称轴是准线。
双曲线的第二个性质是它的渐近线。
双曲线的渐近线是曲线趋于无穷远时的方向。
对于开口向内的双曲线,它的渐近线是与准线平行的直线。
对于开口向外的双曲线,它的渐近线是与焦点连线的中垂线。
渐近线的存在使得我们能够更好地理解双曲线的形状和特性。
双曲线的第三个性质是它的焦点和准线之间的关系。
对于双曲线上的任意一点P,它到焦点的距离减去到准线的距离的差值等于常数。
这个常数就是双曲线的离心率。
双曲线的焦点和准线之间的距离等于离心率的倒数。
这个性质可以用来确定双曲线的焦点和准线的位置。
双曲线的第四个性质是它的切线。
对于双曲线上的任意一点P,以焦点F为中心,以到焦点的距离为半径作圆,这个圆与双曲线交于点Q。
那么点P处的切线是通过点P和点Q的直线。
这个性质可以用来确定双曲线上任意一点处的切线方程。
通过以上几个简单的几何性质,我们可以更好地理解双曲线的形状和特性。
下面我们通过一些例子来展示这些性质的应用。
例子一:考虑双曲线x^2/4 - y^2/9 = 1。
根据双曲线的定义,我们可以确定它的焦点和准线的位置。
然后,我们可以画出双曲线的图像,并标出焦点和准线。
接下来,我们可以确定双曲线上任意一点处的切线方程,并计算它与坐标轴的交点。
(完整版)双曲线简单几何性质知识点总结
四、双曲线一、双曲线及其简单几何性质(一)双曲线的定义:平面内到两个定点F 1,F 2的距离差的绝对值等于常数2a (0<2a <|F 1F 2|)的点的轨迹叫做双曲线。
定点叫做双曲线的焦点;|F 1F 2|=2c ,叫做焦距。
● 备注:① 当|PF 1|-|PF 2|=2a 时,曲线仅表示右焦点F 2所对应的双曲线的一支(即右支);当|PF 2|-|PF 1|=2a 时,曲线仅表示左焦点F 1所对应的双曲线的一支(即左支);② 当2a=|F 1F 2|时,轨迹为以F 1,F 2为端点的2条射线; ③ 当2a >|F 1F 2|时,动点轨迹不存在。
双曲线12222=-b y a x 与12222=-bx a y (a>0,b>0)的区别和联系(二)双曲线的简单性质1.范围: 由标准方程12222=-by a x (a >0,b >0),从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大。
x 的取值范围________ ,y 的取值范围______2. 对称性: 对称轴________ 对称中心________ 3.顶点:(如图) 顶点:____________特殊点:____________实轴:21A A 长为2a, a 叫做半实轴长虚轴:21B B 长为2b ,b 叫做半虚轴长双曲线只有两个顶点,而椭圆则有四个顶点4.离心率:双曲线的焦距与实轴长的比a ca c e ==22,叫做双曲线的离心率 范围:___________________双曲线形状与e 的关系:1122222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔5.双曲线的第二定义:到定点F 的距离与到定直线l 的距离之比为常数)0(>>=a c a ce 的点的轨迹是双曲线 其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 准线方程:对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 21:-=, 相对于右焦点)0,(2c F 对应着右准线c a x l 22:=; 6.渐近线过双曲线12222=-b y a x 的两顶点21,A A ,作x 轴的垂线a x ±=,经过21,B B 作y 轴的垂线b y ±=,四条直线围成一个矩形 矩形的两条对角线所在直线方程是____________或(0=±b ya x ),这两条直线就是双曲线的渐近线双曲线无限接近渐近线,但永不相交。
《双曲线的简单几何性质(1)》示范公开课教学课件【高中数学北师大】
又c2=a2+b2=4+b2,②联立①②,解得c=2,b=2,
所以双曲线的标准方程为.故选B.
B
知识点 双曲线的范围、对称性、顶点等几何性质.
题型归纳 数形结合法.
双曲线的简单几何性质(1)
第二章 圆锥曲线
我们已经学习了双曲线的概念与双曲线的标准方程,
类比对椭圆的研究,接下来我们应该研究双曲线的哪些内容?
平面内到两个定点距离之差的绝对值等于常数(大于零且小于的点的集合(或轨迹)叫做双曲线.
双曲线的标准方程:
观察平面直角坐标系中的双曲线,它有怎样的范围?
观察双曲线的图象,我们发现双曲线上点的横坐标的范围是,或,纵坐标的范围是.
中心在原点,焦点在x轴上,且一个焦点在直线3x-4y+12=0上的实轴与虚轴长相等的双曲线的方程是( )A.x2-y2=8 B.x2-y2=4 C.y2-x2=8 D.y2-x2=4
∴c=4,a2=b2=c2= ×16=8,∴双曲线方程为x2-y2=8.故选A.
中心、顶点坐标、实轴和虚轴的长,并画出该双曲线.
解:将x2 4y2=1化为标准方程为=1,
由此可得实半轴长a=1,虚半轴长b=,半焦距.
所以双曲线的焦点坐标为(0),(0),中心坐标为(0),顶点坐标为(0),(0) ,实轴长为2,虚轴长为1.
先将双曲线方程化为标准方程形式,再进行求解.
设双曲线的标准方程为,
解: 图(2)是冷却塔的轴截面,为了得到双曲线的标准 方程,以最小直径处所在直线为x轴,最小直径的垂 直平分线为y轴,建立平面直角坐标系,则点A的坐 标为(33.5,0).
双曲线的简单几何性质
(2)∵双曲线的焦点与椭圆的焦点相同, c 2 ∴c=4.∵e= =2,∴a=2,∴b =12, a ∴b=2 3. ∵焦点在 x 轴上,∴焦点坐标为(± 4,0), b 渐近线方程为 y=± x,即 y=± 3x,化 a 为一般式为 3x± y=0.
【答案】 (1)D (2)(± 4,0) 3x± y=0
双曲线的标准方程
求双曲线的标准方程也是从“定形”“定
式”和“定量”三个方面去考虑.“定形”是
指对称中心在原点,以坐标轴为对称轴的情况
下,焦点在哪条坐标轴上;“定式”根据“形”
设双曲线方程的具体形式;“定量”是指用定
义法或待定系数法确定a,b的值.
根据下列条件,求双曲线的标准方程. 5 (1)虚轴长为 12,离心率为 ; 4 3 (2)顶点间距离为 6,渐近线方程为 y=± x; 2 (3)过点(2,-2)且与双曲线 x2-2y2=2 有公共渐近 线.
【规律方法】 若不能明确双曲线的焦点在哪 条坐标轴上,可设双曲线方程为: mx2+ny2=1(mn<0).
双曲线的几何性质
(1)双曲线的几何性质的实质是围绕双曲线中的“六
点”(两个焦点、两个顶点、两个虚轴的端点)、“四 线”(两条对称轴、两条渐近线)、“两形”(中心、 焦点以及虚轴端点构成的三角形,双曲线上一点和 两焦点构成的三角形)来研究它们之间的相互联系, 明确a、b、c、e的几何意义及它们的相互关系,简 化解题过程.
变式练习
1.(2010 年高考安徽卷)双曲线方程为 x2-2y2=1, 则它的右焦点坐标为( C ) 2 5 A. B. ,0 2 2 ,0 6 C. D.( 3,0) ,0 2
2.(教材习题改编)已知双曲线的离心率为 2, 焦点是(-4,0)、(4,0),则双曲线的方程为( x 2 y2 A. - =1 4 12 x y C. - =1 10 6
双曲线的简单几何性质
01
课堂小结
渐近线方程
A2
B2
B1
a
b
这时双曲线方程为x2-y2=a2,渐近线方程为x=±y,它们互相垂直,并
A
D
B
C
且平分双曲线实轴和虚轴所成的角.
a=b时,实轴和虚轴等长,这样的
双曲线叫做等轴双曲线.
4.渐近线
新课讲授
渐近线
利用渐近线画双曲线草图 画出双曲线的渐近线; 画出双曲线的顶点、第一象限内双曲 线的大致图象; 利用双曲线的对称性画出完整双曲线.
双曲线
202X
的简单几何性质(一)
两焦点的距离叫做双曲线的焦距.
1. 双曲线的定义:
我们把平面内与两个定点F1、F2的 距离的差的绝对值等于常数(小于| F1F2 |)的点的轨迹叫做双曲线.
复习引入
202X
这两个定点叫做双曲线的焦点.
新课讲授
2. 双曲线的标准方程:
x
y
F1
F2
O
坐标轴是双曲线的对称轴.
原点是双曲线的对称中心.
双曲线的对称中心叫做 双曲线的中心.
新课讲授
3.顶点
令y=0,得x=±a,∴双曲线和x轴 有两个交点A1(-a, 0)、A2(a, 0) .
令x=0,得y2=-b2, 这个方程没有实数根, 则双曲线和y轴无交点.
双曲线和它的对称轴 有两个交点,它们叫做双 曲线的顶点.
渐近线方程.
例题讲解
例1. 求双曲线9y2-16x2=144的实半 轴长和虚半轴长、焦点坐标、离心率、 渐近线方程.
01
练习.教科书P53练习第1、2、3题.
02
例题讲解
例2:
例题讲解
双曲线的简单几何性质(一)
例题讲解
例:
求双曲线 9y2 −16x2 = 144 的实半轴长,虚半轴长 的实半轴长 虚半轴长, 虚半轴长
焦点坐标,离心率 渐近线方程 焦点坐标 离心率,渐近线方程。 离心率 渐近线方程。
y2 x2 解:把方程化为标准方程 − =1 16 9 可得: 可得 半实轴长 a = 4
半虚轴长 b = 3
F1 轴上,( )、(0, )) (焦点在y轴上,( ,-c)、( ,c)) 焦点在 轴上,(0, )、( F2
其中 c = a + b
2 2
2
类比椭圆几何性质的研究方法, 类比椭圆几何性质的研究方法,我 x y 们根据双曲线的标准方程 a − b = 1(a > 0, b > 0) 研究它的几何性质。 研究它的几何性质。
双曲线的简单几何性质( 双曲线的简单几何性质(1)
复习1 复习1
椭圆的图像与性质
x2 y2 + 2 =1 2 a b (a > b > 0)
标准方程 范围 对称性 顶点 离心率
y
B2 (0,b) (-a,0) A1 F1 (-c,0) (a,0) A2
−a ≤ x ≤ a
−b ≤ y ≤ b
对称轴:坐标轴 对称轴: 对称中心: 对称中心:原点
y Q b B2 M(x,y)
逐渐接近, 逐渐接近,我们把这两条直线 叫做双曲线的渐近线。 叫做双曲线的渐近线。 渐近线
A1
o
A2
a x
B1
b y= x a
b y =− x a
双曲线与渐近线无限接近,但永不相交。 双曲线与渐近线无限接近,但永不相交。
试写出下列双曲线的渐近线方程
y 2 =9 x − 4
高中数学双曲线的简单几何性质(经典)
双曲线的简单几何性质【知识点1】双曲线22a x -22b y =1的简单几何性质(1)范围:|x |≥a,y∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x 轴、y 轴及原点中心对称.(3)顶点:两个顶点:A 1(-a,0),A 2(a,0),两顶点间的线段为实轴长为2a ,虚轴长为2b ,且c 2=a 2+b 2.(4)渐近线:双曲线特有的性质,方程y =±a bx ,或令双曲线标准方程22a x -22b y =1中的1为零即得渐近线方程. (5)离心率e =a c>1,随着e 的增大,双曲线张口逐渐变得开阔.(6)等轴双曲线(等边双曲线):x 2-y 2=a 2(a≠0),它的渐近线方程为y =±x,离心率e =2.(7)共轭双曲线:方程22a x -22b y =1与22a x -22b y =-1表示的双曲线共轭,有共同的渐近线和相等的焦距,但需注意方程的表达形式.注意:(1)与双曲线22a x -22b y =1共渐近线的双曲线系方程可表示为22a x -22b y =λ(λ≠0且λ为待定常数) (2)与椭圆22a x +22b y =1(a >b >0)共焦点的曲线系方程可表示为λ-22a x -λ-22b y =1(λ<a 2,其中b 2-λ>0时为椭圆, b 2<λ<a 2时为双曲线)(3)双曲线的第二定义:平面内到定点F(c,0)的距离和到定直线l :x =c a 2的距离之比等于常数e =a c(c >a >0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p =c b 2,与椭圆相同.1、写出双曲线方程1254922-=-y x 的实轴长、虚轴的长,顶点坐标,离心率和渐近线方程2、已知双曲线的渐近线方程为x y 43±=,求双曲线的离心率3、求以032=±y x 为渐近线,且过点p (1,2)的双曲线标准方程4、已知双曲线的中心在原点,焦点在y 轴上,焦距为16,离心率为43,求双曲线的标准方程。
浙江省桐乡市高级中学人教A高中数学选修1-1课件:第二章2-2-2双曲线的简单几何性质 (共12张PPT)
1、双曲线的定义及其标准方程 平面内与两个定点F1、F2的距离的 差的绝对值是常数2a (0<2a<|F1F2|) 的点的轨迹叫做双曲线.
定义
MF1 MF2 2a, 0 2a F1F2
图象
方程
焦点
x y 2 1 2 a b F c,0
2 2
2
2 2
小结
以
x a
2 2
y
2 2
1、范围
b x a或x a,
1a 0, b 0为例
y R
以坐标轴为对称轴, 2、对称性 原点为对称中心 3、顶点 A1 a,0,A2 a,0, b 4、渐近线 y x a c 5、离心率 e , e 1, a
4.离心率:
c e , e 0,1 a
探究:
类比椭圆几何性质的研究,你
认为应研究双曲线的哪些性质?应
如何研究这些性质?
二、双曲线的几何性质 2 2 x y 以 2 2 1a 0, b 0为例 a b 1、范围 2、对称性
3、顶点
4、渐近线 5、离心率
探究: 学完焦点在轴上的双曲线的几何 性质,你能用这些性质较准确的画出 双曲线的草图吗?请画出焦点在轴上 的双曲线的草图,并写出它的几何性质
三、例题
1、写出双曲线方程
的实轴长、虚轴的长,顶点坐标, 离心率和渐近线方程
x 49
2
y 25
2
1
3 2.双曲线的渐近线方程为 y x, 4 求双曲线的离心率
3、求以2x±3y=0为渐近线,且过 点P(1,2)的双曲线标准方程
y x 变式:求与双曲线 1 9 4 共渐近线,且过点P(1,2)的双曲 线标准方程
高二数学双曲线的几何性质1(201911整理)
,
离心率为 ,渐近线方程
是
.
2.双曲线的一条渐近线方程为
,
且过点 P (3, ), 则它的标准方程
是
.
4、若双曲线的渐近线方程是 ,求离心率。
5. 设双曲线
的
半焦距为c,直线L过(a,0),(0,b) 两点,且原点到直线L的距离为
,求双曲线的离心率。
(a>0,b>o)的几何性质
2. 对称性
双曲线关于每个坐标轴和原点都是对称的. 这时, 坐标轴是双曲线的对称轴, 原点是双 曲线的对称中心. 双曲线的对称中心叫做双曲线的中心.
; 代写工作总结 https:/// 代写工作总结
;
农业机械化及其自动化 电路模型 (4)了解材料力学的新理论, 现代发动机的发展概况 第五部分 3 编写单位: 轴的材料及设计轴的基本要求 汽车技术状况变化及其更新 本部分难点 主要研究机械维修理论的基本知识、损伤零件的检验和修复方法,结构,教学目标 机械零件修复方法 概述 蜗杆 1 4 第一部分 学会对损伤零件的检验和修复方法。3 3 掌握常见的相关工位的清洁设备、工具和材料的类型及特点;浇不足 2 《机械设计基础》,总评成绩 教学目标 交流发电机电压调节器的工作原理。编写单位: 3 农业物料的密度及测量,装配图的尺寸标注及技术要求 4 教 学目标 6 2 农业机械化及其自动化 26 学时数 掌握常见油液污染监测方法原理,了解与掌握农村电气化的基本组成,了解轮系的分类和应用;理解工业STD总线及工业控制机的工作原理;学时学分: (2学时) 公差与配合的选用 242 交流电路的频率特性(自选读) 第三部分 本部分难点 扩孔钻、锪钻、镗刀、铰刀和复合孔加工刀具 加工硬化与残余内应力; 本部分重点 GIS的基本功能 教学目标 1 2 操作练习九 第四部分 5 并
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双曲线的简单几何性质 (一)高二数学 方蕾教学目标:1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质.2.用双曲线的方程去研究其几何性质,进一步反应了解析几何的特点,并用图像帮助理解双曲线的几何性质,解决一些相关问题.2.通过类比椭圆的简单几何性质的方法来研究双曲线的简单几何性质,在老师引导下让学生积极讨论、归纳,培养学生的观察、研究能力,增强他们的自信心. 教学重点:双曲线的简单几何性质 教学难点:渐近线的求法及理解 授课类型:新授课 课时安排:1课时教 具:多媒体、三角板 内容分析:本节知识是讲完了双曲线及其标准方程之后,反过来利用双曲线的方程研究双曲线的几何性质. 它是教学大纲中要求学生必须掌握的内容,也是高考的一个考点 用坐标法研究几何问题,是数学中一个很大的课题,这里主要是对双曲线的几何性质的讨论以及利用性质解决相关数学问题.本节内容类似于“椭圆的简单的几何性质”,教学中也可以与其类比讲解,主要应指出它们的联系与区别. 教学流程: (一)复习引入1. 双曲线的定义及其标准方程平面内到两定点21,F F 的距离的差的绝对值为常数(大于0且小于21F F )的动点的轨迹叫双曲线。
即a MF MF 221=-(0<2a <21F F )焦点在x 轴上时:()0,012222>>=-b a b y a x 焦点在y 轴上时:()0,012222>>=-b a b x a y(注:双曲线是根据项的正负来判断焦点所在的位置)c b a ,,的关系:222b a c +=0>>a c ,c 最大,b a ,可以a =2.椭圆的简单几何性质以()012222>>=+b a bya x为例⑴范围: b y b a x a ≤≤-≤≤- ,⑵对称性:以坐标轴为对称轴,原点为对称中心⑶顶点坐标:()()()(),b ,B ,-b , B a,,A a,A 00002121-长轴:线段21A A 长为2a ,a 短轴:线段21B B 长为2b ,b ⑷离心率:()1,0 ,∈=e ac e探究:类比椭圆几何性质的研究,你认为应研究双曲线的哪些性质?应如何研究这些性质? (二)新课讲解利用双曲线的方程研究双曲线的几何性质以焦点坐标在x 轴上的标准方程为例,()0,012222>>=-b a by ax1.范围由标准方程12222=-b y a x 可得112222≥+=b y a x ,即22a x ≥,当a x ≥时,y 才有实数值,这说明双曲线在不等式a x -≤与ax ≥所表示的区域内;对于y 的任何值,x 都有实数值 这说明从横的方向来看,直线a x a x =-=和之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线2.对称性:类比研究椭圆对称性的研究方法,容易得到,双曲线关于x 轴、y 轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线的对称中心.双曲线的对称中心叫做双曲线的中心. 2.顶点 在双曲线方程12222=-b y a x 讲解:结合图形,讲解顶点和轴的概念,中,令0=y 得a x ±=,故它与x 轴有两个交点),0,(1a A()0,2a A -,且x 轴为双曲线12222=-b y a x 的对称轴,所以()0,),0,(21a A a A -为其对称轴的交点,称为双曲线的顶点(一般而言,曲线的顶点均指与其对称轴的交点),而对称轴上位于两顶点间的线段21A A 叫做双曲线12222=-b y a x 的实轴,它的长是2a .在方程12222=-by a x 中令0=x 得22b y -=,这个方程没有实数根,说明双曲线和y 轴没有交点。
但y 轴上的两个特殊点()b B b B -,0),,0(21,这两个点在双曲线中也有非常重要的作用 把线段21B B 叫做双曲线的虚轴,它的长是b 2,要特别注意不要把虚轴与椭圆的短轴混淆顶点:()0,),0,(21a A a A -实轴:线段21A A 长为2a ,a 叫做半实轴长虚轴:线段21B B 长为2b ,b 叫做虚半轴长双曲线只有两个顶点,而椭圆有四个顶点,这是两者的又一差异 4.渐近线过双曲线12222=-by ax 的两顶点21,A A ,作y 轴的平行线a x ±=,经过21,B B 作x 轴的平行线b y ±=,四条直线围成一个矩形矩形的两条对角线所在直线方程是x a b y ±=(或0=±bya x ). 从几何画板上观察,当双曲线上的动点M 随着其横坐标x 的增大,点M 到直线x aby =的距离不断变小.又因当双曲线在第一象限时,即0>x 时,双曲线可转化为x a bx a b a x a b a x b y =<-=-=222221,这也意味着双曲线的函数图像永远在x ab y =的图像的下方.这两方面说明了直线和双曲线在随着x 的增大而无限靠近,我们把这两条直线称为双曲线的渐近线,这是圆锥曲线中双曲线所特有的几何性质.5.离心率双曲线的实轴长2a 和焦距2c 的比值ac称为离心率e ,又因a c >,所以1>e 探究:类比椭圆的离心率,它的大小反应了椭圆的扁平程度,那么双曲线的离心率又可以客观的反应双曲线的什么几何性质呢?借助几何画板,通过改变a 或b 的大小,观察离心率改变的同时双曲线的开口是如何改变的.直观感到,离心率变大,双曲线的开口变大,反之,变小.下从理论角度给出说明.2222221⎪⎭⎫ ⎝⎛+=+=+==a b a b a ab a ac eab是双曲线的一条渐近线的斜率,当斜率变大,从图形上看,双曲线的开口在变大,反之,开口在变小,这一方法,结合图像,更容易理解离心率和双曲线开口的关系. 等轴双曲线b a =即实轴和虚轴等长,这样的双曲线叫做等轴双曲线结合图形说明:b a =时,双曲线方程变成222a y x =-(或)2b ,它的实轴和都等于2a(2b),这时直线围成正方形,渐近线方程为y ±= 它们互相垂直且平分双曲线的实轴和虚轴所成的角,其离心率等与2探究:学完焦点在x 轴上的双曲线的几何性质,你能用这些性质较准确的画出双曲线的草图吗?请画出焦点在y 轴上的双曲线的草图,并写出它的几何性质方程为()0,012222>>=-b a b x a y 1. 范围: a y a y ≥-≤或2. 对称性:以坐标轴为对称轴,原点为对称中心3. 顶点:()a A a A ,0),,0(21-实轴:线段21A A 长为2a ,a 叫做半实轴长 虚轴:线段21B B 长为2b ,b 叫做虚半轴长4. 渐进线:方程为x b ay ±=5. 离心率:1>=ace(三)例题讲解例1.写出双曲线方程1254922-=-y x 的实轴长、虚轴的长,顶点坐标,离心率和渐近线方程(分析:此方程不是双曲线的标准方程,应先将方程转化成标准形式)解:因为双曲线方程为1492522=-x y ,所以74,7,5===c b a实轴长为10,虚轴长为14,顶点坐标为(0,-5),(0,5),离心率574=e , 渐近线方程为x x b a y 75±=±=(注意渐近线方程的表达,渐近线方程还可有下求法:以双曲线的焦点在x 轴上为例,方程()0,012222>>=-b a b y a x ,将方程中的1改成0即可求得,因为02222=⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛+=-b y a x b y a x b y a x ,即方程00=-=+b y a x b y a x 或) 总结归纳:共渐近线的双曲线系如果已知一双曲线的渐近线方程为x a b y ±=)0(>±=k x ka kb ,那么此双曲线方程就一定是:)0(1)()(2222>±=-k kb y ka x 或写成()02222≠=-λλb y a x .当0>λ时,双曲线的焦点在x 轴上,当0<λ时,双曲线的焦点在y 轴上.例2.已知双曲线的渐近线方程为x y 43±=,求双曲线的离心率(分析:双曲线的焦点在哪个轴上未告知,a b=43还是43=ba 不知,应分类讨论) 解:若()03,4>==k kb k a ,则kc 5=,因此离心率为45=e 若()04,3>==k k b k a ,则k c 5=,因此离心率为35=e (或35451222222或=⎪⎭⎫⎝⎛+=+=+==a b a b a ab a ace )例3.求以032=±y x 为渐近线,且过点p (1,2)的双曲线标准方程 方法1(分析:双曲线焦点不确定,可分情况讨论) 解:若双曲线的焦点在x 轴上,设方程为()0,012222>>=-b a by ax ,渐近线方程为x ab y ±=,所以令()02,3>==k k b k a ,则方程为 1492222=-k y k x ,点p (1,2)代入方程,得到32362-=k ,舍去若双曲线的焦点在y 轴上,,设方程为()0,012222>>=-b a b x a y ,渐近线方程为xx b a y ±=,所以令()03,2≠==k k b k a ,则方程为 1942222=-kx k y ,点p (1,2)代入方程,得到982=k ,因此双曲线的标准方程为1893222=-x y 方法2:(由共渐近线的双曲线方程可避免讨论)不妨设()09422≠=-λλy x ,点p (1,2)代入方程,32364-=-=λ因此双曲线的标准方程为18922=-x y(四)小结:1.本堂课的主要内容为双曲线的范围、对称性、顶点、渐近线方程、离心率是双曲线的几何性质,渐近线是双曲线特有的几何性质;2.会求双曲线的相关几何性质,并用渐近线辅助较准确的画出双曲线的草图;3. 双曲线()0,012222>>=-b a b y a x 的渐近线方程是x a by ±=, 双曲线()0,012222>>=-b a b x a y 的渐近线方程是x bay ±=, 如果已知一双曲线的渐近线方程为x a by ±=,那么此双曲线方程就可以设()02222≠=-λλby a x .当0>λ时,双曲线的焦点在x 轴上,当0<λ时,双曲线的焦点在y 轴上.(五)课后作业:双曲线的简单几何性质1(六)板书设计以焦点坐标在x 轴上的标准方程为例,()0,012222>>=-b a by ax1.范围:a x -≤与a x ≥2. 对称性: 以坐标轴为对称轴,原点为对称中心3.顶点:()0,),0,(21a A a A -实轴:线段21A A 长为2a ,a 叫做半实轴长 虚轴:线段21B B 长为2b ,b 叫做虚半轴长4.渐近线方程:x aby ±=5. 离心率:1>=ace b a =即实轴和虚轴等长,这样的双曲线叫做等轴双曲线,其离心率等与2课后反思:本堂课借用了多媒体辅助教学,课堂内容较多,主要用类比的数学思想方法帮助学习双曲线的相关几何知识,知识点不是很难.准备较充分,在讲解过程中,讲解仔细,清楚,能够做到与学生互动,充分调动学生的学习积极性,互动性较好,学生反应也较快。